xref: /linux/arch/x86/kernel/apic/vector.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Local APIC related interfaces to support IOAPIC, MSI, etc.
3  *
4  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *	Moved from arch/x86/kernel/apic/io_apic.c.
6  * Jiang Liu <jiang.liu@linux.intel.com>
7  *	Enable support of hierarchical irqdomains
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/interrupt.h>
14 #include <linux/seq_file.h>
15 #include <linux/init.h>
16 #include <linux/compiler.h>
17 #include <linux/slab.h>
18 #include <asm/irqdomain.h>
19 #include <asm/hw_irq.h>
20 #include <asm/apic.h>
21 #include <asm/i8259.h>
22 #include <asm/desc.h>
23 #include <asm/irq_remapping.h>
24 
25 #include <asm/trace/irq_vectors.h>
26 
27 struct apic_chip_data {
28 	struct irq_cfg		hw_irq_cfg;
29 	unsigned int		vector;
30 	unsigned int		prev_vector;
31 	unsigned int		cpu;
32 	unsigned int		prev_cpu;
33 	unsigned int		irq;
34 	struct hlist_node	clist;
35 	unsigned int		move_in_progress	: 1,
36 				is_managed		: 1,
37 				can_reserve		: 1,
38 				has_reserved		: 1;
39 };
40 
41 struct irq_domain *x86_vector_domain;
42 EXPORT_SYMBOL_GPL(x86_vector_domain);
43 static DEFINE_RAW_SPINLOCK(vector_lock);
44 static cpumask_var_t vector_searchmask;
45 static struct irq_chip lapic_controller;
46 static struct irq_matrix *vector_matrix;
47 #ifdef CONFIG_SMP
48 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
49 #endif
50 
51 void lock_vector_lock(void)
52 {
53 	/* Used to the online set of cpus does not change
54 	 * during assign_irq_vector.
55 	 */
56 	raw_spin_lock(&vector_lock);
57 }
58 
59 void unlock_vector_lock(void)
60 {
61 	raw_spin_unlock(&vector_lock);
62 }
63 
64 void init_irq_alloc_info(struct irq_alloc_info *info,
65 			 const struct cpumask *mask)
66 {
67 	memset(info, 0, sizeof(*info));
68 	info->mask = mask;
69 }
70 
71 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
72 {
73 	if (src)
74 		*dst = *src;
75 	else
76 		memset(dst, 0, sizeof(*dst));
77 }
78 
79 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
80 {
81 	if (!irqd)
82 		return NULL;
83 
84 	while (irqd->parent_data)
85 		irqd = irqd->parent_data;
86 
87 	return irqd->chip_data;
88 }
89 
90 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
91 {
92 	struct apic_chip_data *apicd = apic_chip_data(irqd);
93 
94 	return apicd ? &apicd->hw_irq_cfg : NULL;
95 }
96 EXPORT_SYMBOL_GPL(irqd_cfg);
97 
98 struct irq_cfg *irq_cfg(unsigned int irq)
99 {
100 	return irqd_cfg(irq_get_irq_data(irq));
101 }
102 
103 static struct apic_chip_data *alloc_apic_chip_data(int node)
104 {
105 	struct apic_chip_data *apicd;
106 
107 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
108 	if (apicd)
109 		INIT_HLIST_NODE(&apicd->clist);
110 	return apicd;
111 }
112 
113 static void free_apic_chip_data(struct apic_chip_data *apicd)
114 {
115 	kfree(apicd);
116 }
117 
118 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
119 				unsigned int cpu)
120 {
121 	struct apic_chip_data *apicd = apic_chip_data(irqd);
122 
123 	lockdep_assert_held(&vector_lock);
124 
125 	apicd->hw_irq_cfg.vector = vector;
126 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
127 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
128 	trace_vector_config(irqd->irq, vector, cpu,
129 			    apicd->hw_irq_cfg.dest_apicid);
130 }
131 
132 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
133 			       unsigned int newcpu)
134 {
135 	struct apic_chip_data *apicd = apic_chip_data(irqd);
136 	struct irq_desc *desc = irq_data_to_desc(irqd);
137 	bool managed = irqd_affinity_is_managed(irqd);
138 
139 	lockdep_assert_held(&vector_lock);
140 
141 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
142 			    apicd->cpu);
143 
144 	/*
145 	 * If there is no vector associated or if the associated vector is
146 	 * the shutdown vector, which is associated to make PCI/MSI
147 	 * shutdown mode work, then there is nothing to release. Clear out
148 	 * prev_vector for this and the offlined target case.
149 	 */
150 	apicd->prev_vector = 0;
151 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
152 		goto setnew;
153 	/*
154 	 * If the target CPU of the previous vector is online, then mark
155 	 * the vector as move in progress and store it for cleanup when the
156 	 * first interrupt on the new vector arrives. If the target CPU is
157 	 * offline then the regular release mechanism via the cleanup
158 	 * vector is not possible and the vector can be immediately freed
159 	 * in the underlying matrix allocator.
160 	 */
161 	if (cpu_online(apicd->cpu)) {
162 		apicd->move_in_progress = true;
163 		apicd->prev_vector = apicd->vector;
164 		apicd->prev_cpu = apicd->cpu;
165 	} else {
166 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
167 				managed);
168 	}
169 
170 setnew:
171 	apicd->vector = newvec;
172 	apicd->cpu = newcpu;
173 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
174 	per_cpu(vector_irq, newcpu)[newvec] = desc;
175 }
176 
177 static void vector_assign_managed_shutdown(struct irq_data *irqd)
178 {
179 	unsigned int cpu = cpumask_first(cpu_online_mask);
180 
181 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
182 }
183 
184 static int reserve_managed_vector(struct irq_data *irqd)
185 {
186 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
187 	struct apic_chip_data *apicd = apic_chip_data(irqd);
188 	unsigned long flags;
189 	int ret;
190 
191 	raw_spin_lock_irqsave(&vector_lock, flags);
192 	apicd->is_managed = true;
193 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
194 	raw_spin_unlock_irqrestore(&vector_lock, flags);
195 	trace_vector_reserve_managed(irqd->irq, ret);
196 	return ret;
197 }
198 
199 static void reserve_irq_vector_locked(struct irq_data *irqd)
200 {
201 	struct apic_chip_data *apicd = apic_chip_data(irqd);
202 
203 	irq_matrix_reserve(vector_matrix);
204 	apicd->can_reserve = true;
205 	apicd->has_reserved = true;
206 	irqd_set_can_reserve(irqd);
207 	trace_vector_reserve(irqd->irq, 0);
208 	vector_assign_managed_shutdown(irqd);
209 }
210 
211 static int reserve_irq_vector(struct irq_data *irqd)
212 {
213 	unsigned long flags;
214 
215 	raw_spin_lock_irqsave(&vector_lock, flags);
216 	reserve_irq_vector_locked(irqd);
217 	raw_spin_unlock_irqrestore(&vector_lock, flags);
218 	return 0;
219 }
220 
221 static int allocate_vector(struct irq_data *irqd, const struct cpumask *dest)
222 {
223 	struct apic_chip_data *apicd = apic_chip_data(irqd);
224 	bool resvd = apicd->has_reserved;
225 	unsigned int cpu = apicd->cpu;
226 	int vector = apicd->vector;
227 
228 	lockdep_assert_held(&vector_lock);
229 
230 	/*
231 	 * If the current target CPU is online and in the new requested
232 	 * affinity mask, there is no point in moving the interrupt from
233 	 * one CPU to another.
234 	 */
235 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
236 		return 0;
237 
238 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
239 	if (vector > 0)
240 		apic_update_vector(irqd, vector, cpu);
241 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
242 	return vector;
243 }
244 
245 static int assign_vector_locked(struct irq_data *irqd,
246 				const struct cpumask *dest)
247 {
248 	struct apic_chip_data *apicd = apic_chip_data(irqd);
249 	int vector = allocate_vector(irqd, dest);
250 
251 	if (vector < 0)
252 		return vector;
253 
254 	apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
255 	return 0;
256 }
257 
258 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
259 {
260 	unsigned long flags;
261 	int ret;
262 
263 	raw_spin_lock_irqsave(&vector_lock, flags);
264 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
265 	ret = assign_vector_locked(irqd, vector_searchmask);
266 	raw_spin_unlock_irqrestore(&vector_lock, flags);
267 	return ret;
268 }
269 
270 static int assign_irq_vector_any_locked(struct irq_data *irqd)
271 {
272 	/* Get the affinity mask - either irq_default_affinity or (user) set */
273 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
274 	int node = irq_data_get_node(irqd);
275 
276 	if (node == NUMA_NO_NODE)
277 		goto all;
278 	/* Try the intersection of @affmsk and node mask */
279 	cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
280 	if (!assign_vector_locked(irqd, vector_searchmask))
281 		return 0;
282 	/* Try the node mask */
283 	if (!assign_vector_locked(irqd, cpumask_of_node(node)))
284 		return 0;
285 all:
286 	/* Try the full affinity mask */
287 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
288 	if (!assign_vector_locked(irqd, vector_searchmask))
289 		return 0;
290 	/* Try the full online mask */
291 	return assign_vector_locked(irqd, cpu_online_mask);
292 }
293 
294 static int
295 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
296 {
297 	if (irqd_affinity_is_managed(irqd))
298 		return reserve_managed_vector(irqd);
299 	if (info->mask)
300 		return assign_irq_vector(irqd, info->mask);
301 	/*
302 	 * Make only a global reservation with no guarantee. A real vector
303 	 * is associated at activation time.
304 	 */
305 	return reserve_irq_vector(irqd);
306 }
307 
308 static int
309 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
310 {
311 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
312 	struct apic_chip_data *apicd = apic_chip_data(irqd);
313 	int vector, cpu;
314 
315 	cpumask_and(vector_searchmask, vector_searchmask, affmsk);
316 	cpu = cpumask_first(vector_searchmask);
317 	if (cpu >= nr_cpu_ids)
318 		return -EINVAL;
319 	/* set_affinity might call here for nothing */
320 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
321 		return 0;
322 	vector = irq_matrix_alloc_managed(vector_matrix, cpu);
323 	trace_vector_alloc_managed(irqd->irq, vector, vector);
324 	if (vector < 0)
325 		return vector;
326 	apic_update_vector(irqd, vector, cpu);
327 	apic_update_irq_cfg(irqd, vector, cpu);
328 	return 0;
329 }
330 
331 static void clear_irq_vector(struct irq_data *irqd)
332 {
333 	struct apic_chip_data *apicd = apic_chip_data(irqd);
334 	bool managed = irqd_affinity_is_managed(irqd);
335 	unsigned int vector = apicd->vector;
336 
337 	lockdep_assert_held(&vector_lock);
338 
339 	if (!vector)
340 		return;
341 
342 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
343 			   apicd->prev_cpu);
344 
345 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_UNUSED;
346 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
347 	apicd->vector = 0;
348 
349 	/* Clean up move in progress */
350 	vector = apicd->prev_vector;
351 	if (!vector)
352 		return;
353 
354 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED;
355 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
356 	apicd->prev_vector = 0;
357 	apicd->move_in_progress = 0;
358 	hlist_del_init(&apicd->clist);
359 }
360 
361 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
362 {
363 	struct apic_chip_data *apicd = apic_chip_data(irqd);
364 	unsigned long flags;
365 
366 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
367 				apicd->can_reserve, false);
368 
369 	/* Regular fixed assigned interrupt */
370 	if (!apicd->is_managed && !apicd->can_reserve)
371 		return;
372 	/* If the interrupt has a global reservation, nothing to do */
373 	if (apicd->has_reserved)
374 		return;
375 
376 	raw_spin_lock_irqsave(&vector_lock, flags);
377 	clear_irq_vector(irqd);
378 	if (apicd->can_reserve)
379 		reserve_irq_vector_locked(irqd);
380 	else
381 		vector_assign_managed_shutdown(irqd);
382 	raw_spin_unlock_irqrestore(&vector_lock, flags);
383 }
384 
385 static int activate_reserved(struct irq_data *irqd)
386 {
387 	struct apic_chip_data *apicd = apic_chip_data(irqd);
388 	int ret;
389 
390 	ret = assign_irq_vector_any_locked(irqd);
391 	if (!ret) {
392 		apicd->has_reserved = false;
393 		/*
394 		 * Core might have disabled reservation mode after
395 		 * allocating the irq descriptor. Ideally this should
396 		 * happen before allocation time, but that would require
397 		 * completely convoluted ways of transporting that
398 		 * information.
399 		 */
400 		if (!irqd_can_reserve(irqd))
401 			apicd->can_reserve = false;
402 	}
403 	return ret;
404 }
405 
406 static int activate_managed(struct irq_data *irqd)
407 {
408 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
409 	int ret;
410 
411 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
412 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
413 		/* Something in the core code broke! Survive gracefully */
414 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
415 		return EINVAL;
416 	}
417 
418 	ret = assign_managed_vector(irqd, vector_searchmask);
419 	/*
420 	 * This should not happen. The vector reservation got buggered.  Handle
421 	 * it gracefully.
422 	 */
423 	if (WARN_ON_ONCE(ret < 0)) {
424 		pr_err("Managed startup irq %u, no vector available\n",
425 		       irqd->irq);
426 	}
427        return ret;
428 }
429 
430 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
431 			       bool reserve)
432 {
433 	struct apic_chip_data *apicd = apic_chip_data(irqd);
434 	unsigned long flags;
435 	int ret = 0;
436 
437 	trace_vector_activate(irqd->irq, apicd->is_managed,
438 			      apicd->can_reserve, reserve);
439 
440 	/* Nothing to do for fixed assigned vectors */
441 	if (!apicd->can_reserve && !apicd->is_managed)
442 		return 0;
443 
444 	raw_spin_lock_irqsave(&vector_lock, flags);
445 	if (reserve || irqd_is_managed_and_shutdown(irqd))
446 		vector_assign_managed_shutdown(irqd);
447 	else if (apicd->is_managed)
448 		ret = activate_managed(irqd);
449 	else if (apicd->has_reserved)
450 		ret = activate_reserved(irqd);
451 	raw_spin_unlock_irqrestore(&vector_lock, flags);
452 	return ret;
453 }
454 
455 static void vector_free_reserved_and_managed(struct irq_data *irqd)
456 {
457 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
458 	struct apic_chip_data *apicd = apic_chip_data(irqd);
459 
460 	trace_vector_teardown(irqd->irq, apicd->is_managed,
461 			      apicd->has_reserved);
462 
463 	if (apicd->has_reserved)
464 		irq_matrix_remove_reserved(vector_matrix);
465 	if (apicd->is_managed)
466 		irq_matrix_remove_managed(vector_matrix, dest);
467 }
468 
469 static void x86_vector_free_irqs(struct irq_domain *domain,
470 				 unsigned int virq, unsigned int nr_irqs)
471 {
472 	struct apic_chip_data *apicd;
473 	struct irq_data *irqd;
474 	unsigned long flags;
475 	int i;
476 
477 	for (i = 0; i < nr_irqs; i++) {
478 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
479 		if (irqd && irqd->chip_data) {
480 			raw_spin_lock_irqsave(&vector_lock, flags);
481 			clear_irq_vector(irqd);
482 			vector_free_reserved_and_managed(irqd);
483 			apicd = irqd->chip_data;
484 			irq_domain_reset_irq_data(irqd);
485 			raw_spin_unlock_irqrestore(&vector_lock, flags);
486 			free_apic_chip_data(apicd);
487 		}
488 	}
489 }
490 
491 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
492 				    struct apic_chip_data *apicd)
493 {
494 	unsigned long flags;
495 	bool realloc = false;
496 
497 	apicd->vector = ISA_IRQ_VECTOR(virq);
498 	apicd->cpu = 0;
499 
500 	raw_spin_lock_irqsave(&vector_lock, flags);
501 	/*
502 	 * If the interrupt is activated, then it must stay at this vector
503 	 * position. That's usually the timer interrupt (0).
504 	 */
505 	if (irqd_is_activated(irqd)) {
506 		trace_vector_setup(virq, true, 0);
507 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
508 	} else {
509 		/* Release the vector */
510 		apicd->can_reserve = true;
511 		irqd_set_can_reserve(irqd);
512 		clear_irq_vector(irqd);
513 		realloc = true;
514 	}
515 	raw_spin_unlock_irqrestore(&vector_lock, flags);
516 	return realloc;
517 }
518 
519 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
520 				 unsigned int nr_irqs, void *arg)
521 {
522 	struct irq_alloc_info *info = arg;
523 	struct apic_chip_data *apicd;
524 	struct irq_data *irqd;
525 	int i, err, node;
526 
527 	if (disable_apic)
528 		return -ENXIO;
529 
530 	/* Currently vector allocator can't guarantee contiguous allocations */
531 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
532 		return -ENOSYS;
533 
534 	for (i = 0; i < nr_irqs; i++) {
535 		irqd = irq_domain_get_irq_data(domain, virq + i);
536 		BUG_ON(!irqd);
537 		node = irq_data_get_node(irqd);
538 		WARN_ON_ONCE(irqd->chip_data);
539 		apicd = alloc_apic_chip_data(node);
540 		if (!apicd) {
541 			err = -ENOMEM;
542 			goto error;
543 		}
544 
545 		apicd->irq = virq + i;
546 		irqd->chip = &lapic_controller;
547 		irqd->chip_data = apicd;
548 		irqd->hwirq = virq + i;
549 		irqd_set_single_target(irqd);
550 		/*
551 		 * Legacy vectors are already assigned when the IOAPIC
552 		 * takes them over. They stay on the same vector. This is
553 		 * required for check_timer() to work correctly as it might
554 		 * switch back to legacy mode. Only update the hardware
555 		 * config.
556 		 */
557 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
558 			if (!vector_configure_legacy(virq + i, irqd, apicd))
559 				continue;
560 		}
561 
562 		err = assign_irq_vector_policy(irqd, info);
563 		trace_vector_setup(virq + i, false, err);
564 		if (err) {
565 			irqd->chip_data = NULL;
566 			free_apic_chip_data(apicd);
567 			goto error;
568 		}
569 	}
570 
571 	return 0;
572 
573 error:
574 	x86_vector_free_irqs(domain, virq, i);
575 	return err;
576 }
577 
578 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
579 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
580 				  struct irq_data *irqd, int ind)
581 {
582 	unsigned int cpu, vector, prev_cpu, prev_vector;
583 	struct apic_chip_data *apicd;
584 	unsigned long flags;
585 	int irq;
586 
587 	if (!irqd) {
588 		irq_matrix_debug_show(m, vector_matrix, ind);
589 		return;
590 	}
591 
592 	irq = irqd->irq;
593 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
594 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
595 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
596 		return;
597 	}
598 
599 	apicd = irqd->chip_data;
600 	if (!apicd) {
601 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
602 		return;
603 	}
604 
605 	raw_spin_lock_irqsave(&vector_lock, flags);
606 	cpu = apicd->cpu;
607 	vector = apicd->vector;
608 	prev_cpu = apicd->prev_cpu;
609 	prev_vector = apicd->prev_vector;
610 	raw_spin_unlock_irqrestore(&vector_lock, flags);
611 	seq_printf(m, "%*sVector: %5u\n", ind, "", vector);
612 	seq_printf(m, "%*sTarget: %5u\n", ind, "", cpu);
613 	if (prev_vector) {
614 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", prev_vector);
615 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", prev_cpu);
616 	}
617 }
618 #endif
619 
620 static const struct irq_domain_ops x86_vector_domain_ops = {
621 	.alloc		= x86_vector_alloc_irqs,
622 	.free		= x86_vector_free_irqs,
623 	.activate	= x86_vector_activate,
624 	.deactivate	= x86_vector_deactivate,
625 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
626 	.debug_show	= x86_vector_debug_show,
627 #endif
628 };
629 
630 int __init arch_probe_nr_irqs(void)
631 {
632 	int nr;
633 
634 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
635 		nr_irqs = NR_VECTORS * nr_cpu_ids;
636 
637 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
638 #if defined(CONFIG_PCI_MSI)
639 	/*
640 	 * for MSI and HT dyn irq
641 	 */
642 	if (gsi_top <= NR_IRQS_LEGACY)
643 		nr +=  8 * nr_cpu_ids;
644 	else
645 		nr += gsi_top * 16;
646 #endif
647 	if (nr < nr_irqs)
648 		nr_irqs = nr;
649 
650 	/*
651 	 * We don't know if PIC is present at this point so we need to do
652 	 * probe() to get the right number of legacy IRQs.
653 	 */
654 	return legacy_pic->probe();
655 }
656 
657 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
658 {
659 	/*
660 	 * Use assign system here so it wont get accounted as allocated
661 	 * and moveable in the cpu hotplug check and it prevents managed
662 	 * irq reservation from touching it.
663 	 */
664 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
665 }
666 
667 void __init lapic_assign_system_vectors(void)
668 {
669 	unsigned int i, vector = 0;
670 
671 	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
672 		irq_matrix_assign_system(vector_matrix, vector, false);
673 
674 	if (nr_legacy_irqs() > 1)
675 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
676 
677 	/* System vectors are reserved, online it */
678 	irq_matrix_online(vector_matrix);
679 
680 	/* Mark the preallocated legacy interrupts */
681 	for (i = 0; i < nr_legacy_irqs(); i++) {
682 		if (i != PIC_CASCADE_IR)
683 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
684 	}
685 }
686 
687 int __init arch_early_irq_init(void)
688 {
689 	struct fwnode_handle *fn;
690 
691 	fn = irq_domain_alloc_named_fwnode("VECTOR");
692 	BUG_ON(!fn);
693 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
694 						   NULL);
695 	BUG_ON(x86_vector_domain == NULL);
696 	irq_domain_free_fwnode(fn);
697 	irq_set_default_host(x86_vector_domain);
698 
699 	arch_init_msi_domain(x86_vector_domain);
700 
701 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
702 
703 	/*
704 	 * Allocate the vector matrix allocator data structure and limit the
705 	 * search area.
706 	 */
707 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
708 					 FIRST_SYSTEM_VECTOR);
709 	BUG_ON(!vector_matrix);
710 
711 	return arch_early_ioapic_init();
712 }
713 
714 #ifdef CONFIG_SMP
715 
716 static struct irq_desc *__setup_vector_irq(int vector)
717 {
718 	int isairq = vector - ISA_IRQ_VECTOR(0);
719 
720 	/* Check whether the irq is in the legacy space */
721 	if (isairq < 0 || isairq >= nr_legacy_irqs())
722 		return VECTOR_UNUSED;
723 	/* Check whether the irq is handled by the IOAPIC */
724 	if (test_bit(isairq, &io_apic_irqs))
725 		return VECTOR_UNUSED;
726 	return irq_to_desc(isairq);
727 }
728 
729 /* Online the local APIC infrastructure and initialize the vectors */
730 void lapic_online(void)
731 {
732 	unsigned int vector;
733 
734 	lockdep_assert_held(&vector_lock);
735 
736 	/* Online the vector matrix array for this CPU */
737 	irq_matrix_online(vector_matrix);
738 
739 	/*
740 	 * The interrupt affinity logic never targets interrupts to offline
741 	 * CPUs. The exception are the legacy PIC interrupts. In general
742 	 * they are only targeted to CPU0, but depending on the platform
743 	 * they can be distributed to any online CPU in hardware. The
744 	 * kernel has no influence on that. So all active legacy vectors
745 	 * must be installed on all CPUs. All non legacy interrupts can be
746 	 * cleared.
747 	 */
748 	for (vector = 0; vector < NR_VECTORS; vector++)
749 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
750 }
751 
752 void lapic_offline(void)
753 {
754 	lock_vector_lock();
755 	irq_matrix_offline(vector_matrix);
756 	unlock_vector_lock();
757 }
758 
759 static int apic_set_affinity(struct irq_data *irqd,
760 			     const struct cpumask *dest, bool force)
761 {
762 	struct apic_chip_data *apicd = apic_chip_data(irqd);
763 	int err;
764 
765 	/*
766 	 * Core code can call here for inactive interrupts. For inactive
767 	 * interrupts which use managed or reservation mode there is no
768 	 * point in going through the vector assignment right now as the
769 	 * activation will assign a vector which fits the destination
770 	 * cpumask. Let the core code store the destination mask and be
771 	 * done with it.
772 	 */
773 	if (!irqd_is_activated(irqd) &&
774 	    (apicd->is_managed || apicd->can_reserve))
775 		return IRQ_SET_MASK_OK;
776 
777 	raw_spin_lock(&vector_lock);
778 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
779 	if (irqd_affinity_is_managed(irqd))
780 		err = assign_managed_vector(irqd, vector_searchmask);
781 	else
782 		err = assign_vector_locked(irqd, vector_searchmask);
783 	raw_spin_unlock(&vector_lock);
784 	return err ? err : IRQ_SET_MASK_OK;
785 }
786 
787 #else
788 # define apic_set_affinity	NULL
789 #endif
790 
791 static int apic_retrigger_irq(struct irq_data *irqd)
792 {
793 	struct apic_chip_data *apicd = apic_chip_data(irqd);
794 	unsigned long flags;
795 
796 	raw_spin_lock_irqsave(&vector_lock, flags);
797 	apic->send_IPI(apicd->cpu, apicd->vector);
798 	raw_spin_unlock_irqrestore(&vector_lock, flags);
799 
800 	return 1;
801 }
802 
803 void apic_ack_edge(struct irq_data *irqd)
804 {
805 	irq_complete_move(irqd_cfg(irqd));
806 	irq_move_irq(irqd);
807 	ack_APIC_irq();
808 }
809 
810 static struct irq_chip lapic_controller = {
811 	.name			= "APIC",
812 	.irq_ack		= apic_ack_edge,
813 	.irq_set_affinity	= apic_set_affinity,
814 	.irq_retrigger		= apic_retrigger_irq,
815 };
816 
817 #ifdef CONFIG_SMP
818 
819 static void free_moved_vector(struct apic_chip_data *apicd)
820 {
821 	unsigned int vector = apicd->prev_vector;
822 	unsigned int cpu = apicd->prev_cpu;
823 	bool managed = apicd->is_managed;
824 
825 	/*
826 	 * This should never happen. Managed interrupts are not
827 	 * migrated except on CPU down, which does not involve the
828 	 * cleanup vector. But try to keep the accounting correct
829 	 * nevertheless.
830 	 */
831 	WARN_ON_ONCE(managed);
832 
833 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
834 	irq_matrix_free(vector_matrix, cpu, vector, managed);
835 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
836 	hlist_del_init(&apicd->clist);
837 	apicd->prev_vector = 0;
838 	apicd->move_in_progress = 0;
839 }
840 
841 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
842 {
843 	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
844 	struct apic_chip_data *apicd;
845 	struct hlist_node *tmp;
846 
847 	entering_ack_irq();
848 	/* Prevent vectors vanishing under us */
849 	raw_spin_lock(&vector_lock);
850 
851 	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
852 		unsigned int irr, vector = apicd->prev_vector;
853 
854 		/*
855 		 * Paranoia: Check if the vector that needs to be cleaned
856 		 * up is registered at the APICs IRR. If so, then this is
857 		 * not the best time to clean it up. Clean it up in the
858 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
859 		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
860 		 * priority external vector, so on return from this
861 		 * interrupt the device interrupt will happen first.
862 		 */
863 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
864 		if (irr & (1U << (vector % 32))) {
865 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
866 			continue;
867 		}
868 		free_moved_vector(apicd);
869 	}
870 
871 	raw_spin_unlock(&vector_lock);
872 	exiting_irq();
873 }
874 
875 static void __send_cleanup_vector(struct apic_chip_data *apicd)
876 {
877 	unsigned int cpu;
878 
879 	raw_spin_lock(&vector_lock);
880 	apicd->move_in_progress = 0;
881 	cpu = apicd->prev_cpu;
882 	if (cpu_online(cpu)) {
883 		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
884 		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
885 	} else {
886 		apicd->prev_vector = 0;
887 	}
888 	raw_spin_unlock(&vector_lock);
889 }
890 
891 void send_cleanup_vector(struct irq_cfg *cfg)
892 {
893 	struct apic_chip_data *apicd;
894 
895 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
896 	if (apicd->move_in_progress)
897 		__send_cleanup_vector(apicd);
898 }
899 
900 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
901 {
902 	struct apic_chip_data *apicd;
903 
904 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
905 	if (likely(!apicd->move_in_progress))
906 		return;
907 
908 	if (vector == apicd->vector && apicd->cpu == smp_processor_id())
909 		__send_cleanup_vector(apicd);
910 }
911 
912 void irq_complete_move(struct irq_cfg *cfg)
913 {
914 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
915 }
916 
917 /*
918  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
919  */
920 void irq_force_complete_move(struct irq_desc *desc)
921 {
922 	struct apic_chip_data *apicd;
923 	struct irq_data *irqd;
924 	unsigned int vector;
925 
926 	/*
927 	 * The function is called for all descriptors regardless of which
928 	 * irqdomain they belong to. For example if an IRQ is provided by
929 	 * an irq_chip as part of a GPIO driver, the chip data for that
930 	 * descriptor is specific to the irq_chip in question.
931 	 *
932 	 * Check first that the chip_data is what we expect
933 	 * (apic_chip_data) before touching it any further.
934 	 */
935 	irqd = irq_domain_get_irq_data(x86_vector_domain,
936 				       irq_desc_get_irq(desc));
937 	if (!irqd)
938 		return;
939 
940 	raw_spin_lock(&vector_lock);
941 	apicd = apic_chip_data(irqd);
942 	if (!apicd)
943 		goto unlock;
944 
945 	/*
946 	 * If prev_vector is empty, no action required.
947 	 */
948 	vector = apicd->prev_vector;
949 	if (!vector)
950 		goto unlock;
951 
952 	/*
953 	 * This is tricky. If the cleanup of the old vector has not been
954 	 * done yet, then the following setaffinity call will fail with
955 	 * -EBUSY. This can leave the interrupt in a stale state.
956 	 *
957 	 * All CPUs are stuck in stop machine with interrupts disabled so
958 	 * calling __irq_complete_move() would be completely pointless.
959 	 *
960 	 * 1) The interrupt is in move_in_progress state. That means that we
961 	 *    have not seen an interrupt since the io_apic was reprogrammed to
962 	 *    the new vector.
963 	 *
964 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
965 	 *    have not been processed yet.
966 	 */
967 	if (apicd->move_in_progress) {
968 		/*
969 		 * In theory there is a race:
970 		 *
971 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
972 		 *			      is effective, i.e. it's raised on
973 		 *			      the old vector.
974 		 *
975 		 * So if the target cpu cannot handle that interrupt before
976 		 * the old vector is cleaned up, we get a spurious interrupt
977 		 * and in the worst case the ioapic irq line becomes stale.
978 		 *
979 		 * But in case of cpu hotplug this should be a non issue
980 		 * because if the affinity update happens right before all
981 		 * cpus rendevouz in stop machine, there is no way that the
982 		 * interrupt can be blocked on the target cpu because all cpus
983 		 * loops first with interrupts enabled in stop machine, so the
984 		 * old vector is not yet cleaned up when the interrupt fires.
985 		 *
986 		 * So the only way to run into this issue is if the delivery
987 		 * of the interrupt on the apic/system bus would be delayed
988 		 * beyond the point where the target cpu disables interrupts
989 		 * in stop machine. I doubt that it can happen, but at least
990 		 * there is a theroretical chance. Virtualization might be
991 		 * able to expose this, but AFAICT the IOAPIC emulation is not
992 		 * as stupid as the real hardware.
993 		 *
994 		 * Anyway, there is nothing we can do about that at this point
995 		 * w/o refactoring the whole fixup_irq() business completely.
996 		 * We print at least the irq number and the old vector number,
997 		 * so we have the necessary information when a problem in that
998 		 * area arises.
999 		 */
1000 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1001 			irqd->irq, vector);
1002 	}
1003 	free_moved_vector(apicd);
1004 unlock:
1005 	raw_spin_unlock(&vector_lock);
1006 }
1007 
1008 #ifdef CONFIG_HOTPLUG_CPU
1009 /*
1010  * Note, this is not accurate accounting, but at least good enough to
1011  * prevent that the actual interrupt move will run out of vectors.
1012  */
1013 int lapic_can_unplug_cpu(void)
1014 {
1015 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1016 	int ret = 0;
1017 
1018 	raw_spin_lock(&vector_lock);
1019 	tomove = irq_matrix_allocated(vector_matrix);
1020 	avl = irq_matrix_available(vector_matrix, true);
1021 	if (avl < tomove) {
1022 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1023 			cpu, tomove, avl);
1024 		ret = -ENOSPC;
1025 		goto out;
1026 	}
1027 	rsvd = irq_matrix_reserved(vector_matrix);
1028 	if (avl < rsvd) {
1029 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1030 			rsvd, avl);
1031 	}
1032 out:
1033 	raw_spin_unlock(&vector_lock);
1034 	return ret;
1035 }
1036 #endif /* HOTPLUG_CPU */
1037 #endif /* SMP */
1038 
1039 static void __init print_APIC_field(int base)
1040 {
1041 	int i;
1042 
1043 	printk(KERN_DEBUG);
1044 
1045 	for (i = 0; i < 8; i++)
1046 		pr_cont("%08x", apic_read(base + i*0x10));
1047 
1048 	pr_cont("\n");
1049 }
1050 
1051 static void __init print_local_APIC(void *dummy)
1052 {
1053 	unsigned int i, v, ver, maxlvt;
1054 	u64 icr;
1055 
1056 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1057 		 smp_processor_id(), hard_smp_processor_id());
1058 	v = apic_read(APIC_ID);
1059 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1060 	v = apic_read(APIC_LVR);
1061 	pr_info("... APIC VERSION: %08x\n", v);
1062 	ver = GET_APIC_VERSION(v);
1063 	maxlvt = lapic_get_maxlvt();
1064 
1065 	v = apic_read(APIC_TASKPRI);
1066 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1067 
1068 	/* !82489DX */
1069 	if (APIC_INTEGRATED(ver)) {
1070 		if (!APIC_XAPIC(ver)) {
1071 			v = apic_read(APIC_ARBPRI);
1072 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1073 				 v, v & APIC_ARBPRI_MASK);
1074 		}
1075 		v = apic_read(APIC_PROCPRI);
1076 		pr_debug("... APIC PROCPRI: %08x\n", v);
1077 	}
1078 
1079 	/*
1080 	 * Remote read supported only in the 82489DX and local APIC for
1081 	 * Pentium processors.
1082 	 */
1083 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1084 		v = apic_read(APIC_RRR);
1085 		pr_debug("... APIC RRR: %08x\n", v);
1086 	}
1087 
1088 	v = apic_read(APIC_LDR);
1089 	pr_debug("... APIC LDR: %08x\n", v);
1090 	if (!x2apic_enabled()) {
1091 		v = apic_read(APIC_DFR);
1092 		pr_debug("... APIC DFR: %08x\n", v);
1093 	}
1094 	v = apic_read(APIC_SPIV);
1095 	pr_debug("... APIC SPIV: %08x\n", v);
1096 
1097 	pr_debug("... APIC ISR field:\n");
1098 	print_APIC_field(APIC_ISR);
1099 	pr_debug("... APIC TMR field:\n");
1100 	print_APIC_field(APIC_TMR);
1101 	pr_debug("... APIC IRR field:\n");
1102 	print_APIC_field(APIC_IRR);
1103 
1104 	/* !82489DX */
1105 	if (APIC_INTEGRATED(ver)) {
1106 		/* Due to the Pentium erratum 3AP. */
1107 		if (maxlvt > 3)
1108 			apic_write(APIC_ESR, 0);
1109 
1110 		v = apic_read(APIC_ESR);
1111 		pr_debug("... APIC ESR: %08x\n", v);
1112 	}
1113 
1114 	icr = apic_icr_read();
1115 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1116 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1117 
1118 	v = apic_read(APIC_LVTT);
1119 	pr_debug("... APIC LVTT: %08x\n", v);
1120 
1121 	if (maxlvt > 3) {
1122 		/* PC is LVT#4. */
1123 		v = apic_read(APIC_LVTPC);
1124 		pr_debug("... APIC LVTPC: %08x\n", v);
1125 	}
1126 	v = apic_read(APIC_LVT0);
1127 	pr_debug("... APIC LVT0: %08x\n", v);
1128 	v = apic_read(APIC_LVT1);
1129 	pr_debug("... APIC LVT1: %08x\n", v);
1130 
1131 	if (maxlvt > 2) {
1132 		/* ERR is LVT#3. */
1133 		v = apic_read(APIC_LVTERR);
1134 		pr_debug("... APIC LVTERR: %08x\n", v);
1135 	}
1136 
1137 	v = apic_read(APIC_TMICT);
1138 	pr_debug("... APIC TMICT: %08x\n", v);
1139 	v = apic_read(APIC_TMCCT);
1140 	pr_debug("... APIC TMCCT: %08x\n", v);
1141 	v = apic_read(APIC_TDCR);
1142 	pr_debug("... APIC TDCR: %08x\n", v);
1143 
1144 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1145 		v = apic_read(APIC_EFEAT);
1146 		maxlvt = (v >> 16) & 0xff;
1147 		pr_debug("... APIC EFEAT: %08x\n", v);
1148 		v = apic_read(APIC_ECTRL);
1149 		pr_debug("... APIC ECTRL: %08x\n", v);
1150 		for (i = 0; i < maxlvt; i++) {
1151 			v = apic_read(APIC_EILVTn(i));
1152 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1153 		}
1154 	}
1155 	pr_cont("\n");
1156 }
1157 
1158 static void __init print_local_APICs(int maxcpu)
1159 {
1160 	int cpu;
1161 
1162 	if (!maxcpu)
1163 		return;
1164 
1165 	preempt_disable();
1166 	for_each_online_cpu(cpu) {
1167 		if (cpu >= maxcpu)
1168 			break;
1169 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1170 	}
1171 	preempt_enable();
1172 }
1173 
1174 static void __init print_PIC(void)
1175 {
1176 	unsigned int v;
1177 	unsigned long flags;
1178 
1179 	if (!nr_legacy_irqs())
1180 		return;
1181 
1182 	pr_debug("\nprinting PIC contents\n");
1183 
1184 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1185 
1186 	v = inb(0xa1) << 8 | inb(0x21);
1187 	pr_debug("... PIC  IMR: %04x\n", v);
1188 
1189 	v = inb(0xa0) << 8 | inb(0x20);
1190 	pr_debug("... PIC  IRR: %04x\n", v);
1191 
1192 	outb(0x0b, 0xa0);
1193 	outb(0x0b, 0x20);
1194 	v = inb(0xa0) << 8 | inb(0x20);
1195 	outb(0x0a, 0xa0);
1196 	outb(0x0a, 0x20);
1197 
1198 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1199 
1200 	pr_debug("... PIC  ISR: %04x\n", v);
1201 
1202 	v = inb(0x4d1) << 8 | inb(0x4d0);
1203 	pr_debug("... PIC ELCR: %04x\n", v);
1204 }
1205 
1206 static int show_lapic __initdata = 1;
1207 static __init int setup_show_lapic(char *arg)
1208 {
1209 	int num = -1;
1210 
1211 	if (strcmp(arg, "all") == 0) {
1212 		show_lapic = CONFIG_NR_CPUS;
1213 	} else {
1214 		get_option(&arg, &num);
1215 		if (num >= 0)
1216 			show_lapic = num;
1217 	}
1218 
1219 	return 1;
1220 }
1221 __setup("show_lapic=", setup_show_lapic);
1222 
1223 static int __init print_ICs(void)
1224 {
1225 	if (apic_verbosity == APIC_QUIET)
1226 		return 0;
1227 
1228 	print_PIC();
1229 
1230 	/* don't print out if apic is not there */
1231 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1232 		return 0;
1233 
1234 	print_local_APICs(show_lapic);
1235 	print_IO_APICs();
1236 
1237 	return 0;
1238 }
1239 
1240 late_initcall(print_ICs);
1241