xref: /linux/arch/x86/kernel/apic/vector.c (revision be239684b18e1cdcafcf8c7face4a2f562c745ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Local APIC related interfaces to support IOAPIC, MSI, etc.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *	Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *	Enable support of hierarchical irqdomains
9  */
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/seq_file.h>
13 #include <linux/init.h>
14 #include <linux/compiler.h>
15 #include <linux/slab.h>
16 #include <asm/irqdomain.h>
17 #include <asm/hw_irq.h>
18 #include <asm/traps.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23 
24 #include <asm/trace/irq_vectors.h>
25 
26 struct apic_chip_data {
27 	struct irq_cfg		hw_irq_cfg;
28 	unsigned int		vector;
29 	unsigned int		prev_vector;
30 	unsigned int		cpu;
31 	unsigned int		prev_cpu;
32 	unsigned int		irq;
33 	struct hlist_node	clist;
34 	unsigned int		move_in_progress	: 1,
35 				is_managed		: 1,
36 				can_reserve		: 1,
37 				has_reserved		: 1;
38 };
39 
40 struct irq_domain *x86_vector_domain;
41 EXPORT_SYMBOL_GPL(x86_vector_domain);
42 static DEFINE_RAW_SPINLOCK(vector_lock);
43 static cpumask_var_t vector_searchmask;
44 static struct irq_chip lapic_controller;
45 static struct irq_matrix *vector_matrix;
46 #ifdef CONFIG_SMP
47 
48 static void vector_cleanup_callback(struct timer_list *tmr);
49 
50 struct vector_cleanup {
51 	struct hlist_head	head;
52 	struct timer_list	timer;
53 };
54 
55 static DEFINE_PER_CPU(struct vector_cleanup, vector_cleanup) = {
56 	.head	= HLIST_HEAD_INIT,
57 	.timer	= __TIMER_INITIALIZER(vector_cleanup_callback, TIMER_PINNED),
58 };
59 #endif
60 
61 void lock_vector_lock(void)
62 {
63 	/* Used to the online set of cpus does not change
64 	 * during assign_irq_vector.
65 	 */
66 	raw_spin_lock(&vector_lock);
67 }
68 
69 void unlock_vector_lock(void)
70 {
71 	raw_spin_unlock(&vector_lock);
72 }
73 
74 void init_irq_alloc_info(struct irq_alloc_info *info,
75 			 const struct cpumask *mask)
76 {
77 	memset(info, 0, sizeof(*info));
78 	info->mask = mask;
79 }
80 
81 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
82 {
83 	if (src)
84 		*dst = *src;
85 	else
86 		memset(dst, 0, sizeof(*dst));
87 }
88 
89 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
90 {
91 	if (!irqd)
92 		return NULL;
93 
94 	while (irqd->parent_data)
95 		irqd = irqd->parent_data;
96 
97 	return irqd->chip_data;
98 }
99 
100 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
101 {
102 	struct apic_chip_data *apicd = apic_chip_data(irqd);
103 
104 	return apicd ? &apicd->hw_irq_cfg : NULL;
105 }
106 EXPORT_SYMBOL_GPL(irqd_cfg);
107 
108 struct irq_cfg *irq_cfg(unsigned int irq)
109 {
110 	return irqd_cfg(irq_get_irq_data(irq));
111 }
112 
113 static struct apic_chip_data *alloc_apic_chip_data(int node)
114 {
115 	struct apic_chip_data *apicd;
116 
117 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
118 	if (apicd)
119 		INIT_HLIST_NODE(&apicd->clist);
120 	return apicd;
121 }
122 
123 static void free_apic_chip_data(struct apic_chip_data *apicd)
124 {
125 	kfree(apicd);
126 }
127 
128 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
129 				unsigned int cpu)
130 {
131 	struct apic_chip_data *apicd = apic_chip_data(irqd);
132 
133 	lockdep_assert_held(&vector_lock);
134 
135 	apicd->hw_irq_cfg.vector = vector;
136 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
137 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
138 	trace_vector_config(irqd->irq, vector, cpu,
139 			    apicd->hw_irq_cfg.dest_apicid);
140 }
141 
142 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
143 			       unsigned int newcpu)
144 {
145 	struct apic_chip_data *apicd = apic_chip_data(irqd);
146 	struct irq_desc *desc = irq_data_to_desc(irqd);
147 	bool managed = irqd_affinity_is_managed(irqd);
148 
149 	lockdep_assert_held(&vector_lock);
150 
151 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
152 			    apicd->cpu);
153 
154 	/*
155 	 * If there is no vector associated or if the associated vector is
156 	 * the shutdown vector, which is associated to make PCI/MSI
157 	 * shutdown mode work, then there is nothing to release. Clear out
158 	 * prev_vector for this and the offlined target case.
159 	 */
160 	apicd->prev_vector = 0;
161 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
162 		goto setnew;
163 	/*
164 	 * If the target CPU of the previous vector is online, then mark
165 	 * the vector as move in progress and store it for cleanup when the
166 	 * first interrupt on the new vector arrives. If the target CPU is
167 	 * offline then the regular release mechanism via the cleanup
168 	 * vector is not possible and the vector can be immediately freed
169 	 * in the underlying matrix allocator.
170 	 */
171 	if (cpu_online(apicd->cpu)) {
172 		apicd->move_in_progress = true;
173 		apicd->prev_vector = apicd->vector;
174 		apicd->prev_cpu = apicd->cpu;
175 		WARN_ON_ONCE(apicd->cpu == newcpu);
176 	} else {
177 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
178 				managed);
179 	}
180 
181 setnew:
182 	apicd->vector = newvec;
183 	apicd->cpu = newcpu;
184 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
185 	per_cpu(vector_irq, newcpu)[newvec] = desc;
186 }
187 
188 static void vector_assign_managed_shutdown(struct irq_data *irqd)
189 {
190 	unsigned int cpu = cpumask_first(cpu_online_mask);
191 
192 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
193 }
194 
195 static int reserve_managed_vector(struct irq_data *irqd)
196 {
197 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
198 	struct apic_chip_data *apicd = apic_chip_data(irqd);
199 	unsigned long flags;
200 	int ret;
201 
202 	raw_spin_lock_irqsave(&vector_lock, flags);
203 	apicd->is_managed = true;
204 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
205 	raw_spin_unlock_irqrestore(&vector_lock, flags);
206 	trace_vector_reserve_managed(irqd->irq, ret);
207 	return ret;
208 }
209 
210 static void reserve_irq_vector_locked(struct irq_data *irqd)
211 {
212 	struct apic_chip_data *apicd = apic_chip_data(irqd);
213 
214 	irq_matrix_reserve(vector_matrix);
215 	apicd->can_reserve = true;
216 	apicd->has_reserved = true;
217 	irqd_set_can_reserve(irqd);
218 	trace_vector_reserve(irqd->irq, 0);
219 	vector_assign_managed_shutdown(irqd);
220 }
221 
222 static int reserve_irq_vector(struct irq_data *irqd)
223 {
224 	unsigned long flags;
225 
226 	raw_spin_lock_irqsave(&vector_lock, flags);
227 	reserve_irq_vector_locked(irqd);
228 	raw_spin_unlock_irqrestore(&vector_lock, flags);
229 	return 0;
230 }
231 
232 static int
233 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
234 {
235 	struct apic_chip_data *apicd = apic_chip_data(irqd);
236 	bool resvd = apicd->has_reserved;
237 	unsigned int cpu = apicd->cpu;
238 	int vector = apicd->vector;
239 
240 	lockdep_assert_held(&vector_lock);
241 
242 	/*
243 	 * If the current target CPU is online and in the new requested
244 	 * affinity mask, there is no point in moving the interrupt from
245 	 * one CPU to another.
246 	 */
247 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
248 		return 0;
249 
250 	/*
251 	 * Careful here. @apicd might either have move_in_progress set or
252 	 * be enqueued for cleanup. Assigning a new vector would either
253 	 * leave a stale vector on some CPU around or in case of a pending
254 	 * cleanup corrupt the hlist.
255 	 */
256 	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
257 		return -EBUSY;
258 
259 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
260 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
261 	if (vector < 0)
262 		return vector;
263 	apic_update_vector(irqd, vector, cpu);
264 	apic_update_irq_cfg(irqd, vector, cpu);
265 
266 	return 0;
267 }
268 
269 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
270 {
271 	unsigned long flags;
272 	int ret;
273 
274 	raw_spin_lock_irqsave(&vector_lock, flags);
275 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
276 	ret = assign_vector_locked(irqd, vector_searchmask);
277 	raw_spin_unlock_irqrestore(&vector_lock, flags);
278 	return ret;
279 }
280 
281 static int assign_irq_vector_any_locked(struct irq_data *irqd)
282 {
283 	/* Get the affinity mask - either irq_default_affinity or (user) set */
284 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
285 	int node = irq_data_get_node(irqd);
286 
287 	if (node != NUMA_NO_NODE) {
288 		/* Try the intersection of @affmsk and node mask */
289 		cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
290 		if (!assign_vector_locked(irqd, vector_searchmask))
291 			return 0;
292 	}
293 
294 	/* Try the full affinity mask */
295 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
296 	if (!assign_vector_locked(irqd, vector_searchmask))
297 		return 0;
298 
299 	if (node != NUMA_NO_NODE) {
300 		/* Try the node mask */
301 		if (!assign_vector_locked(irqd, cpumask_of_node(node)))
302 			return 0;
303 	}
304 
305 	/* Try the full online mask */
306 	return assign_vector_locked(irqd, cpu_online_mask);
307 }
308 
309 static int
310 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
311 {
312 	if (irqd_affinity_is_managed(irqd))
313 		return reserve_managed_vector(irqd);
314 	if (info->mask)
315 		return assign_irq_vector(irqd, info->mask);
316 	/*
317 	 * Make only a global reservation with no guarantee. A real vector
318 	 * is associated at activation time.
319 	 */
320 	return reserve_irq_vector(irqd);
321 }
322 
323 static int
324 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
325 {
326 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
327 	struct apic_chip_data *apicd = apic_chip_data(irqd);
328 	int vector, cpu;
329 
330 	cpumask_and(vector_searchmask, dest, affmsk);
331 
332 	/* set_affinity might call here for nothing */
333 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
334 		return 0;
335 	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
336 					  &cpu);
337 	trace_vector_alloc_managed(irqd->irq, vector, vector);
338 	if (vector < 0)
339 		return vector;
340 	apic_update_vector(irqd, vector, cpu);
341 	apic_update_irq_cfg(irqd, vector, cpu);
342 	return 0;
343 }
344 
345 static void clear_irq_vector(struct irq_data *irqd)
346 {
347 	struct apic_chip_data *apicd = apic_chip_data(irqd);
348 	bool managed = irqd_affinity_is_managed(irqd);
349 	unsigned int vector = apicd->vector;
350 
351 	lockdep_assert_held(&vector_lock);
352 
353 	if (!vector)
354 		return;
355 
356 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
357 			   apicd->prev_cpu);
358 
359 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
360 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
361 	apicd->vector = 0;
362 
363 	/* Clean up move in progress */
364 	vector = apicd->prev_vector;
365 	if (!vector)
366 		return;
367 
368 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
369 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
370 	apicd->prev_vector = 0;
371 	apicd->move_in_progress = 0;
372 	hlist_del_init(&apicd->clist);
373 }
374 
375 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
376 {
377 	struct apic_chip_data *apicd = apic_chip_data(irqd);
378 	unsigned long flags;
379 
380 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
381 				apicd->can_reserve, false);
382 
383 	/* Regular fixed assigned interrupt */
384 	if (!apicd->is_managed && !apicd->can_reserve)
385 		return;
386 	/* If the interrupt has a global reservation, nothing to do */
387 	if (apicd->has_reserved)
388 		return;
389 
390 	raw_spin_lock_irqsave(&vector_lock, flags);
391 	clear_irq_vector(irqd);
392 	if (apicd->can_reserve)
393 		reserve_irq_vector_locked(irqd);
394 	else
395 		vector_assign_managed_shutdown(irqd);
396 	raw_spin_unlock_irqrestore(&vector_lock, flags);
397 }
398 
399 static int activate_reserved(struct irq_data *irqd)
400 {
401 	struct apic_chip_data *apicd = apic_chip_data(irqd);
402 	int ret;
403 
404 	ret = assign_irq_vector_any_locked(irqd);
405 	if (!ret) {
406 		apicd->has_reserved = false;
407 		/*
408 		 * Core might have disabled reservation mode after
409 		 * allocating the irq descriptor. Ideally this should
410 		 * happen before allocation time, but that would require
411 		 * completely convoluted ways of transporting that
412 		 * information.
413 		 */
414 		if (!irqd_can_reserve(irqd))
415 			apicd->can_reserve = false;
416 	}
417 
418 	/*
419 	 * Check to ensure that the effective affinity mask is a subset
420 	 * the user supplied affinity mask, and warn the user if it is not
421 	 */
422 	if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
423 			    irq_data_get_affinity_mask(irqd))) {
424 		pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
425 			irqd->irq);
426 	}
427 
428 	return ret;
429 }
430 
431 static int activate_managed(struct irq_data *irqd)
432 {
433 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
434 	int ret;
435 
436 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
437 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
438 		/* Something in the core code broke! Survive gracefully */
439 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
440 		return -EINVAL;
441 	}
442 
443 	ret = assign_managed_vector(irqd, vector_searchmask);
444 	/*
445 	 * This should not happen. The vector reservation got buggered.  Handle
446 	 * it gracefully.
447 	 */
448 	if (WARN_ON_ONCE(ret < 0)) {
449 		pr_err("Managed startup irq %u, no vector available\n",
450 		       irqd->irq);
451 	}
452 	return ret;
453 }
454 
455 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
456 			       bool reserve)
457 {
458 	struct apic_chip_data *apicd = apic_chip_data(irqd);
459 	unsigned long flags;
460 	int ret = 0;
461 
462 	trace_vector_activate(irqd->irq, apicd->is_managed,
463 			      apicd->can_reserve, reserve);
464 
465 	raw_spin_lock_irqsave(&vector_lock, flags);
466 	if (!apicd->can_reserve && !apicd->is_managed)
467 		assign_irq_vector_any_locked(irqd);
468 	else if (reserve || irqd_is_managed_and_shutdown(irqd))
469 		vector_assign_managed_shutdown(irqd);
470 	else if (apicd->is_managed)
471 		ret = activate_managed(irqd);
472 	else if (apicd->has_reserved)
473 		ret = activate_reserved(irqd);
474 	raw_spin_unlock_irqrestore(&vector_lock, flags);
475 	return ret;
476 }
477 
478 static void vector_free_reserved_and_managed(struct irq_data *irqd)
479 {
480 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
481 	struct apic_chip_data *apicd = apic_chip_data(irqd);
482 
483 	trace_vector_teardown(irqd->irq, apicd->is_managed,
484 			      apicd->has_reserved);
485 
486 	if (apicd->has_reserved)
487 		irq_matrix_remove_reserved(vector_matrix);
488 	if (apicd->is_managed)
489 		irq_matrix_remove_managed(vector_matrix, dest);
490 }
491 
492 static void x86_vector_free_irqs(struct irq_domain *domain,
493 				 unsigned int virq, unsigned int nr_irqs)
494 {
495 	struct apic_chip_data *apicd;
496 	struct irq_data *irqd;
497 	unsigned long flags;
498 	int i;
499 
500 	for (i = 0; i < nr_irqs; i++) {
501 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
502 		if (irqd && irqd->chip_data) {
503 			raw_spin_lock_irqsave(&vector_lock, flags);
504 			clear_irq_vector(irqd);
505 			vector_free_reserved_and_managed(irqd);
506 			apicd = irqd->chip_data;
507 			irq_domain_reset_irq_data(irqd);
508 			raw_spin_unlock_irqrestore(&vector_lock, flags);
509 			free_apic_chip_data(apicd);
510 		}
511 	}
512 }
513 
514 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
515 				    struct apic_chip_data *apicd)
516 {
517 	unsigned long flags;
518 	bool realloc = false;
519 
520 	apicd->vector = ISA_IRQ_VECTOR(virq);
521 	apicd->cpu = 0;
522 
523 	raw_spin_lock_irqsave(&vector_lock, flags);
524 	/*
525 	 * If the interrupt is activated, then it must stay at this vector
526 	 * position. That's usually the timer interrupt (0).
527 	 */
528 	if (irqd_is_activated(irqd)) {
529 		trace_vector_setup(virq, true, 0);
530 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
531 	} else {
532 		/* Release the vector */
533 		apicd->can_reserve = true;
534 		irqd_set_can_reserve(irqd);
535 		clear_irq_vector(irqd);
536 		realloc = true;
537 	}
538 	raw_spin_unlock_irqrestore(&vector_lock, flags);
539 	return realloc;
540 }
541 
542 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
543 				 unsigned int nr_irqs, void *arg)
544 {
545 	struct irq_alloc_info *info = arg;
546 	struct apic_chip_data *apicd;
547 	struct irq_data *irqd;
548 	int i, err, node;
549 
550 	if (apic_is_disabled)
551 		return -ENXIO;
552 
553 	/*
554 	 * Catch any attempt to touch the cascade interrupt on a PIC
555 	 * equipped system.
556 	 */
557 	if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY &&
558 			 virq == PIC_CASCADE_IR))
559 		return -EINVAL;
560 
561 	for (i = 0; i < nr_irqs; i++) {
562 		irqd = irq_domain_get_irq_data(domain, virq + i);
563 		BUG_ON(!irqd);
564 		node = irq_data_get_node(irqd);
565 		WARN_ON_ONCE(irqd->chip_data);
566 		apicd = alloc_apic_chip_data(node);
567 		if (!apicd) {
568 			err = -ENOMEM;
569 			goto error;
570 		}
571 
572 		apicd->irq = virq + i;
573 		irqd->chip = &lapic_controller;
574 		irqd->chip_data = apicd;
575 		irqd->hwirq = virq + i;
576 		irqd_set_single_target(irqd);
577 		/*
578 		 * Prevent that any of these interrupts is invoked in
579 		 * non interrupt context via e.g. generic_handle_irq()
580 		 * as that can corrupt the affinity move state.
581 		 */
582 		irqd_set_handle_enforce_irqctx(irqd);
583 
584 		/* Don't invoke affinity setter on deactivated interrupts */
585 		irqd_set_affinity_on_activate(irqd);
586 
587 		/*
588 		 * Legacy vectors are already assigned when the IOAPIC
589 		 * takes them over. They stay on the same vector. This is
590 		 * required for check_timer() to work correctly as it might
591 		 * switch back to legacy mode. Only update the hardware
592 		 * config.
593 		 */
594 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
595 			if (!vector_configure_legacy(virq + i, irqd, apicd))
596 				continue;
597 		}
598 
599 		err = assign_irq_vector_policy(irqd, info);
600 		trace_vector_setup(virq + i, false, err);
601 		if (err) {
602 			irqd->chip_data = NULL;
603 			free_apic_chip_data(apicd);
604 			goto error;
605 		}
606 	}
607 
608 	return 0;
609 
610 error:
611 	x86_vector_free_irqs(domain, virq, i);
612 	return err;
613 }
614 
615 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
616 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
617 				  struct irq_data *irqd, int ind)
618 {
619 	struct apic_chip_data apicd;
620 	unsigned long flags;
621 	int irq;
622 
623 	if (!irqd) {
624 		irq_matrix_debug_show(m, vector_matrix, ind);
625 		return;
626 	}
627 
628 	irq = irqd->irq;
629 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
630 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
631 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
632 		return;
633 	}
634 
635 	if (!irqd->chip_data) {
636 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
637 		return;
638 	}
639 
640 	raw_spin_lock_irqsave(&vector_lock, flags);
641 	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
642 	raw_spin_unlock_irqrestore(&vector_lock, flags);
643 
644 	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
645 	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
646 	if (apicd.prev_vector) {
647 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
648 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
649 	}
650 	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
651 	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
652 	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
653 	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
654 	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
655 }
656 #endif
657 
658 int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec)
659 {
660 	if (fwspec->param_count != 1)
661 		return 0;
662 
663 	if (is_fwnode_irqchip(fwspec->fwnode)) {
664 		const char *fwname = fwnode_get_name(fwspec->fwnode);
665 		return fwname && !strncmp(fwname, "IO-APIC-", 8) &&
666 			simple_strtol(fwname+8, NULL, 10) == fwspec->param[0];
667 	}
668 	return to_of_node(fwspec->fwnode) &&
669 		of_device_is_compatible(to_of_node(fwspec->fwnode),
670 					"intel,ce4100-ioapic");
671 }
672 
673 int x86_fwspec_is_hpet(struct irq_fwspec *fwspec)
674 {
675 	if (fwspec->param_count != 1)
676 		return 0;
677 
678 	if (is_fwnode_irqchip(fwspec->fwnode)) {
679 		const char *fwname = fwnode_get_name(fwspec->fwnode);
680 		return fwname && !strncmp(fwname, "HPET-MSI-", 9) &&
681 			simple_strtol(fwname+9, NULL, 10) == fwspec->param[0];
682 	}
683 	return 0;
684 }
685 
686 static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec,
687 			     enum irq_domain_bus_token bus_token)
688 {
689 	/*
690 	 * HPET and I/OAPIC cannot be parented in the vector domain
691 	 * if IRQ remapping is enabled. APIC IDs above 15 bits are
692 	 * only permitted if IRQ remapping is enabled, so check that.
693 	 */
694 	if (apic_id_valid(32768))
695 		return 0;
696 
697 	return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec);
698 }
699 
700 static const struct irq_domain_ops x86_vector_domain_ops = {
701 	.select		= x86_vector_select,
702 	.alloc		= x86_vector_alloc_irqs,
703 	.free		= x86_vector_free_irqs,
704 	.activate	= x86_vector_activate,
705 	.deactivate	= x86_vector_deactivate,
706 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
707 	.debug_show	= x86_vector_debug_show,
708 #endif
709 };
710 
711 int __init arch_probe_nr_irqs(void)
712 {
713 	int nr;
714 
715 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
716 		nr_irqs = NR_VECTORS * nr_cpu_ids;
717 
718 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
719 #if defined(CONFIG_PCI_MSI)
720 	/*
721 	 * for MSI and HT dyn irq
722 	 */
723 	if (gsi_top <= NR_IRQS_LEGACY)
724 		nr +=  8 * nr_cpu_ids;
725 	else
726 		nr += gsi_top * 16;
727 #endif
728 	if (nr < nr_irqs)
729 		nr_irqs = nr;
730 
731 	/*
732 	 * We don't know if PIC is present at this point so we need to do
733 	 * probe() to get the right number of legacy IRQs.
734 	 */
735 	return legacy_pic->probe();
736 }
737 
738 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
739 {
740 	/*
741 	 * Use assign system here so it won't get accounted as allocated
742 	 * and movable in the cpu hotplug check and it prevents managed
743 	 * irq reservation from touching it.
744 	 */
745 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
746 }
747 
748 void __init lapic_update_legacy_vectors(void)
749 {
750 	unsigned int i;
751 
752 	if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0)
753 		return;
754 
755 	/*
756 	 * If the IO/APIC is disabled via config, kernel command line or
757 	 * lack of enumeration then all legacy interrupts are routed
758 	 * through the PIC. Make sure that they are marked as legacy
759 	 * vectors. PIC_CASCADE_IRQ has already been marked in
760 	 * lapic_assign_system_vectors().
761 	 */
762 	for (i = 0; i < nr_legacy_irqs(); i++) {
763 		if (i != PIC_CASCADE_IR)
764 			lapic_assign_legacy_vector(i, true);
765 	}
766 }
767 
768 void __init lapic_assign_system_vectors(void)
769 {
770 	unsigned int i, vector;
771 
772 	for_each_set_bit(vector, system_vectors, NR_VECTORS)
773 		irq_matrix_assign_system(vector_matrix, vector, false);
774 
775 	if (nr_legacy_irqs() > 1)
776 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
777 
778 	/* System vectors are reserved, online it */
779 	irq_matrix_online(vector_matrix);
780 
781 	/* Mark the preallocated legacy interrupts */
782 	for (i = 0; i < nr_legacy_irqs(); i++) {
783 		/*
784 		 * Don't touch the cascade interrupt. It's unusable
785 		 * on PIC equipped machines. See the large comment
786 		 * in the IO/APIC code.
787 		 */
788 		if (i != PIC_CASCADE_IR)
789 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
790 	}
791 }
792 
793 int __init arch_early_irq_init(void)
794 {
795 	struct fwnode_handle *fn;
796 
797 	fn = irq_domain_alloc_named_fwnode("VECTOR");
798 	BUG_ON(!fn);
799 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
800 						   NULL);
801 	BUG_ON(x86_vector_domain == NULL);
802 	irq_set_default_host(x86_vector_domain);
803 
804 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
805 
806 	/*
807 	 * Allocate the vector matrix allocator data structure and limit the
808 	 * search area.
809 	 */
810 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
811 					 FIRST_SYSTEM_VECTOR);
812 	BUG_ON(!vector_matrix);
813 
814 	return arch_early_ioapic_init();
815 }
816 
817 #ifdef CONFIG_SMP
818 
819 static struct irq_desc *__setup_vector_irq(int vector)
820 {
821 	int isairq = vector - ISA_IRQ_VECTOR(0);
822 
823 	/* Check whether the irq is in the legacy space */
824 	if (isairq < 0 || isairq >= nr_legacy_irqs())
825 		return VECTOR_UNUSED;
826 	/* Check whether the irq is handled by the IOAPIC */
827 	if (test_bit(isairq, &io_apic_irqs))
828 		return VECTOR_UNUSED;
829 	return irq_to_desc(isairq);
830 }
831 
832 /* Online the local APIC infrastructure and initialize the vectors */
833 void lapic_online(void)
834 {
835 	unsigned int vector;
836 
837 	lockdep_assert_held(&vector_lock);
838 
839 	/* Online the vector matrix array for this CPU */
840 	irq_matrix_online(vector_matrix);
841 
842 	/*
843 	 * The interrupt affinity logic never targets interrupts to offline
844 	 * CPUs. The exception are the legacy PIC interrupts. In general
845 	 * they are only targeted to CPU0, but depending on the platform
846 	 * they can be distributed to any online CPU in hardware. The
847 	 * kernel has no influence on that. So all active legacy vectors
848 	 * must be installed on all CPUs. All non legacy interrupts can be
849 	 * cleared.
850 	 */
851 	for (vector = 0; vector < NR_VECTORS; vector++)
852 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
853 }
854 
855 static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr);
856 
857 void lapic_offline(void)
858 {
859 	struct vector_cleanup *cl = this_cpu_ptr(&vector_cleanup);
860 
861 	lock_vector_lock();
862 
863 	/* In case the vector cleanup timer has not expired */
864 	__vector_cleanup(cl, false);
865 
866 	irq_matrix_offline(vector_matrix);
867 	WARN_ON_ONCE(try_to_del_timer_sync(&cl->timer) < 0);
868 	WARN_ON_ONCE(!hlist_empty(&cl->head));
869 
870 	unlock_vector_lock();
871 }
872 
873 static int apic_set_affinity(struct irq_data *irqd,
874 			     const struct cpumask *dest, bool force)
875 {
876 	int err;
877 
878 	if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
879 		return -EIO;
880 
881 	raw_spin_lock(&vector_lock);
882 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
883 	if (irqd_affinity_is_managed(irqd))
884 		err = assign_managed_vector(irqd, vector_searchmask);
885 	else
886 		err = assign_vector_locked(irqd, vector_searchmask);
887 	raw_spin_unlock(&vector_lock);
888 	return err ? err : IRQ_SET_MASK_OK;
889 }
890 
891 #else
892 # define apic_set_affinity	NULL
893 #endif
894 
895 static int apic_retrigger_irq(struct irq_data *irqd)
896 {
897 	struct apic_chip_data *apicd = apic_chip_data(irqd);
898 	unsigned long flags;
899 
900 	raw_spin_lock_irqsave(&vector_lock, flags);
901 	__apic_send_IPI(apicd->cpu, apicd->vector);
902 	raw_spin_unlock_irqrestore(&vector_lock, flags);
903 
904 	return 1;
905 }
906 
907 void apic_ack_irq(struct irq_data *irqd)
908 {
909 	irq_move_irq(irqd);
910 	apic_eoi();
911 }
912 
913 void apic_ack_edge(struct irq_data *irqd)
914 {
915 	irq_complete_move(irqd_cfg(irqd));
916 	apic_ack_irq(irqd);
917 }
918 
919 static void x86_vector_msi_compose_msg(struct irq_data *data,
920 				       struct msi_msg *msg)
921 {
922        __irq_msi_compose_msg(irqd_cfg(data), msg, false);
923 }
924 
925 static struct irq_chip lapic_controller = {
926 	.name			= "APIC",
927 	.irq_ack		= apic_ack_edge,
928 	.irq_set_affinity	= apic_set_affinity,
929 	.irq_compose_msi_msg	= x86_vector_msi_compose_msg,
930 	.irq_retrigger		= apic_retrigger_irq,
931 };
932 
933 #ifdef CONFIG_SMP
934 
935 static void free_moved_vector(struct apic_chip_data *apicd)
936 {
937 	unsigned int vector = apicd->prev_vector;
938 	unsigned int cpu = apicd->prev_cpu;
939 	bool managed = apicd->is_managed;
940 
941 	/*
942 	 * Managed interrupts are usually not migrated away
943 	 * from an online CPU, but CPU isolation 'managed_irq'
944 	 * can make that happen.
945 	 * 1) Activation does not take the isolation into account
946 	 *    to keep the code simple
947 	 * 2) Migration away from an isolated CPU can happen when
948 	 *    a non-isolated CPU which is in the calculated
949 	 *    affinity mask comes online.
950 	 */
951 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
952 	irq_matrix_free(vector_matrix, cpu, vector, managed);
953 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
954 	hlist_del_init(&apicd->clist);
955 	apicd->prev_vector = 0;
956 	apicd->move_in_progress = 0;
957 }
958 
959 static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr)
960 {
961 	struct apic_chip_data *apicd;
962 	struct hlist_node *tmp;
963 	bool rearm = false;
964 
965 	lockdep_assert_held(&vector_lock);
966 
967 	hlist_for_each_entry_safe(apicd, tmp, &cl->head, clist) {
968 		unsigned int irr, vector = apicd->prev_vector;
969 
970 		/*
971 		 * Paranoia: Check if the vector that needs to be cleaned
972 		 * up is registered at the APICs IRR. That's clearly a
973 		 * hardware issue if the vector arrived on the old target
974 		 * _after_ interrupts were disabled above. Keep @apicd
975 		 * on the list and schedule the timer again to give the CPU
976 		 * a chance to handle the pending interrupt.
977 		 *
978 		 * Do not check IRR when called from lapic_offline(), because
979 		 * fixup_irqs() was just called to scan IRR for set bits and
980 		 * forward them to new destination CPUs via IPIs.
981 		 */
982 		irr = check_irr ? apic_read(APIC_IRR + (vector / 32 * 0x10)) : 0;
983 		if (irr & (1U << (vector % 32))) {
984 			pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd->irq);
985 			rearm = true;
986 			continue;
987 		}
988 		free_moved_vector(apicd);
989 	}
990 
991 	/*
992 	 * Must happen under vector_lock to make the timer_pending() check
993 	 * in __vector_schedule_cleanup() race free against the rearm here.
994 	 */
995 	if (rearm)
996 		mod_timer(&cl->timer, jiffies + 1);
997 }
998 
999 static void vector_cleanup_callback(struct timer_list *tmr)
1000 {
1001 	struct vector_cleanup *cl = container_of(tmr, typeof(*cl), timer);
1002 
1003 	/* Prevent vectors vanishing under us */
1004 	raw_spin_lock_irq(&vector_lock);
1005 	__vector_cleanup(cl, true);
1006 	raw_spin_unlock_irq(&vector_lock);
1007 }
1008 
1009 static void __vector_schedule_cleanup(struct apic_chip_data *apicd)
1010 {
1011 	unsigned int cpu = apicd->prev_cpu;
1012 
1013 	raw_spin_lock(&vector_lock);
1014 	apicd->move_in_progress = 0;
1015 	if (cpu_online(cpu)) {
1016 		struct vector_cleanup *cl = per_cpu_ptr(&vector_cleanup, cpu);
1017 
1018 		hlist_add_head(&apicd->clist, &cl->head);
1019 
1020 		/*
1021 		 * The lockless timer_pending() check is safe here. If it
1022 		 * returns true, then the callback will observe this new
1023 		 * apic data in the hlist as everything is serialized by
1024 		 * vector lock.
1025 		 *
1026 		 * If it returns false then the timer is either not armed
1027 		 * or the other CPU executes the callback, which again
1028 		 * would be blocked on vector lock. Rearming it in the
1029 		 * latter case makes it fire for nothing.
1030 		 *
1031 		 * This is also safe against the callback rearming the timer
1032 		 * because that's serialized via vector lock too.
1033 		 */
1034 		if (!timer_pending(&cl->timer)) {
1035 			cl->timer.expires = jiffies + 1;
1036 			add_timer_on(&cl->timer, cpu);
1037 		}
1038 	} else {
1039 		apicd->prev_vector = 0;
1040 	}
1041 	raw_spin_unlock(&vector_lock);
1042 }
1043 
1044 void vector_schedule_cleanup(struct irq_cfg *cfg)
1045 {
1046 	struct apic_chip_data *apicd;
1047 
1048 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1049 	if (apicd->move_in_progress)
1050 		__vector_schedule_cleanup(apicd);
1051 }
1052 
1053 void irq_complete_move(struct irq_cfg *cfg)
1054 {
1055 	struct apic_chip_data *apicd;
1056 
1057 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1058 	if (likely(!apicd->move_in_progress))
1059 		return;
1060 
1061 	/*
1062 	 * If the interrupt arrived on the new target CPU, cleanup the
1063 	 * vector on the old target CPU. A vector check is not required
1064 	 * because an interrupt can never move from one vector to another
1065 	 * on the same CPU.
1066 	 */
1067 	if (apicd->cpu == smp_processor_id())
1068 		__vector_schedule_cleanup(apicd);
1069 }
1070 
1071 /*
1072  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
1073  */
1074 void irq_force_complete_move(struct irq_desc *desc)
1075 {
1076 	struct apic_chip_data *apicd;
1077 	struct irq_data *irqd;
1078 	unsigned int vector;
1079 
1080 	/*
1081 	 * The function is called for all descriptors regardless of which
1082 	 * irqdomain they belong to. For example if an IRQ is provided by
1083 	 * an irq_chip as part of a GPIO driver, the chip data for that
1084 	 * descriptor is specific to the irq_chip in question.
1085 	 *
1086 	 * Check first that the chip_data is what we expect
1087 	 * (apic_chip_data) before touching it any further.
1088 	 */
1089 	irqd = irq_domain_get_irq_data(x86_vector_domain,
1090 				       irq_desc_get_irq(desc));
1091 	if (!irqd)
1092 		return;
1093 
1094 	raw_spin_lock(&vector_lock);
1095 	apicd = apic_chip_data(irqd);
1096 	if (!apicd)
1097 		goto unlock;
1098 
1099 	/*
1100 	 * If prev_vector is empty, no action required.
1101 	 */
1102 	vector = apicd->prev_vector;
1103 	if (!vector)
1104 		goto unlock;
1105 
1106 	/*
1107 	 * This is tricky. If the cleanup of the old vector has not been
1108 	 * done yet, then the following setaffinity call will fail with
1109 	 * -EBUSY. This can leave the interrupt in a stale state.
1110 	 *
1111 	 * All CPUs are stuck in stop machine with interrupts disabled so
1112 	 * calling __irq_complete_move() would be completely pointless.
1113 	 *
1114 	 * 1) The interrupt is in move_in_progress state. That means that we
1115 	 *    have not seen an interrupt since the io_apic was reprogrammed to
1116 	 *    the new vector.
1117 	 *
1118 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
1119 	 *    have not been processed yet.
1120 	 */
1121 	if (apicd->move_in_progress) {
1122 		/*
1123 		 * In theory there is a race:
1124 		 *
1125 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
1126 		 *			      is effective, i.e. it's raised on
1127 		 *			      the old vector.
1128 		 *
1129 		 * So if the target cpu cannot handle that interrupt before
1130 		 * the old vector is cleaned up, we get a spurious interrupt
1131 		 * and in the worst case the ioapic irq line becomes stale.
1132 		 *
1133 		 * But in case of cpu hotplug this should be a non issue
1134 		 * because if the affinity update happens right before all
1135 		 * cpus rendezvous in stop machine, there is no way that the
1136 		 * interrupt can be blocked on the target cpu because all cpus
1137 		 * loops first with interrupts enabled in stop machine, so the
1138 		 * old vector is not yet cleaned up when the interrupt fires.
1139 		 *
1140 		 * So the only way to run into this issue is if the delivery
1141 		 * of the interrupt on the apic/system bus would be delayed
1142 		 * beyond the point where the target cpu disables interrupts
1143 		 * in stop machine. I doubt that it can happen, but at least
1144 		 * there is a theoretical chance. Virtualization might be
1145 		 * able to expose this, but AFAICT the IOAPIC emulation is not
1146 		 * as stupid as the real hardware.
1147 		 *
1148 		 * Anyway, there is nothing we can do about that at this point
1149 		 * w/o refactoring the whole fixup_irq() business completely.
1150 		 * We print at least the irq number and the old vector number,
1151 		 * so we have the necessary information when a problem in that
1152 		 * area arises.
1153 		 */
1154 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1155 			irqd->irq, vector);
1156 	}
1157 	free_moved_vector(apicd);
1158 unlock:
1159 	raw_spin_unlock(&vector_lock);
1160 }
1161 
1162 #ifdef CONFIG_HOTPLUG_CPU
1163 /*
1164  * Note, this is not accurate accounting, but at least good enough to
1165  * prevent that the actual interrupt move will run out of vectors.
1166  */
1167 int lapic_can_unplug_cpu(void)
1168 {
1169 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1170 	int ret = 0;
1171 
1172 	raw_spin_lock(&vector_lock);
1173 	tomove = irq_matrix_allocated(vector_matrix);
1174 	avl = irq_matrix_available(vector_matrix, true);
1175 	if (avl < tomove) {
1176 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1177 			cpu, tomove, avl);
1178 		ret = -ENOSPC;
1179 		goto out;
1180 	}
1181 	rsvd = irq_matrix_reserved(vector_matrix);
1182 	if (avl < rsvd) {
1183 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1184 			rsvd, avl);
1185 	}
1186 out:
1187 	raw_spin_unlock(&vector_lock);
1188 	return ret;
1189 }
1190 #endif /* HOTPLUG_CPU */
1191 #endif /* SMP */
1192 
1193 static void __init print_APIC_field(int base)
1194 {
1195 	int i;
1196 
1197 	printk(KERN_DEBUG);
1198 
1199 	for (i = 0; i < 8; i++)
1200 		pr_cont("%08x", apic_read(base + i*0x10));
1201 
1202 	pr_cont("\n");
1203 }
1204 
1205 static void __init print_local_APIC(void *dummy)
1206 {
1207 	unsigned int i, v, ver, maxlvt;
1208 	u64 icr;
1209 
1210 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1211 		 smp_processor_id(), read_apic_id());
1212 	v = apic_read(APIC_ID);
1213 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1214 	v = apic_read(APIC_LVR);
1215 	pr_info("... APIC VERSION: %08x\n", v);
1216 	ver = GET_APIC_VERSION(v);
1217 	maxlvt = lapic_get_maxlvt();
1218 
1219 	v = apic_read(APIC_TASKPRI);
1220 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1221 
1222 	/* !82489DX */
1223 	if (APIC_INTEGRATED(ver)) {
1224 		if (!APIC_XAPIC(ver)) {
1225 			v = apic_read(APIC_ARBPRI);
1226 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1227 				 v, v & APIC_ARBPRI_MASK);
1228 		}
1229 		v = apic_read(APIC_PROCPRI);
1230 		pr_debug("... APIC PROCPRI: %08x\n", v);
1231 	}
1232 
1233 	/*
1234 	 * Remote read supported only in the 82489DX and local APIC for
1235 	 * Pentium processors.
1236 	 */
1237 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1238 		v = apic_read(APIC_RRR);
1239 		pr_debug("... APIC RRR: %08x\n", v);
1240 	}
1241 
1242 	v = apic_read(APIC_LDR);
1243 	pr_debug("... APIC LDR: %08x\n", v);
1244 	if (!x2apic_enabled()) {
1245 		v = apic_read(APIC_DFR);
1246 		pr_debug("... APIC DFR: %08x\n", v);
1247 	}
1248 	v = apic_read(APIC_SPIV);
1249 	pr_debug("... APIC SPIV: %08x\n", v);
1250 
1251 	pr_debug("... APIC ISR field:\n");
1252 	print_APIC_field(APIC_ISR);
1253 	pr_debug("... APIC TMR field:\n");
1254 	print_APIC_field(APIC_TMR);
1255 	pr_debug("... APIC IRR field:\n");
1256 	print_APIC_field(APIC_IRR);
1257 
1258 	/* !82489DX */
1259 	if (APIC_INTEGRATED(ver)) {
1260 		/* Due to the Pentium erratum 3AP. */
1261 		if (maxlvt > 3)
1262 			apic_write(APIC_ESR, 0);
1263 
1264 		v = apic_read(APIC_ESR);
1265 		pr_debug("... APIC ESR: %08x\n", v);
1266 	}
1267 
1268 	icr = apic_icr_read();
1269 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1270 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1271 
1272 	v = apic_read(APIC_LVTT);
1273 	pr_debug("... APIC LVTT: %08x\n", v);
1274 
1275 	if (maxlvt > 3) {
1276 		/* PC is LVT#4. */
1277 		v = apic_read(APIC_LVTPC);
1278 		pr_debug("... APIC LVTPC: %08x\n", v);
1279 	}
1280 	v = apic_read(APIC_LVT0);
1281 	pr_debug("... APIC LVT0: %08x\n", v);
1282 	v = apic_read(APIC_LVT1);
1283 	pr_debug("... APIC LVT1: %08x\n", v);
1284 
1285 	if (maxlvt > 2) {
1286 		/* ERR is LVT#3. */
1287 		v = apic_read(APIC_LVTERR);
1288 		pr_debug("... APIC LVTERR: %08x\n", v);
1289 	}
1290 
1291 	v = apic_read(APIC_TMICT);
1292 	pr_debug("... APIC TMICT: %08x\n", v);
1293 	v = apic_read(APIC_TMCCT);
1294 	pr_debug("... APIC TMCCT: %08x\n", v);
1295 	v = apic_read(APIC_TDCR);
1296 	pr_debug("... APIC TDCR: %08x\n", v);
1297 
1298 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1299 		v = apic_read(APIC_EFEAT);
1300 		maxlvt = (v >> 16) & 0xff;
1301 		pr_debug("... APIC EFEAT: %08x\n", v);
1302 		v = apic_read(APIC_ECTRL);
1303 		pr_debug("... APIC ECTRL: %08x\n", v);
1304 		for (i = 0; i < maxlvt; i++) {
1305 			v = apic_read(APIC_EILVTn(i));
1306 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1307 		}
1308 	}
1309 	pr_cont("\n");
1310 }
1311 
1312 static void __init print_local_APICs(int maxcpu)
1313 {
1314 	int cpu;
1315 
1316 	if (!maxcpu)
1317 		return;
1318 
1319 	preempt_disable();
1320 	for_each_online_cpu(cpu) {
1321 		if (cpu >= maxcpu)
1322 			break;
1323 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1324 	}
1325 	preempt_enable();
1326 }
1327 
1328 static void __init print_PIC(void)
1329 {
1330 	unsigned int v;
1331 	unsigned long flags;
1332 
1333 	if (!nr_legacy_irqs())
1334 		return;
1335 
1336 	pr_debug("\nprinting PIC contents\n");
1337 
1338 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1339 
1340 	v = inb(0xa1) << 8 | inb(0x21);
1341 	pr_debug("... PIC  IMR: %04x\n", v);
1342 
1343 	v = inb(0xa0) << 8 | inb(0x20);
1344 	pr_debug("... PIC  IRR: %04x\n", v);
1345 
1346 	outb(0x0b, 0xa0);
1347 	outb(0x0b, 0x20);
1348 	v = inb(0xa0) << 8 | inb(0x20);
1349 	outb(0x0a, 0xa0);
1350 	outb(0x0a, 0x20);
1351 
1352 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1353 
1354 	pr_debug("... PIC  ISR: %04x\n", v);
1355 
1356 	v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1);
1357 	pr_debug("... PIC ELCR: %04x\n", v);
1358 }
1359 
1360 static int show_lapic __initdata = 1;
1361 static __init int setup_show_lapic(char *arg)
1362 {
1363 	int num = -1;
1364 
1365 	if (strcmp(arg, "all") == 0) {
1366 		show_lapic = CONFIG_NR_CPUS;
1367 	} else {
1368 		get_option(&arg, &num);
1369 		if (num >= 0)
1370 			show_lapic = num;
1371 	}
1372 
1373 	return 1;
1374 }
1375 __setup("show_lapic=", setup_show_lapic);
1376 
1377 static int __init print_ICs(void)
1378 {
1379 	if (apic_verbosity == APIC_QUIET)
1380 		return 0;
1381 
1382 	print_PIC();
1383 
1384 	/* don't print out if apic is not there */
1385 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1386 		return 0;
1387 
1388 	print_local_APICs(show_lapic);
1389 	print_IO_APICs();
1390 
1391 	return 0;
1392 }
1393 
1394 late_initcall(print_ICs);
1395