1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bitops.h> 4 #include <linux/elf.h> 5 #include <linux/mm.h> 6 7 #include <linux/io.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/random.h> 11 #include <linux/topology.h> 12 #include <linux/platform_data/x86/amd-fch.h> 13 #include <asm/processor.h> 14 #include <asm/apic.h> 15 #include <asm/cacheinfo.h> 16 #include <asm/cpu.h> 17 #include <asm/cpu_device_id.h> 18 #include <asm/spec-ctrl.h> 19 #include <asm/smp.h> 20 #include <asm/numa.h> 21 #include <asm/pci-direct.h> 22 #include <asm/delay.h> 23 #include <asm/debugreg.h> 24 #include <asm/resctrl.h> 25 #include <asm/msr.h> 26 #include <asm/sev.h> 27 28 #ifdef CONFIG_X86_64 29 # include <asm/mmconfig.h> 30 #endif 31 32 #include "cpu.h" 33 34 u16 invlpgb_count_max __ro_after_init = 1; 35 36 static inline int rdmsrq_amd_safe(unsigned msr, u64 *p) 37 { 38 u32 gprs[8] = { 0 }; 39 int err; 40 41 WARN_ONCE((boot_cpu_data.x86 != 0xf), 42 "%s should only be used on K8!\n", __func__); 43 44 gprs[1] = msr; 45 gprs[7] = 0x9c5a203a; 46 47 err = rdmsr_safe_regs(gprs); 48 49 *p = gprs[0] | ((u64)gprs[2] << 32); 50 51 return err; 52 } 53 54 static inline int wrmsrq_amd_safe(unsigned msr, u64 val) 55 { 56 u32 gprs[8] = { 0 }; 57 58 WARN_ONCE((boot_cpu_data.x86 != 0xf), 59 "%s should only be used on K8!\n", __func__); 60 61 gprs[0] = (u32)val; 62 gprs[1] = msr; 63 gprs[2] = val >> 32; 64 gprs[7] = 0x9c5a203a; 65 66 return wrmsr_safe_regs(gprs); 67 } 68 69 /* 70 * B step AMD K6 before B 9730xxxx have hardware bugs that can cause 71 * misexecution of code under Linux. Owners of such processors should 72 * contact AMD for precise details and a CPU swap. 73 * 74 * See http://www.multimania.com/poulot/k6bug.html 75 * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" 76 * (Publication # 21266 Issue Date: August 1998) 77 * 78 * The following test is erm.. interesting. AMD neglected to up 79 * the chip setting when fixing the bug but they also tweaked some 80 * performance at the same time.. 81 */ 82 83 #ifdef CONFIG_X86_32 84 extern __visible void vide(void); 85 __asm__(".text\n" 86 ".globl vide\n" 87 ".type vide, @function\n" 88 ".align 4\n" 89 "vide: ret\n"); 90 #endif 91 92 static void init_amd_k5(struct cpuinfo_x86 *c) 93 { 94 #ifdef CONFIG_X86_32 95 /* 96 * General Systems BIOSen alias the cpu frequency registers 97 * of the Elan at 0x000df000. Unfortunately, one of the Linux 98 * drivers subsequently pokes it, and changes the CPU speed. 99 * Workaround : Remove the unneeded alias. 100 */ 101 #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */ 102 #define CBAR_ENB (0x80000000) 103 #define CBAR_KEY (0X000000CB) 104 if (c->x86_model == 9 || c->x86_model == 10) { 105 if (inl(CBAR) & CBAR_ENB) 106 outl(0 | CBAR_KEY, CBAR); 107 } 108 #endif 109 } 110 111 static void init_amd_k6(struct cpuinfo_x86 *c) 112 { 113 #ifdef CONFIG_X86_32 114 u32 l, h; 115 int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); 116 117 if (c->x86_model < 6) { 118 /* Based on AMD doc 20734R - June 2000 */ 119 if (c->x86_model == 0) { 120 clear_cpu_cap(c, X86_FEATURE_APIC); 121 set_cpu_cap(c, X86_FEATURE_PGE); 122 } 123 return; 124 } 125 126 if (c->x86_model == 6 && c->x86_stepping == 1) { 127 const int K6_BUG_LOOP = 1000000; 128 int n; 129 void (*f_vide)(void); 130 u64 d, d2; 131 132 pr_info("AMD K6 stepping B detected - "); 133 134 /* 135 * It looks like AMD fixed the 2.6.2 bug and improved indirect 136 * calls at the same time. 137 */ 138 139 n = K6_BUG_LOOP; 140 f_vide = vide; 141 OPTIMIZER_HIDE_VAR(f_vide); 142 d = rdtsc(); 143 while (n--) 144 f_vide(); 145 d2 = rdtsc(); 146 d = d2-d; 147 148 if (d > 20*K6_BUG_LOOP) 149 pr_cont("system stability may be impaired when more than 32 MB are used.\n"); 150 else 151 pr_cont("probably OK (after B9730xxxx).\n"); 152 } 153 154 /* K6 with old style WHCR */ 155 if (c->x86_model < 8 || 156 (c->x86_model == 8 && c->x86_stepping < 8)) { 157 /* We can only write allocate on the low 508Mb */ 158 if (mbytes > 508) 159 mbytes = 508; 160 161 rdmsr(MSR_K6_WHCR, l, h); 162 if ((l&0x0000FFFF) == 0) { 163 unsigned long flags; 164 l = (1<<0)|((mbytes/4)<<1); 165 local_irq_save(flags); 166 wbinvd(); 167 wrmsr(MSR_K6_WHCR, l, h); 168 local_irq_restore(flags); 169 pr_info("Enabling old style K6 write allocation for %d Mb\n", 170 mbytes); 171 } 172 return; 173 } 174 175 if ((c->x86_model == 8 && c->x86_stepping > 7) || 176 c->x86_model == 9 || c->x86_model == 13) { 177 /* The more serious chips .. */ 178 179 if (mbytes > 4092) 180 mbytes = 4092; 181 182 rdmsr(MSR_K6_WHCR, l, h); 183 if ((l&0xFFFF0000) == 0) { 184 unsigned long flags; 185 l = ((mbytes>>2)<<22)|(1<<16); 186 local_irq_save(flags); 187 wbinvd(); 188 wrmsr(MSR_K6_WHCR, l, h); 189 local_irq_restore(flags); 190 pr_info("Enabling new style K6 write allocation for %d Mb\n", 191 mbytes); 192 } 193 194 return; 195 } 196 197 if (c->x86_model == 10) { 198 /* AMD Geode LX is model 10 */ 199 /* placeholder for any needed mods */ 200 return; 201 } 202 #endif 203 } 204 205 static void init_amd_k7(struct cpuinfo_x86 *c) 206 { 207 #ifdef CONFIG_X86_32 208 u32 l, h; 209 210 /* 211 * Bit 15 of Athlon specific MSR 15, needs to be 0 212 * to enable SSE on Palomino/Morgan/Barton CPU's. 213 * If the BIOS didn't enable it already, enable it here. 214 */ 215 if (c->x86_model >= 6 && c->x86_model <= 10) { 216 if (!cpu_has(c, X86_FEATURE_XMM)) { 217 pr_info("Enabling disabled K7/SSE Support.\n"); 218 msr_clear_bit(MSR_K7_HWCR, 15); 219 set_cpu_cap(c, X86_FEATURE_XMM); 220 } 221 } 222 223 /* 224 * It's been determined by AMD that Athlons since model 8 stepping 1 225 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx 226 * As per AMD technical note 27212 0.2 227 */ 228 if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { 229 rdmsr(MSR_K7_CLK_CTL, l, h); 230 if ((l & 0xfff00000) != 0x20000000) { 231 pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", 232 l, ((l & 0x000fffff)|0x20000000)); 233 wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); 234 } 235 } 236 237 /* calling is from identify_secondary_cpu() ? */ 238 if (!c->cpu_index) 239 return; 240 241 /* 242 * Certain Athlons might work (for various values of 'work') in SMP 243 * but they are not certified as MP capable. 244 */ 245 /* Athlon 660/661 is valid. */ 246 if ((c->x86_model == 6) && ((c->x86_stepping == 0) || 247 (c->x86_stepping == 1))) 248 return; 249 250 /* Duron 670 is valid */ 251 if ((c->x86_model == 7) && (c->x86_stepping == 0)) 252 return; 253 254 /* 255 * Athlon 662, Duron 671, and Athlon >model 7 have capability 256 * bit. It's worth noting that the A5 stepping (662) of some 257 * Athlon XP's have the MP bit set. 258 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for 259 * more. 260 */ 261 if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || 262 ((c->x86_model == 7) && (c->x86_stepping >= 1)) || 263 (c->x86_model > 7)) 264 if (cpu_has(c, X86_FEATURE_MP)) 265 return; 266 267 /* If we get here, not a certified SMP capable AMD system. */ 268 269 /* 270 * Don't taint if we are running SMP kernel on a single non-MP 271 * approved Athlon 272 */ 273 WARN_ONCE(1, "WARNING: This combination of AMD" 274 " processors is not suitable for SMP.\n"); 275 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 276 #endif 277 } 278 279 #ifdef CONFIG_NUMA 280 /* 281 * To workaround broken NUMA config. Read the comment in 282 * srat_detect_node(). 283 */ 284 static int nearby_node(int apicid) 285 { 286 int i, node; 287 288 for (i = apicid - 1; i >= 0; i--) { 289 node = __apicid_to_node[i]; 290 if (node != NUMA_NO_NODE && node_online(node)) 291 return node; 292 } 293 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { 294 node = __apicid_to_node[i]; 295 if (node != NUMA_NO_NODE && node_online(node)) 296 return node; 297 } 298 return first_node(node_online_map); /* Shouldn't happen */ 299 } 300 #endif 301 302 static void srat_detect_node(struct cpuinfo_x86 *c) 303 { 304 #ifdef CONFIG_NUMA 305 int cpu = smp_processor_id(); 306 int node; 307 unsigned apicid = c->topo.apicid; 308 309 node = numa_cpu_node(cpu); 310 if (node == NUMA_NO_NODE) 311 node = per_cpu_llc_id(cpu); 312 313 /* 314 * On multi-fabric platform (e.g. Numascale NumaChip) a 315 * platform-specific handler needs to be called to fixup some 316 * IDs of the CPU. 317 */ 318 if (x86_cpuinit.fixup_cpu_id) 319 x86_cpuinit.fixup_cpu_id(c, node); 320 321 if (!node_online(node)) { 322 /* 323 * Two possibilities here: 324 * 325 * - The CPU is missing memory and no node was created. In 326 * that case try picking one from a nearby CPU. 327 * 328 * - The APIC IDs differ from the HyperTransport node IDs 329 * which the K8 northbridge parsing fills in. Assume 330 * they are all increased by a constant offset, but in 331 * the same order as the HT nodeids. If that doesn't 332 * result in a usable node fall back to the path for the 333 * previous case. 334 * 335 * This workaround operates directly on the mapping between 336 * APIC ID and NUMA node, assuming certain relationship 337 * between APIC ID, HT node ID and NUMA topology. As going 338 * through CPU mapping may alter the outcome, directly 339 * access __apicid_to_node[]. 340 */ 341 int ht_nodeid = c->topo.initial_apicid; 342 343 if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) 344 node = __apicid_to_node[ht_nodeid]; 345 /* Pick a nearby node */ 346 if (!node_online(node)) 347 node = nearby_node(apicid); 348 } 349 numa_set_node(cpu, node); 350 #endif 351 } 352 353 static void bsp_determine_snp(struct cpuinfo_x86 *c) 354 { 355 #ifdef CONFIG_ARCH_HAS_CC_PLATFORM 356 cc_vendor = CC_VENDOR_AMD; 357 358 if (cpu_has(c, X86_FEATURE_SEV_SNP)) { 359 /* 360 * RMP table entry format is not architectural and is defined by the 361 * per-processor PPR. Restrict SNP support on the known CPU models 362 * for which the RMP table entry format is currently defined or for 363 * processors which support the architecturally defined RMPREAD 364 * instruction. 365 */ 366 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && 367 (cpu_feature_enabled(X86_FEATURE_ZEN3) || 368 cpu_feature_enabled(X86_FEATURE_ZEN4) || 369 cpu_feature_enabled(X86_FEATURE_RMPREAD)) && 370 snp_probe_rmptable_info()) { 371 cc_platform_set(CC_ATTR_HOST_SEV_SNP); 372 } else { 373 setup_clear_cpu_cap(X86_FEATURE_SEV_SNP); 374 cc_platform_clear(CC_ATTR_HOST_SEV_SNP); 375 } 376 } 377 #endif 378 } 379 380 #define ZEN_MODEL_STEP_UCODE(fam, model, step, ucode) \ 381 X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, fam, model), \ 382 step, step, ucode) 383 384 static const struct x86_cpu_id amd_tsa_microcode[] = { 385 ZEN_MODEL_STEP_UCODE(0x19, 0x01, 0x1, 0x0a0011d7), 386 ZEN_MODEL_STEP_UCODE(0x19, 0x01, 0x2, 0x0a00123b), 387 ZEN_MODEL_STEP_UCODE(0x19, 0x08, 0x2, 0x0a00820d), 388 ZEN_MODEL_STEP_UCODE(0x19, 0x11, 0x1, 0x0a10114c), 389 ZEN_MODEL_STEP_UCODE(0x19, 0x11, 0x2, 0x0a10124c), 390 ZEN_MODEL_STEP_UCODE(0x19, 0x18, 0x1, 0x0a108109), 391 ZEN_MODEL_STEP_UCODE(0x19, 0x21, 0x0, 0x0a20102e), 392 ZEN_MODEL_STEP_UCODE(0x19, 0x21, 0x2, 0x0a201211), 393 ZEN_MODEL_STEP_UCODE(0x19, 0x44, 0x1, 0x0a404108), 394 ZEN_MODEL_STEP_UCODE(0x19, 0x50, 0x0, 0x0a500012), 395 ZEN_MODEL_STEP_UCODE(0x19, 0x61, 0x2, 0x0a60120a), 396 ZEN_MODEL_STEP_UCODE(0x19, 0x74, 0x1, 0x0a704108), 397 ZEN_MODEL_STEP_UCODE(0x19, 0x75, 0x2, 0x0a705208), 398 ZEN_MODEL_STEP_UCODE(0x19, 0x78, 0x0, 0x0a708008), 399 ZEN_MODEL_STEP_UCODE(0x19, 0x7c, 0x0, 0x0a70c008), 400 ZEN_MODEL_STEP_UCODE(0x19, 0xa0, 0x2, 0x0aa00216), 401 {}, 402 }; 403 404 static void tsa_init(struct cpuinfo_x86 *c) 405 { 406 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 407 return; 408 409 if (cpu_has(c, X86_FEATURE_ZEN3) || 410 cpu_has(c, X86_FEATURE_ZEN4)) { 411 if (x86_match_min_microcode_rev(amd_tsa_microcode)) 412 setup_force_cpu_cap(X86_FEATURE_VERW_CLEAR); 413 else 414 pr_debug("%s: current revision: 0x%x\n", __func__, c->microcode); 415 } else { 416 setup_force_cpu_cap(X86_FEATURE_TSA_SQ_NO); 417 setup_force_cpu_cap(X86_FEATURE_TSA_L1_NO); 418 } 419 } 420 421 static void bsp_init_amd(struct cpuinfo_x86 *c) 422 { 423 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { 424 425 if (c->x86 > 0x10 || 426 (c->x86 == 0x10 && c->x86_model >= 0x2)) { 427 u64 val; 428 429 rdmsrq(MSR_K7_HWCR, val); 430 if (!(val & BIT(24))) 431 pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); 432 } 433 } 434 435 if (c->x86 == 0x15) { 436 unsigned long upperbit; 437 u32 cpuid, assoc; 438 439 cpuid = cpuid_edx(0x80000005); 440 assoc = cpuid >> 16 & 0xff; 441 upperbit = ((cpuid >> 24) << 10) / assoc; 442 443 va_align.mask = (upperbit - 1) & PAGE_MASK; 444 va_align.flags = ALIGN_VA_32 | ALIGN_VA_64; 445 446 /* A random value per boot for bit slice [12:upper_bit) */ 447 va_align.bits = get_random_u32() & va_align.mask; 448 } 449 450 if (cpu_has(c, X86_FEATURE_MWAITX)) 451 use_mwaitx_delay(); 452 453 if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) && 454 !boot_cpu_has(X86_FEATURE_VIRT_SSBD) && 455 c->x86 >= 0x15 && c->x86 <= 0x17) { 456 unsigned int bit; 457 458 switch (c->x86) { 459 case 0x15: bit = 54; break; 460 case 0x16: bit = 33; break; 461 case 0x17: bit = 10; break; 462 default: return; 463 } 464 /* 465 * Try to cache the base value so further operations can 466 * avoid RMW. If that faults, do not enable SSBD. 467 */ 468 if (!rdmsrq_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) { 469 setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD); 470 setup_force_cpu_cap(X86_FEATURE_SSBD); 471 x86_amd_ls_cfg_ssbd_mask = 1ULL << bit; 472 } 473 } 474 475 resctrl_cpu_detect(c); 476 477 /* Figure out Zen generations: */ 478 switch (c->x86) { 479 case 0x17: 480 switch (c->x86_model) { 481 case 0x00 ... 0x2f: 482 case 0x50 ... 0x5f: 483 setup_force_cpu_cap(X86_FEATURE_ZEN1); 484 break; 485 case 0x30 ... 0x4f: 486 case 0x60 ... 0x7f: 487 case 0x90 ... 0x91: 488 case 0xa0 ... 0xaf: 489 setup_force_cpu_cap(X86_FEATURE_ZEN2); 490 break; 491 default: 492 goto warn; 493 } 494 break; 495 496 case 0x19: 497 switch (c->x86_model) { 498 case 0x00 ... 0x0f: 499 case 0x20 ... 0x5f: 500 setup_force_cpu_cap(X86_FEATURE_ZEN3); 501 break; 502 case 0x10 ... 0x1f: 503 case 0x60 ... 0xaf: 504 setup_force_cpu_cap(X86_FEATURE_ZEN4); 505 break; 506 default: 507 goto warn; 508 } 509 break; 510 511 case 0x1a: 512 switch (c->x86_model) { 513 case 0x00 ... 0x2f: 514 case 0x40 ... 0x4f: 515 case 0x60 ... 0x7f: 516 setup_force_cpu_cap(X86_FEATURE_ZEN5); 517 break; 518 case 0x50 ... 0x5f: 519 case 0x90 ... 0xaf: 520 case 0xc0 ... 0xcf: 521 setup_force_cpu_cap(X86_FEATURE_ZEN6); 522 break; 523 default: 524 goto warn; 525 } 526 break; 527 528 default: 529 break; 530 } 531 532 bsp_determine_snp(c); 533 tsa_init(c); 534 535 if (cpu_has(c, X86_FEATURE_GP_ON_USER_CPUID)) 536 setup_force_cpu_cap(X86_FEATURE_CPUID_FAULT); 537 538 return; 539 540 warn: 541 WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model); 542 } 543 544 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) 545 { 546 u64 msr; 547 548 /* 549 * Mark using WBINVD is needed during kexec on processors that 550 * support SME. This provides support for performing a successful 551 * kexec when going from SME inactive to SME active (or vice-versa). 552 * 553 * The cache must be cleared so that if there are entries with the 554 * same physical address, both with and without the encryption bit, 555 * they don't race each other when flushed and potentially end up 556 * with the wrong entry being committed to memory. 557 * 558 * Test the CPUID bit directly because with mem_encrypt=off the 559 * BSP will clear the X86_FEATURE_SME bit and the APs will not 560 * see it set after that. 561 */ 562 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0))) 563 __this_cpu_write(cache_state_incoherent, true); 564 565 /* 566 * BIOS support is required for SME and SEV. 567 * For SME: If BIOS has enabled SME then adjust x86_phys_bits by 568 * the SME physical address space reduction value. 569 * If BIOS has not enabled SME then don't advertise the 570 * SME feature (set in scattered.c). 571 * If the kernel has not enabled SME via any means then 572 * don't advertise the SME feature. 573 * For SEV: If BIOS has not enabled SEV then don't advertise SEV and 574 * any additional functionality based on it. 575 * 576 * In all cases, since support for SME and SEV requires long mode, 577 * don't advertise the feature under CONFIG_X86_32. 578 */ 579 if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { 580 /* Check if memory encryption is enabled */ 581 rdmsrq(MSR_AMD64_SYSCFG, msr); 582 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 583 goto clear_all; 584 585 /* 586 * Always adjust physical address bits. Even though this 587 * will be a value above 32-bits this is still done for 588 * CONFIG_X86_32 so that accurate values are reported. 589 */ 590 c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; 591 592 if (IS_ENABLED(CONFIG_X86_32)) 593 goto clear_all; 594 595 if (!sme_me_mask) 596 setup_clear_cpu_cap(X86_FEATURE_SME); 597 598 rdmsrq(MSR_K7_HWCR, msr); 599 if (!(msr & MSR_K7_HWCR_SMMLOCK)) 600 goto clear_sev; 601 602 return; 603 604 clear_all: 605 setup_clear_cpu_cap(X86_FEATURE_SME); 606 clear_sev: 607 setup_clear_cpu_cap(X86_FEATURE_SEV); 608 setup_clear_cpu_cap(X86_FEATURE_SEV_ES); 609 setup_clear_cpu_cap(X86_FEATURE_SEV_SNP); 610 } 611 } 612 613 static void early_init_amd(struct cpuinfo_x86 *c) 614 { 615 u32 dummy; 616 617 if (c->x86 >= 0xf) 618 set_cpu_cap(c, X86_FEATURE_K8); 619 620 rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); 621 622 /* 623 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 624 * with P/T states and does not stop in deep C-states 625 */ 626 if (c->x86_power & (1 << 8)) { 627 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 628 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 629 } 630 631 /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ 632 if (c->x86_power & BIT(12)) 633 set_cpu_cap(c, X86_FEATURE_ACC_POWER); 634 635 /* Bit 14 indicates the Runtime Average Power Limit interface. */ 636 if (c->x86_power & BIT(14)) 637 set_cpu_cap(c, X86_FEATURE_RAPL); 638 639 #ifdef CONFIG_X86_64 640 set_cpu_cap(c, X86_FEATURE_SYSCALL32); 641 #else 642 /* Set MTRR capability flag if appropriate */ 643 if (c->x86 == 5) 644 if (c->x86_model == 13 || c->x86_model == 9 || 645 (c->x86_model == 8 && c->x86_stepping >= 8)) 646 set_cpu_cap(c, X86_FEATURE_K6_MTRR); 647 #endif 648 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) 649 /* 650 * ApicID can always be treated as an 8-bit value for AMD APIC versions 651 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we 652 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families 653 * after 16h. 654 */ 655 if (boot_cpu_has(X86_FEATURE_APIC)) { 656 if (c->x86 > 0x16) 657 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 658 else if (c->x86 >= 0xf) { 659 /* check CPU config space for extended APIC ID */ 660 unsigned int val; 661 662 val = read_pci_config(0, 24, 0, 0x68); 663 if ((val >> 17 & 0x3) == 0x3) 664 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 665 } 666 } 667 #endif 668 669 /* 670 * This is only needed to tell the kernel whether to use VMCALL 671 * and VMMCALL. VMMCALL is never executed except under virt, so 672 * we can set it unconditionally. 673 */ 674 set_cpu_cap(c, X86_FEATURE_VMMCALL); 675 676 /* F16h erratum 793, CVE-2013-6885 */ 677 if (c->x86 == 0x16 && c->x86_model <= 0xf) 678 msr_set_bit(MSR_AMD64_LS_CFG, 15); 679 680 early_detect_mem_encrypt(c); 681 682 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) { 683 if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB)) 684 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 685 else if (c->x86 >= 0x19 && !wrmsrq_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) { 686 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 687 setup_force_cpu_cap(X86_FEATURE_SBPB); 688 } 689 } 690 } 691 692 static void init_amd_k8(struct cpuinfo_x86 *c) 693 { 694 u32 level; 695 u64 value; 696 697 /* On C+ stepping K8 rep microcode works well for copy/memset */ 698 level = cpuid_eax(1); 699 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) 700 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 701 702 /* 703 * Some BIOSes incorrectly force this feature, but only K8 revision D 704 * (model = 0x14) and later actually support it. 705 * (AMD Erratum #110, docId: 25759). 706 */ 707 if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM) && !cpu_has(c, X86_FEATURE_HYPERVISOR)) { 708 clear_cpu_cap(c, X86_FEATURE_LAHF_LM); 709 if (!rdmsrq_amd_safe(0xc001100d, &value)) { 710 value &= ~BIT_64(32); 711 wrmsrq_amd_safe(0xc001100d, value); 712 } 713 } 714 715 if (!c->x86_model_id[0]) 716 strscpy(c->x86_model_id, "Hammer"); 717 718 #ifdef CONFIG_SMP 719 /* 720 * Disable TLB flush filter by setting HWCR.FFDIS on K8 721 * bit 6 of msr C001_0015 722 * 723 * Errata 63 for SH-B3 steppings 724 * Errata 122 for all steppings (F+ have it disabled by default) 725 */ 726 msr_set_bit(MSR_K7_HWCR, 6); 727 #endif 728 set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); 729 730 /* 731 * Check models and steppings affected by erratum 400. This is 732 * used to select the proper idle routine and to enable the 733 * check whether the machine is affected in arch_post_acpi_subsys_init() 734 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. 735 */ 736 if (c->x86_model > 0x41 || 737 (c->x86_model == 0x41 && c->x86_stepping >= 0x2)) 738 setup_force_cpu_bug(X86_BUG_AMD_E400); 739 } 740 741 static void init_amd_gh(struct cpuinfo_x86 *c) 742 { 743 #ifdef CONFIG_MMCONF_FAM10H 744 /* do this for boot cpu */ 745 if (c == &boot_cpu_data) 746 check_enable_amd_mmconf_dmi(); 747 748 fam10h_check_enable_mmcfg(); 749 #endif 750 751 /* 752 * Disable GART TLB Walk Errors on Fam10h. We do this here because this 753 * is always needed when GART is enabled, even in a kernel which has no 754 * MCE support built in. BIOS should disable GartTlbWlk Errors already. 755 * If it doesn't, we do it here as suggested by the BKDG. 756 * 757 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 758 */ 759 msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); 760 761 /* 762 * On family 10h BIOS may not have properly enabled WC+ support, causing 763 * it to be converted to CD memtype. This may result in performance 764 * degradation for certain nested-paging guests. Prevent this conversion 765 * by clearing bit 24 in MSR_AMD64_BU_CFG2. 766 * 767 * NOTE: we want to use the _safe accessors so as not to #GP kvm 768 * guests on older kvm hosts. 769 */ 770 msr_clear_bit(MSR_AMD64_BU_CFG2, 24); 771 772 set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); 773 774 /* 775 * Check models and steppings affected by erratum 400. This is 776 * used to select the proper idle routine and to enable the 777 * check whether the machine is affected in arch_post_acpi_subsys_init() 778 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. 779 */ 780 if (c->x86_model > 0x2 || 781 (c->x86_model == 0x2 && c->x86_stepping >= 0x1)) 782 setup_force_cpu_bug(X86_BUG_AMD_E400); 783 } 784 785 static void init_amd_ln(struct cpuinfo_x86 *c) 786 { 787 /* 788 * Apply erratum 665 fix unconditionally so machines without a BIOS 789 * fix work. 790 */ 791 msr_set_bit(MSR_AMD64_DE_CFG, 31); 792 } 793 794 static bool rdrand_force; 795 796 static int __init rdrand_cmdline(char *str) 797 { 798 if (!str) 799 return -EINVAL; 800 801 if (!strcmp(str, "force")) 802 rdrand_force = true; 803 else 804 return -EINVAL; 805 806 return 0; 807 } 808 early_param("rdrand", rdrand_cmdline); 809 810 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c) 811 { 812 /* 813 * Saving of the MSR used to hide the RDRAND support during 814 * suspend/resume is done by arch/x86/power/cpu.c, which is 815 * dependent on CONFIG_PM_SLEEP. 816 */ 817 if (!IS_ENABLED(CONFIG_PM_SLEEP)) 818 return; 819 820 /* 821 * The self-test can clear X86_FEATURE_RDRAND, so check for 822 * RDRAND support using the CPUID function directly. 823 */ 824 if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force) 825 return; 826 827 msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62); 828 829 /* 830 * Verify that the CPUID change has occurred in case the kernel is 831 * running virtualized and the hypervisor doesn't support the MSR. 832 */ 833 if (cpuid_ecx(1) & BIT(30)) { 834 pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n"); 835 return; 836 } 837 838 clear_cpu_cap(c, X86_FEATURE_RDRAND); 839 pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n"); 840 } 841 842 static void init_amd_jg(struct cpuinfo_x86 *c) 843 { 844 /* 845 * Some BIOS implementations do not restore proper RDRAND support 846 * across suspend and resume. Check on whether to hide the RDRAND 847 * instruction support via CPUID. 848 */ 849 clear_rdrand_cpuid_bit(c); 850 } 851 852 static void init_amd_bd(struct cpuinfo_x86 *c) 853 { 854 u64 value; 855 856 /* 857 * The way access filter has a performance penalty on some workloads. 858 * Disable it on the affected CPUs. 859 */ 860 if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { 861 if (!rdmsrq_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { 862 value |= 0x1E; 863 wrmsrq_safe(MSR_F15H_IC_CFG, value); 864 } 865 } 866 867 /* 868 * Some BIOS implementations do not restore proper RDRAND support 869 * across suspend and resume. Check on whether to hide the RDRAND 870 * instruction support via CPUID. 871 */ 872 clear_rdrand_cpuid_bit(c); 873 } 874 875 static const struct x86_cpu_id erratum_1386_microcode[] = { 876 X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x01), 0x2, 0x2, 0x0800126e), 877 X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x31), 0x0, 0x0, 0x08301052), 878 {} 879 }; 880 881 static void fix_erratum_1386(struct cpuinfo_x86 *c) 882 { 883 /* 884 * Work around Erratum 1386. The XSAVES instruction malfunctions in 885 * certain circumstances on Zen1/2 uarch, and not all parts have had 886 * updated microcode at the time of writing (March 2023). 887 * 888 * Affected parts all have no supervisor XSAVE states, meaning that 889 * the XSAVEC instruction (which works fine) is equivalent. 890 * 891 * Clear the feature flag only on microcode revisions which 892 * don't have the fix. 893 */ 894 if (x86_match_min_microcode_rev(erratum_1386_microcode)) 895 return; 896 897 clear_cpu_cap(c, X86_FEATURE_XSAVES); 898 } 899 900 void init_spectral_chicken(struct cpuinfo_x86 *c) 901 { 902 #ifdef CONFIG_MITIGATION_UNRET_ENTRY 903 u64 value; 904 905 /* 906 * On Zen2 we offer this chicken (bit) on the altar of Speculation. 907 * 908 * This suppresses speculation from the middle of a basic block, i.e. it 909 * suppresses non-branch predictions. 910 */ 911 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 912 if (!rdmsrq_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) { 913 value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT; 914 wrmsrq_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value); 915 } 916 } 917 #endif 918 } 919 920 static void init_amd_zen_common(void) 921 { 922 setup_force_cpu_cap(X86_FEATURE_ZEN); 923 #ifdef CONFIG_NUMA 924 node_reclaim_distance = 32; 925 #endif 926 } 927 928 static void init_amd_zen1(struct cpuinfo_x86 *c) 929 { 930 fix_erratum_1386(c); 931 932 /* Fix up CPUID bits, but only if not virtualised. */ 933 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 934 935 /* Erratum 1076: CPB feature bit not being set in CPUID. */ 936 if (!cpu_has(c, X86_FEATURE_CPB)) 937 set_cpu_cap(c, X86_FEATURE_CPB); 938 } 939 940 pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n"); 941 setup_force_cpu_bug(X86_BUG_DIV0); 942 943 /* 944 * Turn off the Instructions Retired free counter on machines that are 945 * susceptible to erratum #1054 "Instructions Retired Performance 946 * Counter May Be Inaccurate". 947 */ 948 if (c->x86_model < 0x30) { 949 msr_clear_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT); 950 clear_cpu_cap(c, X86_FEATURE_IRPERF); 951 } 952 } 953 954 static bool cpu_has_zenbleed_microcode(void) 955 { 956 u32 good_rev = 0; 957 958 switch (boot_cpu_data.x86_model) { 959 case 0x30 ... 0x3f: good_rev = 0x0830107b; break; 960 case 0x60 ... 0x67: good_rev = 0x0860010c; break; 961 case 0x68 ... 0x6f: good_rev = 0x08608107; break; 962 case 0x70 ... 0x7f: good_rev = 0x08701033; break; 963 case 0xa0 ... 0xaf: good_rev = 0x08a00009; break; 964 965 default: 966 return false; 967 } 968 969 if (boot_cpu_data.microcode < good_rev) 970 return false; 971 972 return true; 973 } 974 975 static void zen2_zenbleed_check(struct cpuinfo_x86 *c) 976 { 977 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 978 return; 979 980 if (!cpu_has(c, X86_FEATURE_AVX)) 981 return; 982 983 if (!cpu_has_zenbleed_microcode()) { 984 pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n"); 985 msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 986 } else { 987 msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 988 } 989 } 990 991 static void init_amd_zen2(struct cpuinfo_x86 *c) 992 { 993 init_spectral_chicken(c); 994 fix_erratum_1386(c); 995 zen2_zenbleed_check(c); 996 997 /* Disable RDSEED on AMD Cyan Skillfish because of an error. */ 998 if (c->x86_model == 0x47 && c->x86_stepping == 0x0) { 999 clear_cpu_cap(c, X86_FEATURE_RDSEED); 1000 msr_clear_bit(MSR_AMD64_CPUID_FN_7, 18); 1001 pr_emerg("RDSEED is not reliable on this platform; disabling.\n"); 1002 } 1003 1004 /* Correct misconfigured CPUID on some clients. */ 1005 clear_cpu_cap(c, X86_FEATURE_INVLPGB); 1006 } 1007 1008 static void init_amd_zen3(struct cpuinfo_x86 *c) 1009 { 1010 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 1011 /* 1012 * Zen3 (Fam19 model < 0x10) parts are not susceptible to 1013 * Branch Type Confusion, but predate the allocation of the 1014 * BTC_NO bit. 1015 */ 1016 if (!cpu_has(c, X86_FEATURE_BTC_NO)) 1017 set_cpu_cap(c, X86_FEATURE_BTC_NO); 1018 } 1019 } 1020 1021 static void init_amd_zen4(struct cpuinfo_x86 *c) 1022 { 1023 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) 1024 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT); 1025 1026 /* 1027 * These Zen4 SoCs advertise support for virtualized VMLOAD/VMSAVE 1028 * in some BIOS versions but they can lead to random host reboots. 1029 */ 1030 switch (c->x86_model) { 1031 case 0x18 ... 0x1f: 1032 case 0x60 ... 0x7f: 1033 clear_cpu_cap(c, X86_FEATURE_V_VMSAVE_VMLOAD); 1034 break; 1035 } 1036 } 1037 1038 static void init_amd_zen5(struct cpuinfo_x86 *c) 1039 { 1040 } 1041 1042 static void init_amd(struct cpuinfo_x86 *c) 1043 { 1044 u64 vm_cr; 1045 1046 early_init_amd(c); 1047 1048 /* 1049 * Bit 31 in normal CPUID used for nonstandard 3DNow ID; 1050 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway 1051 */ 1052 clear_cpu_cap(c, 0*32+31); 1053 1054 if (c->x86 >= 0x10) 1055 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 1056 1057 /* AMD FSRM also implies FSRS */ 1058 if (cpu_has(c, X86_FEATURE_FSRM)) 1059 set_cpu_cap(c, X86_FEATURE_FSRS); 1060 1061 /* K6s reports MCEs but don't actually have all the MSRs */ 1062 if (c->x86 < 6) 1063 clear_cpu_cap(c, X86_FEATURE_MCE); 1064 1065 switch (c->x86) { 1066 case 4: init_amd_k5(c); break; 1067 case 5: init_amd_k6(c); break; 1068 case 6: init_amd_k7(c); break; 1069 case 0xf: init_amd_k8(c); break; 1070 case 0x10: init_amd_gh(c); break; 1071 case 0x12: init_amd_ln(c); break; 1072 case 0x15: init_amd_bd(c); break; 1073 case 0x16: init_amd_jg(c); break; 1074 } 1075 1076 /* 1077 * Save up on some future enablement work and do common Zen 1078 * settings. 1079 */ 1080 if (c->x86 >= 0x17) 1081 init_amd_zen_common(); 1082 1083 if (boot_cpu_has(X86_FEATURE_ZEN1)) 1084 init_amd_zen1(c); 1085 else if (boot_cpu_has(X86_FEATURE_ZEN2)) 1086 init_amd_zen2(c); 1087 else if (boot_cpu_has(X86_FEATURE_ZEN3)) 1088 init_amd_zen3(c); 1089 else if (boot_cpu_has(X86_FEATURE_ZEN4)) 1090 init_amd_zen4(c); 1091 else if (boot_cpu_has(X86_FEATURE_ZEN5)) 1092 init_amd_zen5(c); 1093 1094 /* 1095 * Enable workaround for FXSAVE leak on CPUs 1096 * without a XSaveErPtr feature 1097 */ 1098 if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) 1099 set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); 1100 1101 cpu_detect_cache_sizes(c); 1102 1103 srat_detect_node(c); 1104 1105 init_amd_cacheinfo(c); 1106 1107 if (cpu_has(c, X86_FEATURE_SVM)) { 1108 rdmsrq(MSR_VM_CR, vm_cr); 1109 if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) { 1110 pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n"); 1111 clear_cpu_cap(c, X86_FEATURE_SVM); 1112 } 1113 } 1114 1115 if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) { 1116 /* 1117 * Use LFENCE for execution serialization. On families which 1118 * don't have that MSR, LFENCE is already serializing. 1119 * msr_set_bit() uses the safe accessors, too, even if the MSR 1120 * is not present. 1121 */ 1122 msr_set_bit(MSR_AMD64_DE_CFG, 1123 MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT); 1124 1125 /* A serializing LFENCE stops RDTSC speculation */ 1126 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 1127 } 1128 1129 /* 1130 * Family 0x12 and above processors have APIC timer 1131 * running in deep C states. 1132 */ 1133 if (c->x86 > 0x11) 1134 set_cpu_cap(c, X86_FEATURE_ARAT); 1135 1136 /* 3DNow or LM implies PREFETCHW */ 1137 if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) 1138 if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) 1139 set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); 1140 1141 /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ 1142 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) 1143 set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); 1144 1145 /* Enable the Instructions Retired free counter */ 1146 if (cpu_has(c, X86_FEATURE_IRPERF)) 1147 msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT); 1148 1149 check_null_seg_clears_base(c); 1150 1151 /* 1152 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up 1153 * using the trampoline code and as part of it, MSR_EFER gets prepared there in 1154 * order to be replicated onto them. Regardless, set it here again, if not set, 1155 * to protect against any future refactoring/code reorganization which might 1156 * miss setting this important bit. 1157 */ 1158 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1159 cpu_has(c, X86_FEATURE_AUTOIBRS)) 1160 WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS) < 0); 1161 1162 /* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */ 1163 clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); 1164 1165 /* Enable Translation Cache Extension */ 1166 if (cpu_has(c, X86_FEATURE_TCE)) 1167 msr_set_bit(MSR_EFER, _EFER_TCE); 1168 } 1169 1170 #ifdef CONFIG_X86_32 1171 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) 1172 { 1173 /* AMD errata T13 (order #21922) */ 1174 if (c->x86 == 6) { 1175 /* Duron Rev A0 */ 1176 if (c->x86_model == 3 && c->x86_stepping == 0) 1177 size = 64; 1178 /* Tbird rev A1/A2 */ 1179 if (c->x86_model == 4 && 1180 (c->x86_stepping == 0 || c->x86_stepping == 1)) 1181 size = 256; 1182 } 1183 return size; 1184 } 1185 #endif 1186 1187 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) 1188 { 1189 u32 ebx, eax, ecx, edx; 1190 u16 mask = 0xfff; 1191 1192 if (c->x86 < 0xf) 1193 return; 1194 1195 if (c->extended_cpuid_level < 0x80000006) 1196 return; 1197 1198 cpuid(0x80000006, &eax, &ebx, &ecx, &edx); 1199 1200 tlb_lld_4k = (ebx >> 16) & mask; 1201 tlb_lli_4k = ebx & mask; 1202 1203 /* 1204 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB 1205 * characteristics from the CPUID function 0x80000005 instead. 1206 */ 1207 if (c->x86 == 0xf) { 1208 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1209 mask = 0xff; 1210 } 1211 1212 /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1213 if (!((eax >> 16) & mask)) 1214 tlb_lld_2m = (cpuid_eax(0x80000005) >> 16) & 0xff; 1215 else 1216 tlb_lld_2m = (eax >> 16) & mask; 1217 1218 /* a 4M entry uses two 2M entries */ 1219 tlb_lld_4m = tlb_lld_2m >> 1; 1220 1221 /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1222 if (!(eax & mask)) { 1223 /* Erratum 658 */ 1224 if (c->x86 == 0x15 && c->x86_model <= 0x1f) { 1225 tlb_lli_2m = 1024; 1226 } else { 1227 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1228 tlb_lli_2m = eax & 0xff; 1229 } 1230 } else 1231 tlb_lli_2m = eax & mask; 1232 1233 tlb_lli_4m = tlb_lli_2m >> 1; 1234 1235 /* Max number of pages INVLPGB can invalidate in one shot */ 1236 if (cpu_has(c, X86_FEATURE_INVLPGB)) 1237 invlpgb_count_max = (cpuid_edx(0x80000008) & 0xffff) + 1; 1238 } 1239 1240 static const struct cpu_dev amd_cpu_dev = { 1241 .c_vendor = "AMD", 1242 .c_ident = { "AuthenticAMD" }, 1243 #ifdef CONFIG_X86_32 1244 .legacy_models = { 1245 { .family = 4, .model_names = 1246 { 1247 [3] = "486 DX/2", 1248 [7] = "486 DX/2-WB", 1249 [8] = "486 DX/4", 1250 [9] = "486 DX/4-WB", 1251 [14] = "Am5x86-WT", 1252 [15] = "Am5x86-WB" 1253 } 1254 }, 1255 }, 1256 .legacy_cache_size = amd_size_cache, 1257 #endif 1258 .c_early_init = early_init_amd, 1259 .c_detect_tlb = cpu_detect_tlb_amd, 1260 .c_bsp_init = bsp_init_amd, 1261 .c_init = init_amd, 1262 .c_x86_vendor = X86_VENDOR_AMD, 1263 }; 1264 1265 cpu_dev_register(amd_cpu_dev); 1266 1267 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask); 1268 1269 static unsigned int amd_msr_dr_addr_masks[] = { 1270 MSR_F16H_DR0_ADDR_MASK, 1271 MSR_F16H_DR1_ADDR_MASK, 1272 MSR_F16H_DR1_ADDR_MASK + 1, 1273 MSR_F16H_DR1_ADDR_MASK + 2 1274 }; 1275 1276 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr) 1277 { 1278 int cpu = smp_processor_id(); 1279 1280 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1281 return; 1282 1283 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1284 return; 1285 1286 if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask) 1287 return; 1288 1289 wrmsrq(amd_msr_dr_addr_masks[dr], mask); 1290 per_cpu(amd_dr_addr_mask, cpu)[dr] = mask; 1291 } 1292 1293 unsigned long amd_get_dr_addr_mask(unsigned int dr) 1294 { 1295 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1296 return 0; 1297 1298 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1299 return 0; 1300 1301 return per_cpu(amd_dr_addr_mask[dr], smp_processor_id()); 1302 } 1303 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask); 1304 1305 static void zenbleed_check_cpu(void *unused) 1306 { 1307 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 1308 1309 zen2_zenbleed_check(c); 1310 } 1311 1312 void amd_check_microcode(void) 1313 { 1314 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) 1315 return; 1316 1317 if (cpu_feature_enabled(X86_FEATURE_ZEN2)) 1318 on_each_cpu(zenbleed_check_cpu, NULL, 1); 1319 } 1320 1321 static const char * const s5_reset_reason_txt[] = { 1322 [0] = "thermal pin BP_THERMTRIP_L was tripped", 1323 [1] = "power button was pressed for 4 seconds", 1324 [2] = "shutdown pin was tripped", 1325 [4] = "remote ASF power off command was received", 1326 [9] = "internal CPU thermal limit was tripped", 1327 [16] = "system reset pin BP_SYS_RST_L was tripped", 1328 [17] = "software issued PCI reset", 1329 [18] = "software wrote 0x4 to reset control register 0xCF9", 1330 [19] = "software wrote 0x6 to reset control register 0xCF9", 1331 [20] = "software wrote 0xE to reset control register 0xCF9", 1332 [21] = "ACPI power state transition occurred", 1333 [22] = "keyboard reset pin KB_RST_L was tripped", 1334 [23] = "internal CPU shutdown event occurred", 1335 [24] = "system failed to boot before failed boot timer expired", 1336 [25] = "hardware watchdog timer expired", 1337 [26] = "remote ASF reset command was received", 1338 [27] = "an uncorrected error caused a data fabric sync flood event", 1339 [29] = "FCH and MP1 failed warm reset handshake", 1340 [30] = "a parity error occurred", 1341 [31] = "a software sync flood event occurred", 1342 }; 1343 1344 static __init int print_s5_reset_status_mmio(void) 1345 { 1346 void __iomem *addr; 1347 u32 value; 1348 int i; 1349 1350 if (!cpu_feature_enabled(X86_FEATURE_ZEN)) 1351 return 0; 1352 1353 addr = ioremap(FCH_PM_BASE + FCH_PM_S5_RESET_STATUS, sizeof(value)); 1354 if (!addr) 1355 return 0; 1356 1357 value = ioread32(addr); 1358 iounmap(addr); 1359 1360 /* Value with "all bits set" is an error response and should be ignored. */ 1361 if (value == U32_MAX) 1362 return 0; 1363 1364 for (i = 0; i < ARRAY_SIZE(s5_reset_reason_txt); i++) { 1365 if (!(value & BIT(i))) 1366 continue; 1367 1368 if (s5_reset_reason_txt[i]) { 1369 pr_info("x86/amd: Previous system reset reason [0x%08x]: %s\n", 1370 value, s5_reset_reason_txt[i]); 1371 } 1372 } 1373 1374 return 0; 1375 } 1376 late_initcall(print_s5_reset_status_mmio); 1377