xref: /linux/arch/x86/kernel/apic/x2apic_uv_x.c (revision 490cc3c5e724502667a104a4e818dc071faf5e77)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV APIC functions (note: not an Intel compatible APIC)
7  *
8  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
9  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
10  */
11 #include <linux/crash_dump.h>
12 #include <linux/cpuhotplug.h>
13 #include <linux/cpumask.h>
14 #include <linux/proc_fs.h>
15 #include <linux/memory.h>
16 #include <linux/export.h>
17 #include <linux/pci.h>
18 #include <linux/acpi.h>
19 #include <linux/efi.h>
20 
21 #include <asm/e820/api.h>
22 #include <asm/uv/uv_mmrs.h>
23 #include <asm/uv/uv_hub.h>
24 #include <asm/uv/bios.h>
25 #include <asm/uv/uv.h>
26 #include <asm/apic.h>
27 
28 #include "local.h"
29 
30 static enum uv_system_type	uv_system_type;
31 static int			uv_hubbed_system;
32 static int			uv_hubless_system;
33 static u64			gru_start_paddr, gru_end_paddr;
34 static union uvh_apicid		uvh_apicid;
35 static int			uv_node_id;
36 
37 /* Unpack AT/OEM/TABLE ID's to be NULL terminated strings */
38 static u8 uv_archtype[UV_AT_SIZE + 1];
39 static u8 oem_id[ACPI_OEM_ID_SIZE + 1];
40 static u8 oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
41 
42 /* Information derived from CPUID and some UV MMRs */
43 static struct {
44 	unsigned int apicid_shift;
45 	unsigned int apicid_mask;
46 	unsigned int socketid_shift;	/* aka pnode_shift for UV2/3 */
47 	unsigned int pnode_mask;
48 	unsigned int nasid_shift;
49 	unsigned int gpa_shift;
50 	unsigned int gnode_shift;
51 	unsigned int m_skt;
52 	unsigned int n_skt;
53 } uv_cpuid;
54 
55 static int uv_min_hub_revision_id;
56 
57 static struct apic apic_x2apic_uv_x;
58 static struct uv_hub_info_s uv_hub_info_node0;
59 
60 /* Set this to use hardware error handler instead of kernel panic: */
61 static int disable_uv_undefined_panic = 1;
62 
63 unsigned long uv_undefined(char *str)
64 {
65 	if (likely(!disable_uv_undefined_panic))
66 		panic("UV: error: undefined MMR: %s\n", str);
67 	else
68 		pr_crit("UV: error: undefined MMR: %s\n", str);
69 
70 	/* Cause a machine fault: */
71 	return ~0ul;
72 }
73 EXPORT_SYMBOL(uv_undefined);
74 
75 static unsigned long __init uv_early_read_mmr(unsigned long addr)
76 {
77 	unsigned long val, *mmr;
78 
79 	mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr));
80 	val = *mmr;
81 	early_iounmap(mmr, sizeof(*mmr));
82 
83 	return val;
84 }
85 
86 static inline bool is_GRU_range(u64 start, u64 end)
87 {
88 	if (!gru_start_paddr)
89 		return false;
90 
91 	return start >= gru_start_paddr && end <= gru_end_paddr;
92 }
93 
94 static bool uv_is_untracked_pat_range(u64 start, u64 end)
95 {
96 	return is_ISA_range(start, end) || is_GRU_range(start, end);
97 }
98 
99 static void __init early_get_pnodeid(void)
100 {
101 	int pnode;
102 
103 	uv_cpuid.m_skt = 0;
104 	if (UVH_RH10_GAM_ADDR_MAP_CONFIG) {
105 		union uvh_rh10_gam_addr_map_config_u  m_n_config;
106 
107 		m_n_config.v = uv_early_read_mmr(UVH_RH10_GAM_ADDR_MAP_CONFIG);
108 		uv_cpuid.n_skt = m_n_config.s.n_skt;
109 		uv_cpuid.nasid_shift = 0;
110 	} else if (UVH_RH_GAM_ADDR_MAP_CONFIG) {
111 		union uvh_rh_gam_addr_map_config_u  m_n_config;
112 
113 		m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_ADDR_MAP_CONFIG);
114 		uv_cpuid.n_skt = m_n_config.s.n_skt;
115 		if (is_uv(UV3))
116 			uv_cpuid.m_skt = m_n_config.s3.m_skt;
117 		if (is_uv(UV2))
118 			uv_cpuid.m_skt = m_n_config.s2.m_skt;
119 		uv_cpuid.nasid_shift = 1;
120 	} else {
121 		unsigned long GAM_ADDR_MAP_CONFIG = 0;
122 
123 		WARN(GAM_ADDR_MAP_CONFIG == 0,
124 			"UV: WARN: GAM_ADDR_MAP_CONFIG is not available\n");
125 		uv_cpuid.n_skt = 0;
126 		uv_cpuid.nasid_shift = 0;
127 	}
128 
129 	if (is_uv(UV4|UVY))
130 		uv_cpuid.gnode_shift = 2; /* min partition is 4 sockets */
131 
132 	uv_cpuid.pnode_mask = (1 << uv_cpuid.n_skt) - 1;
133 	pnode = (uv_node_id >> uv_cpuid.nasid_shift) & uv_cpuid.pnode_mask;
134 	uv_cpuid.gpa_shift = 46;	/* Default unless changed */
135 
136 	pr_info("UV: n_skt:%d pnmsk:%x pn:%x\n",
137 		uv_cpuid.n_skt, uv_cpuid.pnode_mask, pnode);
138 }
139 
140 /* Running on a UV Hubbed system, determine which UV Hub Type it is */
141 static int __init early_set_hub_type(void)
142 {
143 	union uvh_node_id_u node_id;
144 
145 	/*
146 	 * The NODE_ID MMR is always at offset 0.
147 	 * Contains the chip part # + revision.
148 	 * Node_id field started with 15 bits,
149 	 * ... now 7 but upper 8 are masked to 0.
150 	 * All blades/nodes have the same part # and hub revision.
151 	 */
152 	node_id.v = uv_early_read_mmr(UVH_NODE_ID);
153 	uv_node_id = node_id.sx.node_id;
154 
155 	switch (node_id.s.part_number) {
156 
157 	case UV5_HUB_PART_NUMBER:
158 		uv_min_hub_revision_id = node_id.s.revision
159 					 + UV5_HUB_REVISION_BASE;
160 		uv_hub_type_set(UV5);
161 		break;
162 
163 	/* UV4/4A only have a revision difference */
164 	case UV4_HUB_PART_NUMBER:
165 		uv_min_hub_revision_id = node_id.s.revision
166 					 + UV4_HUB_REVISION_BASE - 1;
167 		uv_hub_type_set(UV4);
168 		if (uv_min_hub_revision_id == UV4A_HUB_REVISION_BASE)
169 			uv_hub_type_set(UV4|UV4A);
170 		break;
171 
172 	case UV3_HUB_PART_NUMBER:
173 	case UV3_HUB_PART_NUMBER_X:
174 		uv_min_hub_revision_id = node_id.s.revision
175 					 + UV3_HUB_REVISION_BASE;
176 		uv_hub_type_set(UV3);
177 		break;
178 
179 	case UV2_HUB_PART_NUMBER:
180 	case UV2_HUB_PART_NUMBER_X:
181 		uv_min_hub_revision_id = node_id.s.revision
182 					 + UV2_HUB_REVISION_BASE - 1;
183 		uv_hub_type_set(UV2);
184 		break;
185 
186 	default:
187 		return 0;
188 	}
189 
190 	pr_info("UV: part#:%x rev:%d rev_id:%d UVtype:0x%x\n",
191 		node_id.s.part_number, node_id.s.revision,
192 		uv_min_hub_revision_id, is_uv(~0));
193 
194 	return 1;
195 }
196 
197 static void __init uv_tsc_check_sync(void)
198 {
199 	u64 mmr;
200 	int sync_state;
201 	int mmr_shift;
202 	char *state;
203 
204 	/* UV5 guarantees synced TSCs; do not zero TSC_ADJUST */
205 	if (!is_uv(UV2|UV3|UV4)) {
206 		mark_tsc_async_resets("UV5+");
207 		return;
208 	}
209 
210 	/* UV2,3,4, UV BIOS TSC sync state available */
211 	mmr = uv_early_read_mmr(UVH_TSC_SYNC_MMR);
212 	mmr_shift =
213 		is_uv2_hub() ? UVH_TSC_SYNC_SHIFT_UV2K : UVH_TSC_SYNC_SHIFT;
214 	sync_state = (mmr >> mmr_shift) & UVH_TSC_SYNC_MASK;
215 
216 	/* Check if TSC is valid for all sockets */
217 	switch (sync_state) {
218 	case UVH_TSC_SYNC_VALID:
219 		state = "in sync";
220 		mark_tsc_async_resets("UV BIOS");
221 		break;
222 
223 	/* If BIOS state unknown, don't do anything */
224 	case UVH_TSC_SYNC_UNKNOWN:
225 		state = "unknown";
226 		break;
227 
228 	/* Otherwise, BIOS indicates problem with TSC */
229 	default:
230 		state = "unstable";
231 		mark_tsc_unstable("UV BIOS");
232 		break;
233 	}
234 	pr_info("UV: TSC sync state from BIOS:0%d(%s)\n", sync_state, state);
235 }
236 
237 /* Selector for (4|4A|5) structs */
238 #define uvxy_field(sname, field, undef) (	\
239 	is_uv(UV4A) ? sname.s4a.field :		\
240 	is_uv(UV4) ? sname.s4.field :		\
241 	is_uv(UV3) ? sname.s3.field :		\
242 	undef)
243 
244 static void __init early_get_apic_socketid_shift(void)
245 {
246 	unsigned int sid_shift = topology_get_domain_shift(TOPO_PKG_DOMAIN);
247 
248 	if (is_uv2_hub() || is_uv3_hub())
249 		uvh_apicid.v = uv_early_read_mmr(UVH_APICID);
250 
251 	if (sid_shift) {
252 		uv_cpuid.apicid_shift	= 0;
253 		uv_cpuid.apicid_mask	= (~(-1 << sid_shift));
254 		uv_cpuid.socketid_shift = sid_shift;
255 	} else {
256 		pr_info("UV: CPU does not have valid CPUID.11\n");
257 	}
258 
259 	pr_info("UV: apicid_shift:%d apicid_mask:0x%x\n", uv_cpuid.apicid_shift, uv_cpuid.apicid_mask);
260 	pr_info("UV: socketid_shift:%d pnode_mask:0x%x\n", uv_cpuid.socketid_shift, uv_cpuid.pnode_mask);
261 }
262 
263 static void __init uv_stringify(int len, char *to, char *from)
264 {
265 	strscpy(to, from, len);
266 
267 	/* Trim trailing spaces */
268 	(void)strim(to);
269 }
270 
271 /* Find UV arch type entry in UVsystab */
272 static unsigned long __init early_find_archtype(struct uv_systab *st)
273 {
274 	int i;
275 
276 	for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
277 		unsigned long ptr = st->entry[i].offset;
278 
279 		if (!ptr)
280 			continue;
281 		ptr += (unsigned long)st;
282 		if (st->entry[i].type == UV_SYSTAB_TYPE_ARCH_TYPE)
283 			return ptr;
284 	}
285 	return 0;
286 }
287 
288 /* Validate UV arch type field in UVsystab */
289 static int __init decode_arch_type(unsigned long ptr)
290 {
291 	struct uv_arch_type_entry *uv_ate = (struct uv_arch_type_entry *)ptr;
292 	int n = strlen(uv_ate->archtype);
293 
294 	if (n > 0 && n < sizeof(uv_ate->archtype)) {
295 		pr_info("UV: UVarchtype received from BIOS\n");
296 		uv_stringify(sizeof(uv_archtype), uv_archtype, uv_ate->archtype);
297 		return 1;
298 	}
299 	return 0;
300 }
301 
302 /* Determine if UV arch type entry might exist in UVsystab */
303 static int __init early_get_arch_type(void)
304 {
305 	unsigned long uvst_physaddr, uvst_size, ptr;
306 	struct uv_systab *st;
307 	u32 rev;
308 	int ret;
309 
310 	uvst_physaddr = get_uv_systab_phys(0);
311 	if (!uvst_physaddr)
312 		return 0;
313 
314 	st = early_memremap_ro(uvst_physaddr, sizeof(struct uv_systab));
315 	if (!st) {
316 		pr_err("UV: Cannot access UVsystab, remap failed\n");
317 		return 0;
318 	}
319 
320 	rev = st->revision;
321 	if (rev < UV_SYSTAB_VERSION_UV5) {
322 		early_memunmap(st, sizeof(struct uv_systab));
323 		return 0;
324 	}
325 
326 	uvst_size = st->size;
327 	early_memunmap(st, sizeof(struct uv_systab));
328 	st = early_memremap_ro(uvst_physaddr, uvst_size);
329 	if (!st) {
330 		pr_err("UV: Cannot access UVarchtype, remap failed\n");
331 		return 0;
332 	}
333 
334 	ptr = early_find_archtype(st);
335 	if (!ptr) {
336 		early_memunmap(st, uvst_size);
337 		return 0;
338 	}
339 
340 	ret = decode_arch_type(ptr);
341 	early_memunmap(st, uvst_size);
342 	return ret;
343 }
344 
345 /* UV system found, check which APIC MODE BIOS already selected */
346 static void __init early_set_apic_mode(void)
347 {
348 	if (x2apic_enabled())
349 		uv_system_type = UV_X2APIC;
350 	else
351 		uv_system_type = UV_LEGACY_APIC;
352 }
353 
354 static int __init uv_set_system_type(char *_oem_id, char *_oem_table_id)
355 {
356 	/* Save OEM_ID passed from ACPI MADT */
357 	uv_stringify(sizeof(oem_id), oem_id, _oem_id);
358 
359 	/* Check if BIOS sent us a UVarchtype */
360 	if (!early_get_arch_type())
361 
362 		/* If not use OEM ID for UVarchtype */
363 		uv_stringify(sizeof(uv_archtype), uv_archtype, oem_id);
364 
365 	/* Check if not hubbed */
366 	if (strncmp(uv_archtype, "SGI", 3) != 0) {
367 
368 		/* (Not hubbed), check if not hubless */
369 		if (strncmp(uv_archtype, "NSGI", 4) != 0)
370 
371 			/* (Not hubless), not a UV */
372 			return 0;
373 
374 		/* Is UV hubless system */
375 		uv_hubless_system = 0x01;
376 
377 		/* UV5 Hubless */
378 		if (strncmp(uv_archtype, "NSGI5", 5) == 0)
379 			uv_hubless_system |= 0x20;
380 
381 		/* UV4 Hubless: CH */
382 		else if (strncmp(uv_archtype, "NSGI4", 5) == 0)
383 			uv_hubless_system |= 0x10;
384 
385 		/* UV3 Hubless: UV300/MC990X w/o hub */
386 		else
387 			uv_hubless_system |= 0x8;
388 
389 		/* Copy OEM Table ID */
390 		uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
391 
392 		pr_info("UV: OEM IDs %s/%s, SystemType %d, HUBLESS ID %x\n",
393 			oem_id, oem_table_id, uv_system_type, uv_hubless_system);
394 
395 		return 0;
396 	}
397 
398 	if (numa_off) {
399 		pr_err("UV: NUMA is off, disabling UV support\n");
400 		return 0;
401 	}
402 
403 	/* Set hubbed type if true */
404 	uv_hub_info->hub_revision =
405 		!strncmp(uv_archtype, "SGI5", 4) ? UV5_HUB_REVISION_BASE :
406 		!strncmp(uv_archtype, "SGI4", 4) ? UV4_HUB_REVISION_BASE :
407 		!strncmp(uv_archtype, "SGI3", 4) ? UV3_HUB_REVISION_BASE :
408 		!strcmp(uv_archtype, "SGI2") ? UV2_HUB_REVISION_BASE : 0;
409 
410 	switch (uv_hub_info->hub_revision) {
411 	case UV5_HUB_REVISION_BASE:
412 		uv_hubbed_system = 0x21;
413 		uv_hub_type_set(UV5);
414 		break;
415 
416 	case UV4_HUB_REVISION_BASE:
417 		uv_hubbed_system = 0x11;
418 		uv_hub_type_set(UV4);
419 		break;
420 
421 	case UV3_HUB_REVISION_BASE:
422 		uv_hubbed_system = 0x9;
423 		uv_hub_type_set(UV3);
424 		break;
425 
426 	case UV2_HUB_REVISION_BASE:
427 		uv_hubbed_system = 0x5;
428 		uv_hub_type_set(UV2);
429 		break;
430 
431 	default:
432 		return 0;
433 	}
434 
435 	/* Get UV hub chip part number & revision */
436 	early_set_hub_type();
437 
438 	/* Other UV setup functions */
439 	early_set_apic_mode();
440 	early_get_pnodeid();
441 	early_get_apic_socketid_shift();
442 	x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range;
443 	x86_platform.nmi_init = uv_nmi_init;
444 	uv_tsc_check_sync();
445 
446 	return 1;
447 }
448 
449 /* Called early to probe for the correct APIC driver */
450 static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id)
451 {
452 	/* Set up early hub info fields for Node 0 */
453 	uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0;
454 
455 	/* If not UV, return. */
456 	if (uv_set_system_type(_oem_id, _oem_table_id) == 0)
457 		return 0;
458 
459 	/* Save for display of the OEM Table ID */
460 	uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
461 
462 	pr_info("UV: OEM IDs %s/%s, System/UVType %d/0x%x, HUB RevID %d\n",
463 		oem_id, oem_table_id, uv_system_type, is_uv(UV_ANY),
464 		uv_min_hub_revision_id);
465 
466 	return 0;
467 }
468 
469 enum uv_system_type get_uv_system_type(void)
470 {
471 	return uv_system_type;
472 }
473 
474 int uv_get_hubless_system(void)
475 {
476 	return uv_hubless_system;
477 }
478 EXPORT_SYMBOL_GPL(uv_get_hubless_system);
479 
480 ssize_t uv_get_archtype(char *buf, int len)
481 {
482 	return scnprintf(buf, len, "%s/%s", uv_archtype, oem_table_id);
483 }
484 EXPORT_SYMBOL_GPL(uv_get_archtype);
485 
486 int is_uv_system(void)
487 {
488 	return uv_system_type != UV_NONE;
489 }
490 EXPORT_SYMBOL_GPL(is_uv_system);
491 
492 int is_uv_hubbed(int uvtype)
493 {
494 	return (uv_hubbed_system & uvtype);
495 }
496 EXPORT_SYMBOL_GPL(is_uv_hubbed);
497 
498 static int is_uv_hubless(int uvtype)
499 {
500 	return (uv_hubless_system & uvtype);
501 }
502 
503 void **__uv_hub_info_list;
504 EXPORT_SYMBOL_GPL(__uv_hub_info_list);
505 
506 DEFINE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
507 EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_info);
508 
509 short uv_possible_blades;
510 EXPORT_SYMBOL_GPL(uv_possible_blades);
511 
512 unsigned long sn_rtc_cycles_per_second;
513 EXPORT_SYMBOL(sn_rtc_cycles_per_second);
514 
515 /* The following values are used for the per node hub info struct */
516 static __initdata unsigned short		_min_socket, _max_socket;
517 static __initdata unsigned short		_min_pnode, _max_pnode, _gr_table_len;
518 static __initdata struct uv_gam_range_entry	*uv_gre_table;
519 static __initdata struct uv_gam_parameters	*uv_gp_table;
520 static __initdata unsigned short		*_socket_to_node;
521 static __initdata unsigned short		*_socket_to_pnode;
522 static __initdata unsigned short		*_pnode_to_socket;
523 static __initdata unsigned short		*_node_to_socket;
524 
525 static __initdata struct uv_gam_range_s		*_gr_table;
526 
527 #define	SOCK_EMPTY	((unsigned short)~0)
528 
529 /* Default UV memory block size is 2GB */
530 static unsigned long mem_block_size __initdata = (2UL << 30);
531 
532 /* Kernel parameter to specify UV mem block size */
533 static int __init parse_mem_block_size(char *ptr)
534 {
535 	unsigned long size = memparse(ptr, NULL);
536 
537 	/* Size will be rounded down by set_block_size() below */
538 	mem_block_size = size;
539 	return 0;
540 }
541 early_param("uv_memblksize", parse_mem_block_size);
542 
543 static __init int adj_blksize(u32 lgre)
544 {
545 	unsigned long base = (unsigned long)lgre << UV_GAM_RANGE_SHFT;
546 	unsigned long size;
547 
548 	for (size = mem_block_size; size > MIN_MEMORY_BLOCK_SIZE; size >>= 1)
549 		if (IS_ALIGNED(base, size))
550 			break;
551 
552 	if (size >= mem_block_size)
553 		return 0;
554 
555 	mem_block_size = size;
556 	return 1;
557 }
558 
559 static __init void set_block_size(void)
560 {
561 	unsigned int order = ffs(mem_block_size);
562 
563 	if (order) {
564 		/* adjust for ffs return of 1..64 */
565 		set_memory_block_size_order(order - 1);
566 		pr_info("UV: mem_block_size set to 0x%lx\n", mem_block_size);
567 	} else {
568 		/* bad or zero value, default to 1UL << 31 (2GB) */
569 		pr_err("UV: mem_block_size error with 0x%lx\n", mem_block_size);
570 		set_memory_block_size_order(31);
571 	}
572 }
573 
574 /* Build GAM range lookup table: */
575 static __init void build_uv_gr_table(void)
576 {
577 	struct uv_gam_range_entry *gre = uv_gre_table;
578 	struct uv_gam_range_s *grt;
579 	unsigned long last_limit = 0, ram_limit = 0;
580 	int bytes, i, sid, lsid = -1, indx = 0, lindx = -1;
581 
582 	if (!gre)
583 		return;
584 
585 	bytes = _gr_table_len * sizeof(struct uv_gam_range_s);
586 	grt = kzalloc(bytes, GFP_KERNEL);
587 	if (WARN_ON_ONCE(!grt))
588 		return;
589 	_gr_table = grt;
590 
591 	for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
592 		if (gre->type == UV_GAM_RANGE_TYPE_HOLE) {
593 			if (!ram_limit) {
594 				/* Mark hole between RAM/non-RAM: */
595 				ram_limit = last_limit;
596 				last_limit = gre->limit;
597 				lsid++;
598 				continue;
599 			}
600 			last_limit = gre->limit;
601 			pr_info("UV: extra hole in GAM RE table @%d\n", (int)(gre - uv_gre_table));
602 			continue;
603 		}
604 		if (_max_socket < gre->sockid) {
605 			pr_err("UV: GAM table sockid(%d) too large(>%d) @%d\n", gre->sockid, _max_socket, (int)(gre - uv_gre_table));
606 			continue;
607 		}
608 		sid = gre->sockid - _min_socket;
609 		if (lsid < sid) {
610 			/* New range: */
611 			grt = &_gr_table[indx];
612 			grt->base = lindx;
613 			grt->nasid = gre->nasid;
614 			grt->limit = last_limit = gre->limit;
615 			lsid = sid;
616 			lindx = indx++;
617 			continue;
618 		}
619 		/* Update range: */
620 		if (lsid == sid && !ram_limit) {
621 			/* .. if contiguous: */
622 			if (grt->limit == last_limit) {
623 				grt->limit = last_limit = gre->limit;
624 				continue;
625 			}
626 		}
627 		/* Non-contiguous RAM range: */
628 		if (!ram_limit) {
629 			grt++;
630 			grt->base = lindx;
631 			grt->nasid = gre->nasid;
632 			grt->limit = last_limit = gre->limit;
633 			continue;
634 		}
635 		/* Non-contiguous/non-RAM: */
636 		grt++;
637 		/* base is this entry */
638 		grt->base = grt - _gr_table;
639 		grt->nasid = gre->nasid;
640 		grt->limit = last_limit = gre->limit;
641 		lsid++;
642 	}
643 
644 	/* Shorten table if possible */
645 	grt++;
646 	i = grt - _gr_table;
647 	if (i < _gr_table_len) {
648 		void *ret;
649 
650 		bytes = i * sizeof(struct uv_gam_range_s);
651 		ret = krealloc(_gr_table, bytes, GFP_KERNEL);
652 		if (ret) {
653 			_gr_table = ret;
654 			_gr_table_len = i;
655 		}
656 	}
657 
658 	/* Display resultant GAM range table: */
659 	for (i = 0, grt = _gr_table; i < _gr_table_len; i++, grt++) {
660 		unsigned long start, end;
661 		int gb = grt->base;
662 
663 		start = gb < 0 ?  0 : (unsigned long)_gr_table[gb].limit << UV_GAM_RANGE_SHFT;
664 		end = (unsigned long)grt->limit << UV_GAM_RANGE_SHFT;
665 
666 		pr_info("UV: GAM Range %2d %04x 0x%013lx-0x%013lx (%d)\n", i, grt->nasid, start, end, gb);
667 	}
668 }
669 
670 static int uv_wakeup_secondary(u32 phys_apicid, unsigned long start_rip)
671 {
672 	unsigned long val;
673 	int pnode;
674 
675 	pnode = uv_apicid_to_pnode(phys_apicid);
676 
677 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
678 	    (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
679 	    ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
680 	    APIC_DM_INIT;
681 
682 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
683 
684 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
685 	    (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
686 	    ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
687 	    APIC_DM_STARTUP;
688 
689 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
690 
691 	return 0;
692 }
693 
694 static void uv_send_IPI_one(int cpu, int vector)
695 {
696 	unsigned long apicid = per_cpu(x86_cpu_to_apicid, cpu);
697 	int pnode = uv_apicid_to_pnode(apicid);
698 	unsigned long dmode, val;
699 
700 	if (vector == NMI_VECTOR)
701 		dmode = APIC_DELIVERY_MODE_NMI;
702 	else
703 		dmode = APIC_DELIVERY_MODE_FIXED;
704 
705 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
706 		(apicid << UVH_IPI_INT_APIC_ID_SHFT) |
707 		(dmode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
708 		(vector << UVH_IPI_INT_VECTOR_SHFT);
709 
710 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
711 }
712 
713 static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
714 {
715 	unsigned int cpu;
716 
717 	for_each_cpu(cpu, mask)
718 		uv_send_IPI_one(cpu, vector);
719 }
720 
721 static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
722 {
723 	unsigned int this_cpu = smp_processor_id();
724 	unsigned int cpu;
725 
726 	for_each_cpu(cpu, mask) {
727 		if (cpu != this_cpu)
728 			uv_send_IPI_one(cpu, vector);
729 	}
730 }
731 
732 static void uv_send_IPI_allbutself(int vector)
733 {
734 	unsigned int this_cpu = smp_processor_id();
735 	unsigned int cpu;
736 
737 	for_each_online_cpu(cpu) {
738 		if (cpu != this_cpu)
739 			uv_send_IPI_one(cpu, vector);
740 	}
741 }
742 
743 static void uv_send_IPI_all(int vector)
744 {
745 	uv_send_IPI_mask(cpu_online_mask, vector);
746 }
747 
748 static u32 set_apic_id(u32 id)
749 {
750 	return id;
751 }
752 
753 static int uv_probe(void)
754 {
755 	return apic == &apic_x2apic_uv_x;
756 }
757 
758 static struct apic apic_x2apic_uv_x __ro_after_init = {
759 
760 	.name				= "UV large system",
761 	.probe				= uv_probe,
762 	.acpi_madt_oem_check		= uv_acpi_madt_oem_check,
763 
764 	.dest_mode_logical		= false,
765 
766 	.disable_esr			= 0,
767 
768 	.cpu_present_to_apicid		= default_cpu_present_to_apicid,
769 
770 	.max_apic_id			= UINT_MAX,
771 	.get_apic_id			= x2apic_get_apic_id,
772 	.set_apic_id			= set_apic_id,
773 
774 	.calc_dest_apicid		= apic_default_calc_apicid,
775 
776 	.send_IPI			= uv_send_IPI_one,
777 	.send_IPI_mask			= uv_send_IPI_mask,
778 	.send_IPI_mask_allbutself	= uv_send_IPI_mask_allbutself,
779 	.send_IPI_allbutself		= uv_send_IPI_allbutself,
780 	.send_IPI_all			= uv_send_IPI_all,
781 	.send_IPI_self			= x2apic_send_IPI_self,
782 
783 	.wakeup_secondary_cpu		= uv_wakeup_secondary,
784 
785 	.read				= native_apic_msr_read,
786 	.write				= native_apic_msr_write,
787 	.eoi				= native_apic_msr_eoi,
788 	.icr_read			= native_x2apic_icr_read,
789 	.icr_write			= native_x2apic_icr_write,
790 };
791 
792 #define	UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH	3
793 #define DEST_SHIFT UVXH_RH_GAM_ALIAS_0_REDIRECT_CONFIG_DEST_BASE_SHFT
794 
795 static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
796 {
797 	union uvh_rh_gam_alias_2_overlay_config_u alias;
798 	union uvh_rh_gam_alias_2_redirect_config_u redirect;
799 	unsigned long m_redirect;
800 	unsigned long m_overlay;
801 	int i;
802 
803 	for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) {
804 		switch (i) {
805 		case 0:
806 			m_redirect = UVH_RH_GAM_ALIAS_0_REDIRECT_CONFIG;
807 			m_overlay  = UVH_RH_GAM_ALIAS_0_OVERLAY_CONFIG;
808 			break;
809 		case 1:
810 			m_redirect = UVH_RH_GAM_ALIAS_1_REDIRECT_CONFIG;
811 			m_overlay  = UVH_RH_GAM_ALIAS_1_OVERLAY_CONFIG;
812 			break;
813 		case 2:
814 			m_redirect = UVH_RH_GAM_ALIAS_2_REDIRECT_CONFIG;
815 			m_overlay  = UVH_RH_GAM_ALIAS_2_OVERLAY_CONFIG;
816 			break;
817 		}
818 		alias.v = uv_read_local_mmr(m_overlay);
819 		if (alias.s.enable && alias.s.base == 0) {
820 			*size = (1UL << alias.s.m_alias);
821 			redirect.v = uv_read_local_mmr(m_redirect);
822 			*base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
823 			return;
824 		}
825 	}
826 	*base = *size = 0;
827 }
828 
829 enum map_type {map_wb, map_uc};
830 static const char * const mt[] = { "WB", "UC" };
831 
832 static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type)
833 {
834 	unsigned long bytes, paddr;
835 
836 	paddr = base << pshift;
837 	bytes = (1UL << bshift) * (max_pnode + 1);
838 	if (!paddr) {
839 		pr_info("UV: Map %s_HI base address NULL\n", id);
840 		return;
841 	}
842 	if (map_type == map_uc)
843 		init_extra_mapping_uc(paddr, bytes);
844 	else
845 		init_extra_mapping_wb(paddr, bytes);
846 
847 	pr_info("UV: Map %s_HI 0x%lx - 0x%lx %s (%d segments)\n",
848 		id, paddr, paddr + bytes, mt[map_type], max_pnode + 1);
849 }
850 
851 static __init void map_gru_high(int max_pnode)
852 {
853 	union uvh_rh_gam_gru_overlay_config_u gru;
854 	unsigned long mask, base;
855 	int shift;
856 
857 	if (UVH_RH_GAM_GRU_OVERLAY_CONFIG) {
858 		gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG);
859 		shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
860 		mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
861 	} else if (UVH_RH10_GAM_GRU_OVERLAY_CONFIG) {
862 		gru.v = uv_read_local_mmr(UVH_RH10_GAM_GRU_OVERLAY_CONFIG);
863 		shift = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
864 		mask = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
865 	} else {
866 		pr_err("UV: GRU unavailable (no MMR)\n");
867 		return;
868 	}
869 
870 	if (!gru.s.enable) {
871 		pr_info("UV: GRU disabled (by BIOS)\n");
872 		return;
873 	}
874 
875 	base = (gru.v & mask) >> shift;
876 	map_high("GRU", base, shift, shift, max_pnode, map_wb);
877 	gru_start_paddr = ((u64)base << shift);
878 	gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1);
879 }
880 
881 static __init void map_mmr_high(int max_pnode)
882 {
883 	unsigned long base;
884 	int shift;
885 	bool enable;
886 
887 	if (UVH_RH10_GAM_MMR_OVERLAY_CONFIG) {
888 		union uvh_rh10_gam_mmr_overlay_config_u mmr;
889 
890 		mmr.v = uv_read_local_mmr(UVH_RH10_GAM_MMR_OVERLAY_CONFIG);
891 		enable = mmr.s.enable;
892 		base = mmr.s.base;
893 		shift = UVH_RH10_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
894 	} else if (UVH_RH_GAM_MMR_OVERLAY_CONFIG) {
895 		union uvh_rh_gam_mmr_overlay_config_u mmr;
896 
897 		mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG);
898 		enable = mmr.s.enable;
899 		base = mmr.s.base;
900 		shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
901 	} else {
902 		pr_err("UV:%s:RH_GAM_MMR_OVERLAY_CONFIG MMR undefined?\n",
903 			__func__);
904 		return;
905 	}
906 
907 	if (enable)
908 		map_high("MMR", base, shift, shift, max_pnode, map_uc);
909 	else
910 		pr_info("UV: MMR disabled\n");
911 }
912 
913 /* Arch specific ENUM cases */
914 enum mmioh_arch {
915 	UV2_MMIOH = -1,
916 	UVY_MMIOH0, UVY_MMIOH1,
917 	UVX_MMIOH0, UVX_MMIOH1,
918 };
919 
920 /* Calculate and Map MMIOH Regions */
921 static void __init calc_mmioh_map(enum mmioh_arch index,
922 	int min_pnode, int max_pnode,
923 	int shift, unsigned long base, int m_io, int n_io)
924 {
925 	unsigned long mmr, nasid_mask;
926 	int nasid, min_nasid, max_nasid, lnasid, mapped;
927 	int i, fi, li, n, max_io;
928 	char id[8];
929 
930 	/* One (UV2) mapping */
931 	if (index == UV2_MMIOH) {
932 		strscpy(id, "MMIOH", sizeof(id));
933 		max_io = max_pnode;
934 		mapped = 0;
935 		goto map_exit;
936 	}
937 
938 	/* small and large MMIOH mappings */
939 	switch (index) {
940 	case UVY_MMIOH0:
941 		mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0;
942 		nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK;
943 		n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
944 		min_nasid = min_pnode;
945 		max_nasid = max_pnode;
946 		mapped = 1;
947 		break;
948 	case UVY_MMIOH1:
949 		mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1;
950 		nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK;
951 		n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
952 		min_nasid = min_pnode;
953 		max_nasid = max_pnode;
954 		mapped = 1;
955 		break;
956 	case UVX_MMIOH0:
957 		mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0;
958 		nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK;
959 		n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
960 		min_nasid = min_pnode * 2;
961 		max_nasid = max_pnode * 2;
962 		mapped = 1;
963 		break;
964 	case UVX_MMIOH1:
965 		mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1;
966 		nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK;
967 		n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
968 		min_nasid = min_pnode * 2;
969 		max_nasid = max_pnode * 2;
970 		mapped = 1;
971 		break;
972 	default:
973 		pr_err("UV:%s:Invalid mapping type:%d\n", __func__, index);
974 		return;
975 	}
976 
977 	/* enum values chosen so (index mod 2) is MMIOH 0/1 (low/high) */
978 	snprintf(id, sizeof(id), "MMIOH%d", index%2);
979 
980 	max_io = lnasid = fi = li = -1;
981 	for (i = 0; i < n; i++) {
982 		unsigned long m_redirect = mmr + i * 8;
983 		unsigned long redirect = uv_read_local_mmr(m_redirect);
984 
985 		nasid = redirect & nasid_mask;
986 		if (i == 0)
987 			pr_info("UV: %s redirect base 0x%lx(@0x%lx) 0x%04x\n",
988 				id, redirect, m_redirect, nasid);
989 
990 		/* Invalid NASID check */
991 		if (nasid < min_nasid || max_nasid < nasid) {
992 			/* Not an error: unused table entries get "poison" values */
993 			pr_debug("UV:%s:Invalid NASID(%x):%x (range:%x..%x)\n",
994 			       __func__, index, nasid, min_nasid, max_nasid);
995 			nasid = -1;
996 		}
997 
998 		if (nasid == lnasid) {
999 			li = i;
1000 			/* Last entry check: */
1001 			if (i != n-1)
1002 				continue;
1003 		}
1004 
1005 		/* Check if we have a cached (or last) redirect to print: */
1006 		if (lnasid != -1 || (i == n-1 && nasid != -1))  {
1007 			unsigned long addr1, addr2;
1008 			int f, l;
1009 
1010 			if (lnasid == -1) {
1011 				f = l = i;
1012 				lnasid = nasid;
1013 			} else {
1014 				f = fi;
1015 				l = li;
1016 			}
1017 			addr1 = (base << shift) + f * (1ULL << m_io);
1018 			addr2 = (base << shift) + (l + 1) * (1ULL << m_io);
1019 			pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n",
1020 				id, fi, li, lnasid, addr1, addr2);
1021 			if (max_io < l)
1022 				max_io = l;
1023 		}
1024 		fi = li = i;
1025 		lnasid = nasid;
1026 	}
1027 
1028 map_exit:
1029 	pr_info("UV: %s base:0x%lx shift:%d m_io:%d max_io:%d max_pnode:0x%x\n",
1030 		id, base, shift, m_io, max_io, max_pnode);
1031 
1032 	if (max_io >= 0 && !mapped)
1033 		map_high(id, base, shift, m_io, max_io, map_uc);
1034 }
1035 
1036 static __init void map_mmioh_high(int min_pnode, int max_pnode)
1037 {
1038 	/* UVY flavor */
1039 	if (UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0) {
1040 		union uvh_rh10_gam_mmioh_overlay_config0_u mmioh0;
1041 		union uvh_rh10_gam_mmioh_overlay_config1_u mmioh1;
1042 
1043 		mmioh0.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0);
1044 		if (unlikely(mmioh0.s.enable == 0))
1045 			pr_info("UV: MMIOH0 disabled\n");
1046 		else
1047 			calc_mmioh_map(UVY_MMIOH0, min_pnode, max_pnode,
1048 				UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
1049 				mmioh0.s.base, mmioh0.s.m_io, mmioh0.s.n_io);
1050 
1051 		mmioh1.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1);
1052 		if (unlikely(mmioh1.s.enable == 0))
1053 			pr_info("UV: MMIOH1 disabled\n");
1054 		else
1055 			calc_mmioh_map(UVY_MMIOH1, min_pnode, max_pnode,
1056 				UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
1057 				mmioh1.s.base, mmioh1.s.m_io, mmioh1.s.n_io);
1058 		return;
1059 	}
1060 	/* UVX flavor */
1061 	if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0) {
1062 		union uvh_rh_gam_mmioh_overlay_config0_u mmioh0;
1063 		union uvh_rh_gam_mmioh_overlay_config1_u mmioh1;
1064 
1065 		mmioh0.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0);
1066 		if (unlikely(mmioh0.s.enable == 0))
1067 			pr_info("UV: MMIOH0 disabled\n");
1068 		else {
1069 			unsigned long base = uvxy_field(mmioh0, base, 0);
1070 			int m_io = uvxy_field(mmioh0, m_io, 0);
1071 			int n_io = uvxy_field(mmioh0, n_io, 0);
1072 
1073 			calc_mmioh_map(UVX_MMIOH0, min_pnode, max_pnode,
1074 				UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
1075 				base, m_io, n_io);
1076 		}
1077 
1078 		mmioh1.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1);
1079 		if (unlikely(mmioh1.s.enable == 0))
1080 			pr_info("UV: MMIOH1 disabled\n");
1081 		else {
1082 			unsigned long base = uvxy_field(mmioh1, base, 0);
1083 			int m_io = uvxy_field(mmioh1, m_io, 0);
1084 			int n_io = uvxy_field(mmioh1, n_io, 0);
1085 
1086 			calc_mmioh_map(UVX_MMIOH1, min_pnode, max_pnode,
1087 				UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
1088 				base, m_io, n_io);
1089 		}
1090 		return;
1091 	}
1092 
1093 	/* UV2 flavor */
1094 	if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG) {
1095 		union uvh_rh_gam_mmioh_overlay_config_u mmioh;
1096 
1097 		mmioh.v	= uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG);
1098 		if (unlikely(mmioh.s2.enable == 0))
1099 			pr_info("UV: MMIOH disabled\n");
1100 		else
1101 			calc_mmioh_map(UV2_MMIOH, min_pnode, max_pnode,
1102 				UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_BASE_SHFT,
1103 				mmioh.s2.base, mmioh.s2.m_io, mmioh.s2.n_io);
1104 		return;
1105 	}
1106 }
1107 
1108 static __init void map_low_mmrs(void)
1109 {
1110 	if (UV_GLOBAL_MMR32_BASE)
1111 		init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
1112 
1113 	if (UV_LOCAL_MMR_BASE)
1114 		init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
1115 }
1116 
1117 static __init void uv_rtc_init(void)
1118 {
1119 	long status;
1120 	u64 ticks_per_sec;
1121 
1122 	status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec);
1123 
1124 	if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
1125 		pr_warn("UV: unable to determine platform RTC clock frequency, guessing.\n");
1126 
1127 		/* BIOS gives wrong value for clock frequency, so guess: */
1128 		sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
1129 	} else {
1130 		sn_rtc_cycles_per_second = ticks_per_sec;
1131 	}
1132 }
1133 
1134 /* Direct Legacy VGA I/O traffic to designated IOH */
1135 static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags)
1136 {
1137 	int domain, bus, rc;
1138 
1139 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
1140 		return 0;
1141 
1142 	if ((command_bits & PCI_COMMAND_IO) == 0)
1143 		return 0;
1144 
1145 	domain = pci_domain_nr(pdev->bus);
1146 	bus = pdev->bus->number;
1147 
1148 	rc = uv_bios_set_legacy_vga_target(decode, domain, bus);
1149 
1150 	return rc;
1151 }
1152 
1153 /*
1154  * Called on each CPU to initialize the per_cpu UV data area.
1155  * FIXME: hotplug not supported yet
1156  */
1157 void uv_cpu_init(void)
1158 {
1159 	/* CPU 0 initialization will be done via uv_system_init. */
1160 	if (smp_processor_id() == 0)
1161 		return;
1162 
1163 	uv_hub_info->nr_online_cpus++;
1164 }
1165 
1166 struct mn {
1167 	unsigned char	m_val;
1168 	unsigned char	n_val;
1169 	unsigned char	m_shift;
1170 	unsigned char	n_lshift;
1171 };
1172 
1173 /* Initialize caller's MN struct and fill in values */
1174 static void get_mn(struct mn *mnp)
1175 {
1176 	memset(mnp, 0, sizeof(*mnp));
1177 	mnp->n_val	= uv_cpuid.n_skt;
1178 	if (is_uv(UV4|UVY)) {
1179 		mnp->m_val	= 0;
1180 		mnp->n_lshift	= 0;
1181 	} else if (is_uv3_hub()) {
1182 		union uvyh_gr0_gam_gr_config_u m_gr_config;
1183 
1184 		mnp->m_val	= uv_cpuid.m_skt;
1185 		m_gr_config.v	= uv_read_local_mmr(UVH_GR0_GAM_GR_CONFIG);
1186 		mnp->n_lshift	= m_gr_config.s3.m_skt;
1187 	} else if (is_uv2_hub()) {
1188 		mnp->m_val	= uv_cpuid.m_skt;
1189 		mnp->n_lshift	= mnp->m_val == 40 ? 40 : 39;
1190 	}
1191 	mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0;
1192 }
1193 
1194 static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
1195 {
1196 	struct mn mn;
1197 
1198 	get_mn(&mn);
1199 	hi->gpa_mask = mn.m_val ?
1200 		(1UL << (mn.m_val + mn.n_val)) - 1 :
1201 		(1UL << uv_cpuid.gpa_shift) - 1;
1202 
1203 	hi->m_val		= mn.m_val;
1204 	hi->n_val		= mn.n_val;
1205 	hi->m_shift		= mn.m_shift;
1206 	hi->n_lshift		= mn.n_lshift ? mn.n_lshift : 0;
1207 	hi->hub_revision	= uv_hub_info->hub_revision;
1208 	hi->hub_type		= uv_hub_info->hub_type;
1209 	hi->pnode_mask		= uv_cpuid.pnode_mask;
1210 	hi->nasid_shift		= uv_cpuid.nasid_shift;
1211 	hi->min_pnode		= _min_pnode;
1212 	hi->min_socket		= _min_socket;
1213 	hi->node_to_socket	= _node_to_socket;
1214 	hi->pnode_to_socket	= _pnode_to_socket;
1215 	hi->socket_to_node	= _socket_to_node;
1216 	hi->socket_to_pnode	= _socket_to_pnode;
1217 	hi->gr_table_len	= _gr_table_len;
1218 	hi->gr_table		= _gr_table;
1219 
1220 	uv_cpuid.gnode_shift	= max_t(unsigned int, uv_cpuid.gnode_shift, mn.n_val);
1221 	hi->gnode_extra		= (uv_node_id & ~((1 << uv_cpuid.gnode_shift) - 1)) >> 1;
1222 	if (mn.m_val)
1223 		hi->gnode_upper	= (u64)hi->gnode_extra << mn.m_val;
1224 
1225 	if (uv_gp_table) {
1226 		hi->global_mmr_base	= uv_gp_table->mmr_base;
1227 		hi->global_mmr_shift	= uv_gp_table->mmr_shift;
1228 		hi->global_gru_base	= uv_gp_table->gru_base;
1229 		hi->global_gru_shift	= uv_gp_table->gru_shift;
1230 		hi->gpa_shift		= uv_gp_table->gpa_shift;
1231 		hi->gpa_mask		= (1UL << hi->gpa_shift) - 1;
1232 	} else {
1233 		hi->global_mmr_base	=
1234 			uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG) &
1235 			~UV_MMR_ENABLE;
1236 		hi->global_mmr_shift	= _UV_GLOBAL_MMR64_PNODE_SHIFT;
1237 	}
1238 
1239 	get_lowmem_redirect(&hi->lowmem_remap_base, &hi->lowmem_remap_top);
1240 
1241 	hi->apic_pnode_shift = uv_cpuid.socketid_shift;
1242 
1243 	/* Show system specific info: */
1244 	pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hi->n_val, hi->m_val, hi->m_shift, hi->n_lshift);
1245 	pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n", hi->gpa_mask, hi->gpa_shift, hi->pnode_mask, hi->apic_pnode_shift);
1246 	pr_info("UV: mmr_base/shift:0x%lx/%ld\n", hi->global_mmr_base, hi->global_mmr_shift);
1247 	if (hi->global_gru_base)
1248 		pr_info("UV: gru_base/shift:0x%lx/%ld\n",
1249 			hi->global_gru_base, hi->global_gru_shift);
1250 
1251 	pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hi->gnode_upper, hi->gnode_extra);
1252 }
1253 
1254 static void __init decode_gam_params(unsigned long ptr)
1255 {
1256 	uv_gp_table = (struct uv_gam_parameters *)ptr;
1257 
1258 	pr_info("UV: GAM Params...\n");
1259 	pr_info("UV: mmr_base/shift:0x%llx/%d gru_base/shift:0x%llx/%d gpa_shift:%d\n",
1260 		uv_gp_table->mmr_base, uv_gp_table->mmr_shift,
1261 		uv_gp_table->gru_base, uv_gp_table->gru_shift,
1262 		uv_gp_table->gpa_shift);
1263 }
1264 
1265 static void __init decode_gam_rng_tbl(unsigned long ptr)
1266 {
1267 	struct uv_gam_range_entry *gre = (struct uv_gam_range_entry *)ptr;
1268 	unsigned long lgre = 0, gend = 0;
1269 	int index = 0;
1270 	int sock_min = INT_MAX, pnode_min = INT_MAX;
1271 	int sock_max = -1, pnode_max = -1;
1272 
1273 	uv_gre_table = gre;
1274 	for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
1275 		unsigned long size = ((unsigned long)(gre->limit - lgre)
1276 					<< UV_GAM_RANGE_SHFT);
1277 		int order = 0;
1278 		char suffix[] = " KMGTPE";
1279 		int flag = ' ';
1280 
1281 		while (size > 9999 && order < sizeof(suffix)) {
1282 			size /= 1024;
1283 			order++;
1284 		}
1285 
1286 		/* adjust max block size to current range start */
1287 		if (gre->type == 1 || gre->type == 2)
1288 			if (adj_blksize(lgre))
1289 				flag = '*';
1290 
1291 		if (!index) {
1292 			pr_info("UV: GAM Range Table...\n");
1293 			pr_info("UV:  # %20s %14s %6s %4s %5s %3s %2s\n", "Range", "", "Size", "Type", "NASID", "SID", "PN");
1294 		}
1295 		pr_info("UV: %2d: 0x%014lx-0x%014lx%c %5lu%c %3d   %04x  %02x %02x\n",
1296 			index++,
1297 			(unsigned long)lgre << UV_GAM_RANGE_SHFT,
1298 			(unsigned long)gre->limit << UV_GAM_RANGE_SHFT,
1299 			flag, size, suffix[order],
1300 			gre->type, gre->nasid, gre->sockid, gre->pnode);
1301 
1302 		if (gre->type == UV_GAM_RANGE_TYPE_HOLE)
1303 			gend = (unsigned long)gre->limit << UV_GAM_RANGE_SHFT;
1304 
1305 		/* update to next range start */
1306 		lgre = gre->limit;
1307 		if (sock_min > gre->sockid)
1308 			sock_min = gre->sockid;
1309 		if (sock_max < gre->sockid)
1310 			sock_max = gre->sockid;
1311 		if (pnode_min > gre->pnode)
1312 			pnode_min = gre->pnode;
1313 		if (pnode_max < gre->pnode)
1314 			pnode_max = gre->pnode;
1315 	}
1316 	_min_socket	= sock_min;
1317 	_max_socket	= sock_max;
1318 	_min_pnode	= pnode_min;
1319 	_max_pnode	= pnode_max;
1320 	_gr_table_len	= index;
1321 
1322 	pr_info("UV: GRT: %d entries, sockets(min:%x,max:%x), pnodes(min:%x,max:%x), gap_end(%d)\n",
1323 	  index, _min_socket, _max_socket, _min_pnode, _max_pnode, fls64(gend));
1324 }
1325 
1326 /* Walk through UVsystab decoding the fields */
1327 static int __init decode_uv_systab(void)
1328 {
1329 	struct uv_systab *st;
1330 	int i;
1331 
1332 	/* Get mapped UVsystab pointer */
1333 	st = uv_systab;
1334 
1335 	/* If UVsystab is version 1, there is no extended UVsystab */
1336 	if (st && st->revision == UV_SYSTAB_VERSION_1)
1337 		return 0;
1338 
1339 	if ((!st) || (st->revision < UV_SYSTAB_VERSION_UV4_LATEST)) {
1340 		int rev = st ? st->revision : 0;
1341 
1342 		pr_err("UV: BIOS UVsystab mismatch, (%x < %x)\n",
1343 			rev, UV_SYSTAB_VERSION_UV4_LATEST);
1344 		pr_err("UV: Does not support UV, switch to non-UV x86_64\n");
1345 		uv_system_type = UV_NONE;
1346 
1347 		return -EINVAL;
1348 	}
1349 
1350 	for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
1351 		unsigned long ptr = st->entry[i].offset;
1352 
1353 		if (!ptr)
1354 			continue;
1355 
1356 		/* point to payload */
1357 		ptr += (unsigned long)st;
1358 
1359 		switch (st->entry[i].type) {
1360 		case UV_SYSTAB_TYPE_GAM_PARAMS:
1361 			decode_gam_params(ptr);
1362 			break;
1363 
1364 		case UV_SYSTAB_TYPE_GAM_RNG_TBL:
1365 			decode_gam_rng_tbl(ptr);
1366 			break;
1367 
1368 		case UV_SYSTAB_TYPE_ARCH_TYPE:
1369 			/* already processed in early startup */
1370 			break;
1371 
1372 		default:
1373 			pr_err("UV:%s:Unrecognized UV_SYSTAB_TYPE:%d, skipped\n",
1374 				__func__, st->entry[i].type);
1375 			break;
1376 		}
1377 	}
1378 	return 0;
1379 }
1380 
1381 /*
1382  * Given a bitmask 'bits' representing presnt blades, numbered
1383  * starting at 'base', masking off unused high bits of blade number
1384  * with 'mask', update the minimum and maximum blade numbers that we
1385  * have found.  (Masking with 'mask' necessary because of BIOS
1386  * treatment of system partitioning when creating this table we are
1387  * interpreting.)
1388  */
1389 static inline void blade_update_min_max(unsigned long bits, int base, int mask, int *min, int *max)
1390 {
1391 	int first, last;
1392 
1393 	if (!bits)
1394 		return;
1395 	first = (base + __ffs(bits)) & mask;
1396 	last =  (base + __fls(bits)) & mask;
1397 
1398 	if (*min > first)
1399 		*min = first;
1400 	if (*max < last)
1401 		*max = last;
1402 }
1403 
1404 /* Set up physical blade translations from UVH_NODE_PRESENT_TABLE */
1405 static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info)
1406 {
1407 	unsigned long np;
1408 	int i, uv_pb = 0;
1409 	int sock_min = INT_MAX, sock_max = -1, s_mask;
1410 
1411 	s_mask = (1 << uv_cpuid.n_skt) - 1;
1412 
1413 	if (UVH_NODE_PRESENT_TABLE) {
1414 		pr_info("UV: NODE_PRESENT_DEPTH = %d\n",
1415 			UVH_NODE_PRESENT_TABLE_DEPTH);
1416 		for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
1417 			np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
1418 			pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np);
1419 			blade_update_min_max(np, i * 64, s_mask, &sock_min, &sock_max);
1420 		}
1421 	}
1422 	if (UVH_NODE_PRESENT_0) {
1423 		np = uv_read_local_mmr(UVH_NODE_PRESENT_0);
1424 		pr_info("UV: NODE_PRESENT_0 = 0x%016lx\n", np);
1425 		blade_update_min_max(np, 0, s_mask, &sock_min, &sock_max);
1426 	}
1427 	if (UVH_NODE_PRESENT_1) {
1428 		np = uv_read_local_mmr(UVH_NODE_PRESENT_1);
1429 		pr_info("UV: NODE_PRESENT_1 = 0x%016lx\n", np);
1430 		blade_update_min_max(np, 64, s_mask, &sock_min, &sock_max);
1431 	}
1432 
1433 	/* Only update if we actually found some bits indicating blades present */
1434 	if (sock_max >= sock_min) {
1435 		_min_socket = sock_min;
1436 		_max_socket = sock_max;
1437 		uv_pb = sock_max - sock_min + 1;
1438 	}
1439 	if (uv_possible_blades != uv_pb)
1440 		uv_possible_blades = uv_pb;
1441 
1442 	pr_info("UV: number nodes/possible blades %d (%d - %d)\n",
1443 		uv_pb, sock_min, sock_max);
1444 }
1445 
1446 static int __init alloc_conv_table(int num_elem, unsigned short **table)
1447 {
1448 	int i;
1449 	size_t bytes;
1450 
1451 	bytes = num_elem * sizeof(*table[0]);
1452 	*table = kmalloc(bytes, GFP_KERNEL);
1453 	if (WARN_ON_ONCE(!*table))
1454 		return -ENOMEM;
1455 	for (i = 0; i < num_elem; i++)
1456 		((unsigned short *)*table)[i] = SOCK_EMPTY;
1457 	return 0;
1458 }
1459 
1460 /* Remove conversion table if it's 1:1 */
1461 #define FREE_1_TO_1_TABLE(tbl, min, max, max2) free_1_to_1_table(&tbl, #tbl, min, max, max2)
1462 
1463 static void __init free_1_to_1_table(unsigned short **tp, char *tname, int min, int max, int max2)
1464 {
1465 	int i;
1466 	unsigned short *table = *tp;
1467 
1468 	if (table == NULL)
1469 		return;
1470 	if (max != max2)
1471 		return;
1472 	for (i = 0; i < max; i++) {
1473 		if (i != table[i])
1474 			return;
1475 	}
1476 	kfree(table);
1477 	*tp = NULL;
1478 	pr_info("UV: %s is 1:1, conversion table removed\n", tname);
1479 }
1480 
1481 /*
1482  * Build Socket Tables
1483  * If the number of nodes is >1 per socket, socket to node table will
1484  * contain lowest node number on that socket.
1485  */
1486 static void __init build_socket_tables(void)
1487 {
1488 	struct uv_gam_range_entry *gre = uv_gre_table;
1489 	int nums, numn, nump;
1490 	int i, lnid, apicid;
1491 	int minsock = _min_socket;
1492 	int maxsock = _max_socket;
1493 	int minpnode = _min_pnode;
1494 	int maxpnode = _max_pnode;
1495 
1496 	if (!gre) {
1497 		if (is_uv2_hub() || is_uv3_hub()) {
1498 			pr_info("UV: No UVsystab socket table, ignoring\n");
1499 			return;
1500 		}
1501 		pr_err("UV: Error: UVsystab address translations not available!\n");
1502 		WARN_ON_ONCE(!gre);
1503 		return;
1504 	}
1505 
1506 	numn = num_possible_nodes();
1507 	nump = maxpnode - minpnode + 1;
1508 	nums = maxsock - minsock + 1;
1509 
1510 	/* Allocate and clear tables */
1511 	if ((alloc_conv_table(nump, &_pnode_to_socket) < 0)
1512 	    || (alloc_conv_table(nums, &_socket_to_pnode) < 0)
1513 	    || (alloc_conv_table(numn, &_node_to_socket) < 0)
1514 	    || (alloc_conv_table(nums, &_socket_to_node) < 0)) {
1515 		kfree(_pnode_to_socket);
1516 		kfree(_socket_to_pnode);
1517 		kfree(_node_to_socket);
1518 		return;
1519 	}
1520 
1521 	/* Fill in pnode/node/addr conversion list values: */
1522 	for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
1523 		if (gre->type == UV_GAM_RANGE_TYPE_HOLE)
1524 			continue;
1525 		i = gre->sockid - minsock;
1526 		if (_socket_to_pnode[i] == SOCK_EMPTY)
1527 			_socket_to_pnode[i] = gre->pnode;
1528 
1529 		i = gre->pnode - minpnode;
1530 		if (_pnode_to_socket[i] == SOCK_EMPTY)
1531 			_pnode_to_socket[i] = gre->sockid;
1532 
1533 		pr_info("UV: sid:%02x type:%d nasid:%04x pn:%02x pn2s:%2x\n",
1534 			gre->sockid, gre->type, gre->nasid,
1535 			_socket_to_pnode[gre->sockid - minsock],
1536 			_pnode_to_socket[gre->pnode - minpnode]);
1537 	}
1538 
1539 	/* Set socket -> node values: */
1540 	lnid = NUMA_NO_NODE;
1541 	for (apicid = 0; apicid < ARRAY_SIZE(__apicid_to_node); apicid++) {
1542 		int nid = __apicid_to_node[apicid];
1543 		int sockid;
1544 
1545 		if ((nid == NUMA_NO_NODE) || (lnid == nid))
1546 			continue;
1547 		lnid = nid;
1548 
1549 		sockid = apicid >> uv_cpuid.socketid_shift;
1550 
1551 		if (_socket_to_node[sockid - minsock] == SOCK_EMPTY)
1552 			_socket_to_node[sockid - minsock] = nid;
1553 
1554 		if (_node_to_socket[nid] == SOCK_EMPTY)
1555 			_node_to_socket[nid] = sockid;
1556 
1557 		pr_info("UV: sid:%02x: apicid:%04x socket:%02d node:%03x s2n:%03x\n",
1558 			sockid,
1559 			apicid,
1560 			_node_to_socket[nid],
1561 			nid,
1562 			_socket_to_node[sockid - minsock]);
1563 	}
1564 
1565 	/*
1566 	 * If e.g. socket id == pnode for all pnodes,
1567 	 *   system runs faster by removing corresponding conversion table.
1568 	 */
1569 	FREE_1_TO_1_TABLE(_socket_to_node, _min_socket, nums, numn);
1570 	FREE_1_TO_1_TABLE(_node_to_socket, _min_socket, nums, numn);
1571 	FREE_1_TO_1_TABLE(_socket_to_pnode, _min_pnode, nums, nump);
1572 	FREE_1_TO_1_TABLE(_pnode_to_socket, _min_pnode, nums, nump);
1573 }
1574 
1575 /* Check which reboot to use */
1576 static void check_efi_reboot(void)
1577 {
1578 	/* If EFI reboot not available, use ACPI reboot */
1579 	if (!efi_enabled(EFI_BOOT))
1580 		reboot_type = BOOT_ACPI;
1581 }
1582 
1583 /*
1584  * User proc fs file handling now deprecated.
1585  * Recommend using /sys/firmware/sgi_uv/... instead.
1586  */
1587 static int __maybe_unused proc_hubbed_show(struct seq_file *file, void *data)
1588 {
1589 	pr_notice_once("%s: using deprecated /proc/sgi_uv/hubbed, use /sys/firmware/sgi_uv/hub_type\n",
1590 		       current->comm);
1591 	seq_printf(file, "0x%x\n", uv_hubbed_system);
1592 	return 0;
1593 }
1594 
1595 static int __maybe_unused proc_hubless_show(struct seq_file *file, void *data)
1596 {
1597 	pr_notice_once("%s: using deprecated /proc/sgi_uv/hubless, use /sys/firmware/sgi_uv/hubless\n",
1598 		       current->comm);
1599 	seq_printf(file, "0x%x\n", uv_hubless_system);
1600 	return 0;
1601 }
1602 
1603 static int __maybe_unused proc_archtype_show(struct seq_file *file, void *data)
1604 {
1605 	pr_notice_once("%s: using deprecated /proc/sgi_uv/archtype, use /sys/firmware/sgi_uv/archtype\n",
1606 		       current->comm);
1607 	seq_printf(file, "%s/%s\n", uv_archtype, oem_table_id);
1608 	return 0;
1609 }
1610 
1611 static __init void uv_setup_proc_files(int hubless)
1612 {
1613 	struct proc_dir_entry *pde;
1614 
1615 	pde = proc_mkdir(UV_PROC_NODE, NULL);
1616 	proc_create_single("archtype", 0, pde, proc_archtype_show);
1617 	if (hubless)
1618 		proc_create_single("hubless", 0, pde, proc_hubless_show);
1619 	else
1620 		proc_create_single("hubbed", 0, pde, proc_hubbed_show);
1621 }
1622 
1623 /* Initialize UV hubless systems */
1624 static __init int uv_system_init_hubless(void)
1625 {
1626 	int rc;
1627 
1628 	/* Setup PCH NMI handler */
1629 	uv_nmi_setup_hubless();
1630 
1631 	/* Init kernel/BIOS interface */
1632 	rc = uv_bios_init();
1633 	if (rc < 0)
1634 		return rc;
1635 
1636 	/* Process UVsystab */
1637 	rc = decode_uv_systab();
1638 	if (rc < 0)
1639 		return rc;
1640 
1641 	/* Set section block size for current node memory */
1642 	set_block_size();
1643 
1644 	/* Create user access node */
1645 	if (rc >= 0)
1646 		uv_setup_proc_files(1);
1647 
1648 	check_efi_reboot();
1649 
1650 	return rc;
1651 }
1652 
1653 static void __init uv_system_init_hub(void)
1654 {
1655 	struct uv_hub_info_s hub_info = {0};
1656 	int bytes, cpu, nodeid, bid;
1657 	unsigned short min_pnode = USHRT_MAX, max_pnode = 0;
1658 	char *hub = is_uv5_hub() ? "UV500" :
1659 		    is_uv4_hub() ? "UV400" :
1660 		    is_uv3_hub() ? "UV300" :
1661 		    is_uv2_hub() ? "UV2000/3000" : NULL;
1662 	struct uv_hub_info_s **uv_hub_info_list_blade;
1663 
1664 	if (!hub) {
1665 		pr_err("UV: Unknown/unsupported UV hub\n");
1666 		return;
1667 	}
1668 	pr_info("UV: Found %s hub\n", hub);
1669 
1670 	map_low_mmrs();
1671 
1672 	/* Get uv_systab for decoding, setup UV BIOS calls */
1673 	uv_bios_init();
1674 
1675 	/* If there's an UVsystab problem then abort UV init: */
1676 	if (decode_uv_systab() < 0) {
1677 		pr_err("UV: Mangled UVsystab format\n");
1678 		return;
1679 	}
1680 
1681 	build_socket_tables();
1682 	build_uv_gr_table();
1683 	set_block_size();
1684 	uv_init_hub_info(&hub_info);
1685 	/* If UV2 or UV3 may need to get # blades from HW */
1686 	if (is_uv(UV2|UV3) && !uv_gre_table)
1687 		boot_init_possible_blades(&hub_info);
1688 	else
1689 		/* min/max sockets set in decode_gam_rng_tbl */
1690 		uv_possible_blades = (_max_socket - _min_socket) + 1;
1691 
1692 	/* uv_num_possible_blades() is really the hub count: */
1693 	pr_info("UV: Found %d hubs, %d nodes, %d CPUs\n", uv_num_possible_blades(), num_possible_nodes(), num_possible_cpus());
1694 
1695 	uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, &sn_region_size, &system_serial_number);
1696 	hub_info.coherency_domain_number = sn_coherency_id;
1697 	uv_rtc_init();
1698 
1699 	/*
1700 	 * __uv_hub_info_list[] is indexed by node, but there is only
1701 	 * one hub_info structure per blade.  First, allocate one
1702 	 * structure per blade.  Further down we create a per-node
1703 	 * table (__uv_hub_info_list[]) pointing to hub_info
1704 	 * structures for the correct blade.
1705 	 */
1706 
1707 	bytes = sizeof(void *) * uv_num_possible_blades();
1708 	uv_hub_info_list_blade = kzalloc(bytes, GFP_KERNEL);
1709 	if (WARN_ON_ONCE(!uv_hub_info_list_blade))
1710 		return;
1711 
1712 	bytes = sizeof(struct uv_hub_info_s);
1713 	for_each_possible_blade(bid) {
1714 		struct uv_hub_info_s *new_hub;
1715 
1716 		/* Allocate & fill new per hub info list */
1717 		new_hub = (bid == 0) ?  &uv_hub_info_node0
1718 			: kzalloc_node(bytes, GFP_KERNEL, uv_blade_to_node(bid));
1719 		if (WARN_ON_ONCE(!new_hub)) {
1720 			/* do not kfree() bid 0, which is statically allocated */
1721 			while (--bid > 0)
1722 				kfree(uv_hub_info_list_blade[bid]);
1723 			kfree(uv_hub_info_list_blade);
1724 			return;
1725 		}
1726 
1727 		uv_hub_info_list_blade[bid] = new_hub;
1728 		*new_hub = hub_info;
1729 
1730 		/* Use information from GAM table if available: */
1731 		if (uv_gre_table)
1732 			new_hub->pnode = uv_blade_to_pnode(bid);
1733 		else /* Or fill in during CPU loop: */
1734 			new_hub->pnode = 0xffff;
1735 
1736 		new_hub->numa_blade_id = bid;
1737 		new_hub->memory_nid = NUMA_NO_NODE;
1738 		new_hub->nr_possible_cpus = 0;
1739 		new_hub->nr_online_cpus = 0;
1740 	}
1741 
1742 	/*
1743 	 * Now populate __uv_hub_info_list[] for each node with the
1744 	 * pointer to the struct for the blade it resides on.
1745 	 */
1746 
1747 	bytes = sizeof(void *) * num_possible_nodes();
1748 	__uv_hub_info_list = kzalloc(bytes, GFP_KERNEL);
1749 	if (WARN_ON_ONCE(!__uv_hub_info_list)) {
1750 		for_each_possible_blade(bid)
1751 			/* bid 0 is statically allocated */
1752 			if (bid != 0)
1753 				kfree(uv_hub_info_list_blade[bid]);
1754 		kfree(uv_hub_info_list_blade);
1755 		return;
1756 	}
1757 
1758 	for_each_node(nodeid)
1759 		__uv_hub_info_list[nodeid] = uv_hub_info_list_blade[uv_node_to_blade_id(nodeid)];
1760 
1761 	/* Initialize per CPU info: */
1762 	for_each_possible_cpu(cpu) {
1763 		int apicid = per_cpu(x86_cpu_to_apicid, cpu);
1764 		unsigned short bid;
1765 		unsigned short pnode;
1766 
1767 		pnode = uv_apicid_to_pnode(apicid);
1768 		bid = uv_pnode_to_socket(pnode) - _min_socket;
1769 
1770 		uv_cpu_info_per(cpu)->p_uv_hub_info = uv_hub_info_list_blade[bid];
1771 		uv_cpu_info_per(cpu)->blade_cpu_id = uv_cpu_hub_info(cpu)->nr_possible_cpus++;
1772 		if (uv_cpu_hub_info(cpu)->memory_nid == NUMA_NO_NODE)
1773 			uv_cpu_hub_info(cpu)->memory_nid = cpu_to_node(cpu);
1774 
1775 		if (uv_cpu_hub_info(cpu)->pnode == 0xffff)
1776 			uv_cpu_hub_info(cpu)->pnode = pnode;
1777 	}
1778 
1779 	for_each_possible_blade(bid) {
1780 		unsigned short pnode = uv_hub_info_list_blade[bid]->pnode;
1781 
1782 		if (pnode == 0xffff)
1783 			continue;
1784 
1785 		min_pnode = min(pnode, min_pnode);
1786 		max_pnode = max(pnode, max_pnode);
1787 		pr_info("UV: HUB:%2d pn:%02x nrcpus:%d\n",
1788 			bid,
1789 			uv_hub_info_list_blade[bid]->pnode,
1790 			uv_hub_info_list_blade[bid]->nr_possible_cpus);
1791 	}
1792 
1793 	pr_info("UV: min_pnode:%02x max_pnode:%02x\n", min_pnode, max_pnode);
1794 	map_gru_high(max_pnode);
1795 	map_mmr_high(max_pnode);
1796 	map_mmioh_high(min_pnode, max_pnode);
1797 
1798 	kfree(uv_hub_info_list_blade);
1799 	uv_hub_info_list_blade = NULL;
1800 
1801 	uv_nmi_setup();
1802 	uv_cpu_init();
1803 	uv_setup_proc_files(0);
1804 
1805 	/* Register Legacy VGA I/O redirection handler: */
1806 	pci_register_set_vga_state(uv_set_vga_state);
1807 
1808 	check_efi_reboot();
1809 }
1810 
1811 /*
1812  * There is a different code path needed to initialize a UV system that does
1813  * not have a "UV HUB" (referred to as "hubless").
1814  */
1815 void __init uv_system_init(void)
1816 {
1817 	if (likely(!is_uv_system() && !is_uv_hubless(1)))
1818 		return;
1819 
1820 	if (is_uv_system())
1821 		uv_system_init_hub();
1822 	else
1823 		uv_system_init_hubless();
1824 }
1825 
1826 apic_driver(apic_x2apic_uv_x);
1827