1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bitops.h> 4 #include <linux/elf.h> 5 #include <linux/mm.h> 6 7 #include <linux/io.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/random.h> 11 #include <linux/topology.h> 12 #include <asm/processor.h> 13 #include <asm/apic.h> 14 #include <asm/cacheinfo.h> 15 #include <asm/cpu.h> 16 #include <asm/spec-ctrl.h> 17 #include <asm/smp.h> 18 #include <asm/numa.h> 19 #include <asm/pci-direct.h> 20 #include <asm/delay.h> 21 #include <asm/debugreg.h> 22 #include <asm/resctrl.h> 23 24 #ifdef CONFIG_X86_64 25 # include <asm/mmconfig.h> 26 #endif 27 28 #include "cpu.h" 29 30 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) 31 { 32 u32 gprs[8] = { 0 }; 33 int err; 34 35 WARN_ONCE((boot_cpu_data.x86 != 0xf), 36 "%s should only be used on K8!\n", __func__); 37 38 gprs[1] = msr; 39 gprs[7] = 0x9c5a203a; 40 41 err = rdmsr_safe_regs(gprs); 42 43 *p = gprs[0] | ((u64)gprs[2] << 32); 44 45 return err; 46 } 47 48 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) 49 { 50 u32 gprs[8] = { 0 }; 51 52 WARN_ONCE((boot_cpu_data.x86 != 0xf), 53 "%s should only be used on K8!\n", __func__); 54 55 gprs[0] = (u32)val; 56 gprs[1] = msr; 57 gprs[2] = val >> 32; 58 gprs[7] = 0x9c5a203a; 59 60 return wrmsr_safe_regs(gprs); 61 } 62 63 /* 64 * B step AMD K6 before B 9730xxxx have hardware bugs that can cause 65 * misexecution of code under Linux. Owners of such processors should 66 * contact AMD for precise details and a CPU swap. 67 * 68 * See http://www.multimania.com/poulot/k6bug.html 69 * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" 70 * (Publication # 21266 Issue Date: August 1998) 71 * 72 * The following test is erm.. interesting. AMD neglected to up 73 * the chip setting when fixing the bug but they also tweaked some 74 * performance at the same time.. 75 */ 76 77 #ifdef CONFIG_X86_32 78 extern __visible void vide(void); 79 __asm__(".text\n" 80 ".globl vide\n" 81 ".type vide, @function\n" 82 ".align 4\n" 83 "vide: ret\n"); 84 #endif 85 86 static void init_amd_k5(struct cpuinfo_x86 *c) 87 { 88 #ifdef CONFIG_X86_32 89 /* 90 * General Systems BIOSen alias the cpu frequency registers 91 * of the Elan at 0x000df000. Unfortunately, one of the Linux 92 * drivers subsequently pokes it, and changes the CPU speed. 93 * Workaround : Remove the unneeded alias. 94 */ 95 #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */ 96 #define CBAR_ENB (0x80000000) 97 #define CBAR_KEY (0X000000CB) 98 if (c->x86_model == 9 || c->x86_model == 10) { 99 if (inl(CBAR) & CBAR_ENB) 100 outl(0 | CBAR_KEY, CBAR); 101 } 102 #endif 103 } 104 105 static void init_amd_k6(struct cpuinfo_x86 *c) 106 { 107 #ifdef CONFIG_X86_32 108 u32 l, h; 109 int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); 110 111 if (c->x86_model < 6) { 112 /* Based on AMD doc 20734R - June 2000 */ 113 if (c->x86_model == 0) { 114 clear_cpu_cap(c, X86_FEATURE_APIC); 115 set_cpu_cap(c, X86_FEATURE_PGE); 116 } 117 return; 118 } 119 120 if (c->x86_model == 6 && c->x86_stepping == 1) { 121 const int K6_BUG_LOOP = 1000000; 122 int n; 123 void (*f_vide)(void); 124 u64 d, d2; 125 126 pr_info("AMD K6 stepping B detected - "); 127 128 /* 129 * It looks like AMD fixed the 2.6.2 bug and improved indirect 130 * calls at the same time. 131 */ 132 133 n = K6_BUG_LOOP; 134 f_vide = vide; 135 OPTIMIZER_HIDE_VAR(f_vide); 136 d = rdtsc(); 137 while (n--) 138 f_vide(); 139 d2 = rdtsc(); 140 d = d2-d; 141 142 if (d > 20*K6_BUG_LOOP) 143 pr_cont("system stability may be impaired when more than 32 MB are used.\n"); 144 else 145 pr_cont("probably OK (after B9730xxxx).\n"); 146 } 147 148 /* K6 with old style WHCR */ 149 if (c->x86_model < 8 || 150 (c->x86_model == 8 && c->x86_stepping < 8)) { 151 /* We can only write allocate on the low 508Mb */ 152 if (mbytes > 508) 153 mbytes = 508; 154 155 rdmsr(MSR_K6_WHCR, l, h); 156 if ((l&0x0000FFFF) == 0) { 157 unsigned long flags; 158 l = (1<<0)|((mbytes/4)<<1); 159 local_irq_save(flags); 160 wbinvd(); 161 wrmsr(MSR_K6_WHCR, l, h); 162 local_irq_restore(flags); 163 pr_info("Enabling old style K6 write allocation for %d Mb\n", 164 mbytes); 165 } 166 return; 167 } 168 169 if ((c->x86_model == 8 && c->x86_stepping > 7) || 170 c->x86_model == 9 || c->x86_model == 13) { 171 /* The more serious chips .. */ 172 173 if (mbytes > 4092) 174 mbytes = 4092; 175 176 rdmsr(MSR_K6_WHCR, l, h); 177 if ((l&0xFFFF0000) == 0) { 178 unsigned long flags; 179 l = ((mbytes>>2)<<22)|(1<<16); 180 local_irq_save(flags); 181 wbinvd(); 182 wrmsr(MSR_K6_WHCR, l, h); 183 local_irq_restore(flags); 184 pr_info("Enabling new style K6 write allocation for %d Mb\n", 185 mbytes); 186 } 187 188 return; 189 } 190 191 if (c->x86_model == 10) { 192 /* AMD Geode LX is model 10 */ 193 /* placeholder for any needed mods */ 194 return; 195 } 196 #endif 197 } 198 199 static void init_amd_k7(struct cpuinfo_x86 *c) 200 { 201 #ifdef CONFIG_X86_32 202 u32 l, h; 203 204 /* 205 * Bit 15 of Athlon specific MSR 15, needs to be 0 206 * to enable SSE on Palomino/Morgan/Barton CPU's. 207 * If the BIOS didn't enable it already, enable it here. 208 */ 209 if (c->x86_model >= 6 && c->x86_model <= 10) { 210 if (!cpu_has(c, X86_FEATURE_XMM)) { 211 pr_info("Enabling disabled K7/SSE Support.\n"); 212 msr_clear_bit(MSR_K7_HWCR, 15); 213 set_cpu_cap(c, X86_FEATURE_XMM); 214 } 215 } 216 217 /* 218 * It's been determined by AMD that Athlons since model 8 stepping 1 219 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx 220 * As per AMD technical note 27212 0.2 221 */ 222 if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { 223 rdmsr(MSR_K7_CLK_CTL, l, h); 224 if ((l & 0xfff00000) != 0x20000000) { 225 pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", 226 l, ((l & 0x000fffff)|0x20000000)); 227 wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); 228 } 229 } 230 231 /* calling is from identify_secondary_cpu() ? */ 232 if (!c->cpu_index) 233 return; 234 235 /* 236 * Certain Athlons might work (for various values of 'work') in SMP 237 * but they are not certified as MP capable. 238 */ 239 /* Athlon 660/661 is valid. */ 240 if ((c->x86_model == 6) && ((c->x86_stepping == 0) || 241 (c->x86_stepping == 1))) 242 return; 243 244 /* Duron 670 is valid */ 245 if ((c->x86_model == 7) && (c->x86_stepping == 0)) 246 return; 247 248 /* 249 * Athlon 662, Duron 671, and Athlon >model 7 have capability 250 * bit. It's worth noting that the A5 stepping (662) of some 251 * Athlon XP's have the MP bit set. 252 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for 253 * more. 254 */ 255 if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || 256 ((c->x86_model == 7) && (c->x86_stepping >= 1)) || 257 (c->x86_model > 7)) 258 if (cpu_has(c, X86_FEATURE_MP)) 259 return; 260 261 /* If we get here, not a certified SMP capable AMD system. */ 262 263 /* 264 * Don't taint if we are running SMP kernel on a single non-MP 265 * approved Athlon 266 */ 267 WARN_ONCE(1, "WARNING: This combination of AMD" 268 " processors is not suitable for SMP.\n"); 269 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 270 #endif 271 } 272 273 #ifdef CONFIG_NUMA 274 /* 275 * To workaround broken NUMA config. Read the comment in 276 * srat_detect_node(). 277 */ 278 static int nearby_node(int apicid) 279 { 280 int i, node; 281 282 for (i = apicid - 1; i >= 0; i--) { 283 node = __apicid_to_node[i]; 284 if (node != NUMA_NO_NODE && node_online(node)) 285 return node; 286 } 287 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { 288 node = __apicid_to_node[i]; 289 if (node != NUMA_NO_NODE && node_online(node)) 290 return node; 291 } 292 return first_node(node_online_map); /* Shouldn't happen */ 293 } 294 #endif 295 296 static void srat_detect_node(struct cpuinfo_x86 *c) 297 { 298 #ifdef CONFIG_NUMA 299 int cpu = smp_processor_id(); 300 int node; 301 unsigned apicid = c->topo.apicid; 302 303 node = numa_cpu_node(cpu); 304 if (node == NUMA_NO_NODE) 305 node = per_cpu_llc_id(cpu); 306 307 /* 308 * On multi-fabric platform (e.g. Numascale NumaChip) a 309 * platform-specific handler needs to be called to fixup some 310 * IDs of the CPU. 311 */ 312 if (x86_cpuinit.fixup_cpu_id) 313 x86_cpuinit.fixup_cpu_id(c, node); 314 315 if (!node_online(node)) { 316 /* 317 * Two possibilities here: 318 * 319 * - The CPU is missing memory and no node was created. In 320 * that case try picking one from a nearby CPU. 321 * 322 * - The APIC IDs differ from the HyperTransport node IDs 323 * which the K8 northbridge parsing fills in. Assume 324 * they are all increased by a constant offset, but in 325 * the same order as the HT nodeids. If that doesn't 326 * result in a usable node fall back to the path for the 327 * previous case. 328 * 329 * This workaround operates directly on the mapping between 330 * APIC ID and NUMA node, assuming certain relationship 331 * between APIC ID, HT node ID and NUMA topology. As going 332 * through CPU mapping may alter the outcome, directly 333 * access __apicid_to_node[]. 334 */ 335 int ht_nodeid = c->topo.initial_apicid; 336 337 if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) 338 node = __apicid_to_node[ht_nodeid]; 339 /* Pick a nearby node */ 340 if (!node_online(node)) 341 node = nearby_node(apicid); 342 } 343 numa_set_node(cpu, node); 344 #endif 345 } 346 347 static void bsp_init_amd(struct cpuinfo_x86 *c) 348 { 349 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { 350 351 if (c->x86 > 0x10 || 352 (c->x86 == 0x10 && c->x86_model >= 0x2)) { 353 u64 val; 354 355 rdmsrl(MSR_K7_HWCR, val); 356 if (!(val & BIT(24))) 357 pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); 358 } 359 } 360 361 if (c->x86 == 0x15) { 362 unsigned long upperbit; 363 u32 cpuid, assoc; 364 365 cpuid = cpuid_edx(0x80000005); 366 assoc = cpuid >> 16 & 0xff; 367 upperbit = ((cpuid >> 24) << 10) / assoc; 368 369 va_align.mask = (upperbit - 1) & PAGE_MASK; 370 va_align.flags = ALIGN_VA_32 | ALIGN_VA_64; 371 372 /* A random value per boot for bit slice [12:upper_bit) */ 373 va_align.bits = get_random_u32() & va_align.mask; 374 } 375 376 if (cpu_has(c, X86_FEATURE_MWAITX)) 377 use_mwaitx_delay(); 378 379 if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) && 380 !boot_cpu_has(X86_FEATURE_VIRT_SSBD) && 381 c->x86 >= 0x15 && c->x86 <= 0x17) { 382 unsigned int bit; 383 384 switch (c->x86) { 385 case 0x15: bit = 54; break; 386 case 0x16: bit = 33; break; 387 case 0x17: bit = 10; break; 388 default: return; 389 } 390 /* 391 * Try to cache the base value so further operations can 392 * avoid RMW. If that faults, do not enable SSBD. 393 */ 394 if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) { 395 setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD); 396 setup_force_cpu_cap(X86_FEATURE_SSBD); 397 x86_amd_ls_cfg_ssbd_mask = 1ULL << bit; 398 } 399 } 400 401 resctrl_cpu_detect(c); 402 403 /* Figure out Zen generations: */ 404 switch (c->x86) { 405 case 0x17: 406 switch (c->x86_model) { 407 case 0x00 ... 0x2f: 408 case 0x50 ... 0x5f: 409 setup_force_cpu_cap(X86_FEATURE_ZEN1); 410 break; 411 case 0x30 ... 0x4f: 412 case 0x60 ... 0x7f: 413 case 0x90 ... 0x91: 414 case 0xa0 ... 0xaf: 415 setup_force_cpu_cap(X86_FEATURE_ZEN2); 416 break; 417 default: 418 goto warn; 419 } 420 break; 421 422 case 0x19: 423 switch (c->x86_model) { 424 case 0x00 ... 0x0f: 425 case 0x20 ... 0x5f: 426 setup_force_cpu_cap(X86_FEATURE_ZEN3); 427 break; 428 case 0x10 ... 0x1f: 429 case 0x60 ... 0xaf: 430 setup_force_cpu_cap(X86_FEATURE_ZEN4); 431 break; 432 default: 433 goto warn; 434 } 435 break; 436 437 case 0x1a: 438 switch (c->x86_model) { 439 case 0x00 ... 0x0f: 440 case 0x20 ... 0x2f: 441 case 0x40 ... 0x4f: 442 case 0x70 ... 0x7f: 443 setup_force_cpu_cap(X86_FEATURE_ZEN5); 444 break; 445 default: 446 goto warn; 447 } 448 break; 449 450 default: 451 break; 452 } 453 454 return; 455 456 warn: 457 WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model); 458 } 459 460 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) 461 { 462 u64 msr; 463 464 /* 465 * BIOS support is required for SME and SEV. 466 * For SME: If BIOS has enabled SME then adjust x86_phys_bits by 467 * the SME physical address space reduction value. 468 * If BIOS has not enabled SME then don't advertise the 469 * SME feature (set in scattered.c). 470 * If the kernel has not enabled SME via any means then 471 * don't advertise the SME feature. 472 * For SEV: If BIOS has not enabled SEV then don't advertise the 473 * SEV and SEV_ES feature (set in scattered.c). 474 * 475 * In all cases, since support for SME and SEV requires long mode, 476 * don't advertise the feature under CONFIG_X86_32. 477 */ 478 if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { 479 /* Check if memory encryption is enabled */ 480 rdmsrl(MSR_AMD64_SYSCFG, msr); 481 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 482 goto clear_all; 483 484 /* 485 * Always adjust physical address bits. Even though this 486 * will be a value above 32-bits this is still done for 487 * CONFIG_X86_32 so that accurate values are reported. 488 */ 489 c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; 490 491 if (IS_ENABLED(CONFIG_X86_32)) 492 goto clear_all; 493 494 if (!sme_me_mask) 495 setup_clear_cpu_cap(X86_FEATURE_SME); 496 497 rdmsrl(MSR_K7_HWCR, msr); 498 if (!(msr & MSR_K7_HWCR_SMMLOCK)) 499 goto clear_sev; 500 501 return; 502 503 clear_all: 504 setup_clear_cpu_cap(X86_FEATURE_SME); 505 clear_sev: 506 setup_clear_cpu_cap(X86_FEATURE_SEV); 507 setup_clear_cpu_cap(X86_FEATURE_SEV_ES); 508 } 509 } 510 511 static void early_init_amd(struct cpuinfo_x86 *c) 512 { 513 u64 value; 514 u32 dummy; 515 516 if (c->x86 >= 0xf) 517 set_cpu_cap(c, X86_FEATURE_K8); 518 519 rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); 520 521 /* 522 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 523 * with P/T states and does not stop in deep C-states 524 */ 525 if (c->x86_power & (1 << 8)) { 526 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 527 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 528 } 529 530 /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ 531 if (c->x86_power & BIT(12)) 532 set_cpu_cap(c, X86_FEATURE_ACC_POWER); 533 534 /* Bit 14 indicates the Runtime Average Power Limit interface. */ 535 if (c->x86_power & BIT(14)) 536 set_cpu_cap(c, X86_FEATURE_RAPL); 537 538 #ifdef CONFIG_X86_64 539 set_cpu_cap(c, X86_FEATURE_SYSCALL32); 540 #else 541 /* Set MTRR capability flag if appropriate */ 542 if (c->x86 == 5) 543 if (c->x86_model == 13 || c->x86_model == 9 || 544 (c->x86_model == 8 && c->x86_stepping >= 8)) 545 set_cpu_cap(c, X86_FEATURE_K6_MTRR); 546 #endif 547 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) 548 /* 549 * ApicID can always be treated as an 8-bit value for AMD APIC versions 550 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we 551 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families 552 * after 16h. 553 */ 554 if (boot_cpu_has(X86_FEATURE_APIC)) { 555 if (c->x86 > 0x16) 556 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 557 else if (c->x86 >= 0xf) { 558 /* check CPU config space for extended APIC ID */ 559 unsigned int val; 560 561 val = read_pci_config(0, 24, 0, 0x68); 562 if ((val >> 17 & 0x3) == 0x3) 563 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 564 } 565 } 566 #endif 567 568 /* 569 * This is only needed to tell the kernel whether to use VMCALL 570 * and VMMCALL. VMMCALL is never executed except under virt, so 571 * we can set it unconditionally. 572 */ 573 set_cpu_cap(c, X86_FEATURE_VMMCALL); 574 575 /* F16h erratum 793, CVE-2013-6885 */ 576 if (c->x86 == 0x16 && c->x86_model <= 0xf) 577 msr_set_bit(MSR_AMD64_LS_CFG, 15); 578 579 early_detect_mem_encrypt(c); 580 581 /* Re-enable TopologyExtensions if switched off by BIOS */ 582 if (c->x86 == 0x15 && 583 (c->x86_model >= 0x10 && c->x86_model <= 0x6f) && 584 !cpu_has(c, X86_FEATURE_TOPOEXT)) { 585 586 if (msr_set_bit(0xc0011005, 54) > 0) { 587 rdmsrl(0xc0011005, value); 588 if (value & BIT_64(54)) { 589 set_cpu_cap(c, X86_FEATURE_TOPOEXT); 590 pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n"); 591 } 592 } 593 } 594 595 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) { 596 if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB)) 597 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 598 else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) { 599 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 600 setup_force_cpu_cap(X86_FEATURE_SBPB); 601 } 602 } 603 } 604 605 static void init_amd_k8(struct cpuinfo_x86 *c) 606 { 607 u32 level; 608 u64 value; 609 610 /* On C+ stepping K8 rep microcode works well for copy/memset */ 611 level = cpuid_eax(1); 612 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) 613 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 614 615 /* 616 * Some BIOSes incorrectly force this feature, but only K8 revision D 617 * (model = 0x14) and later actually support it. 618 * (AMD Erratum #110, docId: 25759). 619 */ 620 if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) { 621 clear_cpu_cap(c, X86_FEATURE_LAHF_LM); 622 if (!rdmsrl_amd_safe(0xc001100d, &value)) { 623 value &= ~BIT_64(32); 624 wrmsrl_amd_safe(0xc001100d, value); 625 } 626 } 627 628 if (!c->x86_model_id[0]) 629 strcpy(c->x86_model_id, "Hammer"); 630 631 #ifdef CONFIG_SMP 632 /* 633 * Disable TLB flush filter by setting HWCR.FFDIS on K8 634 * bit 6 of msr C001_0015 635 * 636 * Errata 63 for SH-B3 steppings 637 * Errata 122 for all steppings (F+ have it disabled by default) 638 */ 639 msr_set_bit(MSR_K7_HWCR, 6); 640 #endif 641 set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); 642 643 /* 644 * Check models and steppings affected by erratum 400. This is 645 * used to select the proper idle routine and to enable the 646 * check whether the machine is affected in arch_post_acpi_subsys_init() 647 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. 648 */ 649 if (c->x86_model > 0x41 || 650 (c->x86_model == 0x41 && c->x86_stepping >= 0x2)) 651 setup_force_cpu_bug(X86_BUG_AMD_E400); 652 } 653 654 static void init_amd_gh(struct cpuinfo_x86 *c) 655 { 656 #ifdef CONFIG_MMCONF_FAM10H 657 /* do this for boot cpu */ 658 if (c == &boot_cpu_data) 659 check_enable_amd_mmconf_dmi(); 660 661 fam10h_check_enable_mmcfg(); 662 #endif 663 664 /* 665 * Disable GART TLB Walk Errors on Fam10h. We do this here because this 666 * is always needed when GART is enabled, even in a kernel which has no 667 * MCE support built in. BIOS should disable GartTlbWlk Errors already. 668 * If it doesn't, we do it here as suggested by the BKDG. 669 * 670 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 671 */ 672 msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); 673 674 /* 675 * On family 10h BIOS may not have properly enabled WC+ support, causing 676 * it to be converted to CD memtype. This may result in performance 677 * degradation for certain nested-paging guests. Prevent this conversion 678 * by clearing bit 24 in MSR_AMD64_BU_CFG2. 679 * 680 * NOTE: we want to use the _safe accessors so as not to #GP kvm 681 * guests on older kvm hosts. 682 */ 683 msr_clear_bit(MSR_AMD64_BU_CFG2, 24); 684 685 set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); 686 687 /* 688 * Check models and steppings affected by erratum 400. This is 689 * used to select the proper idle routine and to enable the 690 * check whether the machine is affected in arch_post_acpi_subsys_init() 691 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. 692 */ 693 if (c->x86_model > 0x2 || 694 (c->x86_model == 0x2 && c->x86_stepping >= 0x1)) 695 setup_force_cpu_bug(X86_BUG_AMD_E400); 696 } 697 698 static void init_amd_ln(struct cpuinfo_x86 *c) 699 { 700 /* 701 * Apply erratum 665 fix unconditionally so machines without a BIOS 702 * fix work. 703 */ 704 msr_set_bit(MSR_AMD64_DE_CFG, 31); 705 } 706 707 static bool rdrand_force; 708 709 static int __init rdrand_cmdline(char *str) 710 { 711 if (!str) 712 return -EINVAL; 713 714 if (!strcmp(str, "force")) 715 rdrand_force = true; 716 else 717 return -EINVAL; 718 719 return 0; 720 } 721 early_param("rdrand", rdrand_cmdline); 722 723 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c) 724 { 725 /* 726 * Saving of the MSR used to hide the RDRAND support during 727 * suspend/resume is done by arch/x86/power/cpu.c, which is 728 * dependent on CONFIG_PM_SLEEP. 729 */ 730 if (!IS_ENABLED(CONFIG_PM_SLEEP)) 731 return; 732 733 /* 734 * The self-test can clear X86_FEATURE_RDRAND, so check for 735 * RDRAND support using the CPUID function directly. 736 */ 737 if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force) 738 return; 739 740 msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62); 741 742 /* 743 * Verify that the CPUID change has occurred in case the kernel is 744 * running virtualized and the hypervisor doesn't support the MSR. 745 */ 746 if (cpuid_ecx(1) & BIT(30)) { 747 pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n"); 748 return; 749 } 750 751 clear_cpu_cap(c, X86_FEATURE_RDRAND); 752 pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n"); 753 } 754 755 static void init_amd_jg(struct cpuinfo_x86 *c) 756 { 757 /* 758 * Some BIOS implementations do not restore proper RDRAND support 759 * across suspend and resume. Check on whether to hide the RDRAND 760 * instruction support via CPUID. 761 */ 762 clear_rdrand_cpuid_bit(c); 763 } 764 765 static void init_amd_bd(struct cpuinfo_x86 *c) 766 { 767 u64 value; 768 769 /* 770 * The way access filter has a performance penalty on some workloads. 771 * Disable it on the affected CPUs. 772 */ 773 if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { 774 if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { 775 value |= 0x1E; 776 wrmsrl_safe(MSR_F15H_IC_CFG, value); 777 } 778 } 779 780 /* 781 * Some BIOS implementations do not restore proper RDRAND support 782 * across suspend and resume. Check on whether to hide the RDRAND 783 * instruction support via CPUID. 784 */ 785 clear_rdrand_cpuid_bit(c); 786 } 787 788 static void fix_erratum_1386(struct cpuinfo_x86 *c) 789 { 790 /* 791 * Work around Erratum 1386. The XSAVES instruction malfunctions in 792 * certain circumstances on Zen1/2 uarch, and not all parts have had 793 * updated microcode at the time of writing (March 2023). 794 * 795 * Affected parts all have no supervisor XSAVE states, meaning that 796 * the XSAVEC instruction (which works fine) is equivalent. 797 */ 798 clear_cpu_cap(c, X86_FEATURE_XSAVES); 799 } 800 801 void init_spectral_chicken(struct cpuinfo_x86 *c) 802 { 803 #ifdef CONFIG_CPU_UNRET_ENTRY 804 u64 value; 805 806 /* 807 * On Zen2 we offer this chicken (bit) on the altar of Speculation. 808 * 809 * This suppresses speculation from the middle of a basic block, i.e. it 810 * suppresses non-branch predictions. 811 */ 812 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 813 if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) { 814 value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT; 815 wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value); 816 } 817 } 818 #endif 819 } 820 821 static void init_amd_zen_common(void) 822 { 823 setup_force_cpu_cap(X86_FEATURE_ZEN); 824 #ifdef CONFIG_NUMA 825 node_reclaim_distance = 32; 826 #endif 827 } 828 829 static void init_amd_zen1(struct cpuinfo_x86 *c) 830 { 831 init_amd_zen_common(); 832 fix_erratum_1386(c); 833 834 /* Fix up CPUID bits, but only if not virtualised. */ 835 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 836 837 /* Erratum 1076: CPB feature bit not being set in CPUID. */ 838 if (!cpu_has(c, X86_FEATURE_CPB)) 839 set_cpu_cap(c, X86_FEATURE_CPB); 840 } 841 842 pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n"); 843 setup_force_cpu_bug(X86_BUG_DIV0); 844 } 845 846 static bool cpu_has_zenbleed_microcode(void) 847 { 848 u32 good_rev = 0; 849 850 switch (boot_cpu_data.x86_model) { 851 case 0x30 ... 0x3f: good_rev = 0x0830107a; break; 852 case 0x60 ... 0x67: good_rev = 0x0860010b; break; 853 case 0x68 ... 0x6f: good_rev = 0x08608105; break; 854 case 0x70 ... 0x7f: good_rev = 0x08701032; break; 855 case 0xa0 ... 0xaf: good_rev = 0x08a00008; break; 856 857 default: 858 return false; 859 } 860 861 if (boot_cpu_data.microcode < good_rev) 862 return false; 863 864 return true; 865 } 866 867 static void zen2_zenbleed_check(struct cpuinfo_x86 *c) 868 { 869 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 870 return; 871 872 if (!cpu_has(c, X86_FEATURE_AVX)) 873 return; 874 875 if (!cpu_has_zenbleed_microcode()) { 876 pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n"); 877 msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 878 } else { 879 msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 880 } 881 } 882 883 static void init_amd_zen2(struct cpuinfo_x86 *c) 884 { 885 init_amd_zen_common(); 886 init_spectral_chicken(c); 887 fix_erratum_1386(c); 888 zen2_zenbleed_check(c); 889 } 890 891 static void init_amd_zen3(struct cpuinfo_x86 *c) 892 { 893 init_amd_zen_common(); 894 895 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 896 /* 897 * Zen3 (Fam19 model < 0x10) parts are not susceptible to 898 * Branch Type Confusion, but predate the allocation of the 899 * BTC_NO bit. 900 */ 901 if (!cpu_has(c, X86_FEATURE_BTC_NO)) 902 set_cpu_cap(c, X86_FEATURE_BTC_NO); 903 } 904 } 905 906 static void init_amd_zen4(struct cpuinfo_x86 *c) 907 { 908 init_amd_zen_common(); 909 910 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) 911 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT); 912 } 913 914 static void init_amd_zen5(struct cpuinfo_x86 *c) 915 { 916 init_amd_zen_common(); 917 } 918 919 static void init_amd(struct cpuinfo_x86 *c) 920 { 921 u64 vm_cr; 922 923 early_init_amd(c); 924 925 /* 926 * Bit 31 in normal CPUID used for nonstandard 3DNow ID; 927 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway 928 */ 929 clear_cpu_cap(c, 0*32+31); 930 931 if (c->x86 >= 0x10) 932 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 933 934 /* AMD FSRM also implies FSRS */ 935 if (cpu_has(c, X86_FEATURE_FSRM)) 936 set_cpu_cap(c, X86_FEATURE_FSRS); 937 938 /* K6s reports MCEs but don't actually have all the MSRs */ 939 if (c->x86 < 6) 940 clear_cpu_cap(c, X86_FEATURE_MCE); 941 942 switch (c->x86) { 943 case 4: init_amd_k5(c); break; 944 case 5: init_amd_k6(c); break; 945 case 6: init_amd_k7(c); break; 946 case 0xf: init_amd_k8(c); break; 947 case 0x10: init_amd_gh(c); break; 948 case 0x12: init_amd_ln(c); break; 949 case 0x15: init_amd_bd(c); break; 950 case 0x16: init_amd_jg(c); break; 951 } 952 953 if (boot_cpu_has(X86_FEATURE_ZEN1)) 954 init_amd_zen1(c); 955 else if (boot_cpu_has(X86_FEATURE_ZEN2)) 956 init_amd_zen2(c); 957 else if (boot_cpu_has(X86_FEATURE_ZEN3)) 958 init_amd_zen3(c); 959 else if (boot_cpu_has(X86_FEATURE_ZEN4)) 960 init_amd_zen4(c); 961 else if (boot_cpu_has(X86_FEATURE_ZEN5)) 962 init_amd_zen5(c); 963 964 /* 965 * Enable workaround for FXSAVE leak on CPUs 966 * without a XSaveErPtr feature 967 */ 968 if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) 969 set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); 970 971 cpu_detect_cache_sizes(c); 972 973 srat_detect_node(c); 974 975 init_amd_cacheinfo(c); 976 977 if (cpu_has(c, X86_FEATURE_SVM)) { 978 rdmsrl(MSR_VM_CR, vm_cr); 979 if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) { 980 pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n"); 981 clear_cpu_cap(c, X86_FEATURE_SVM); 982 } 983 } 984 985 if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) { 986 /* 987 * Use LFENCE for execution serialization. On families which 988 * don't have that MSR, LFENCE is already serializing. 989 * msr_set_bit() uses the safe accessors, too, even if the MSR 990 * is not present. 991 */ 992 msr_set_bit(MSR_AMD64_DE_CFG, 993 MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT); 994 995 /* A serializing LFENCE stops RDTSC speculation */ 996 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 997 } 998 999 /* 1000 * Family 0x12 and above processors have APIC timer 1001 * running in deep C states. 1002 */ 1003 if (c->x86 > 0x11) 1004 set_cpu_cap(c, X86_FEATURE_ARAT); 1005 1006 /* 3DNow or LM implies PREFETCHW */ 1007 if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) 1008 if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) 1009 set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); 1010 1011 /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ 1012 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) 1013 set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); 1014 1015 /* 1016 * Turn on the Instructions Retired free counter on machines not 1017 * susceptible to erratum #1054 "Instructions Retired Performance 1018 * Counter May Be Inaccurate". 1019 */ 1020 if (cpu_has(c, X86_FEATURE_IRPERF) && 1021 (boot_cpu_has(X86_FEATURE_ZEN1) && c->x86_model > 0x2f)) 1022 msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT); 1023 1024 check_null_seg_clears_base(c); 1025 1026 /* 1027 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up 1028 * using the trampoline code and as part of it, MSR_EFER gets prepared there in 1029 * order to be replicated onto them. Regardless, set it here again, if not set, 1030 * to protect against any future refactoring/code reorganization which might 1031 * miss setting this important bit. 1032 */ 1033 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1034 cpu_has(c, X86_FEATURE_AUTOIBRS)) 1035 WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS)); 1036 1037 /* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */ 1038 clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); 1039 } 1040 1041 #ifdef CONFIG_X86_32 1042 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) 1043 { 1044 /* AMD errata T13 (order #21922) */ 1045 if (c->x86 == 6) { 1046 /* Duron Rev A0 */ 1047 if (c->x86_model == 3 && c->x86_stepping == 0) 1048 size = 64; 1049 /* Tbird rev A1/A2 */ 1050 if (c->x86_model == 4 && 1051 (c->x86_stepping == 0 || c->x86_stepping == 1)) 1052 size = 256; 1053 } 1054 return size; 1055 } 1056 #endif 1057 1058 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) 1059 { 1060 u32 ebx, eax, ecx, edx; 1061 u16 mask = 0xfff; 1062 1063 if (c->x86 < 0xf) 1064 return; 1065 1066 if (c->extended_cpuid_level < 0x80000006) 1067 return; 1068 1069 cpuid(0x80000006, &eax, &ebx, &ecx, &edx); 1070 1071 tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask; 1072 tlb_lli_4k[ENTRIES] = ebx & mask; 1073 1074 /* 1075 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB 1076 * characteristics from the CPUID function 0x80000005 instead. 1077 */ 1078 if (c->x86 == 0xf) { 1079 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1080 mask = 0xff; 1081 } 1082 1083 /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1084 if (!((eax >> 16) & mask)) 1085 tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff; 1086 else 1087 tlb_lld_2m[ENTRIES] = (eax >> 16) & mask; 1088 1089 /* a 4M entry uses two 2M entries */ 1090 tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1; 1091 1092 /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1093 if (!(eax & mask)) { 1094 /* Erratum 658 */ 1095 if (c->x86 == 0x15 && c->x86_model <= 0x1f) { 1096 tlb_lli_2m[ENTRIES] = 1024; 1097 } else { 1098 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1099 tlb_lli_2m[ENTRIES] = eax & 0xff; 1100 } 1101 } else 1102 tlb_lli_2m[ENTRIES] = eax & mask; 1103 1104 tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1; 1105 } 1106 1107 static const struct cpu_dev amd_cpu_dev = { 1108 .c_vendor = "AMD", 1109 .c_ident = { "AuthenticAMD" }, 1110 #ifdef CONFIG_X86_32 1111 .legacy_models = { 1112 { .family = 4, .model_names = 1113 { 1114 [3] = "486 DX/2", 1115 [7] = "486 DX/2-WB", 1116 [8] = "486 DX/4", 1117 [9] = "486 DX/4-WB", 1118 [14] = "Am5x86-WT", 1119 [15] = "Am5x86-WB" 1120 } 1121 }, 1122 }, 1123 .legacy_cache_size = amd_size_cache, 1124 #endif 1125 .c_early_init = early_init_amd, 1126 .c_detect_tlb = cpu_detect_tlb_amd, 1127 .c_bsp_init = bsp_init_amd, 1128 .c_init = init_amd, 1129 .c_x86_vendor = X86_VENDOR_AMD, 1130 }; 1131 1132 cpu_dev_register(amd_cpu_dev); 1133 1134 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask); 1135 1136 static unsigned int amd_msr_dr_addr_masks[] = { 1137 MSR_F16H_DR0_ADDR_MASK, 1138 MSR_F16H_DR1_ADDR_MASK, 1139 MSR_F16H_DR1_ADDR_MASK + 1, 1140 MSR_F16H_DR1_ADDR_MASK + 2 1141 }; 1142 1143 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr) 1144 { 1145 int cpu = smp_processor_id(); 1146 1147 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1148 return; 1149 1150 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1151 return; 1152 1153 if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask) 1154 return; 1155 1156 wrmsr(amd_msr_dr_addr_masks[dr], mask, 0); 1157 per_cpu(amd_dr_addr_mask, cpu)[dr] = mask; 1158 } 1159 1160 unsigned long amd_get_dr_addr_mask(unsigned int dr) 1161 { 1162 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1163 return 0; 1164 1165 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1166 return 0; 1167 1168 return per_cpu(amd_dr_addr_mask[dr], smp_processor_id()); 1169 } 1170 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask); 1171 1172 u32 amd_get_highest_perf(void) 1173 { 1174 struct cpuinfo_x86 *c = &boot_cpu_data; 1175 1176 if (c->x86 == 0x17 && ((c->x86_model >= 0x30 && c->x86_model < 0x40) || 1177 (c->x86_model >= 0x70 && c->x86_model < 0x80))) 1178 return 166; 1179 1180 if (c->x86 == 0x19 && ((c->x86_model >= 0x20 && c->x86_model < 0x30) || 1181 (c->x86_model >= 0x40 && c->x86_model < 0x70))) 1182 return 166; 1183 1184 return 255; 1185 } 1186 EXPORT_SYMBOL_GPL(amd_get_highest_perf); 1187 1188 static void zenbleed_check_cpu(void *unused) 1189 { 1190 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 1191 1192 zen2_zenbleed_check(c); 1193 } 1194 1195 void amd_check_microcode(void) 1196 { 1197 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) 1198 return; 1199 1200 on_each_cpu(zenbleed_check_cpu, NULL, 1); 1201 } 1202 1203 /* 1204 * Issue a DIV 0/1 insn to clear any division data from previous DIV 1205 * operations. 1206 */ 1207 void noinstr amd_clear_divider(void) 1208 { 1209 asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0) 1210 :: "a" (0), "d" (0), "r" (1)); 1211 } 1212 EXPORT_SYMBOL_GPL(amd_clear_divider); 1213