xref: /linux/arch/x86/kernel/apic/vector.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 /*
2  * Local APIC related interfaces to support IOAPIC, MSI, etc.
3  *
4  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *	Moved from arch/x86/kernel/apic/io_apic.c.
6  * Jiang Liu <jiang.liu@linux.intel.com>
7  *	Enable support of hierarchical irqdomains
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/interrupt.h>
14 #include <linux/seq_file.h>
15 #include <linux/init.h>
16 #include <linux/compiler.h>
17 #include <linux/slab.h>
18 #include <asm/irqdomain.h>
19 #include <asm/hw_irq.h>
20 #include <asm/apic.h>
21 #include <asm/i8259.h>
22 #include <asm/desc.h>
23 #include <asm/irq_remapping.h>
24 
25 #include <asm/trace/irq_vectors.h>
26 
27 struct apic_chip_data {
28 	struct irq_cfg		hw_irq_cfg;
29 	unsigned int		vector;
30 	unsigned int		prev_vector;
31 	unsigned int		cpu;
32 	unsigned int		prev_cpu;
33 	unsigned int		irq;
34 	struct hlist_node	clist;
35 	unsigned int		move_in_progress	: 1,
36 				is_managed		: 1,
37 				can_reserve		: 1,
38 				has_reserved		: 1;
39 };
40 
41 struct irq_domain *x86_vector_domain;
42 EXPORT_SYMBOL_GPL(x86_vector_domain);
43 static DEFINE_RAW_SPINLOCK(vector_lock);
44 static cpumask_var_t vector_searchmask;
45 static struct irq_chip lapic_controller;
46 static struct irq_matrix *vector_matrix;
47 #ifdef CONFIG_SMP
48 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
49 #endif
50 
51 void lock_vector_lock(void)
52 {
53 	/* Used to the online set of cpus does not change
54 	 * during assign_irq_vector.
55 	 */
56 	raw_spin_lock(&vector_lock);
57 }
58 
59 void unlock_vector_lock(void)
60 {
61 	raw_spin_unlock(&vector_lock);
62 }
63 
64 void init_irq_alloc_info(struct irq_alloc_info *info,
65 			 const struct cpumask *mask)
66 {
67 	memset(info, 0, sizeof(*info));
68 	info->mask = mask;
69 }
70 
71 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
72 {
73 	if (src)
74 		*dst = *src;
75 	else
76 		memset(dst, 0, sizeof(*dst));
77 }
78 
79 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
80 {
81 	if (!irqd)
82 		return NULL;
83 
84 	while (irqd->parent_data)
85 		irqd = irqd->parent_data;
86 
87 	return irqd->chip_data;
88 }
89 
90 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
91 {
92 	struct apic_chip_data *apicd = apic_chip_data(irqd);
93 
94 	return apicd ? &apicd->hw_irq_cfg : NULL;
95 }
96 EXPORT_SYMBOL_GPL(irqd_cfg);
97 
98 struct irq_cfg *irq_cfg(unsigned int irq)
99 {
100 	return irqd_cfg(irq_get_irq_data(irq));
101 }
102 
103 static struct apic_chip_data *alloc_apic_chip_data(int node)
104 {
105 	struct apic_chip_data *apicd;
106 
107 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
108 	if (apicd)
109 		INIT_HLIST_NODE(&apicd->clist);
110 	return apicd;
111 }
112 
113 static void free_apic_chip_data(struct apic_chip_data *apicd)
114 {
115 	kfree(apicd);
116 }
117 
118 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
119 				unsigned int cpu)
120 {
121 	struct apic_chip_data *apicd = apic_chip_data(irqd);
122 
123 	lockdep_assert_held(&vector_lock);
124 
125 	apicd->hw_irq_cfg.vector = vector;
126 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
127 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
128 	trace_vector_config(irqd->irq, vector, cpu,
129 			    apicd->hw_irq_cfg.dest_apicid);
130 }
131 
132 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
133 			       unsigned int newcpu)
134 {
135 	struct apic_chip_data *apicd = apic_chip_data(irqd);
136 	struct irq_desc *desc = irq_data_to_desc(irqd);
137 	bool managed = irqd_affinity_is_managed(irqd);
138 
139 	lockdep_assert_held(&vector_lock);
140 
141 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
142 			    apicd->cpu);
143 
144 	/*
145 	 * If there is no vector associated or if the associated vector is
146 	 * the shutdown vector, which is associated to make PCI/MSI
147 	 * shutdown mode work, then there is nothing to release. Clear out
148 	 * prev_vector for this and the offlined target case.
149 	 */
150 	apicd->prev_vector = 0;
151 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
152 		goto setnew;
153 	/*
154 	 * If the target CPU of the previous vector is online, then mark
155 	 * the vector as move in progress and store it for cleanup when the
156 	 * first interrupt on the new vector arrives. If the target CPU is
157 	 * offline then the regular release mechanism via the cleanup
158 	 * vector is not possible and the vector can be immediately freed
159 	 * in the underlying matrix allocator.
160 	 */
161 	if (cpu_online(apicd->cpu)) {
162 		apicd->move_in_progress = true;
163 		apicd->prev_vector = apicd->vector;
164 		apicd->prev_cpu = apicd->cpu;
165 	} else {
166 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
167 				managed);
168 	}
169 
170 setnew:
171 	apicd->vector = newvec;
172 	apicd->cpu = newcpu;
173 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
174 	per_cpu(vector_irq, newcpu)[newvec] = desc;
175 }
176 
177 static void vector_assign_managed_shutdown(struct irq_data *irqd)
178 {
179 	unsigned int cpu = cpumask_first(cpu_online_mask);
180 
181 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
182 }
183 
184 static int reserve_managed_vector(struct irq_data *irqd)
185 {
186 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
187 	struct apic_chip_data *apicd = apic_chip_data(irqd);
188 	unsigned long flags;
189 	int ret;
190 
191 	raw_spin_lock_irqsave(&vector_lock, flags);
192 	apicd->is_managed = true;
193 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
194 	raw_spin_unlock_irqrestore(&vector_lock, flags);
195 	trace_vector_reserve_managed(irqd->irq, ret);
196 	return ret;
197 }
198 
199 static void reserve_irq_vector_locked(struct irq_data *irqd)
200 {
201 	struct apic_chip_data *apicd = apic_chip_data(irqd);
202 
203 	irq_matrix_reserve(vector_matrix);
204 	apicd->can_reserve = true;
205 	apicd->has_reserved = true;
206 	irqd_set_can_reserve(irqd);
207 	trace_vector_reserve(irqd->irq, 0);
208 	vector_assign_managed_shutdown(irqd);
209 }
210 
211 static int reserve_irq_vector(struct irq_data *irqd)
212 {
213 	unsigned long flags;
214 
215 	raw_spin_lock_irqsave(&vector_lock, flags);
216 	reserve_irq_vector_locked(irqd);
217 	raw_spin_unlock_irqrestore(&vector_lock, flags);
218 	return 0;
219 }
220 
221 static int allocate_vector(struct irq_data *irqd, const struct cpumask *dest)
222 {
223 	struct apic_chip_data *apicd = apic_chip_data(irqd);
224 	bool resvd = apicd->has_reserved;
225 	unsigned int cpu = apicd->cpu;
226 	int vector = apicd->vector;
227 
228 	lockdep_assert_held(&vector_lock);
229 
230 	/*
231 	 * If the current target CPU is online and in the new requested
232 	 * affinity mask, there is no point in moving the interrupt from
233 	 * one CPU to another.
234 	 */
235 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
236 		return 0;
237 
238 	/*
239 	 * Careful here. @apicd might either have move_in_progress set or
240 	 * be enqueued for cleanup. Assigning a new vector would either
241 	 * leave a stale vector on some CPU around or in case of a pending
242 	 * cleanup corrupt the hlist.
243 	 */
244 	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
245 		return -EBUSY;
246 
247 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
248 	if (vector > 0)
249 		apic_update_vector(irqd, vector, cpu);
250 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
251 	return vector;
252 }
253 
254 static int assign_vector_locked(struct irq_data *irqd,
255 				const struct cpumask *dest)
256 {
257 	struct apic_chip_data *apicd = apic_chip_data(irqd);
258 	int vector = allocate_vector(irqd, dest);
259 
260 	if (vector < 0)
261 		return vector;
262 
263 	apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
264 	return 0;
265 }
266 
267 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
268 {
269 	unsigned long flags;
270 	int ret;
271 
272 	raw_spin_lock_irqsave(&vector_lock, flags);
273 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
274 	ret = assign_vector_locked(irqd, vector_searchmask);
275 	raw_spin_unlock_irqrestore(&vector_lock, flags);
276 	return ret;
277 }
278 
279 static int assign_irq_vector_any_locked(struct irq_data *irqd)
280 {
281 	/* Get the affinity mask - either irq_default_affinity or (user) set */
282 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
283 	int node = irq_data_get_node(irqd);
284 
285 	if (node == NUMA_NO_NODE)
286 		goto all;
287 	/* Try the intersection of @affmsk and node mask */
288 	cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
289 	if (!assign_vector_locked(irqd, vector_searchmask))
290 		return 0;
291 	/* Try the node mask */
292 	if (!assign_vector_locked(irqd, cpumask_of_node(node)))
293 		return 0;
294 all:
295 	/* Try the full affinity mask */
296 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
297 	if (!assign_vector_locked(irqd, vector_searchmask))
298 		return 0;
299 	/* Try the full online mask */
300 	return assign_vector_locked(irqd, cpu_online_mask);
301 }
302 
303 static int
304 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
305 {
306 	if (irqd_affinity_is_managed(irqd))
307 		return reserve_managed_vector(irqd);
308 	if (info->mask)
309 		return assign_irq_vector(irqd, info->mask);
310 	/*
311 	 * Make only a global reservation with no guarantee. A real vector
312 	 * is associated at activation time.
313 	 */
314 	return reserve_irq_vector(irqd);
315 }
316 
317 static int
318 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
319 {
320 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
321 	struct apic_chip_data *apicd = apic_chip_data(irqd);
322 	int vector, cpu;
323 
324 	cpumask_and(vector_searchmask, vector_searchmask, affmsk);
325 	cpu = cpumask_first(vector_searchmask);
326 	if (cpu >= nr_cpu_ids)
327 		return -EINVAL;
328 	/* set_affinity might call here for nothing */
329 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
330 		return 0;
331 	vector = irq_matrix_alloc_managed(vector_matrix, cpu);
332 	trace_vector_alloc_managed(irqd->irq, vector, vector);
333 	if (vector < 0)
334 		return vector;
335 	apic_update_vector(irqd, vector, cpu);
336 	apic_update_irq_cfg(irqd, vector, cpu);
337 	return 0;
338 }
339 
340 static void clear_irq_vector(struct irq_data *irqd)
341 {
342 	struct apic_chip_data *apicd = apic_chip_data(irqd);
343 	bool managed = irqd_affinity_is_managed(irqd);
344 	unsigned int vector = apicd->vector;
345 
346 	lockdep_assert_held(&vector_lock);
347 
348 	if (!vector)
349 		return;
350 
351 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
352 			   apicd->prev_cpu);
353 
354 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_UNUSED;
355 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
356 	apicd->vector = 0;
357 
358 	/* Clean up move in progress */
359 	vector = apicd->prev_vector;
360 	if (!vector)
361 		return;
362 
363 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED;
364 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
365 	apicd->prev_vector = 0;
366 	apicd->move_in_progress = 0;
367 	hlist_del_init(&apicd->clist);
368 }
369 
370 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
371 {
372 	struct apic_chip_data *apicd = apic_chip_data(irqd);
373 	unsigned long flags;
374 
375 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
376 				apicd->can_reserve, false);
377 
378 	/* Regular fixed assigned interrupt */
379 	if (!apicd->is_managed && !apicd->can_reserve)
380 		return;
381 	/* If the interrupt has a global reservation, nothing to do */
382 	if (apicd->has_reserved)
383 		return;
384 
385 	raw_spin_lock_irqsave(&vector_lock, flags);
386 	clear_irq_vector(irqd);
387 	if (apicd->can_reserve)
388 		reserve_irq_vector_locked(irqd);
389 	else
390 		vector_assign_managed_shutdown(irqd);
391 	raw_spin_unlock_irqrestore(&vector_lock, flags);
392 }
393 
394 static int activate_reserved(struct irq_data *irqd)
395 {
396 	struct apic_chip_data *apicd = apic_chip_data(irqd);
397 	int ret;
398 
399 	ret = assign_irq_vector_any_locked(irqd);
400 	if (!ret) {
401 		apicd->has_reserved = false;
402 		/*
403 		 * Core might have disabled reservation mode after
404 		 * allocating the irq descriptor. Ideally this should
405 		 * happen before allocation time, but that would require
406 		 * completely convoluted ways of transporting that
407 		 * information.
408 		 */
409 		if (!irqd_can_reserve(irqd))
410 			apicd->can_reserve = false;
411 	}
412 	return ret;
413 }
414 
415 static int activate_managed(struct irq_data *irqd)
416 {
417 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
418 	int ret;
419 
420 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
421 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
422 		/* Something in the core code broke! Survive gracefully */
423 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
424 		return EINVAL;
425 	}
426 
427 	ret = assign_managed_vector(irqd, vector_searchmask);
428 	/*
429 	 * This should not happen. The vector reservation got buggered.  Handle
430 	 * it gracefully.
431 	 */
432 	if (WARN_ON_ONCE(ret < 0)) {
433 		pr_err("Managed startup irq %u, no vector available\n",
434 		       irqd->irq);
435 	}
436        return ret;
437 }
438 
439 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
440 			       bool reserve)
441 {
442 	struct apic_chip_data *apicd = apic_chip_data(irqd);
443 	unsigned long flags;
444 	int ret = 0;
445 
446 	trace_vector_activate(irqd->irq, apicd->is_managed,
447 			      apicd->can_reserve, reserve);
448 
449 	/* Nothing to do for fixed assigned vectors */
450 	if (!apicd->can_reserve && !apicd->is_managed)
451 		return 0;
452 
453 	raw_spin_lock_irqsave(&vector_lock, flags);
454 	if (reserve || irqd_is_managed_and_shutdown(irqd))
455 		vector_assign_managed_shutdown(irqd);
456 	else if (apicd->is_managed)
457 		ret = activate_managed(irqd);
458 	else if (apicd->has_reserved)
459 		ret = activate_reserved(irqd);
460 	raw_spin_unlock_irqrestore(&vector_lock, flags);
461 	return ret;
462 }
463 
464 static void vector_free_reserved_and_managed(struct irq_data *irqd)
465 {
466 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
467 	struct apic_chip_data *apicd = apic_chip_data(irqd);
468 
469 	trace_vector_teardown(irqd->irq, apicd->is_managed,
470 			      apicd->has_reserved);
471 
472 	if (apicd->has_reserved)
473 		irq_matrix_remove_reserved(vector_matrix);
474 	if (apicd->is_managed)
475 		irq_matrix_remove_managed(vector_matrix, dest);
476 }
477 
478 static void x86_vector_free_irqs(struct irq_domain *domain,
479 				 unsigned int virq, unsigned int nr_irqs)
480 {
481 	struct apic_chip_data *apicd;
482 	struct irq_data *irqd;
483 	unsigned long flags;
484 	int i;
485 
486 	for (i = 0; i < nr_irqs; i++) {
487 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
488 		if (irqd && irqd->chip_data) {
489 			raw_spin_lock_irqsave(&vector_lock, flags);
490 			clear_irq_vector(irqd);
491 			vector_free_reserved_and_managed(irqd);
492 			apicd = irqd->chip_data;
493 			irq_domain_reset_irq_data(irqd);
494 			raw_spin_unlock_irqrestore(&vector_lock, flags);
495 			free_apic_chip_data(apicd);
496 		}
497 	}
498 }
499 
500 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
501 				    struct apic_chip_data *apicd)
502 {
503 	unsigned long flags;
504 	bool realloc = false;
505 
506 	apicd->vector = ISA_IRQ_VECTOR(virq);
507 	apicd->cpu = 0;
508 
509 	raw_spin_lock_irqsave(&vector_lock, flags);
510 	/*
511 	 * If the interrupt is activated, then it must stay at this vector
512 	 * position. That's usually the timer interrupt (0).
513 	 */
514 	if (irqd_is_activated(irqd)) {
515 		trace_vector_setup(virq, true, 0);
516 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
517 	} else {
518 		/* Release the vector */
519 		apicd->can_reserve = true;
520 		irqd_set_can_reserve(irqd);
521 		clear_irq_vector(irqd);
522 		realloc = true;
523 	}
524 	raw_spin_unlock_irqrestore(&vector_lock, flags);
525 	return realloc;
526 }
527 
528 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
529 				 unsigned int nr_irqs, void *arg)
530 {
531 	struct irq_alloc_info *info = arg;
532 	struct apic_chip_data *apicd;
533 	struct irq_data *irqd;
534 	int i, err, node;
535 
536 	if (disable_apic)
537 		return -ENXIO;
538 
539 	/* Currently vector allocator can't guarantee contiguous allocations */
540 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
541 		return -ENOSYS;
542 
543 	for (i = 0; i < nr_irqs; i++) {
544 		irqd = irq_domain_get_irq_data(domain, virq + i);
545 		BUG_ON(!irqd);
546 		node = irq_data_get_node(irqd);
547 		WARN_ON_ONCE(irqd->chip_data);
548 		apicd = alloc_apic_chip_data(node);
549 		if (!apicd) {
550 			err = -ENOMEM;
551 			goto error;
552 		}
553 
554 		apicd->irq = virq + i;
555 		irqd->chip = &lapic_controller;
556 		irqd->chip_data = apicd;
557 		irqd->hwirq = virq + i;
558 		irqd_set_single_target(irqd);
559 		/*
560 		 * Legacy vectors are already assigned when the IOAPIC
561 		 * takes them over. They stay on the same vector. This is
562 		 * required for check_timer() to work correctly as it might
563 		 * switch back to legacy mode. Only update the hardware
564 		 * config.
565 		 */
566 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
567 			if (!vector_configure_legacy(virq + i, irqd, apicd))
568 				continue;
569 		}
570 
571 		err = assign_irq_vector_policy(irqd, info);
572 		trace_vector_setup(virq + i, false, err);
573 		if (err) {
574 			irqd->chip_data = NULL;
575 			free_apic_chip_data(apicd);
576 			goto error;
577 		}
578 	}
579 
580 	return 0;
581 
582 error:
583 	x86_vector_free_irqs(domain, virq, i);
584 	return err;
585 }
586 
587 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
588 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
589 				  struct irq_data *irqd, int ind)
590 {
591 	struct apic_chip_data apicd;
592 	unsigned long flags;
593 	int irq;
594 
595 	if (!irqd) {
596 		irq_matrix_debug_show(m, vector_matrix, ind);
597 		return;
598 	}
599 
600 	irq = irqd->irq;
601 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
602 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
603 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
604 		return;
605 	}
606 
607 	if (!irqd->chip_data) {
608 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
609 		return;
610 	}
611 
612 	raw_spin_lock_irqsave(&vector_lock, flags);
613 	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
614 	raw_spin_unlock_irqrestore(&vector_lock, flags);
615 
616 	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
617 	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
618 	if (apicd.prev_vector) {
619 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
620 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
621 	}
622 	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
623 	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
624 	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
625 	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
626 	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
627 }
628 #endif
629 
630 static const struct irq_domain_ops x86_vector_domain_ops = {
631 	.alloc		= x86_vector_alloc_irqs,
632 	.free		= x86_vector_free_irqs,
633 	.activate	= x86_vector_activate,
634 	.deactivate	= x86_vector_deactivate,
635 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
636 	.debug_show	= x86_vector_debug_show,
637 #endif
638 };
639 
640 int __init arch_probe_nr_irqs(void)
641 {
642 	int nr;
643 
644 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
645 		nr_irqs = NR_VECTORS * nr_cpu_ids;
646 
647 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
648 #if defined(CONFIG_PCI_MSI)
649 	/*
650 	 * for MSI and HT dyn irq
651 	 */
652 	if (gsi_top <= NR_IRQS_LEGACY)
653 		nr +=  8 * nr_cpu_ids;
654 	else
655 		nr += gsi_top * 16;
656 #endif
657 	if (nr < nr_irqs)
658 		nr_irqs = nr;
659 
660 	/*
661 	 * We don't know if PIC is present at this point so we need to do
662 	 * probe() to get the right number of legacy IRQs.
663 	 */
664 	return legacy_pic->probe();
665 }
666 
667 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
668 {
669 	/*
670 	 * Use assign system here so it wont get accounted as allocated
671 	 * and moveable in the cpu hotplug check and it prevents managed
672 	 * irq reservation from touching it.
673 	 */
674 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
675 }
676 
677 void __init lapic_assign_system_vectors(void)
678 {
679 	unsigned int i, vector = 0;
680 
681 	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
682 		irq_matrix_assign_system(vector_matrix, vector, false);
683 
684 	if (nr_legacy_irqs() > 1)
685 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
686 
687 	/* System vectors are reserved, online it */
688 	irq_matrix_online(vector_matrix);
689 
690 	/* Mark the preallocated legacy interrupts */
691 	for (i = 0; i < nr_legacy_irqs(); i++) {
692 		if (i != PIC_CASCADE_IR)
693 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
694 	}
695 }
696 
697 int __init arch_early_irq_init(void)
698 {
699 	struct fwnode_handle *fn;
700 
701 	fn = irq_domain_alloc_named_fwnode("VECTOR");
702 	BUG_ON(!fn);
703 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
704 						   NULL);
705 	BUG_ON(x86_vector_domain == NULL);
706 	irq_domain_free_fwnode(fn);
707 	irq_set_default_host(x86_vector_domain);
708 
709 	arch_init_msi_domain(x86_vector_domain);
710 
711 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
712 
713 	/*
714 	 * Allocate the vector matrix allocator data structure and limit the
715 	 * search area.
716 	 */
717 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
718 					 FIRST_SYSTEM_VECTOR);
719 	BUG_ON(!vector_matrix);
720 
721 	return arch_early_ioapic_init();
722 }
723 
724 #ifdef CONFIG_SMP
725 
726 static struct irq_desc *__setup_vector_irq(int vector)
727 {
728 	int isairq = vector - ISA_IRQ_VECTOR(0);
729 
730 	/* Check whether the irq is in the legacy space */
731 	if (isairq < 0 || isairq >= nr_legacy_irqs())
732 		return VECTOR_UNUSED;
733 	/* Check whether the irq is handled by the IOAPIC */
734 	if (test_bit(isairq, &io_apic_irqs))
735 		return VECTOR_UNUSED;
736 	return irq_to_desc(isairq);
737 }
738 
739 /* Online the local APIC infrastructure and initialize the vectors */
740 void lapic_online(void)
741 {
742 	unsigned int vector;
743 
744 	lockdep_assert_held(&vector_lock);
745 
746 	/* Online the vector matrix array for this CPU */
747 	irq_matrix_online(vector_matrix);
748 
749 	/*
750 	 * The interrupt affinity logic never targets interrupts to offline
751 	 * CPUs. The exception are the legacy PIC interrupts. In general
752 	 * they are only targeted to CPU0, but depending on the platform
753 	 * they can be distributed to any online CPU in hardware. The
754 	 * kernel has no influence on that. So all active legacy vectors
755 	 * must be installed on all CPUs. All non legacy interrupts can be
756 	 * cleared.
757 	 */
758 	for (vector = 0; vector < NR_VECTORS; vector++)
759 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
760 }
761 
762 void lapic_offline(void)
763 {
764 	lock_vector_lock();
765 	irq_matrix_offline(vector_matrix);
766 	unlock_vector_lock();
767 }
768 
769 static int apic_set_affinity(struct irq_data *irqd,
770 			     const struct cpumask *dest, bool force)
771 {
772 	struct apic_chip_data *apicd = apic_chip_data(irqd);
773 	int err;
774 
775 	/*
776 	 * Core code can call here for inactive interrupts. For inactive
777 	 * interrupts which use managed or reservation mode there is no
778 	 * point in going through the vector assignment right now as the
779 	 * activation will assign a vector which fits the destination
780 	 * cpumask. Let the core code store the destination mask and be
781 	 * done with it.
782 	 */
783 	if (!irqd_is_activated(irqd) &&
784 	    (apicd->is_managed || apicd->can_reserve))
785 		return IRQ_SET_MASK_OK;
786 
787 	raw_spin_lock(&vector_lock);
788 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
789 	if (irqd_affinity_is_managed(irqd))
790 		err = assign_managed_vector(irqd, vector_searchmask);
791 	else
792 		err = assign_vector_locked(irqd, vector_searchmask);
793 	raw_spin_unlock(&vector_lock);
794 	return err ? err : IRQ_SET_MASK_OK;
795 }
796 
797 #else
798 # define apic_set_affinity	NULL
799 #endif
800 
801 static int apic_retrigger_irq(struct irq_data *irqd)
802 {
803 	struct apic_chip_data *apicd = apic_chip_data(irqd);
804 	unsigned long flags;
805 
806 	raw_spin_lock_irqsave(&vector_lock, flags);
807 	apic->send_IPI(apicd->cpu, apicd->vector);
808 	raw_spin_unlock_irqrestore(&vector_lock, flags);
809 
810 	return 1;
811 }
812 
813 void apic_ack_irq(struct irq_data *irqd)
814 {
815 	irq_move_irq(irqd);
816 	ack_APIC_irq();
817 }
818 
819 void apic_ack_edge(struct irq_data *irqd)
820 {
821 	irq_complete_move(irqd_cfg(irqd));
822 	apic_ack_irq(irqd);
823 }
824 
825 static struct irq_chip lapic_controller = {
826 	.name			= "APIC",
827 	.irq_ack		= apic_ack_edge,
828 	.irq_set_affinity	= apic_set_affinity,
829 	.irq_retrigger		= apic_retrigger_irq,
830 };
831 
832 #ifdef CONFIG_SMP
833 
834 static void free_moved_vector(struct apic_chip_data *apicd)
835 {
836 	unsigned int vector = apicd->prev_vector;
837 	unsigned int cpu = apicd->prev_cpu;
838 	bool managed = apicd->is_managed;
839 
840 	/*
841 	 * This should never happen. Managed interrupts are not
842 	 * migrated except on CPU down, which does not involve the
843 	 * cleanup vector. But try to keep the accounting correct
844 	 * nevertheless.
845 	 */
846 	WARN_ON_ONCE(managed);
847 
848 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
849 	irq_matrix_free(vector_matrix, cpu, vector, managed);
850 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
851 	hlist_del_init(&apicd->clist);
852 	apicd->prev_vector = 0;
853 	apicd->move_in_progress = 0;
854 }
855 
856 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
857 {
858 	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
859 	struct apic_chip_data *apicd;
860 	struct hlist_node *tmp;
861 
862 	entering_ack_irq();
863 	/* Prevent vectors vanishing under us */
864 	raw_spin_lock(&vector_lock);
865 
866 	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
867 		unsigned int irr, vector = apicd->prev_vector;
868 
869 		/*
870 		 * Paranoia: Check if the vector that needs to be cleaned
871 		 * up is registered at the APICs IRR. If so, then this is
872 		 * not the best time to clean it up. Clean it up in the
873 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
874 		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
875 		 * priority external vector, so on return from this
876 		 * interrupt the device interrupt will happen first.
877 		 */
878 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
879 		if (irr & (1U << (vector % 32))) {
880 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
881 			continue;
882 		}
883 		free_moved_vector(apicd);
884 	}
885 
886 	raw_spin_unlock(&vector_lock);
887 	exiting_irq();
888 }
889 
890 static void __send_cleanup_vector(struct apic_chip_data *apicd)
891 {
892 	unsigned int cpu;
893 
894 	raw_spin_lock(&vector_lock);
895 	apicd->move_in_progress = 0;
896 	cpu = apicd->prev_cpu;
897 	if (cpu_online(cpu)) {
898 		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
899 		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
900 	} else {
901 		apicd->prev_vector = 0;
902 	}
903 	raw_spin_unlock(&vector_lock);
904 }
905 
906 void send_cleanup_vector(struct irq_cfg *cfg)
907 {
908 	struct apic_chip_data *apicd;
909 
910 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
911 	if (apicd->move_in_progress)
912 		__send_cleanup_vector(apicd);
913 }
914 
915 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
916 {
917 	struct apic_chip_data *apicd;
918 
919 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
920 	if (likely(!apicd->move_in_progress))
921 		return;
922 
923 	if (vector == apicd->vector && apicd->cpu == smp_processor_id())
924 		__send_cleanup_vector(apicd);
925 }
926 
927 void irq_complete_move(struct irq_cfg *cfg)
928 {
929 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
930 }
931 
932 /*
933  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
934  */
935 void irq_force_complete_move(struct irq_desc *desc)
936 {
937 	struct apic_chip_data *apicd;
938 	struct irq_data *irqd;
939 	unsigned int vector;
940 
941 	/*
942 	 * The function is called for all descriptors regardless of which
943 	 * irqdomain they belong to. For example if an IRQ is provided by
944 	 * an irq_chip as part of a GPIO driver, the chip data for that
945 	 * descriptor is specific to the irq_chip in question.
946 	 *
947 	 * Check first that the chip_data is what we expect
948 	 * (apic_chip_data) before touching it any further.
949 	 */
950 	irqd = irq_domain_get_irq_data(x86_vector_domain,
951 				       irq_desc_get_irq(desc));
952 	if (!irqd)
953 		return;
954 
955 	raw_spin_lock(&vector_lock);
956 	apicd = apic_chip_data(irqd);
957 	if (!apicd)
958 		goto unlock;
959 
960 	/*
961 	 * If prev_vector is empty, no action required.
962 	 */
963 	vector = apicd->prev_vector;
964 	if (!vector)
965 		goto unlock;
966 
967 	/*
968 	 * This is tricky. If the cleanup of the old vector has not been
969 	 * done yet, then the following setaffinity call will fail with
970 	 * -EBUSY. This can leave the interrupt in a stale state.
971 	 *
972 	 * All CPUs are stuck in stop machine with interrupts disabled so
973 	 * calling __irq_complete_move() would be completely pointless.
974 	 *
975 	 * 1) The interrupt is in move_in_progress state. That means that we
976 	 *    have not seen an interrupt since the io_apic was reprogrammed to
977 	 *    the new vector.
978 	 *
979 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
980 	 *    have not been processed yet.
981 	 */
982 	if (apicd->move_in_progress) {
983 		/*
984 		 * In theory there is a race:
985 		 *
986 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
987 		 *			      is effective, i.e. it's raised on
988 		 *			      the old vector.
989 		 *
990 		 * So if the target cpu cannot handle that interrupt before
991 		 * the old vector is cleaned up, we get a spurious interrupt
992 		 * and in the worst case the ioapic irq line becomes stale.
993 		 *
994 		 * But in case of cpu hotplug this should be a non issue
995 		 * because if the affinity update happens right before all
996 		 * cpus rendevouz in stop machine, there is no way that the
997 		 * interrupt can be blocked on the target cpu because all cpus
998 		 * loops first with interrupts enabled in stop machine, so the
999 		 * old vector is not yet cleaned up when the interrupt fires.
1000 		 *
1001 		 * So the only way to run into this issue is if the delivery
1002 		 * of the interrupt on the apic/system bus would be delayed
1003 		 * beyond the point where the target cpu disables interrupts
1004 		 * in stop machine. I doubt that it can happen, but at least
1005 		 * there is a theroretical chance. Virtualization might be
1006 		 * able to expose this, but AFAICT the IOAPIC emulation is not
1007 		 * as stupid as the real hardware.
1008 		 *
1009 		 * Anyway, there is nothing we can do about that at this point
1010 		 * w/o refactoring the whole fixup_irq() business completely.
1011 		 * We print at least the irq number and the old vector number,
1012 		 * so we have the necessary information when a problem in that
1013 		 * area arises.
1014 		 */
1015 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1016 			irqd->irq, vector);
1017 	}
1018 	free_moved_vector(apicd);
1019 unlock:
1020 	raw_spin_unlock(&vector_lock);
1021 }
1022 
1023 #ifdef CONFIG_HOTPLUG_CPU
1024 /*
1025  * Note, this is not accurate accounting, but at least good enough to
1026  * prevent that the actual interrupt move will run out of vectors.
1027  */
1028 int lapic_can_unplug_cpu(void)
1029 {
1030 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1031 	int ret = 0;
1032 
1033 	raw_spin_lock(&vector_lock);
1034 	tomove = irq_matrix_allocated(vector_matrix);
1035 	avl = irq_matrix_available(vector_matrix, true);
1036 	if (avl < tomove) {
1037 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1038 			cpu, tomove, avl);
1039 		ret = -ENOSPC;
1040 		goto out;
1041 	}
1042 	rsvd = irq_matrix_reserved(vector_matrix);
1043 	if (avl < rsvd) {
1044 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1045 			rsvd, avl);
1046 	}
1047 out:
1048 	raw_spin_unlock(&vector_lock);
1049 	return ret;
1050 }
1051 #endif /* HOTPLUG_CPU */
1052 #endif /* SMP */
1053 
1054 static void __init print_APIC_field(int base)
1055 {
1056 	int i;
1057 
1058 	printk(KERN_DEBUG);
1059 
1060 	for (i = 0; i < 8; i++)
1061 		pr_cont("%08x", apic_read(base + i*0x10));
1062 
1063 	pr_cont("\n");
1064 }
1065 
1066 static void __init print_local_APIC(void *dummy)
1067 {
1068 	unsigned int i, v, ver, maxlvt;
1069 	u64 icr;
1070 
1071 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1072 		 smp_processor_id(), hard_smp_processor_id());
1073 	v = apic_read(APIC_ID);
1074 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1075 	v = apic_read(APIC_LVR);
1076 	pr_info("... APIC VERSION: %08x\n", v);
1077 	ver = GET_APIC_VERSION(v);
1078 	maxlvt = lapic_get_maxlvt();
1079 
1080 	v = apic_read(APIC_TASKPRI);
1081 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1082 
1083 	/* !82489DX */
1084 	if (APIC_INTEGRATED(ver)) {
1085 		if (!APIC_XAPIC(ver)) {
1086 			v = apic_read(APIC_ARBPRI);
1087 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1088 				 v, v & APIC_ARBPRI_MASK);
1089 		}
1090 		v = apic_read(APIC_PROCPRI);
1091 		pr_debug("... APIC PROCPRI: %08x\n", v);
1092 	}
1093 
1094 	/*
1095 	 * Remote read supported only in the 82489DX and local APIC for
1096 	 * Pentium processors.
1097 	 */
1098 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1099 		v = apic_read(APIC_RRR);
1100 		pr_debug("... APIC RRR: %08x\n", v);
1101 	}
1102 
1103 	v = apic_read(APIC_LDR);
1104 	pr_debug("... APIC LDR: %08x\n", v);
1105 	if (!x2apic_enabled()) {
1106 		v = apic_read(APIC_DFR);
1107 		pr_debug("... APIC DFR: %08x\n", v);
1108 	}
1109 	v = apic_read(APIC_SPIV);
1110 	pr_debug("... APIC SPIV: %08x\n", v);
1111 
1112 	pr_debug("... APIC ISR field:\n");
1113 	print_APIC_field(APIC_ISR);
1114 	pr_debug("... APIC TMR field:\n");
1115 	print_APIC_field(APIC_TMR);
1116 	pr_debug("... APIC IRR field:\n");
1117 	print_APIC_field(APIC_IRR);
1118 
1119 	/* !82489DX */
1120 	if (APIC_INTEGRATED(ver)) {
1121 		/* Due to the Pentium erratum 3AP. */
1122 		if (maxlvt > 3)
1123 			apic_write(APIC_ESR, 0);
1124 
1125 		v = apic_read(APIC_ESR);
1126 		pr_debug("... APIC ESR: %08x\n", v);
1127 	}
1128 
1129 	icr = apic_icr_read();
1130 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1131 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1132 
1133 	v = apic_read(APIC_LVTT);
1134 	pr_debug("... APIC LVTT: %08x\n", v);
1135 
1136 	if (maxlvt > 3) {
1137 		/* PC is LVT#4. */
1138 		v = apic_read(APIC_LVTPC);
1139 		pr_debug("... APIC LVTPC: %08x\n", v);
1140 	}
1141 	v = apic_read(APIC_LVT0);
1142 	pr_debug("... APIC LVT0: %08x\n", v);
1143 	v = apic_read(APIC_LVT1);
1144 	pr_debug("... APIC LVT1: %08x\n", v);
1145 
1146 	if (maxlvt > 2) {
1147 		/* ERR is LVT#3. */
1148 		v = apic_read(APIC_LVTERR);
1149 		pr_debug("... APIC LVTERR: %08x\n", v);
1150 	}
1151 
1152 	v = apic_read(APIC_TMICT);
1153 	pr_debug("... APIC TMICT: %08x\n", v);
1154 	v = apic_read(APIC_TMCCT);
1155 	pr_debug("... APIC TMCCT: %08x\n", v);
1156 	v = apic_read(APIC_TDCR);
1157 	pr_debug("... APIC TDCR: %08x\n", v);
1158 
1159 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1160 		v = apic_read(APIC_EFEAT);
1161 		maxlvt = (v >> 16) & 0xff;
1162 		pr_debug("... APIC EFEAT: %08x\n", v);
1163 		v = apic_read(APIC_ECTRL);
1164 		pr_debug("... APIC ECTRL: %08x\n", v);
1165 		for (i = 0; i < maxlvt; i++) {
1166 			v = apic_read(APIC_EILVTn(i));
1167 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1168 		}
1169 	}
1170 	pr_cont("\n");
1171 }
1172 
1173 static void __init print_local_APICs(int maxcpu)
1174 {
1175 	int cpu;
1176 
1177 	if (!maxcpu)
1178 		return;
1179 
1180 	preempt_disable();
1181 	for_each_online_cpu(cpu) {
1182 		if (cpu >= maxcpu)
1183 			break;
1184 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1185 	}
1186 	preempt_enable();
1187 }
1188 
1189 static void __init print_PIC(void)
1190 {
1191 	unsigned int v;
1192 	unsigned long flags;
1193 
1194 	if (!nr_legacy_irqs())
1195 		return;
1196 
1197 	pr_debug("\nprinting PIC contents\n");
1198 
1199 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1200 
1201 	v = inb(0xa1) << 8 | inb(0x21);
1202 	pr_debug("... PIC  IMR: %04x\n", v);
1203 
1204 	v = inb(0xa0) << 8 | inb(0x20);
1205 	pr_debug("... PIC  IRR: %04x\n", v);
1206 
1207 	outb(0x0b, 0xa0);
1208 	outb(0x0b, 0x20);
1209 	v = inb(0xa0) << 8 | inb(0x20);
1210 	outb(0x0a, 0xa0);
1211 	outb(0x0a, 0x20);
1212 
1213 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1214 
1215 	pr_debug("... PIC  ISR: %04x\n", v);
1216 
1217 	v = inb(0x4d1) << 8 | inb(0x4d0);
1218 	pr_debug("... PIC ELCR: %04x\n", v);
1219 }
1220 
1221 static int show_lapic __initdata = 1;
1222 static __init int setup_show_lapic(char *arg)
1223 {
1224 	int num = -1;
1225 
1226 	if (strcmp(arg, "all") == 0) {
1227 		show_lapic = CONFIG_NR_CPUS;
1228 	} else {
1229 		get_option(&arg, &num);
1230 		if (num >= 0)
1231 			show_lapic = num;
1232 	}
1233 
1234 	return 1;
1235 }
1236 __setup("show_lapic=", setup_show_lapic);
1237 
1238 static int __init print_ICs(void)
1239 {
1240 	if (apic_verbosity == APIC_QUIET)
1241 		return 0;
1242 
1243 	print_PIC();
1244 
1245 	/* don't print out if apic is not there */
1246 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1247 		return 0;
1248 
1249 	print_local_APICs(show_lapic);
1250 	print_IO_APICs();
1251 
1252 	return 0;
1253 }
1254 
1255 late_initcall(print_ICs);
1256