1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bitops.h>
4 #include <linux/elf.h>
5 #include <linux/mm.h>
6
7 #include <linux/io.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/random.h>
11 #include <linux/topology.h>
12 #include <asm/processor.h>
13 #include <asm/apic.h>
14 #include <asm/cacheinfo.h>
15 #include <asm/cpu.h>
16 #include <asm/cpu_device_id.h>
17 #include <asm/spec-ctrl.h>
18 #include <asm/smp.h>
19 #include <asm/numa.h>
20 #include <asm/pci-direct.h>
21 #include <asm/delay.h>
22 #include <asm/debugreg.h>
23 #include <asm/resctrl.h>
24 #include <asm/sev.h>
25
26 #ifdef CONFIG_X86_64
27 # include <asm/mmconfig.h>
28 #endif
29
30 #include "cpu.h"
31
rdmsrl_amd_safe(unsigned msr,unsigned long long * p)32 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
33 {
34 u32 gprs[8] = { 0 };
35 int err;
36
37 WARN_ONCE((boot_cpu_data.x86 != 0xf),
38 "%s should only be used on K8!\n", __func__);
39
40 gprs[1] = msr;
41 gprs[7] = 0x9c5a203a;
42
43 err = rdmsr_safe_regs(gprs);
44
45 *p = gprs[0] | ((u64)gprs[2] << 32);
46
47 return err;
48 }
49
wrmsrl_amd_safe(unsigned msr,unsigned long long val)50 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
51 {
52 u32 gprs[8] = { 0 };
53
54 WARN_ONCE((boot_cpu_data.x86 != 0xf),
55 "%s should only be used on K8!\n", __func__);
56
57 gprs[0] = (u32)val;
58 gprs[1] = msr;
59 gprs[2] = val >> 32;
60 gprs[7] = 0x9c5a203a;
61
62 return wrmsr_safe_regs(gprs);
63 }
64
65 /*
66 * B step AMD K6 before B 9730xxxx have hardware bugs that can cause
67 * misexecution of code under Linux. Owners of such processors should
68 * contact AMD for precise details and a CPU swap.
69 *
70 * See http://www.multimania.com/poulot/k6bug.html
71 * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
72 * (Publication # 21266 Issue Date: August 1998)
73 *
74 * The following test is erm.. interesting. AMD neglected to up
75 * the chip setting when fixing the bug but they also tweaked some
76 * performance at the same time..
77 */
78
79 #ifdef CONFIG_X86_32
80 extern __visible void vide(void);
81 __asm__(".text\n"
82 ".globl vide\n"
83 ".type vide, @function\n"
84 ".align 4\n"
85 "vide: ret\n");
86 #endif
87
init_amd_k5(struct cpuinfo_x86 * c)88 static void init_amd_k5(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_32
91 /*
92 * General Systems BIOSen alias the cpu frequency registers
93 * of the Elan at 0x000df000. Unfortunately, one of the Linux
94 * drivers subsequently pokes it, and changes the CPU speed.
95 * Workaround : Remove the unneeded alias.
96 */
97 #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */
98 #define CBAR_ENB (0x80000000)
99 #define CBAR_KEY (0X000000CB)
100 if (c->x86_model == 9 || c->x86_model == 10) {
101 if (inl(CBAR) & CBAR_ENB)
102 outl(0 | CBAR_KEY, CBAR);
103 }
104 #endif
105 }
106
init_amd_k6(struct cpuinfo_x86 * c)107 static void init_amd_k6(struct cpuinfo_x86 *c)
108 {
109 #ifdef CONFIG_X86_32
110 u32 l, h;
111 int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
112
113 if (c->x86_model < 6) {
114 /* Based on AMD doc 20734R - June 2000 */
115 if (c->x86_model == 0) {
116 clear_cpu_cap(c, X86_FEATURE_APIC);
117 set_cpu_cap(c, X86_FEATURE_PGE);
118 }
119 return;
120 }
121
122 if (c->x86_model == 6 && c->x86_stepping == 1) {
123 const int K6_BUG_LOOP = 1000000;
124 int n;
125 void (*f_vide)(void);
126 u64 d, d2;
127
128 pr_info("AMD K6 stepping B detected - ");
129
130 /*
131 * It looks like AMD fixed the 2.6.2 bug and improved indirect
132 * calls at the same time.
133 */
134
135 n = K6_BUG_LOOP;
136 f_vide = vide;
137 OPTIMIZER_HIDE_VAR(f_vide);
138 d = rdtsc();
139 while (n--)
140 f_vide();
141 d2 = rdtsc();
142 d = d2-d;
143
144 if (d > 20*K6_BUG_LOOP)
145 pr_cont("system stability may be impaired when more than 32 MB are used.\n");
146 else
147 pr_cont("probably OK (after B9730xxxx).\n");
148 }
149
150 /* K6 with old style WHCR */
151 if (c->x86_model < 8 ||
152 (c->x86_model == 8 && c->x86_stepping < 8)) {
153 /* We can only write allocate on the low 508Mb */
154 if (mbytes > 508)
155 mbytes = 508;
156
157 rdmsr(MSR_K6_WHCR, l, h);
158 if ((l&0x0000FFFF) == 0) {
159 unsigned long flags;
160 l = (1<<0)|((mbytes/4)<<1);
161 local_irq_save(flags);
162 wbinvd();
163 wrmsr(MSR_K6_WHCR, l, h);
164 local_irq_restore(flags);
165 pr_info("Enabling old style K6 write allocation for %d Mb\n",
166 mbytes);
167 }
168 return;
169 }
170
171 if ((c->x86_model == 8 && c->x86_stepping > 7) ||
172 c->x86_model == 9 || c->x86_model == 13) {
173 /* The more serious chips .. */
174
175 if (mbytes > 4092)
176 mbytes = 4092;
177
178 rdmsr(MSR_K6_WHCR, l, h);
179 if ((l&0xFFFF0000) == 0) {
180 unsigned long flags;
181 l = ((mbytes>>2)<<22)|(1<<16);
182 local_irq_save(flags);
183 wbinvd();
184 wrmsr(MSR_K6_WHCR, l, h);
185 local_irq_restore(flags);
186 pr_info("Enabling new style K6 write allocation for %d Mb\n",
187 mbytes);
188 }
189
190 return;
191 }
192
193 if (c->x86_model == 10) {
194 /* AMD Geode LX is model 10 */
195 /* placeholder for any needed mods */
196 return;
197 }
198 #endif
199 }
200
init_amd_k7(struct cpuinfo_x86 * c)201 static void init_amd_k7(struct cpuinfo_x86 *c)
202 {
203 #ifdef CONFIG_X86_32
204 u32 l, h;
205
206 /*
207 * Bit 15 of Athlon specific MSR 15, needs to be 0
208 * to enable SSE on Palomino/Morgan/Barton CPU's.
209 * If the BIOS didn't enable it already, enable it here.
210 */
211 if (c->x86_model >= 6 && c->x86_model <= 10) {
212 if (!cpu_has(c, X86_FEATURE_XMM)) {
213 pr_info("Enabling disabled K7/SSE Support.\n");
214 msr_clear_bit(MSR_K7_HWCR, 15);
215 set_cpu_cap(c, X86_FEATURE_XMM);
216 }
217 }
218
219 /*
220 * It's been determined by AMD that Athlons since model 8 stepping 1
221 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
222 * As per AMD technical note 27212 0.2
223 */
224 if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
225 rdmsr(MSR_K7_CLK_CTL, l, h);
226 if ((l & 0xfff00000) != 0x20000000) {
227 pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
228 l, ((l & 0x000fffff)|0x20000000));
229 wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
230 }
231 }
232
233 /* calling is from identify_secondary_cpu() ? */
234 if (!c->cpu_index)
235 return;
236
237 /*
238 * Certain Athlons might work (for various values of 'work') in SMP
239 * but they are not certified as MP capable.
240 */
241 /* Athlon 660/661 is valid. */
242 if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
243 (c->x86_stepping == 1)))
244 return;
245
246 /* Duron 670 is valid */
247 if ((c->x86_model == 7) && (c->x86_stepping == 0))
248 return;
249
250 /*
251 * Athlon 662, Duron 671, and Athlon >model 7 have capability
252 * bit. It's worth noting that the A5 stepping (662) of some
253 * Athlon XP's have the MP bit set.
254 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
255 * more.
256 */
257 if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
258 ((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
259 (c->x86_model > 7))
260 if (cpu_has(c, X86_FEATURE_MP))
261 return;
262
263 /* If we get here, not a certified SMP capable AMD system. */
264
265 /*
266 * Don't taint if we are running SMP kernel on a single non-MP
267 * approved Athlon
268 */
269 WARN_ONCE(1, "WARNING: This combination of AMD"
270 " processors is not suitable for SMP.\n");
271 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
272 #endif
273 }
274
275 #ifdef CONFIG_NUMA
276 /*
277 * To workaround broken NUMA config. Read the comment in
278 * srat_detect_node().
279 */
nearby_node(int apicid)280 static int nearby_node(int apicid)
281 {
282 int i, node;
283
284 for (i = apicid - 1; i >= 0; i--) {
285 node = __apicid_to_node[i];
286 if (node != NUMA_NO_NODE && node_online(node))
287 return node;
288 }
289 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
290 node = __apicid_to_node[i];
291 if (node != NUMA_NO_NODE && node_online(node))
292 return node;
293 }
294 return first_node(node_online_map); /* Shouldn't happen */
295 }
296 #endif
297
srat_detect_node(struct cpuinfo_x86 * c)298 static void srat_detect_node(struct cpuinfo_x86 *c)
299 {
300 #ifdef CONFIG_NUMA
301 int cpu = smp_processor_id();
302 int node;
303 unsigned apicid = c->topo.apicid;
304
305 node = numa_cpu_node(cpu);
306 if (node == NUMA_NO_NODE)
307 node = per_cpu_llc_id(cpu);
308
309 /*
310 * On multi-fabric platform (e.g. Numascale NumaChip) a
311 * platform-specific handler needs to be called to fixup some
312 * IDs of the CPU.
313 */
314 if (x86_cpuinit.fixup_cpu_id)
315 x86_cpuinit.fixup_cpu_id(c, node);
316
317 if (!node_online(node)) {
318 /*
319 * Two possibilities here:
320 *
321 * - The CPU is missing memory and no node was created. In
322 * that case try picking one from a nearby CPU.
323 *
324 * - The APIC IDs differ from the HyperTransport node IDs
325 * which the K8 northbridge parsing fills in. Assume
326 * they are all increased by a constant offset, but in
327 * the same order as the HT nodeids. If that doesn't
328 * result in a usable node fall back to the path for the
329 * previous case.
330 *
331 * This workaround operates directly on the mapping between
332 * APIC ID and NUMA node, assuming certain relationship
333 * between APIC ID, HT node ID and NUMA topology. As going
334 * through CPU mapping may alter the outcome, directly
335 * access __apicid_to_node[].
336 */
337 int ht_nodeid = c->topo.initial_apicid;
338
339 if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
340 node = __apicid_to_node[ht_nodeid];
341 /* Pick a nearby node */
342 if (!node_online(node))
343 node = nearby_node(apicid);
344 }
345 numa_set_node(cpu, node);
346 #endif
347 }
348
bsp_determine_snp(struct cpuinfo_x86 * c)349 static void bsp_determine_snp(struct cpuinfo_x86 *c)
350 {
351 #ifdef CONFIG_ARCH_HAS_CC_PLATFORM
352 cc_vendor = CC_VENDOR_AMD;
353
354 if (cpu_has(c, X86_FEATURE_SEV_SNP)) {
355 /*
356 * RMP table entry format is not architectural and is defined by the
357 * per-processor PPR. Restrict SNP support on the known CPU models
358 * for which the RMP table entry format is currently defined for.
359 */
360 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
361 c->x86 >= 0x19 && snp_probe_rmptable_info()) {
362 cc_platform_set(CC_ATTR_HOST_SEV_SNP);
363 } else {
364 setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
365 cc_platform_clear(CC_ATTR_HOST_SEV_SNP);
366 }
367 }
368 #endif
369 }
370
bsp_init_amd(struct cpuinfo_x86 * c)371 static void bsp_init_amd(struct cpuinfo_x86 *c)
372 {
373 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
374
375 if (c->x86 > 0x10 ||
376 (c->x86 == 0x10 && c->x86_model >= 0x2)) {
377 u64 val;
378
379 rdmsrl(MSR_K7_HWCR, val);
380 if (!(val & BIT(24)))
381 pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
382 }
383 }
384
385 if (c->x86 == 0x15) {
386 unsigned long upperbit;
387 u32 cpuid, assoc;
388
389 cpuid = cpuid_edx(0x80000005);
390 assoc = cpuid >> 16 & 0xff;
391 upperbit = ((cpuid >> 24) << 10) / assoc;
392
393 va_align.mask = (upperbit - 1) & PAGE_MASK;
394 va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
395
396 /* A random value per boot for bit slice [12:upper_bit) */
397 va_align.bits = get_random_u32() & va_align.mask;
398 }
399
400 if (cpu_has(c, X86_FEATURE_MWAITX))
401 use_mwaitx_delay();
402
403 if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
404 !boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
405 c->x86 >= 0x15 && c->x86 <= 0x17) {
406 unsigned int bit;
407
408 switch (c->x86) {
409 case 0x15: bit = 54; break;
410 case 0x16: bit = 33; break;
411 case 0x17: bit = 10; break;
412 default: return;
413 }
414 /*
415 * Try to cache the base value so further operations can
416 * avoid RMW. If that faults, do not enable SSBD.
417 */
418 if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
419 setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
420 setup_force_cpu_cap(X86_FEATURE_SSBD);
421 x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
422 }
423 }
424
425 resctrl_cpu_detect(c);
426
427 /* Figure out Zen generations: */
428 switch (c->x86) {
429 case 0x17:
430 switch (c->x86_model) {
431 case 0x00 ... 0x2f:
432 case 0x50 ... 0x5f:
433 setup_force_cpu_cap(X86_FEATURE_ZEN1);
434 break;
435 case 0x30 ... 0x4f:
436 case 0x60 ... 0x7f:
437 case 0x90 ... 0x91:
438 case 0xa0 ... 0xaf:
439 setup_force_cpu_cap(X86_FEATURE_ZEN2);
440 break;
441 default:
442 goto warn;
443 }
444 break;
445
446 case 0x19:
447 switch (c->x86_model) {
448 case 0x00 ... 0x0f:
449 case 0x20 ... 0x5f:
450 setup_force_cpu_cap(X86_FEATURE_ZEN3);
451 break;
452 case 0x10 ... 0x1f:
453 case 0x60 ... 0xaf:
454 setup_force_cpu_cap(X86_FEATURE_ZEN4);
455 break;
456 default:
457 goto warn;
458 }
459 break;
460
461 case 0x1a:
462 switch (c->x86_model) {
463 case 0x00 ... 0x2f:
464 case 0x40 ... 0x4f:
465 case 0x60 ... 0x7f:
466 setup_force_cpu_cap(X86_FEATURE_ZEN5);
467 break;
468 default:
469 goto warn;
470 }
471 break;
472
473 default:
474 break;
475 }
476
477 bsp_determine_snp(c);
478 return;
479
480 warn:
481 WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model);
482 }
483
early_detect_mem_encrypt(struct cpuinfo_x86 * c)484 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
485 {
486 u64 msr;
487
488 /*
489 * BIOS support is required for SME and SEV.
490 * For SME: If BIOS has enabled SME then adjust x86_phys_bits by
491 * the SME physical address space reduction value.
492 * If BIOS has not enabled SME then don't advertise the
493 * SME feature (set in scattered.c).
494 * If the kernel has not enabled SME via any means then
495 * don't advertise the SME feature.
496 * For SEV: If BIOS has not enabled SEV then don't advertise SEV and
497 * any additional functionality based on it.
498 *
499 * In all cases, since support for SME and SEV requires long mode,
500 * don't advertise the feature under CONFIG_X86_32.
501 */
502 if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
503 /* Check if memory encryption is enabled */
504 rdmsrl(MSR_AMD64_SYSCFG, msr);
505 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
506 goto clear_all;
507
508 /*
509 * Always adjust physical address bits. Even though this
510 * will be a value above 32-bits this is still done for
511 * CONFIG_X86_32 so that accurate values are reported.
512 */
513 c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
514
515 if (IS_ENABLED(CONFIG_X86_32))
516 goto clear_all;
517
518 if (!sme_me_mask)
519 setup_clear_cpu_cap(X86_FEATURE_SME);
520
521 rdmsrl(MSR_K7_HWCR, msr);
522 if (!(msr & MSR_K7_HWCR_SMMLOCK))
523 goto clear_sev;
524
525 return;
526
527 clear_all:
528 setup_clear_cpu_cap(X86_FEATURE_SME);
529 clear_sev:
530 setup_clear_cpu_cap(X86_FEATURE_SEV);
531 setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
532 setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
533 }
534 }
535
early_init_amd(struct cpuinfo_x86 * c)536 static void early_init_amd(struct cpuinfo_x86 *c)
537 {
538 u32 dummy;
539
540 if (c->x86 >= 0xf)
541 set_cpu_cap(c, X86_FEATURE_K8);
542
543 rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
544
545 /*
546 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
547 * with P/T states and does not stop in deep C-states
548 */
549 if (c->x86_power & (1 << 8)) {
550 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
551 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
552 }
553
554 /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
555 if (c->x86_power & BIT(12))
556 set_cpu_cap(c, X86_FEATURE_ACC_POWER);
557
558 /* Bit 14 indicates the Runtime Average Power Limit interface. */
559 if (c->x86_power & BIT(14))
560 set_cpu_cap(c, X86_FEATURE_RAPL);
561
562 #ifdef CONFIG_X86_64
563 set_cpu_cap(c, X86_FEATURE_SYSCALL32);
564 #else
565 /* Set MTRR capability flag if appropriate */
566 if (c->x86 == 5)
567 if (c->x86_model == 13 || c->x86_model == 9 ||
568 (c->x86_model == 8 && c->x86_stepping >= 8))
569 set_cpu_cap(c, X86_FEATURE_K6_MTRR);
570 #endif
571 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
572 /*
573 * ApicID can always be treated as an 8-bit value for AMD APIC versions
574 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we
575 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families
576 * after 16h.
577 */
578 if (boot_cpu_has(X86_FEATURE_APIC)) {
579 if (c->x86 > 0x16)
580 set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
581 else if (c->x86 >= 0xf) {
582 /* check CPU config space for extended APIC ID */
583 unsigned int val;
584
585 val = read_pci_config(0, 24, 0, 0x68);
586 if ((val >> 17 & 0x3) == 0x3)
587 set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
588 }
589 }
590 #endif
591
592 /*
593 * This is only needed to tell the kernel whether to use VMCALL
594 * and VMMCALL. VMMCALL is never executed except under virt, so
595 * we can set it unconditionally.
596 */
597 set_cpu_cap(c, X86_FEATURE_VMMCALL);
598
599 /* F16h erratum 793, CVE-2013-6885 */
600 if (c->x86 == 0x16 && c->x86_model <= 0xf)
601 msr_set_bit(MSR_AMD64_LS_CFG, 15);
602
603 early_detect_mem_encrypt(c);
604
605 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) {
606 if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB))
607 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
608 else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) {
609 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
610 setup_force_cpu_cap(X86_FEATURE_SBPB);
611 }
612 }
613 }
614
init_amd_k8(struct cpuinfo_x86 * c)615 static void init_amd_k8(struct cpuinfo_x86 *c)
616 {
617 u32 level;
618 u64 value;
619
620 /* On C+ stepping K8 rep microcode works well for copy/memset */
621 level = cpuid_eax(1);
622 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
623 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
624
625 /*
626 * Some BIOSes incorrectly force this feature, but only K8 revision D
627 * (model = 0x14) and later actually support it.
628 * (AMD Erratum #110, docId: 25759).
629 */
630 if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
631 clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
632 if (!rdmsrl_amd_safe(0xc001100d, &value)) {
633 value &= ~BIT_64(32);
634 wrmsrl_amd_safe(0xc001100d, value);
635 }
636 }
637
638 if (!c->x86_model_id[0])
639 strcpy(c->x86_model_id, "Hammer");
640
641 #ifdef CONFIG_SMP
642 /*
643 * Disable TLB flush filter by setting HWCR.FFDIS on K8
644 * bit 6 of msr C001_0015
645 *
646 * Errata 63 for SH-B3 steppings
647 * Errata 122 for all steppings (F+ have it disabled by default)
648 */
649 msr_set_bit(MSR_K7_HWCR, 6);
650 #endif
651 set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
652
653 /*
654 * Check models and steppings affected by erratum 400. This is
655 * used to select the proper idle routine and to enable the
656 * check whether the machine is affected in arch_post_acpi_subsys_init()
657 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
658 */
659 if (c->x86_model > 0x41 ||
660 (c->x86_model == 0x41 && c->x86_stepping >= 0x2))
661 setup_force_cpu_bug(X86_BUG_AMD_E400);
662 }
663
init_amd_gh(struct cpuinfo_x86 * c)664 static void init_amd_gh(struct cpuinfo_x86 *c)
665 {
666 #ifdef CONFIG_MMCONF_FAM10H
667 /* do this for boot cpu */
668 if (c == &boot_cpu_data)
669 check_enable_amd_mmconf_dmi();
670
671 fam10h_check_enable_mmcfg();
672 #endif
673
674 /*
675 * Disable GART TLB Walk Errors on Fam10h. We do this here because this
676 * is always needed when GART is enabled, even in a kernel which has no
677 * MCE support built in. BIOS should disable GartTlbWlk Errors already.
678 * If it doesn't, we do it here as suggested by the BKDG.
679 *
680 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
681 */
682 msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
683
684 /*
685 * On family 10h BIOS may not have properly enabled WC+ support, causing
686 * it to be converted to CD memtype. This may result in performance
687 * degradation for certain nested-paging guests. Prevent this conversion
688 * by clearing bit 24 in MSR_AMD64_BU_CFG2.
689 *
690 * NOTE: we want to use the _safe accessors so as not to #GP kvm
691 * guests on older kvm hosts.
692 */
693 msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
694
695 set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
696
697 /*
698 * Check models and steppings affected by erratum 400. This is
699 * used to select the proper idle routine and to enable the
700 * check whether the machine is affected in arch_post_acpi_subsys_init()
701 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
702 */
703 if (c->x86_model > 0x2 ||
704 (c->x86_model == 0x2 && c->x86_stepping >= 0x1))
705 setup_force_cpu_bug(X86_BUG_AMD_E400);
706 }
707
init_amd_ln(struct cpuinfo_x86 * c)708 static void init_amd_ln(struct cpuinfo_x86 *c)
709 {
710 /*
711 * Apply erratum 665 fix unconditionally so machines without a BIOS
712 * fix work.
713 */
714 msr_set_bit(MSR_AMD64_DE_CFG, 31);
715 }
716
717 static bool rdrand_force;
718
rdrand_cmdline(char * str)719 static int __init rdrand_cmdline(char *str)
720 {
721 if (!str)
722 return -EINVAL;
723
724 if (!strcmp(str, "force"))
725 rdrand_force = true;
726 else
727 return -EINVAL;
728
729 return 0;
730 }
731 early_param("rdrand", rdrand_cmdline);
732
clear_rdrand_cpuid_bit(struct cpuinfo_x86 * c)733 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
734 {
735 /*
736 * Saving of the MSR used to hide the RDRAND support during
737 * suspend/resume is done by arch/x86/power/cpu.c, which is
738 * dependent on CONFIG_PM_SLEEP.
739 */
740 if (!IS_ENABLED(CONFIG_PM_SLEEP))
741 return;
742
743 /*
744 * The self-test can clear X86_FEATURE_RDRAND, so check for
745 * RDRAND support using the CPUID function directly.
746 */
747 if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
748 return;
749
750 msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
751
752 /*
753 * Verify that the CPUID change has occurred in case the kernel is
754 * running virtualized and the hypervisor doesn't support the MSR.
755 */
756 if (cpuid_ecx(1) & BIT(30)) {
757 pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
758 return;
759 }
760
761 clear_cpu_cap(c, X86_FEATURE_RDRAND);
762 pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
763 }
764
init_amd_jg(struct cpuinfo_x86 * c)765 static void init_amd_jg(struct cpuinfo_x86 *c)
766 {
767 /*
768 * Some BIOS implementations do not restore proper RDRAND support
769 * across suspend and resume. Check on whether to hide the RDRAND
770 * instruction support via CPUID.
771 */
772 clear_rdrand_cpuid_bit(c);
773 }
774
init_amd_bd(struct cpuinfo_x86 * c)775 static void init_amd_bd(struct cpuinfo_x86 *c)
776 {
777 u64 value;
778
779 /*
780 * The way access filter has a performance penalty on some workloads.
781 * Disable it on the affected CPUs.
782 */
783 if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
784 if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
785 value |= 0x1E;
786 wrmsrl_safe(MSR_F15H_IC_CFG, value);
787 }
788 }
789
790 /*
791 * Some BIOS implementations do not restore proper RDRAND support
792 * across suspend and resume. Check on whether to hide the RDRAND
793 * instruction support via CPUID.
794 */
795 clear_rdrand_cpuid_bit(c);
796 }
797
798 static const struct x86_cpu_desc erratum_1386_microcode[] = {
799 AMD_CPU_DESC(0x17, 0x1, 0x2, 0x0800126e),
800 AMD_CPU_DESC(0x17, 0x31, 0x0, 0x08301052),
801 };
802
fix_erratum_1386(struct cpuinfo_x86 * c)803 static void fix_erratum_1386(struct cpuinfo_x86 *c)
804 {
805 /*
806 * Work around Erratum 1386. The XSAVES instruction malfunctions in
807 * certain circumstances on Zen1/2 uarch, and not all parts have had
808 * updated microcode at the time of writing (March 2023).
809 *
810 * Affected parts all have no supervisor XSAVE states, meaning that
811 * the XSAVEC instruction (which works fine) is equivalent.
812 *
813 * Clear the feature flag only on microcode revisions which
814 * don't have the fix.
815 */
816 if (x86_cpu_has_min_microcode_rev(erratum_1386_microcode))
817 return;
818
819 clear_cpu_cap(c, X86_FEATURE_XSAVES);
820 }
821
init_spectral_chicken(struct cpuinfo_x86 * c)822 void init_spectral_chicken(struct cpuinfo_x86 *c)
823 {
824 #ifdef CONFIG_MITIGATION_UNRET_ENTRY
825 u64 value;
826
827 /*
828 * On Zen2 we offer this chicken (bit) on the altar of Speculation.
829 *
830 * This suppresses speculation from the middle of a basic block, i.e. it
831 * suppresses non-branch predictions.
832 */
833 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
834 if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
835 value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
836 wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
837 }
838 }
839 #endif
840 }
841
init_amd_zen_common(void)842 static void init_amd_zen_common(void)
843 {
844 setup_force_cpu_cap(X86_FEATURE_ZEN);
845 #ifdef CONFIG_NUMA
846 node_reclaim_distance = 32;
847 #endif
848 }
849
init_amd_zen1(struct cpuinfo_x86 * c)850 static void init_amd_zen1(struct cpuinfo_x86 *c)
851 {
852 fix_erratum_1386(c);
853
854 /* Fix up CPUID bits, but only if not virtualised. */
855 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
856
857 /* Erratum 1076: CPB feature bit not being set in CPUID. */
858 if (!cpu_has(c, X86_FEATURE_CPB))
859 set_cpu_cap(c, X86_FEATURE_CPB);
860 }
861
862 pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n");
863 setup_force_cpu_bug(X86_BUG_DIV0);
864 }
865
cpu_has_zenbleed_microcode(void)866 static bool cpu_has_zenbleed_microcode(void)
867 {
868 u32 good_rev = 0;
869
870 switch (boot_cpu_data.x86_model) {
871 case 0x30 ... 0x3f: good_rev = 0x0830107b; break;
872 case 0x60 ... 0x67: good_rev = 0x0860010c; break;
873 case 0x68 ... 0x6f: good_rev = 0x08608107; break;
874 case 0x70 ... 0x7f: good_rev = 0x08701033; break;
875 case 0xa0 ... 0xaf: good_rev = 0x08a00009; break;
876
877 default:
878 return false;
879 }
880
881 if (boot_cpu_data.microcode < good_rev)
882 return false;
883
884 return true;
885 }
886
zen2_zenbleed_check(struct cpuinfo_x86 * c)887 static void zen2_zenbleed_check(struct cpuinfo_x86 *c)
888 {
889 if (cpu_has(c, X86_FEATURE_HYPERVISOR))
890 return;
891
892 if (!cpu_has(c, X86_FEATURE_AVX))
893 return;
894
895 if (!cpu_has_zenbleed_microcode()) {
896 pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
897 msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
898 } else {
899 msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
900 }
901 }
902
init_amd_zen2(struct cpuinfo_x86 * c)903 static void init_amd_zen2(struct cpuinfo_x86 *c)
904 {
905 init_spectral_chicken(c);
906 fix_erratum_1386(c);
907 zen2_zenbleed_check(c);
908 }
909
init_amd_zen3(struct cpuinfo_x86 * c)910 static void init_amd_zen3(struct cpuinfo_x86 *c)
911 {
912 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
913 /*
914 * Zen3 (Fam19 model < 0x10) parts are not susceptible to
915 * Branch Type Confusion, but predate the allocation of the
916 * BTC_NO bit.
917 */
918 if (!cpu_has(c, X86_FEATURE_BTC_NO))
919 set_cpu_cap(c, X86_FEATURE_BTC_NO);
920 }
921 }
922
init_amd_zen4(struct cpuinfo_x86 * c)923 static void init_amd_zen4(struct cpuinfo_x86 *c)
924 {
925 if (!cpu_has(c, X86_FEATURE_HYPERVISOR))
926 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT);
927
928 /*
929 * These Zen4 SoCs advertise support for virtualized VMLOAD/VMSAVE
930 * in some BIOS versions but they can lead to random host reboots.
931 */
932 switch (c->x86_model) {
933 case 0x18 ... 0x1f:
934 case 0x60 ... 0x7f:
935 clear_cpu_cap(c, X86_FEATURE_V_VMSAVE_VMLOAD);
936 break;
937 }
938 }
939
init_amd_zen5(struct cpuinfo_x86 * c)940 static void init_amd_zen5(struct cpuinfo_x86 *c)
941 {
942 }
943
init_amd(struct cpuinfo_x86 * c)944 static void init_amd(struct cpuinfo_x86 *c)
945 {
946 u64 vm_cr;
947
948 early_init_amd(c);
949
950 /*
951 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
952 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
953 */
954 clear_cpu_cap(c, 0*32+31);
955
956 if (c->x86 >= 0x10)
957 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
958
959 /* AMD FSRM also implies FSRS */
960 if (cpu_has(c, X86_FEATURE_FSRM))
961 set_cpu_cap(c, X86_FEATURE_FSRS);
962
963 /* K6s reports MCEs but don't actually have all the MSRs */
964 if (c->x86 < 6)
965 clear_cpu_cap(c, X86_FEATURE_MCE);
966
967 switch (c->x86) {
968 case 4: init_amd_k5(c); break;
969 case 5: init_amd_k6(c); break;
970 case 6: init_amd_k7(c); break;
971 case 0xf: init_amd_k8(c); break;
972 case 0x10: init_amd_gh(c); break;
973 case 0x12: init_amd_ln(c); break;
974 case 0x15: init_amd_bd(c); break;
975 case 0x16: init_amd_jg(c); break;
976 }
977
978 /*
979 * Save up on some future enablement work and do common Zen
980 * settings.
981 */
982 if (c->x86 >= 0x17)
983 init_amd_zen_common();
984
985 if (boot_cpu_has(X86_FEATURE_ZEN1))
986 init_amd_zen1(c);
987 else if (boot_cpu_has(X86_FEATURE_ZEN2))
988 init_amd_zen2(c);
989 else if (boot_cpu_has(X86_FEATURE_ZEN3))
990 init_amd_zen3(c);
991 else if (boot_cpu_has(X86_FEATURE_ZEN4))
992 init_amd_zen4(c);
993 else if (boot_cpu_has(X86_FEATURE_ZEN5))
994 init_amd_zen5(c);
995
996 /*
997 * Enable workaround for FXSAVE leak on CPUs
998 * without a XSaveErPtr feature
999 */
1000 if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
1001 set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
1002
1003 cpu_detect_cache_sizes(c);
1004
1005 srat_detect_node(c);
1006
1007 init_amd_cacheinfo(c);
1008
1009 if (cpu_has(c, X86_FEATURE_SVM)) {
1010 rdmsrl(MSR_VM_CR, vm_cr);
1011 if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) {
1012 pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n");
1013 clear_cpu_cap(c, X86_FEATURE_SVM);
1014 }
1015 }
1016
1017 if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) {
1018 /*
1019 * Use LFENCE for execution serialization. On families which
1020 * don't have that MSR, LFENCE is already serializing.
1021 * msr_set_bit() uses the safe accessors, too, even if the MSR
1022 * is not present.
1023 */
1024 msr_set_bit(MSR_AMD64_DE_CFG,
1025 MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
1026
1027 /* A serializing LFENCE stops RDTSC speculation */
1028 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
1029 }
1030
1031 /*
1032 * Family 0x12 and above processors have APIC timer
1033 * running in deep C states.
1034 */
1035 if (c->x86 > 0x11)
1036 set_cpu_cap(c, X86_FEATURE_ARAT);
1037
1038 /* 3DNow or LM implies PREFETCHW */
1039 if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
1040 if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
1041 set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
1042
1043 /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
1044 if (!cpu_feature_enabled(X86_FEATURE_XENPV))
1045 set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1046
1047 /*
1048 * Turn on the Instructions Retired free counter on machines not
1049 * susceptible to erratum #1054 "Instructions Retired Performance
1050 * Counter May Be Inaccurate".
1051 */
1052 if (cpu_has(c, X86_FEATURE_IRPERF) &&
1053 (boot_cpu_has(X86_FEATURE_ZEN1) && c->x86_model > 0x2f))
1054 msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
1055
1056 check_null_seg_clears_base(c);
1057
1058 /*
1059 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up
1060 * using the trampoline code and as part of it, MSR_EFER gets prepared there in
1061 * order to be replicated onto them. Regardless, set it here again, if not set,
1062 * to protect against any future refactoring/code reorganization which might
1063 * miss setting this important bit.
1064 */
1065 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1066 cpu_has(c, X86_FEATURE_AUTOIBRS))
1067 WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS));
1068
1069 /* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */
1070 clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1071 }
1072
1073 #ifdef CONFIG_X86_32
amd_size_cache(struct cpuinfo_x86 * c,unsigned int size)1074 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
1075 {
1076 /* AMD errata T13 (order #21922) */
1077 if (c->x86 == 6) {
1078 /* Duron Rev A0 */
1079 if (c->x86_model == 3 && c->x86_stepping == 0)
1080 size = 64;
1081 /* Tbird rev A1/A2 */
1082 if (c->x86_model == 4 &&
1083 (c->x86_stepping == 0 || c->x86_stepping == 1))
1084 size = 256;
1085 }
1086 return size;
1087 }
1088 #endif
1089
cpu_detect_tlb_amd(struct cpuinfo_x86 * c)1090 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
1091 {
1092 u32 ebx, eax, ecx, edx;
1093 u16 mask = 0xfff;
1094
1095 if (c->x86 < 0xf)
1096 return;
1097
1098 if (c->extended_cpuid_level < 0x80000006)
1099 return;
1100
1101 cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
1102
1103 tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
1104 tlb_lli_4k[ENTRIES] = ebx & mask;
1105
1106 /*
1107 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
1108 * characteristics from the CPUID function 0x80000005 instead.
1109 */
1110 if (c->x86 == 0xf) {
1111 cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1112 mask = 0xff;
1113 }
1114
1115 /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1116 if (!((eax >> 16) & mask))
1117 tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
1118 else
1119 tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
1120
1121 /* a 4M entry uses two 2M entries */
1122 tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
1123
1124 /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1125 if (!(eax & mask)) {
1126 /* Erratum 658 */
1127 if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
1128 tlb_lli_2m[ENTRIES] = 1024;
1129 } else {
1130 cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1131 tlb_lli_2m[ENTRIES] = eax & 0xff;
1132 }
1133 } else
1134 tlb_lli_2m[ENTRIES] = eax & mask;
1135
1136 tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
1137 }
1138
1139 static const struct cpu_dev amd_cpu_dev = {
1140 .c_vendor = "AMD",
1141 .c_ident = { "AuthenticAMD" },
1142 #ifdef CONFIG_X86_32
1143 .legacy_models = {
1144 { .family = 4, .model_names =
1145 {
1146 [3] = "486 DX/2",
1147 [7] = "486 DX/2-WB",
1148 [8] = "486 DX/4",
1149 [9] = "486 DX/4-WB",
1150 [14] = "Am5x86-WT",
1151 [15] = "Am5x86-WB"
1152 }
1153 },
1154 },
1155 .legacy_cache_size = amd_size_cache,
1156 #endif
1157 .c_early_init = early_init_amd,
1158 .c_detect_tlb = cpu_detect_tlb_amd,
1159 .c_bsp_init = bsp_init_amd,
1160 .c_init = init_amd,
1161 .c_x86_vendor = X86_VENDOR_AMD,
1162 };
1163
1164 cpu_dev_register(amd_cpu_dev);
1165
1166 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask);
1167
1168 static unsigned int amd_msr_dr_addr_masks[] = {
1169 MSR_F16H_DR0_ADDR_MASK,
1170 MSR_F16H_DR1_ADDR_MASK,
1171 MSR_F16H_DR1_ADDR_MASK + 1,
1172 MSR_F16H_DR1_ADDR_MASK + 2
1173 };
1174
amd_set_dr_addr_mask(unsigned long mask,unsigned int dr)1175 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr)
1176 {
1177 int cpu = smp_processor_id();
1178
1179 if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1180 return;
1181
1182 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1183 return;
1184
1185 if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask)
1186 return;
1187
1188 wrmsr(amd_msr_dr_addr_masks[dr], mask, 0);
1189 per_cpu(amd_dr_addr_mask, cpu)[dr] = mask;
1190 }
1191
amd_get_dr_addr_mask(unsigned int dr)1192 unsigned long amd_get_dr_addr_mask(unsigned int dr)
1193 {
1194 if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1195 return 0;
1196
1197 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1198 return 0;
1199
1200 return per_cpu(amd_dr_addr_mask[dr], smp_processor_id());
1201 }
1202 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask);
1203
zenbleed_check_cpu(void * unused)1204 static void zenbleed_check_cpu(void *unused)
1205 {
1206 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
1207
1208 zen2_zenbleed_check(c);
1209 }
1210
amd_check_microcode(void)1211 void amd_check_microcode(void)
1212 {
1213 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1214 return;
1215
1216 if (cpu_feature_enabled(X86_FEATURE_ZEN2))
1217 on_each_cpu(zenbleed_check_cpu, NULL, 1);
1218 }
1219