1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Local APIC related interfaces to support IOAPIC, MSI, etc. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * Moved from arch/x86/kernel/apic/io_apic.c. 7 * Jiang Liu <jiang.liu@linux.intel.com> 8 * Enable support of hierarchical irqdomains 9 */ 10 #include <linux/interrupt.h> 11 #include <linux/irq.h> 12 #include <linux/seq_file.h> 13 #include <linux/init.h> 14 #include <linux/compiler.h> 15 #include <linux/slab.h> 16 #include <asm/irqdomain.h> 17 #include <asm/hw_irq.h> 18 #include <asm/traps.h> 19 #include <asm/apic.h> 20 #include <asm/i8259.h> 21 #include <asm/desc.h> 22 #include <asm/irq_remapping.h> 23 24 #include <asm/trace/irq_vectors.h> 25 26 struct apic_chip_data { 27 struct irq_cfg hw_irq_cfg; 28 unsigned int vector; 29 unsigned int prev_vector; 30 unsigned int cpu; 31 unsigned int prev_cpu; 32 unsigned int irq; 33 struct hlist_node clist; 34 unsigned int move_in_progress : 1, 35 is_managed : 1, 36 can_reserve : 1, 37 has_reserved : 1; 38 }; 39 40 struct irq_domain *x86_vector_domain; 41 EXPORT_SYMBOL_GPL(x86_vector_domain); 42 static DEFINE_RAW_SPINLOCK(vector_lock); 43 static cpumask_var_t vector_searchmask; 44 static struct irq_chip lapic_controller; 45 static struct irq_matrix *vector_matrix; 46 #ifdef CONFIG_SMP 47 48 static void vector_cleanup_callback(struct timer_list *tmr); 49 50 struct vector_cleanup { 51 struct hlist_head head; 52 struct timer_list timer; 53 }; 54 55 static DEFINE_PER_CPU(struct vector_cleanup, vector_cleanup) = { 56 .head = HLIST_HEAD_INIT, 57 .timer = __TIMER_INITIALIZER(vector_cleanup_callback, TIMER_PINNED), 58 }; 59 #endif 60 61 void lock_vector_lock(void) 62 { 63 /* Used to the online set of cpus does not change 64 * during assign_irq_vector. 65 */ 66 raw_spin_lock(&vector_lock); 67 } 68 69 void unlock_vector_lock(void) 70 { 71 raw_spin_unlock(&vector_lock); 72 } 73 74 void init_irq_alloc_info(struct irq_alloc_info *info, 75 const struct cpumask *mask) 76 { 77 memset(info, 0, sizeof(*info)); 78 info->mask = mask; 79 } 80 81 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 82 { 83 if (src) 84 *dst = *src; 85 else 86 memset(dst, 0, sizeof(*dst)); 87 } 88 89 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd) 90 { 91 if (!irqd) 92 return NULL; 93 94 while (irqd->parent_data) 95 irqd = irqd->parent_data; 96 97 return irqd->chip_data; 98 } 99 100 struct irq_cfg *irqd_cfg(struct irq_data *irqd) 101 { 102 struct apic_chip_data *apicd = apic_chip_data(irqd); 103 104 return apicd ? &apicd->hw_irq_cfg : NULL; 105 } 106 EXPORT_SYMBOL_GPL(irqd_cfg); 107 108 struct irq_cfg *irq_cfg(unsigned int irq) 109 { 110 return irqd_cfg(irq_get_irq_data(irq)); 111 } 112 113 static struct apic_chip_data *alloc_apic_chip_data(int node) 114 { 115 struct apic_chip_data *apicd; 116 117 apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node); 118 if (apicd) 119 INIT_HLIST_NODE(&apicd->clist); 120 return apicd; 121 } 122 123 static void free_apic_chip_data(struct apic_chip_data *apicd) 124 { 125 kfree(apicd); 126 } 127 128 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector, 129 unsigned int cpu) 130 { 131 struct apic_chip_data *apicd = apic_chip_data(irqd); 132 133 lockdep_assert_held(&vector_lock); 134 135 apicd->hw_irq_cfg.vector = vector; 136 apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu); 137 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 138 trace_vector_config(irqd->irq, vector, cpu, 139 apicd->hw_irq_cfg.dest_apicid); 140 } 141 142 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec, 143 unsigned int newcpu) 144 { 145 struct apic_chip_data *apicd = apic_chip_data(irqd); 146 struct irq_desc *desc = irq_data_to_desc(irqd); 147 bool managed = irqd_affinity_is_managed(irqd); 148 149 lockdep_assert_held(&vector_lock); 150 151 trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector, 152 apicd->cpu); 153 154 /* 155 * If there is no vector associated or if the associated vector is 156 * the shutdown vector, which is associated to make PCI/MSI 157 * shutdown mode work, then there is nothing to release. Clear out 158 * prev_vector for this and the offlined target case. 159 */ 160 apicd->prev_vector = 0; 161 if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR) 162 goto setnew; 163 /* 164 * If the target CPU of the previous vector is online, then mark 165 * the vector as move in progress and store it for cleanup when the 166 * first interrupt on the new vector arrives. If the target CPU is 167 * offline then the regular release mechanism via the cleanup 168 * vector is not possible and the vector can be immediately freed 169 * in the underlying matrix allocator. 170 */ 171 if (cpu_online(apicd->cpu)) { 172 apicd->move_in_progress = true; 173 apicd->prev_vector = apicd->vector; 174 apicd->prev_cpu = apicd->cpu; 175 WARN_ON_ONCE(apicd->cpu == newcpu); 176 } else { 177 irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector, 178 managed); 179 } 180 181 setnew: 182 apicd->vector = newvec; 183 apicd->cpu = newcpu; 184 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec])); 185 per_cpu(vector_irq, newcpu)[newvec] = desc; 186 } 187 188 static void vector_assign_managed_shutdown(struct irq_data *irqd) 189 { 190 unsigned int cpu = cpumask_first(cpu_online_mask); 191 192 apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu); 193 } 194 195 static int reserve_managed_vector(struct irq_data *irqd) 196 { 197 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 198 struct apic_chip_data *apicd = apic_chip_data(irqd); 199 unsigned long flags; 200 int ret; 201 202 raw_spin_lock_irqsave(&vector_lock, flags); 203 apicd->is_managed = true; 204 ret = irq_matrix_reserve_managed(vector_matrix, affmsk); 205 raw_spin_unlock_irqrestore(&vector_lock, flags); 206 trace_vector_reserve_managed(irqd->irq, ret); 207 return ret; 208 } 209 210 static void reserve_irq_vector_locked(struct irq_data *irqd) 211 { 212 struct apic_chip_data *apicd = apic_chip_data(irqd); 213 214 irq_matrix_reserve(vector_matrix); 215 apicd->can_reserve = true; 216 apicd->has_reserved = true; 217 irqd_set_can_reserve(irqd); 218 trace_vector_reserve(irqd->irq, 0); 219 vector_assign_managed_shutdown(irqd); 220 } 221 222 static int reserve_irq_vector(struct irq_data *irqd) 223 { 224 unsigned long flags; 225 226 raw_spin_lock_irqsave(&vector_lock, flags); 227 reserve_irq_vector_locked(irqd); 228 raw_spin_unlock_irqrestore(&vector_lock, flags); 229 return 0; 230 } 231 232 static int 233 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest) 234 { 235 struct apic_chip_data *apicd = apic_chip_data(irqd); 236 bool resvd = apicd->has_reserved; 237 unsigned int cpu = apicd->cpu; 238 int vector = apicd->vector; 239 240 lockdep_assert_held(&vector_lock); 241 242 /* 243 * If the current target CPU is online and in the new requested 244 * affinity mask, there is no point in moving the interrupt from 245 * one CPU to another. 246 */ 247 if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest)) 248 return 0; 249 250 /* 251 * Careful here. @apicd might either have move_in_progress set or 252 * be enqueued for cleanup. Assigning a new vector would either 253 * leave a stale vector on some CPU around or in case of a pending 254 * cleanup corrupt the hlist. 255 */ 256 if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist)) 257 return -EBUSY; 258 259 vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu); 260 trace_vector_alloc(irqd->irq, vector, resvd, vector); 261 if (vector < 0) 262 return vector; 263 apic_update_vector(irqd, vector, cpu); 264 apic_update_irq_cfg(irqd, vector, cpu); 265 266 return 0; 267 } 268 269 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest) 270 { 271 unsigned long flags; 272 int ret; 273 274 raw_spin_lock_irqsave(&vector_lock, flags); 275 cpumask_and(vector_searchmask, dest, cpu_online_mask); 276 ret = assign_vector_locked(irqd, vector_searchmask); 277 raw_spin_unlock_irqrestore(&vector_lock, flags); 278 return ret; 279 } 280 281 static int assign_irq_vector_any_locked(struct irq_data *irqd) 282 { 283 /* Get the affinity mask - either irq_default_affinity or (user) set */ 284 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 285 int node = irq_data_get_node(irqd); 286 287 if (node != NUMA_NO_NODE) { 288 /* Try the intersection of @affmsk and node mask */ 289 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk); 290 if (!assign_vector_locked(irqd, vector_searchmask)) 291 return 0; 292 } 293 294 /* Try the full affinity mask */ 295 cpumask_and(vector_searchmask, affmsk, cpu_online_mask); 296 if (!assign_vector_locked(irqd, vector_searchmask)) 297 return 0; 298 299 if (node != NUMA_NO_NODE) { 300 /* Try the node mask */ 301 if (!assign_vector_locked(irqd, cpumask_of_node(node))) 302 return 0; 303 } 304 305 /* Try the full online mask */ 306 return assign_vector_locked(irqd, cpu_online_mask); 307 } 308 309 static int 310 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info) 311 { 312 if (irqd_affinity_is_managed(irqd)) 313 return reserve_managed_vector(irqd); 314 if (info->mask) 315 return assign_irq_vector(irqd, info->mask); 316 /* 317 * Make only a global reservation with no guarantee. A real vector 318 * is associated at activation time. 319 */ 320 return reserve_irq_vector(irqd); 321 } 322 323 static int 324 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest) 325 { 326 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 327 struct apic_chip_data *apicd = apic_chip_data(irqd); 328 int vector, cpu; 329 330 cpumask_and(vector_searchmask, dest, affmsk); 331 332 /* set_affinity might call here for nothing */ 333 if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask)) 334 return 0; 335 vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask, 336 &cpu); 337 trace_vector_alloc_managed(irqd->irq, vector, vector); 338 if (vector < 0) 339 return vector; 340 apic_update_vector(irqd, vector, cpu); 341 apic_update_irq_cfg(irqd, vector, cpu); 342 return 0; 343 } 344 345 static void clear_irq_vector(struct irq_data *irqd) 346 { 347 struct apic_chip_data *apicd = apic_chip_data(irqd); 348 bool managed = irqd_affinity_is_managed(irqd); 349 unsigned int vector = apicd->vector; 350 351 lockdep_assert_held(&vector_lock); 352 353 if (!vector) 354 return; 355 356 trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector, 357 apicd->prev_cpu); 358 359 per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN; 360 irq_matrix_free(vector_matrix, apicd->cpu, vector, managed); 361 apicd->vector = 0; 362 363 /* Clean up move in progress */ 364 vector = apicd->prev_vector; 365 if (!vector) 366 return; 367 368 per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN; 369 irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed); 370 apicd->prev_vector = 0; 371 apicd->move_in_progress = 0; 372 hlist_del_init(&apicd->clist); 373 } 374 375 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd) 376 { 377 struct apic_chip_data *apicd = apic_chip_data(irqd); 378 unsigned long flags; 379 380 trace_vector_deactivate(irqd->irq, apicd->is_managed, 381 apicd->can_reserve, false); 382 383 /* Regular fixed assigned interrupt */ 384 if (!apicd->is_managed && !apicd->can_reserve) 385 return; 386 /* If the interrupt has a global reservation, nothing to do */ 387 if (apicd->has_reserved) 388 return; 389 390 raw_spin_lock_irqsave(&vector_lock, flags); 391 clear_irq_vector(irqd); 392 if (apicd->can_reserve) 393 reserve_irq_vector_locked(irqd); 394 else 395 vector_assign_managed_shutdown(irqd); 396 raw_spin_unlock_irqrestore(&vector_lock, flags); 397 } 398 399 static int activate_reserved(struct irq_data *irqd) 400 { 401 struct apic_chip_data *apicd = apic_chip_data(irqd); 402 int ret; 403 404 ret = assign_irq_vector_any_locked(irqd); 405 if (!ret) { 406 apicd->has_reserved = false; 407 /* 408 * Core might have disabled reservation mode after 409 * allocating the irq descriptor. Ideally this should 410 * happen before allocation time, but that would require 411 * completely convoluted ways of transporting that 412 * information. 413 */ 414 if (!irqd_can_reserve(irqd)) 415 apicd->can_reserve = false; 416 } 417 418 /* 419 * Check to ensure that the effective affinity mask is a subset 420 * the user supplied affinity mask, and warn the user if it is not 421 */ 422 if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd), 423 irq_data_get_affinity_mask(irqd))) { 424 pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n", 425 irqd->irq); 426 } 427 428 return ret; 429 } 430 431 static int activate_managed(struct irq_data *irqd) 432 { 433 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 434 int ret; 435 436 cpumask_and(vector_searchmask, dest, cpu_online_mask); 437 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) { 438 /* Something in the core code broke! Survive gracefully */ 439 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq); 440 return -EINVAL; 441 } 442 443 ret = assign_managed_vector(irqd, vector_searchmask); 444 /* 445 * This should not happen. The vector reservation got buggered. Handle 446 * it gracefully. 447 */ 448 if (WARN_ON_ONCE(ret < 0)) { 449 pr_err("Managed startup irq %u, no vector available\n", 450 irqd->irq); 451 } 452 return ret; 453 } 454 455 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd, 456 bool reserve) 457 { 458 struct apic_chip_data *apicd = apic_chip_data(irqd); 459 unsigned long flags; 460 int ret = 0; 461 462 trace_vector_activate(irqd->irq, apicd->is_managed, 463 apicd->can_reserve, reserve); 464 465 raw_spin_lock_irqsave(&vector_lock, flags); 466 if (!apicd->can_reserve && !apicd->is_managed) 467 assign_irq_vector_any_locked(irqd); 468 else if (reserve || irqd_is_managed_and_shutdown(irqd)) 469 vector_assign_managed_shutdown(irqd); 470 else if (apicd->is_managed) 471 ret = activate_managed(irqd); 472 else if (apicd->has_reserved) 473 ret = activate_reserved(irqd); 474 raw_spin_unlock_irqrestore(&vector_lock, flags); 475 return ret; 476 } 477 478 static void vector_free_reserved_and_managed(struct irq_data *irqd) 479 { 480 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 481 struct apic_chip_data *apicd = apic_chip_data(irqd); 482 483 trace_vector_teardown(irqd->irq, apicd->is_managed, 484 apicd->has_reserved); 485 486 if (apicd->has_reserved) 487 irq_matrix_remove_reserved(vector_matrix); 488 if (apicd->is_managed) 489 irq_matrix_remove_managed(vector_matrix, dest); 490 } 491 492 static void x86_vector_free_irqs(struct irq_domain *domain, 493 unsigned int virq, unsigned int nr_irqs) 494 { 495 struct apic_chip_data *apicd; 496 struct irq_data *irqd; 497 unsigned long flags; 498 int i; 499 500 for (i = 0; i < nr_irqs; i++) { 501 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i); 502 if (irqd && irqd->chip_data) { 503 raw_spin_lock_irqsave(&vector_lock, flags); 504 clear_irq_vector(irqd); 505 vector_free_reserved_and_managed(irqd); 506 apicd = irqd->chip_data; 507 irq_domain_reset_irq_data(irqd); 508 raw_spin_unlock_irqrestore(&vector_lock, flags); 509 free_apic_chip_data(apicd); 510 } 511 } 512 } 513 514 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd, 515 struct apic_chip_data *apicd) 516 { 517 unsigned long flags; 518 bool realloc = false; 519 520 apicd->vector = ISA_IRQ_VECTOR(virq); 521 apicd->cpu = 0; 522 523 raw_spin_lock_irqsave(&vector_lock, flags); 524 /* 525 * If the interrupt is activated, then it must stay at this vector 526 * position. That's usually the timer interrupt (0). 527 */ 528 if (irqd_is_activated(irqd)) { 529 trace_vector_setup(virq, true, 0); 530 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu); 531 } else { 532 /* Release the vector */ 533 apicd->can_reserve = true; 534 irqd_set_can_reserve(irqd); 535 clear_irq_vector(irqd); 536 realloc = true; 537 } 538 raw_spin_unlock_irqrestore(&vector_lock, flags); 539 return realloc; 540 } 541 542 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 543 unsigned int nr_irqs, void *arg) 544 { 545 struct irq_alloc_info *info = arg; 546 struct apic_chip_data *apicd; 547 struct irq_data *irqd; 548 int i, err, node; 549 550 if (apic_is_disabled) 551 return -ENXIO; 552 553 /* 554 * Catch any attempt to touch the cascade interrupt on a PIC 555 * equipped system. 556 */ 557 if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY && 558 virq == PIC_CASCADE_IR)) 559 return -EINVAL; 560 561 for (i = 0; i < nr_irqs; i++) { 562 irqd = irq_domain_get_irq_data(domain, virq + i); 563 BUG_ON(!irqd); 564 node = irq_data_get_node(irqd); 565 WARN_ON_ONCE(irqd->chip_data); 566 apicd = alloc_apic_chip_data(node); 567 if (!apicd) { 568 err = -ENOMEM; 569 goto error; 570 } 571 572 apicd->irq = virq + i; 573 irqd->chip = &lapic_controller; 574 irqd->chip_data = apicd; 575 irqd->hwirq = virq + i; 576 irqd_set_single_target(irqd); 577 /* 578 * Prevent that any of these interrupts is invoked in 579 * non interrupt context via e.g. generic_handle_irq() 580 * as that can corrupt the affinity move state. 581 */ 582 irqd_set_handle_enforce_irqctx(irqd); 583 584 /* Don't invoke affinity setter on deactivated interrupts */ 585 irqd_set_affinity_on_activate(irqd); 586 587 /* 588 * Legacy vectors are already assigned when the IOAPIC 589 * takes them over. They stay on the same vector. This is 590 * required for check_timer() to work correctly as it might 591 * switch back to legacy mode. Only update the hardware 592 * config. 593 */ 594 if (info->flags & X86_IRQ_ALLOC_LEGACY) { 595 if (!vector_configure_legacy(virq + i, irqd, apicd)) 596 continue; 597 } 598 599 err = assign_irq_vector_policy(irqd, info); 600 trace_vector_setup(virq + i, false, err); 601 if (err) { 602 irqd->chip_data = NULL; 603 free_apic_chip_data(apicd); 604 goto error; 605 } 606 } 607 608 return 0; 609 610 error: 611 x86_vector_free_irqs(domain, virq, i); 612 return err; 613 } 614 615 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 616 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d, 617 struct irq_data *irqd, int ind) 618 { 619 struct apic_chip_data apicd; 620 unsigned long flags; 621 int irq; 622 623 if (!irqd) { 624 irq_matrix_debug_show(m, vector_matrix, ind); 625 return; 626 } 627 628 irq = irqd->irq; 629 if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) { 630 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq)); 631 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, ""); 632 return; 633 } 634 635 if (!irqd->chip_data) { 636 seq_printf(m, "%*sVector: Not assigned\n", ind, ""); 637 return; 638 } 639 640 raw_spin_lock_irqsave(&vector_lock, flags); 641 memcpy(&apicd, irqd->chip_data, sizeof(apicd)); 642 raw_spin_unlock_irqrestore(&vector_lock, flags); 643 644 seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector); 645 seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu); 646 if (apicd.prev_vector) { 647 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector); 648 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu); 649 } 650 seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0); 651 seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0); 652 seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0); 653 seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0); 654 seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist)); 655 } 656 #endif 657 658 int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec) 659 { 660 if (fwspec->param_count != 1) 661 return 0; 662 663 if (is_fwnode_irqchip(fwspec->fwnode)) { 664 const char *fwname = fwnode_get_name(fwspec->fwnode); 665 return fwname && !strncmp(fwname, "IO-APIC-", 8) && 666 simple_strtol(fwname+8, NULL, 10) == fwspec->param[0]; 667 } 668 return to_of_node(fwspec->fwnode) && 669 of_device_is_compatible(to_of_node(fwspec->fwnode), 670 "intel,ce4100-ioapic"); 671 } 672 673 int x86_fwspec_is_hpet(struct irq_fwspec *fwspec) 674 { 675 if (fwspec->param_count != 1) 676 return 0; 677 678 if (is_fwnode_irqchip(fwspec->fwnode)) { 679 const char *fwname = fwnode_get_name(fwspec->fwnode); 680 return fwname && !strncmp(fwname, "HPET-MSI-", 9) && 681 simple_strtol(fwname+9, NULL, 10) == fwspec->param[0]; 682 } 683 return 0; 684 } 685 686 static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec, 687 enum irq_domain_bus_token bus_token) 688 { 689 /* 690 * HPET and I/OAPIC cannot be parented in the vector domain 691 * if IRQ remapping is enabled. APIC IDs above 15 bits are 692 * only permitted if IRQ remapping is enabled, so check that. 693 */ 694 if (apic_id_valid(32768)) 695 return 0; 696 697 return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec); 698 } 699 700 static const struct irq_domain_ops x86_vector_domain_ops = { 701 .select = x86_vector_select, 702 .alloc = x86_vector_alloc_irqs, 703 .free = x86_vector_free_irqs, 704 .activate = x86_vector_activate, 705 .deactivate = x86_vector_deactivate, 706 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 707 .debug_show = x86_vector_debug_show, 708 #endif 709 }; 710 711 int __init arch_probe_nr_irqs(void) 712 { 713 int nr; 714 715 if (irq_get_nr_irqs() > NR_VECTORS * nr_cpu_ids) 716 irq_set_nr_irqs(NR_VECTORS * nr_cpu_ids); 717 718 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 719 #if defined(CONFIG_PCI_MSI) 720 /* 721 * for MSI and HT dyn irq 722 */ 723 if (gsi_top <= NR_IRQS_LEGACY) 724 nr += 8 * nr_cpu_ids; 725 else 726 nr += gsi_top * 16; 727 #endif 728 if (nr < irq_get_nr_irqs()) 729 irq_set_nr_irqs(nr); 730 731 /* 732 * We don't know if PIC is present at this point so we need to do 733 * probe() to get the right number of legacy IRQs. 734 */ 735 return legacy_pic->probe(); 736 } 737 738 void lapic_assign_legacy_vector(unsigned int irq, bool replace) 739 { 740 /* 741 * Use assign system here so it won't get accounted as allocated 742 * and movable in the cpu hotplug check and it prevents managed 743 * irq reservation from touching it. 744 */ 745 irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace); 746 } 747 748 void __init lapic_update_legacy_vectors(void) 749 { 750 unsigned int i; 751 752 if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0) 753 return; 754 755 /* 756 * If the IO/APIC is disabled via config, kernel command line or 757 * lack of enumeration then all legacy interrupts are routed 758 * through the PIC. Make sure that they are marked as legacy 759 * vectors. PIC_CASCADE_IRQ has already been marked in 760 * lapic_assign_system_vectors(). 761 */ 762 for (i = 0; i < nr_legacy_irqs(); i++) { 763 if (i != PIC_CASCADE_IR) 764 lapic_assign_legacy_vector(i, true); 765 } 766 } 767 768 void __init lapic_assign_system_vectors(void) 769 { 770 unsigned int i, vector; 771 772 for_each_set_bit(vector, system_vectors, NR_VECTORS) 773 irq_matrix_assign_system(vector_matrix, vector, false); 774 775 if (nr_legacy_irqs() > 1) 776 lapic_assign_legacy_vector(PIC_CASCADE_IR, false); 777 778 /* System vectors are reserved, online it */ 779 irq_matrix_online(vector_matrix); 780 781 /* Mark the preallocated legacy interrupts */ 782 for (i = 0; i < nr_legacy_irqs(); i++) { 783 /* 784 * Don't touch the cascade interrupt. It's unusable 785 * on PIC equipped machines. See the large comment 786 * in the IO/APIC code. 787 */ 788 if (i != PIC_CASCADE_IR) 789 irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i)); 790 } 791 } 792 793 int __init arch_early_irq_init(void) 794 { 795 struct fwnode_handle *fn; 796 797 fn = irq_domain_alloc_named_fwnode("VECTOR"); 798 BUG_ON(!fn); 799 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, 800 NULL); 801 BUG_ON(x86_vector_domain == NULL); 802 irq_set_default_host(x86_vector_domain); 803 804 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 805 806 /* 807 * Allocate the vector matrix allocator data structure and limit the 808 * search area. 809 */ 810 vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR, 811 FIRST_SYSTEM_VECTOR); 812 BUG_ON(!vector_matrix); 813 814 return arch_early_ioapic_init(); 815 } 816 817 #ifdef CONFIG_SMP 818 819 static struct irq_desc *__setup_vector_irq(int vector) 820 { 821 int isairq = vector - ISA_IRQ_VECTOR(0); 822 823 /* Check whether the irq is in the legacy space */ 824 if (isairq < 0 || isairq >= nr_legacy_irqs()) 825 return VECTOR_UNUSED; 826 /* Check whether the irq is handled by the IOAPIC */ 827 if (test_bit(isairq, &io_apic_irqs)) 828 return VECTOR_UNUSED; 829 return irq_to_desc(isairq); 830 } 831 832 /* Online the local APIC infrastructure and initialize the vectors */ 833 void lapic_online(void) 834 { 835 unsigned int vector; 836 837 lockdep_assert_held(&vector_lock); 838 839 /* Online the vector matrix array for this CPU */ 840 irq_matrix_online(vector_matrix); 841 842 /* 843 * The interrupt affinity logic never targets interrupts to offline 844 * CPUs. The exception are the legacy PIC interrupts. In general 845 * they are only targeted to CPU0, but depending on the platform 846 * they can be distributed to any online CPU in hardware. The 847 * kernel has no influence on that. So all active legacy vectors 848 * must be installed on all CPUs. All non legacy interrupts can be 849 * cleared. 850 */ 851 for (vector = 0; vector < NR_VECTORS; vector++) 852 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector)); 853 } 854 855 static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr); 856 857 void lapic_offline(void) 858 { 859 struct vector_cleanup *cl = this_cpu_ptr(&vector_cleanup); 860 861 lock_vector_lock(); 862 863 /* In case the vector cleanup timer has not expired */ 864 __vector_cleanup(cl, false); 865 866 irq_matrix_offline(vector_matrix); 867 WARN_ON_ONCE(try_to_del_timer_sync(&cl->timer) < 0); 868 WARN_ON_ONCE(!hlist_empty(&cl->head)); 869 870 unlock_vector_lock(); 871 } 872 873 static int apic_set_affinity(struct irq_data *irqd, 874 const struct cpumask *dest, bool force) 875 { 876 int err; 877 878 if (WARN_ON_ONCE(!irqd_is_activated(irqd))) 879 return -EIO; 880 881 raw_spin_lock(&vector_lock); 882 cpumask_and(vector_searchmask, dest, cpu_online_mask); 883 if (irqd_affinity_is_managed(irqd)) 884 err = assign_managed_vector(irqd, vector_searchmask); 885 else 886 err = assign_vector_locked(irqd, vector_searchmask); 887 raw_spin_unlock(&vector_lock); 888 return err ? err : IRQ_SET_MASK_OK; 889 } 890 891 #else 892 # define apic_set_affinity NULL 893 #endif 894 895 static int apic_retrigger_irq(struct irq_data *irqd) 896 { 897 struct apic_chip_data *apicd = apic_chip_data(irqd); 898 unsigned long flags; 899 900 raw_spin_lock_irqsave(&vector_lock, flags); 901 __apic_send_IPI(apicd->cpu, apicd->vector); 902 raw_spin_unlock_irqrestore(&vector_lock, flags); 903 904 return 1; 905 } 906 907 void apic_ack_irq(struct irq_data *irqd) 908 { 909 irq_move_irq(irqd); 910 apic_eoi(); 911 } 912 913 void apic_ack_edge(struct irq_data *irqd) 914 { 915 irq_complete_move(irqd_cfg(irqd)); 916 apic_ack_irq(irqd); 917 } 918 919 static void x86_vector_msi_compose_msg(struct irq_data *data, 920 struct msi_msg *msg) 921 { 922 __irq_msi_compose_msg(irqd_cfg(data), msg, false); 923 } 924 925 static struct irq_chip lapic_controller = { 926 .name = "APIC", 927 .irq_ack = apic_ack_edge, 928 .irq_set_affinity = apic_set_affinity, 929 .irq_compose_msi_msg = x86_vector_msi_compose_msg, 930 .irq_retrigger = apic_retrigger_irq, 931 }; 932 933 #ifdef CONFIG_SMP 934 935 static void free_moved_vector(struct apic_chip_data *apicd) 936 { 937 unsigned int vector = apicd->prev_vector; 938 unsigned int cpu = apicd->prev_cpu; 939 bool managed = apicd->is_managed; 940 941 /* 942 * Managed interrupts are usually not migrated away 943 * from an online CPU, but CPU isolation 'managed_irq' 944 * can make that happen. 945 * 1) Activation does not take the isolation into account 946 * to keep the code simple 947 * 2) Migration away from an isolated CPU can happen when 948 * a non-isolated CPU which is in the calculated 949 * affinity mask comes online. 950 */ 951 trace_vector_free_moved(apicd->irq, cpu, vector, managed); 952 irq_matrix_free(vector_matrix, cpu, vector, managed); 953 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 954 hlist_del_init(&apicd->clist); 955 apicd->prev_vector = 0; 956 apicd->move_in_progress = 0; 957 } 958 959 static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr) 960 { 961 struct apic_chip_data *apicd; 962 struct hlist_node *tmp; 963 bool rearm = false; 964 965 lockdep_assert_held(&vector_lock); 966 967 hlist_for_each_entry_safe(apicd, tmp, &cl->head, clist) { 968 unsigned int vector = apicd->prev_vector; 969 970 /* 971 * Paranoia: Check if the vector that needs to be cleaned 972 * up is registered at the APICs IRR. That's clearly a 973 * hardware issue if the vector arrived on the old target 974 * _after_ interrupts were disabled above. Keep @apicd 975 * on the list and schedule the timer again to give the CPU 976 * a chance to handle the pending interrupt. 977 * 978 * Do not check IRR when called from lapic_offline(), because 979 * fixup_irqs() was just called to scan IRR for set bits and 980 * forward them to new destination CPUs via IPIs. 981 */ 982 if (check_irr && is_vector_pending(vector)) { 983 pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd->irq); 984 rearm = true; 985 continue; 986 } 987 free_moved_vector(apicd); 988 } 989 990 /* 991 * Must happen under vector_lock to make the timer_pending() check 992 * in __vector_schedule_cleanup() race free against the rearm here. 993 */ 994 if (rearm) 995 mod_timer(&cl->timer, jiffies + 1); 996 } 997 998 static void vector_cleanup_callback(struct timer_list *tmr) 999 { 1000 struct vector_cleanup *cl = container_of(tmr, typeof(*cl), timer); 1001 1002 /* Prevent vectors vanishing under us */ 1003 raw_spin_lock_irq(&vector_lock); 1004 __vector_cleanup(cl, true); 1005 raw_spin_unlock_irq(&vector_lock); 1006 } 1007 1008 static void __vector_schedule_cleanup(struct apic_chip_data *apicd) 1009 { 1010 unsigned int cpu = apicd->prev_cpu; 1011 1012 raw_spin_lock(&vector_lock); 1013 apicd->move_in_progress = 0; 1014 if (cpu_online(cpu)) { 1015 struct vector_cleanup *cl = per_cpu_ptr(&vector_cleanup, cpu); 1016 1017 hlist_add_head(&apicd->clist, &cl->head); 1018 1019 /* 1020 * The lockless timer_pending() check is safe here. If it 1021 * returns true, then the callback will observe this new 1022 * apic data in the hlist as everything is serialized by 1023 * vector lock. 1024 * 1025 * If it returns false then the timer is either not armed 1026 * or the other CPU executes the callback, which again 1027 * would be blocked on vector lock. Rearming it in the 1028 * latter case makes it fire for nothing. 1029 * 1030 * This is also safe against the callback rearming the timer 1031 * because that's serialized via vector lock too. 1032 */ 1033 if (!timer_pending(&cl->timer)) { 1034 cl->timer.expires = jiffies + 1; 1035 add_timer_on(&cl->timer, cpu); 1036 } 1037 } else { 1038 pr_warn("IRQ %u schedule cleanup for offline CPU %u\n", apicd->irq, cpu); 1039 free_moved_vector(apicd); 1040 } 1041 raw_spin_unlock(&vector_lock); 1042 } 1043 1044 void vector_schedule_cleanup(struct irq_cfg *cfg) 1045 { 1046 struct apic_chip_data *apicd; 1047 1048 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 1049 if (apicd->move_in_progress) 1050 __vector_schedule_cleanup(apicd); 1051 } 1052 1053 void irq_complete_move(struct irq_cfg *cfg) 1054 { 1055 struct apic_chip_data *apicd; 1056 1057 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 1058 if (likely(!apicd->move_in_progress)) 1059 return; 1060 1061 /* 1062 * If the interrupt arrived on the new target CPU, cleanup the 1063 * vector on the old target CPU. A vector check is not required 1064 * because an interrupt can never move from one vector to another 1065 * on the same CPU. 1066 */ 1067 if (apicd->cpu == smp_processor_id()) 1068 __vector_schedule_cleanup(apicd); 1069 } 1070 1071 /* 1072 * Called from fixup_irqs() with @desc->lock held and interrupts disabled. 1073 */ 1074 void irq_force_complete_move(struct irq_desc *desc) 1075 { 1076 unsigned int cpu = smp_processor_id(); 1077 struct apic_chip_data *apicd; 1078 struct irq_data *irqd; 1079 unsigned int vector; 1080 1081 /* 1082 * The function is called for all descriptors regardless of which 1083 * irqdomain they belong to. For example if an IRQ is provided by 1084 * an irq_chip as part of a GPIO driver, the chip data for that 1085 * descriptor is specific to the irq_chip in question. 1086 * 1087 * Check first that the chip_data is what we expect 1088 * (apic_chip_data) before touching it any further. 1089 */ 1090 irqd = irq_domain_get_irq_data(x86_vector_domain, 1091 irq_desc_get_irq(desc)); 1092 if (!irqd) 1093 return; 1094 1095 raw_spin_lock(&vector_lock); 1096 apicd = apic_chip_data(irqd); 1097 if (!apicd) 1098 goto unlock; 1099 1100 /* 1101 * If prev_vector is empty or the descriptor is neither currently 1102 * nor previously on the outgoing CPU no action required. 1103 */ 1104 vector = apicd->prev_vector; 1105 if (!vector || (apicd->cpu != cpu && apicd->prev_cpu != cpu)) 1106 goto unlock; 1107 1108 /* 1109 * This is tricky. If the cleanup of the old vector has not been 1110 * done yet, then the following setaffinity call will fail with 1111 * -EBUSY. This can leave the interrupt in a stale state. 1112 * 1113 * All CPUs are stuck in stop machine with interrupts disabled so 1114 * calling __irq_complete_move() would be completely pointless. 1115 * 1116 * 1) The interrupt is in move_in_progress state. That means that we 1117 * have not seen an interrupt since the io_apic was reprogrammed to 1118 * the new vector. 1119 * 1120 * 2) The interrupt has fired on the new vector, but the cleanup IPIs 1121 * have not been processed yet. 1122 */ 1123 if (apicd->move_in_progress) { 1124 /* 1125 * In theory there is a race: 1126 * 1127 * set_ioapic(new_vector) <-- Interrupt is raised before update 1128 * is effective, i.e. it's raised on 1129 * the old vector. 1130 * 1131 * So if the target cpu cannot handle that interrupt before 1132 * the old vector is cleaned up, we get a spurious interrupt 1133 * and in the worst case the ioapic irq line becomes stale. 1134 * 1135 * But in case of cpu hotplug this should be a non issue 1136 * because if the affinity update happens right before all 1137 * cpus rendezvous in stop machine, there is no way that the 1138 * interrupt can be blocked on the target cpu because all cpus 1139 * loops first with interrupts enabled in stop machine, so the 1140 * old vector is not yet cleaned up when the interrupt fires. 1141 * 1142 * So the only way to run into this issue is if the delivery 1143 * of the interrupt on the apic/system bus would be delayed 1144 * beyond the point where the target cpu disables interrupts 1145 * in stop machine. I doubt that it can happen, but at least 1146 * there is a theoretical chance. Virtualization might be 1147 * able to expose this, but AFAICT the IOAPIC emulation is not 1148 * as stupid as the real hardware. 1149 * 1150 * Anyway, there is nothing we can do about that at this point 1151 * w/o refactoring the whole fixup_irq() business completely. 1152 * We print at least the irq number and the old vector number, 1153 * so we have the necessary information when a problem in that 1154 * area arises. 1155 */ 1156 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", 1157 irqd->irq, vector); 1158 } 1159 free_moved_vector(apicd); 1160 unlock: 1161 raw_spin_unlock(&vector_lock); 1162 } 1163 1164 #ifdef CONFIG_HOTPLUG_CPU 1165 /* 1166 * Note, this is not accurate accounting, but at least good enough to 1167 * prevent that the actual interrupt move will run out of vectors. 1168 */ 1169 int lapic_can_unplug_cpu(void) 1170 { 1171 unsigned int rsvd, avl, tomove, cpu = smp_processor_id(); 1172 int ret = 0; 1173 1174 raw_spin_lock(&vector_lock); 1175 tomove = irq_matrix_allocated(vector_matrix); 1176 avl = irq_matrix_available(vector_matrix, true); 1177 if (avl < tomove) { 1178 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n", 1179 cpu, tomove, avl); 1180 ret = -ENOSPC; 1181 goto out; 1182 } 1183 rsvd = irq_matrix_reserved(vector_matrix); 1184 if (avl < rsvd) { 1185 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n", 1186 rsvd, avl); 1187 } 1188 out: 1189 raw_spin_unlock(&vector_lock); 1190 return ret; 1191 } 1192 #endif /* HOTPLUG_CPU */ 1193 #endif /* SMP */ 1194 1195 static void __init print_APIC_field(int base) 1196 { 1197 int i; 1198 1199 printk(KERN_DEBUG); 1200 1201 for (i = 0; i < 8; i++) 1202 pr_cont("%08x", apic_read(base + i*0x10)); 1203 1204 pr_cont("\n"); 1205 } 1206 1207 static void __init print_local_APIC(void *dummy) 1208 { 1209 unsigned int i, v, ver, maxlvt; 1210 u64 icr; 1211 1212 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 1213 smp_processor_id(), read_apic_id()); 1214 v = apic_read(APIC_ID); 1215 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1216 v = apic_read(APIC_LVR); 1217 pr_info("... APIC VERSION: %08x\n", v); 1218 ver = GET_APIC_VERSION(v); 1219 maxlvt = lapic_get_maxlvt(); 1220 1221 v = apic_read(APIC_TASKPRI); 1222 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1223 1224 /* !82489DX */ 1225 if (APIC_INTEGRATED(ver)) { 1226 if (!APIC_XAPIC(ver)) { 1227 v = apic_read(APIC_ARBPRI); 1228 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 1229 v, v & APIC_ARBPRI_MASK); 1230 } 1231 v = apic_read(APIC_PROCPRI); 1232 pr_debug("... APIC PROCPRI: %08x\n", v); 1233 } 1234 1235 /* 1236 * Remote read supported only in the 82489DX and local APIC for 1237 * Pentium processors. 1238 */ 1239 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1240 v = apic_read(APIC_RRR); 1241 pr_debug("... APIC RRR: %08x\n", v); 1242 } 1243 1244 v = apic_read(APIC_LDR); 1245 pr_debug("... APIC LDR: %08x\n", v); 1246 if (!x2apic_enabled()) { 1247 v = apic_read(APIC_DFR); 1248 pr_debug("... APIC DFR: %08x\n", v); 1249 } 1250 v = apic_read(APIC_SPIV); 1251 pr_debug("... APIC SPIV: %08x\n", v); 1252 1253 pr_debug("... APIC ISR field:\n"); 1254 print_APIC_field(APIC_ISR); 1255 pr_debug("... APIC TMR field:\n"); 1256 print_APIC_field(APIC_TMR); 1257 pr_debug("... APIC IRR field:\n"); 1258 print_APIC_field(APIC_IRR); 1259 1260 /* !82489DX */ 1261 if (APIC_INTEGRATED(ver)) { 1262 /* Due to the Pentium erratum 3AP. */ 1263 if (maxlvt > 3) 1264 apic_write(APIC_ESR, 0); 1265 1266 v = apic_read(APIC_ESR); 1267 pr_debug("... APIC ESR: %08x\n", v); 1268 } 1269 1270 icr = apic_icr_read(); 1271 pr_debug("... APIC ICR: %08x\n", (u32)icr); 1272 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1273 1274 v = apic_read(APIC_LVTT); 1275 pr_debug("... APIC LVTT: %08x\n", v); 1276 1277 if (maxlvt > 3) { 1278 /* PC is LVT#4. */ 1279 v = apic_read(APIC_LVTPC); 1280 pr_debug("... APIC LVTPC: %08x\n", v); 1281 } 1282 v = apic_read(APIC_LVT0); 1283 pr_debug("... APIC LVT0: %08x\n", v); 1284 v = apic_read(APIC_LVT1); 1285 pr_debug("... APIC LVT1: %08x\n", v); 1286 1287 if (maxlvt > 2) { 1288 /* ERR is LVT#3. */ 1289 v = apic_read(APIC_LVTERR); 1290 pr_debug("... APIC LVTERR: %08x\n", v); 1291 } 1292 1293 v = apic_read(APIC_TMICT); 1294 pr_debug("... APIC TMICT: %08x\n", v); 1295 v = apic_read(APIC_TMCCT); 1296 pr_debug("... APIC TMCCT: %08x\n", v); 1297 v = apic_read(APIC_TDCR); 1298 pr_debug("... APIC TDCR: %08x\n", v); 1299 1300 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1301 v = apic_read(APIC_EFEAT); 1302 maxlvt = (v >> 16) & 0xff; 1303 pr_debug("... APIC EFEAT: %08x\n", v); 1304 v = apic_read(APIC_ECTRL); 1305 pr_debug("... APIC ECTRL: %08x\n", v); 1306 for (i = 0; i < maxlvt; i++) { 1307 v = apic_read(APIC_EILVTn(i)); 1308 pr_debug("... APIC EILVT%d: %08x\n", i, v); 1309 } 1310 } 1311 pr_cont("\n"); 1312 } 1313 1314 static void __init print_local_APICs(int maxcpu) 1315 { 1316 int cpu; 1317 1318 if (!maxcpu) 1319 return; 1320 1321 preempt_disable(); 1322 for_each_online_cpu(cpu) { 1323 if (cpu >= maxcpu) 1324 break; 1325 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1326 } 1327 preempt_enable(); 1328 } 1329 1330 static void __init print_PIC(void) 1331 { 1332 unsigned int v; 1333 unsigned long flags; 1334 1335 if (!nr_legacy_irqs()) 1336 return; 1337 1338 pr_debug("\nprinting PIC contents\n"); 1339 1340 raw_spin_lock_irqsave(&i8259A_lock, flags); 1341 1342 v = inb(0xa1) << 8 | inb(0x21); 1343 pr_debug("... PIC IMR: %04x\n", v); 1344 1345 v = inb(0xa0) << 8 | inb(0x20); 1346 pr_debug("... PIC IRR: %04x\n", v); 1347 1348 outb(0x0b, 0xa0); 1349 outb(0x0b, 0x20); 1350 v = inb(0xa0) << 8 | inb(0x20); 1351 outb(0x0a, 0xa0); 1352 outb(0x0a, 0x20); 1353 1354 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 1355 1356 pr_debug("... PIC ISR: %04x\n", v); 1357 1358 v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1); 1359 pr_debug("... PIC ELCR: %04x\n", v); 1360 } 1361 1362 static int show_lapic __initdata = 1; 1363 static __init int setup_show_lapic(char *arg) 1364 { 1365 int num = -1; 1366 1367 if (strcmp(arg, "all") == 0) { 1368 show_lapic = CONFIG_NR_CPUS; 1369 } else { 1370 get_option(&arg, &num); 1371 if (num >= 0) 1372 show_lapic = num; 1373 } 1374 1375 return 1; 1376 } 1377 __setup("show_lapic=", setup_show_lapic); 1378 1379 static int __init print_ICs(void) 1380 { 1381 if (apic_verbosity == APIC_QUIET) 1382 return 0; 1383 1384 print_PIC(); 1385 1386 /* don't print out if apic is not there */ 1387 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1388 return 0; 1389 1390 print_local_APICs(show_lapic); 1391 print_IO_APICs(); 1392 1393 return 0; 1394 } 1395 1396 late_initcall(print_ICs); 1397