1 /* 2 * Local APIC related interfaces to support IOAPIC, MSI, etc. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 5 * Moved from arch/x86/kernel/apic/io_apic.c. 6 * Jiang Liu <jiang.liu@linux.intel.com> 7 * Enable support of hierarchical irqdomains 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/interrupt.h> 14 #include <linux/irq.h> 15 #include <linux/seq_file.h> 16 #include <linux/init.h> 17 #include <linux/compiler.h> 18 #include <linux/slab.h> 19 #include <asm/irqdomain.h> 20 #include <asm/hw_irq.h> 21 #include <asm/apic.h> 22 #include <asm/i8259.h> 23 #include <asm/desc.h> 24 #include <asm/irq_remapping.h> 25 26 #include <asm/trace/irq_vectors.h> 27 28 struct apic_chip_data { 29 struct irq_cfg hw_irq_cfg; 30 unsigned int vector; 31 unsigned int prev_vector; 32 unsigned int cpu; 33 unsigned int prev_cpu; 34 unsigned int irq; 35 struct hlist_node clist; 36 unsigned int move_in_progress : 1, 37 is_managed : 1, 38 can_reserve : 1, 39 has_reserved : 1; 40 }; 41 42 struct irq_domain *x86_vector_domain; 43 EXPORT_SYMBOL_GPL(x86_vector_domain); 44 static DEFINE_RAW_SPINLOCK(vector_lock); 45 static cpumask_var_t vector_searchmask; 46 static struct irq_chip lapic_controller; 47 static struct irq_matrix *vector_matrix; 48 #ifdef CONFIG_SMP 49 static DEFINE_PER_CPU(struct hlist_head, cleanup_list); 50 #endif 51 52 void lock_vector_lock(void) 53 { 54 /* Used to the online set of cpus does not change 55 * during assign_irq_vector. 56 */ 57 raw_spin_lock(&vector_lock); 58 } 59 60 void unlock_vector_lock(void) 61 { 62 raw_spin_unlock(&vector_lock); 63 } 64 65 void init_irq_alloc_info(struct irq_alloc_info *info, 66 const struct cpumask *mask) 67 { 68 memset(info, 0, sizeof(*info)); 69 info->mask = mask; 70 } 71 72 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 73 { 74 if (src) 75 *dst = *src; 76 else 77 memset(dst, 0, sizeof(*dst)); 78 } 79 80 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd) 81 { 82 if (!irqd) 83 return NULL; 84 85 while (irqd->parent_data) 86 irqd = irqd->parent_data; 87 88 return irqd->chip_data; 89 } 90 91 struct irq_cfg *irqd_cfg(struct irq_data *irqd) 92 { 93 struct apic_chip_data *apicd = apic_chip_data(irqd); 94 95 return apicd ? &apicd->hw_irq_cfg : NULL; 96 } 97 EXPORT_SYMBOL_GPL(irqd_cfg); 98 99 struct irq_cfg *irq_cfg(unsigned int irq) 100 { 101 return irqd_cfg(irq_get_irq_data(irq)); 102 } 103 104 static struct apic_chip_data *alloc_apic_chip_data(int node) 105 { 106 struct apic_chip_data *apicd; 107 108 apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node); 109 if (apicd) 110 INIT_HLIST_NODE(&apicd->clist); 111 return apicd; 112 } 113 114 static void free_apic_chip_data(struct apic_chip_data *apicd) 115 { 116 kfree(apicd); 117 } 118 119 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector, 120 unsigned int cpu) 121 { 122 struct apic_chip_data *apicd = apic_chip_data(irqd); 123 124 lockdep_assert_held(&vector_lock); 125 126 apicd->hw_irq_cfg.vector = vector; 127 apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu); 128 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 129 trace_vector_config(irqd->irq, vector, cpu, 130 apicd->hw_irq_cfg.dest_apicid); 131 } 132 133 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec, 134 unsigned int newcpu) 135 { 136 struct apic_chip_data *apicd = apic_chip_data(irqd); 137 struct irq_desc *desc = irq_data_to_desc(irqd); 138 bool managed = irqd_affinity_is_managed(irqd); 139 140 lockdep_assert_held(&vector_lock); 141 142 trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector, 143 apicd->cpu); 144 145 /* 146 * If there is no vector associated or if the associated vector is 147 * the shutdown vector, which is associated to make PCI/MSI 148 * shutdown mode work, then there is nothing to release. Clear out 149 * prev_vector for this and the offlined target case. 150 */ 151 apicd->prev_vector = 0; 152 if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR) 153 goto setnew; 154 /* 155 * If the target CPU of the previous vector is online, then mark 156 * the vector as move in progress and store it for cleanup when the 157 * first interrupt on the new vector arrives. If the target CPU is 158 * offline then the regular release mechanism via the cleanup 159 * vector is not possible and the vector can be immediately freed 160 * in the underlying matrix allocator. 161 */ 162 if (cpu_online(apicd->cpu)) { 163 apicd->move_in_progress = true; 164 apicd->prev_vector = apicd->vector; 165 apicd->prev_cpu = apicd->cpu; 166 } else { 167 irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector, 168 managed); 169 } 170 171 setnew: 172 apicd->vector = newvec; 173 apicd->cpu = newcpu; 174 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec])); 175 per_cpu(vector_irq, newcpu)[newvec] = desc; 176 } 177 178 static void vector_assign_managed_shutdown(struct irq_data *irqd) 179 { 180 unsigned int cpu = cpumask_first(cpu_online_mask); 181 182 apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu); 183 } 184 185 static int reserve_managed_vector(struct irq_data *irqd) 186 { 187 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 188 struct apic_chip_data *apicd = apic_chip_data(irqd); 189 unsigned long flags; 190 int ret; 191 192 raw_spin_lock_irqsave(&vector_lock, flags); 193 apicd->is_managed = true; 194 ret = irq_matrix_reserve_managed(vector_matrix, affmsk); 195 raw_spin_unlock_irqrestore(&vector_lock, flags); 196 trace_vector_reserve_managed(irqd->irq, ret); 197 return ret; 198 } 199 200 static void reserve_irq_vector_locked(struct irq_data *irqd) 201 { 202 struct apic_chip_data *apicd = apic_chip_data(irqd); 203 204 irq_matrix_reserve(vector_matrix); 205 apicd->can_reserve = true; 206 apicd->has_reserved = true; 207 irqd_set_can_reserve(irqd); 208 trace_vector_reserve(irqd->irq, 0); 209 vector_assign_managed_shutdown(irqd); 210 } 211 212 static int reserve_irq_vector(struct irq_data *irqd) 213 { 214 unsigned long flags; 215 216 raw_spin_lock_irqsave(&vector_lock, flags); 217 reserve_irq_vector_locked(irqd); 218 raw_spin_unlock_irqrestore(&vector_lock, flags); 219 return 0; 220 } 221 222 static int 223 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest) 224 { 225 struct apic_chip_data *apicd = apic_chip_data(irqd); 226 bool resvd = apicd->has_reserved; 227 unsigned int cpu = apicd->cpu; 228 int vector = apicd->vector; 229 230 lockdep_assert_held(&vector_lock); 231 232 /* 233 * If the current target CPU is online and in the new requested 234 * affinity mask, there is no point in moving the interrupt from 235 * one CPU to another. 236 */ 237 if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest)) 238 return 0; 239 240 /* 241 * Careful here. @apicd might either have move_in_progress set or 242 * be enqueued for cleanup. Assigning a new vector would either 243 * leave a stale vector on some CPU around or in case of a pending 244 * cleanup corrupt the hlist. 245 */ 246 if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist)) 247 return -EBUSY; 248 249 vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu); 250 trace_vector_alloc(irqd->irq, vector, resvd, vector); 251 if (vector < 0) 252 return vector; 253 apic_update_vector(irqd, vector, cpu); 254 apic_update_irq_cfg(irqd, vector, cpu); 255 256 return 0; 257 } 258 259 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest) 260 { 261 unsigned long flags; 262 int ret; 263 264 raw_spin_lock_irqsave(&vector_lock, flags); 265 cpumask_and(vector_searchmask, dest, cpu_online_mask); 266 ret = assign_vector_locked(irqd, vector_searchmask); 267 raw_spin_unlock_irqrestore(&vector_lock, flags); 268 return ret; 269 } 270 271 static int assign_irq_vector_any_locked(struct irq_data *irqd) 272 { 273 /* Get the affinity mask - either irq_default_affinity or (user) set */ 274 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 275 int node = irq_data_get_node(irqd); 276 277 if (node == NUMA_NO_NODE) 278 goto all; 279 /* Try the intersection of @affmsk and node mask */ 280 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk); 281 if (!assign_vector_locked(irqd, vector_searchmask)) 282 return 0; 283 /* Try the node mask */ 284 if (!assign_vector_locked(irqd, cpumask_of_node(node))) 285 return 0; 286 all: 287 /* Try the full affinity mask */ 288 cpumask_and(vector_searchmask, affmsk, cpu_online_mask); 289 if (!assign_vector_locked(irqd, vector_searchmask)) 290 return 0; 291 /* Try the full online mask */ 292 return assign_vector_locked(irqd, cpu_online_mask); 293 } 294 295 static int 296 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info) 297 { 298 if (irqd_affinity_is_managed(irqd)) 299 return reserve_managed_vector(irqd); 300 if (info->mask) 301 return assign_irq_vector(irqd, info->mask); 302 /* 303 * Make only a global reservation with no guarantee. A real vector 304 * is associated at activation time. 305 */ 306 return reserve_irq_vector(irqd); 307 } 308 309 static int 310 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest) 311 { 312 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 313 struct apic_chip_data *apicd = apic_chip_data(irqd); 314 int vector, cpu; 315 316 cpumask_and(vector_searchmask, dest, affmsk); 317 318 /* set_affinity might call here for nothing */ 319 if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask)) 320 return 0; 321 vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask, 322 &cpu); 323 trace_vector_alloc_managed(irqd->irq, vector, vector); 324 if (vector < 0) 325 return vector; 326 apic_update_vector(irqd, vector, cpu); 327 apic_update_irq_cfg(irqd, vector, cpu); 328 return 0; 329 } 330 331 static void clear_irq_vector(struct irq_data *irqd) 332 { 333 struct apic_chip_data *apicd = apic_chip_data(irqd); 334 bool managed = irqd_affinity_is_managed(irqd); 335 unsigned int vector = apicd->vector; 336 337 lockdep_assert_held(&vector_lock); 338 339 if (!vector) 340 return; 341 342 trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector, 343 apicd->prev_cpu); 344 345 per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_UNUSED; 346 irq_matrix_free(vector_matrix, apicd->cpu, vector, managed); 347 apicd->vector = 0; 348 349 /* Clean up move in progress */ 350 vector = apicd->prev_vector; 351 if (!vector) 352 return; 353 354 per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED; 355 irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed); 356 apicd->prev_vector = 0; 357 apicd->move_in_progress = 0; 358 hlist_del_init(&apicd->clist); 359 } 360 361 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd) 362 { 363 struct apic_chip_data *apicd = apic_chip_data(irqd); 364 unsigned long flags; 365 366 trace_vector_deactivate(irqd->irq, apicd->is_managed, 367 apicd->can_reserve, false); 368 369 /* Regular fixed assigned interrupt */ 370 if (!apicd->is_managed && !apicd->can_reserve) 371 return; 372 /* If the interrupt has a global reservation, nothing to do */ 373 if (apicd->has_reserved) 374 return; 375 376 raw_spin_lock_irqsave(&vector_lock, flags); 377 clear_irq_vector(irqd); 378 if (apicd->can_reserve) 379 reserve_irq_vector_locked(irqd); 380 else 381 vector_assign_managed_shutdown(irqd); 382 raw_spin_unlock_irqrestore(&vector_lock, flags); 383 } 384 385 static int activate_reserved(struct irq_data *irqd) 386 { 387 struct apic_chip_data *apicd = apic_chip_data(irqd); 388 int ret; 389 390 ret = assign_irq_vector_any_locked(irqd); 391 if (!ret) { 392 apicd->has_reserved = false; 393 /* 394 * Core might have disabled reservation mode after 395 * allocating the irq descriptor. Ideally this should 396 * happen before allocation time, but that would require 397 * completely convoluted ways of transporting that 398 * information. 399 */ 400 if (!irqd_can_reserve(irqd)) 401 apicd->can_reserve = false; 402 } 403 return ret; 404 } 405 406 static int activate_managed(struct irq_data *irqd) 407 { 408 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 409 int ret; 410 411 cpumask_and(vector_searchmask, dest, cpu_online_mask); 412 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) { 413 /* Something in the core code broke! Survive gracefully */ 414 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq); 415 return -EINVAL; 416 } 417 418 ret = assign_managed_vector(irqd, vector_searchmask); 419 /* 420 * This should not happen. The vector reservation got buggered. Handle 421 * it gracefully. 422 */ 423 if (WARN_ON_ONCE(ret < 0)) { 424 pr_err("Managed startup irq %u, no vector available\n", 425 irqd->irq); 426 } 427 return ret; 428 } 429 430 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd, 431 bool reserve) 432 { 433 struct apic_chip_data *apicd = apic_chip_data(irqd); 434 unsigned long flags; 435 int ret = 0; 436 437 trace_vector_activate(irqd->irq, apicd->is_managed, 438 apicd->can_reserve, reserve); 439 440 /* Nothing to do for fixed assigned vectors */ 441 if (!apicd->can_reserve && !apicd->is_managed) 442 return 0; 443 444 raw_spin_lock_irqsave(&vector_lock, flags); 445 if (reserve || irqd_is_managed_and_shutdown(irqd)) 446 vector_assign_managed_shutdown(irqd); 447 else if (apicd->is_managed) 448 ret = activate_managed(irqd); 449 else if (apicd->has_reserved) 450 ret = activate_reserved(irqd); 451 raw_spin_unlock_irqrestore(&vector_lock, flags); 452 return ret; 453 } 454 455 static void vector_free_reserved_and_managed(struct irq_data *irqd) 456 { 457 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 458 struct apic_chip_data *apicd = apic_chip_data(irqd); 459 460 trace_vector_teardown(irqd->irq, apicd->is_managed, 461 apicd->has_reserved); 462 463 if (apicd->has_reserved) 464 irq_matrix_remove_reserved(vector_matrix); 465 if (apicd->is_managed) 466 irq_matrix_remove_managed(vector_matrix, dest); 467 } 468 469 static void x86_vector_free_irqs(struct irq_domain *domain, 470 unsigned int virq, unsigned int nr_irqs) 471 { 472 struct apic_chip_data *apicd; 473 struct irq_data *irqd; 474 unsigned long flags; 475 int i; 476 477 for (i = 0; i < nr_irqs; i++) { 478 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i); 479 if (irqd && irqd->chip_data) { 480 raw_spin_lock_irqsave(&vector_lock, flags); 481 clear_irq_vector(irqd); 482 vector_free_reserved_and_managed(irqd); 483 apicd = irqd->chip_data; 484 irq_domain_reset_irq_data(irqd); 485 raw_spin_unlock_irqrestore(&vector_lock, flags); 486 free_apic_chip_data(apicd); 487 } 488 } 489 } 490 491 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd, 492 struct apic_chip_data *apicd) 493 { 494 unsigned long flags; 495 bool realloc = false; 496 497 apicd->vector = ISA_IRQ_VECTOR(virq); 498 apicd->cpu = 0; 499 500 raw_spin_lock_irqsave(&vector_lock, flags); 501 /* 502 * If the interrupt is activated, then it must stay at this vector 503 * position. That's usually the timer interrupt (0). 504 */ 505 if (irqd_is_activated(irqd)) { 506 trace_vector_setup(virq, true, 0); 507 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu); 508 } else { 509 /* Release the vector */ 510 apicd->can_reserve = true; 511 irqd_set_can_reserve(irqd); 512 clear_irq_vector(irqd); 513 realloc = true; 514 } 515 raw_spin_unlock_irqrestore(&vector_lock, flags); 516 return realloc; 517 } 518 519 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 520 unsigned int nr_irqs, void *arg) 521 { 522 struct irq_alloc_info *info = arg; 523 struct apic_chip_data *apicd; 524 struct irq_data *irqd; 525 int i, err, node; 526 527 if (disable_apic) 528 return -ENXIO; 529 530 /* Currently vector allocator can't guarantee contiguous allocations */ 531 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) 532 return -ENOSYS; 533 534 for (i = 0; i < nr_irqs; i++) { 535 irqd = irq_domain_get_irq_data(domain, virq + i); 536 BUG_ON(!irqd); 537 node = irq_data_get_node(irqd); 538 WARN_ON_ONCE(irqd->chip_data); 539 apicd = alloc_apic_chip_data(node); 540 if (!apicd) { 541 err = -ENOMEM; 542 goto error; 543 } 544 545 apicd->irq = virq + i; 546 irqd->chip = &lapic_controller; 547 irqd->chip_data = apicd; 548 irqd->hwirq = virq + i; 549 irqd_set_single_target(irqd); 550 /* 551 * Legacy vectors are already assigned when the IOAPIC 552 * takes them over. They stay on the same vector. This is 553 * required for check_timer() to work correctly as it might 554 * switch back to legacy mode. Only update the hardware 555 * config. 556 */ 557 if (info->flags & X86_IRQ_ALLOC_LEGACY) { 558 if (!vector_configure_legacy(virq + i, irqd, apicd)) 559 continue; 560 } 561 562 err = assign_irq_vector_policy(irqd, info); 563 trace_vector_setup(virq + i, false, err); 564 if (err) { 565 irqd->chip_data = NULL; 566 free_apic_chip_data(apicd); 567 goto error; 568 } 569 } 570 571 return 0; 572 573 error: 574 x86_vector_free_irqs(domain, virq, i); 575 return err; 576 } 577 578 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 579 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d, 580 struct irq_data *irqd, int ind) 581 { 582 struct apic_chip_data apicd; 583 unsigned long flags; 584 int irq; 585 586 if (!irqd) { 587 irq_matrix_debug_show(m, vector_matrix, ind); 588 return; 589 } 590 591 irq = irqd->irq; 592 if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) { 593 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq)); 594 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, ""); 595 return; 596 } 597 598 if (!irqd->chip_data) { 599 seq_printf(m, "%*sVector: Not assigned\n", ind, ""); 600 return; 601 } 602 603 raw_spin_lock_irqsave(&vector_lock, flags); 604 memcpy(&apicd, irqd->chip_data, sizeof(apicd)); 605 raw_spin_unlock_irqrestore(&vector_lock, flags); 606 607 seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector); 608 seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu); 609 if (apicd.prev_vector) { 610 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector); 611 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu); 612 } 613 seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0); 614 seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0); 615 seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0); 616 seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0); 617 seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist)); 618 } 619 #endif 620 621 static const struct irq_domain_ops x86_vector_domain_ops = { 622 .alloc = x86_vector_alloc_irqs, 623 .free = x86_vector_free_irqs, 624 .activate = x86_vector_activate, 625 .deactivate = x86_vector_deactivate, 626 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 627 .debug_show = x86_vector_debug_show, 628 #endif 629 }; 630 631 int __init arch_probe_nr_irqs(void) 632 { 633 int nr; 634 635 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 636 nr_irqs = NR_VECTORS * nr_cpu_ids; 637 638 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 639 #if defined(CONFIG_PCI_MSI) 640 /* 641 * for MSI and HT dyn irq 642 */ 643 if (gsi_top <= NR_IRQS_LEGACY) 644 nr += 8 * nr_cpu_ids; 645 else 646 nr += gsi_top * 16; 647 #endif 648 if (nr < nr_irqs) 649 nr_irqs = nr; 650 651 /* 652 * We don't know if PIC is present at this point so we need to do 653 * probe() to get the right number of legacy IRQs. 654 */ 655 return legacy_pic->probe(); 656 } 657 658 void lapic_assign_legacy_vector(unsigned int irq, bool replace) 659 { 660 /* 661 * Use assign system here so it wont get accounted as allocated 662 * and moveable in the cpu hotplug check and it prevents managed 663 * irq reservation from touching it. 664 */ 665 irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace); 666 } 667 668 void __init lapic_assign_system_vectors(void) 669 { 670 unsigned int i, vector = 0; 671 672 for_each_set_bit_from(vector, system_vectors, NR_VECTORS) 673 irq_matrix_assign_system(vector_matrix, vector, false); 674 675 if (nr_legacy_irqs() > 1) 676 lapic_assign_legacy_vector(PIC_CASCADE_IR, false); 677 678 /* System vectors are reserved, online it */ 679 irq_matrix_online(vector_matrix); 680 681 /* Mark the preallocated legacy interrupts */ 682 for (i = 0; i < nr_legacy_irqs(); i++) { 683 if (i != PIC_CASCADE_IR) 684 irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i)); 685 } 686 } 687 688 int __init arch_early_irq_init(void) 689 { 690 struct fwnode_handle *fn; 691 692 fn = irq_domain_alloc_named_fwnode("VECTOR"); 693 BUG_ON(!fn); 694 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, 695 NULL); 696 BUG_ON(x86_vector_domain == NULL); 697 irq_domain_free_fwnode(fn); 698 irq_set_default_host(x86_vector_domain); 699 700 arch_init_msi_domain(x86_vector_domain); 701 702 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 703 704 /* 705 * Allocate the vector matrix allocator data structure and limit the 706 * search area. 707 */ 708 vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR, 709 FIRST_SYSTEM_VECTOR); 710 BUG_ON(!vector_matrix); 711 712 return arch_early_ioapic_init(); 713 } 714 715 #ifdef CONFIG_SMP 716 717 static struct irq_desc *__setup_vector_irq(int vector) 718 { 719 int isairq = vector - ISA_IRQ_VECTOR(0); 720 721 /* Check whether the irq is in the legacy space */ 722 if (isairq < 0 || isairq >= nr_legacy_irqs()) 723 return VECTOR_UNUSED; 724 /* Check whether the irq is handled by the IOAPIC */ 725 if (test_bit(isairq, &io_apic_irqs)) 726 return VECTOR_UNUSED; 727 return irq_to_desc(isairq); 728 } 729 730 /* Online the local APIC infrastructure and initialize the vectors */ 731 void lapic_online(void) 732 { 733 unsigned int vector; 734 735 lockdep_assert_held(&vector_lock); 736 737 /* Online the vector matrix array for this CPU */ 738 irq_matrix_online(vector_matrix); 739 740 /* 741 * The interrupt affinity logic never targets interrupts to offline 742 * CPUs. The exception are the legacy PIC interrupts. In general 743 * they are only targeted to CPU0, but depending on the platform 744 * they can be distributed to any online CPU in hardware. The 745 * kernel has no influence on that. So all active legacy vectors 746 * must be installed on all CPUs. All non legacy interrupts can be 747 * cleared. 748 */ 749 for (vector = 0; vector < NR_VECTORS; vector++) 750 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector)); 751 } 752 753 void lapic_offline(void) 754 { 755 lock_vector_lock(); 756 irq_matrix_offline(vector_matrix); 757 unlock_vector_lock(); 758 } 759 760 static int apic_set_affinity(struct irq_data *irqd, 761 const struct cpumask *dest, bool force) 762 { 763 struct apic_chip_data *apicd = apic_chip_data(irqd); 764 int err; 765 766 /* 767 * Core code can call here for inactive interrupts. For inactive 768 * interrupts which use managed or reservation mode there is no 769 * point in going through the vector assignment right now as the 770 * activation will assign a vector which fits the destination 771 * cpumask. Let the core code store the destination mask and be 772 * done with it. 773 */ 774 if (!irqd_is_activated(irqd) && 775 (apicd->is_managed || apicd->can_reserve)) 776 return IRQ_SET_MASK_OK; 777 778 raw_spin_lock(&vector_lock); 779 cpumask_and(vector_searchmask, dest, cpu_online_mask); 780 if (irqd_affinity_is_managed(irqd)) 781 err = assign_managed_vector(irqd, vector_searchmask); 782 else 783 err = assign_vector_locked(irqd, vector_searchmask); 784 raw_spin_unlock(&vector_lock); 785 return err ? err : IRQ_SET_MASK_OK; 786 } 787 788 #else 789 # define apic_set_affinity NULL 790 #endif 791 792 static int apic_retrigger_irq(struct irq_data *irqd) 793 { 794 struct apic_chip_data *apicd = apic_chip_data(irqd); 795 unsigned long flags; 796 797 raw_spin_lock_irqsave(&vector_lock, flags); 798 apic->send_IPI(apicd->cpu, apicd->vector); 799 raw_spin_unlock_irqrestore(&vector_lock, flags); 800 801 return 1; 802 } 803 804 void apic_ack_irq(struct irq_data *irqd) 805 { 806 irq_move_irq(irqd); 807 ack_APIC_irq(); 808 } 809 810 void apic_ack_edge(struct irq_data *irqd) 811 { 812 irq_complete_move(irqd_cfg(irqd)); 813 apic_ack_irq(irqd); 814 } 815 816 static struct irq_chip lapic_controller = { 817 .name = "APIC", 818 .irq_ack = apic_ack_edge, 819 .irq_set_affinity = apic_set_affinity, 820 .irq_retrigger = apic_retrigger_irq, 821 }; 822 823 #ifdef CONFIG_SMP 824 825 static void free_moved_vector(struct apic_chip_data *apicd) 826 { 827 unsigned int vector = apicd->prev_vector; 828 unsigned int cpu = apicd->prev_cpu; 829 bool managed = apicd->is_managed; 830 831 /* 832 * This should never happen. Managed interrupts are not 833 * migrated except on CPU down, which does not involve the 834 * cleanup vector. But try to keep the accounting correct 835 * nevertheless. 836 */ 837 WARN_ON_ONCE(managed); 838 839 trace_vector_free_moved(apicd->irq, cpu, vector, managed); 840 irq_matrix_free(vector_matrix, cpu, vector, managed); 841 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 842 hlist_del_init(&apicd->clist); 843 apicd->prev_vector = 0; 844 apicd->move_in_progress = 0; 845 } 846 847 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void) 848 { 849 struct hlist_head *clhead = this_cpu_ptr(&cleanup_list); 850 struct apic_chip_data *apicd; 851 struct hlist_node *tmp; 852 853 entering_ack_irq(); 854 /* Prevent vectors vanishing under us */ 855 raw_spin_lock(&vector_lock); 856 857 hlist_for_each_entry_safe(apicd, tmp, clhead, clist) { 858 unsigned int irr, vector = apicd->prev_vector; 859 860 /* 861 * Paranoia: Check if the vector that needs to be cleaned 862 * up is registered at the APICs IRR. If so, then this is 863 * not the best time to clean it up. Clean it up in the 864 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 865 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest 866 * priority external vector, so on return from this 867 * interrupt the device interrupt will happen first. 868 */ 869 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 870 if (irr & (1U << (vector % 32))) { 871 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 872 continue; 873 } 874 free_moved_vector(apicd); 875 } 876 877 raw_spin_unlock(&vector_lock); 878 exiting_irq(); 879 } 880 881 static void __send_cleanup_vector(struct apic_chip_data *apicd) 882 { 883 unsigned int cpu; 884 885 raw_spin_lock(&vector_lock); 886 apicd->move_in_progress = 0; 887 cpu = apicd->prev_cpu; 888 if (cpu_online(cpu)) { 889 hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu)); 890 apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR); 891 } else { 892 apicd->prev_vector = 0; 893 } 894 raw_spin_unlock(&vector_lock); 895 } 896 897 void send_cleanup_vector(struct irq_cfg *cfg) 898 { 899 struct apic_chip_data *apicd; 900 901 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 902 if (apicd->move_in_progress) 903 __send_cleanup_vector(apicd); 904 } 905 906 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) 907 { 908 struct apic_chip_data *apicd; 909 910 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 911 if (likely(!apicd->move_in_progress)) 912 return; 913 914 if (vector == apicd->vector && apicd->cpu == smp_processor_id()) 915 __send_cleanup_vector(apicd); 916 } 917 918 void irq_complete_move(struct irq_cfg *cfg) 919 { 920 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); 921 } 922 923 /* 924 * Called from fixup_irqs() with @desc->lock held and interrupts disabled. 925 */ 926 void irq_force_complete_move(struct irq_desc *desc) 927 { 928 struct apic_chip_data *apicd; 929 struct irq_data *irqd; 930 unsigned int vector; 931 932 /* 933 * The function is called for all descriptors regardless of which 934 * irqdomain they belong to. For example if an IRQ is provided by 935 * an irq_chip as part of a GPIO driver, the chip data for that 936 * descriptor is specific to the irq_chip in question. 937 * 938 * Check first that the chip_data is what we expect 939 * (apic_chip_data) before touching it any further. 940 */ 941 irqd = irq_domain_get_irq_data(x86_vector_domain, 942 irq_desc_get_irq(desc)); 943 if (!irqd) 944 return; 945 946 raw_spin_lock(&vector_lock); 947 apicd = apic_chip_data(irqd); 948 if (!apicd) 949 goto unlock; 950 951 /* 952 * If prev_vector is empty, no action required. 953 */ 954 vector = apicd->prev_vector; 955 if (!vector) 956 goto unlock; 957 958 /* 959 * This is tricky. If the cleanup of the old vector has not been 960 * done yet, then the following setaffinity call will fail with 961 * -EBUSY. This can leave the interrupt in a stale state. 962 * 963 * All CPUs are stuck in stop machine with interrupts disabled so 964 * calling __irq_complete_move() would be completely pointless. 965 * 966 * 1) The interrupt is in move_in_progress state. That means that we 967 * have not seen an interrupt since the io_apic was reprogrammed to 968 * the new vector. 969 * 970 * 2) The interrupt has fired on the new vector, but the cleanup IPIs 971 * have not been processed yet. 972 */ 973 if (apicd->move_in_progress) { 974 /* 975 * In theory there is a race: 976 * 977 * set_ioapic(new_vector) <-- Interrupt is raised before update 978 * is effective, i.e. it's raised on 979 * the old vector. 980 * 981 * So if the target cpu cannot handle that interrupt before 982 * the old vector is cleaned up, we get a spurious interrupt 983 * and in the worst case the ioapic irq line becomes stale. 984 * 985 * But in case of cpu hotplug this should be a non issue 986 * because if the affinity update happens right before all 987 * cpus rendevouz in stop machine, there is no way that the 988 * interrupt can be blocked on the target cpu because all cpus 989 * loops first with interrupts enabled in stop machine, so the 990 * old vector is not yet cleaned up when the interrupt fires. 991 * 992 * So the only way to run into this issue is if the delivery 993 * of the interrupt on the apic/system bus would be delayed 994 * beyond the point where the target cpu disables interrupts 995 * in stop machine. I doubt that it can happen, but at least 996 * there is a theroretical chance. Virtualization might be 997 * able to expose this, but AFAICT the IOAPIC emulation is not 998 * as stupid as the real hardware. 999 * 1000 * Anyway, there is nothing we can do about that at this point 1001 * w/o refactoring the whole fixup_irq() business completely. 1002 * We print at least the irq number and the old vector number, 1003 * so we have the necessary information when a problem in that 1004 * area arises. 1005 */ 1006 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", 1007 irqd->irq, vector); 1008 } 1009 free_moved_vector(apicd); 1010 unlock: 1011 raw_spin_unlock(&vector_lock); 1012 } 1013 1014 #ifdef CONFIG_HOTPLUG_CPU 1015 /* 1016 * Note, this is not accurate accounting, but at least good enough to 1017 * prevent that the actual interrupt move will run out of vectors. 1018 */ 1019 int lapic_can_unplug_cpu(void) 1020 { 1021 unsigned int rsvd, avl, tomove, cpu = smp_processor_id(); 1022 int ret = 0; 1023 1024 raw_spin_lock(&vector_lock); 1025 tomove = irq_matrix_allocated(vector_matrix); 1026 avl = irq_matrix_available(vector_matrix, true); 1027 if (avl < tomove) { 1028 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n", 1029 cpu, tomove, avl); 1030 ret = -ENOSPC; 1031 goto out; 1032 } 1033 rsvd = irq_matrix_reserved(vector_matrix); 1034 if (avl < rsvd) { 1035 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n", 1036 rsvd, avl); 1037 } 1038 out: 1039 raw_spin_unlock(&vector_lock); 1040 return ret; 1041 } 1042 #endif /* HOTPLUG_CPU */ 1043 #endif /* SMP */ 1044 1045 static void __init print_APIC_field(int base) 1046 { 1047 int i; 1048 1049 printk(KERN_DEBUG); 1050 1051 for (i = 0; i < 8; i++) 1052 pr_cont("%08x", apic_read(base + i*0x10)); 1053 1054 pr_cont("\n"); 1055 } 1056 1057 static void __init print_local_APIC(void *dummy) 1058 { 1059 unsigned int i, v, ver, maxlvt; 1060 u64 icr; 1061 1062 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 1063 smp_processor_id(), hard_smp_processor_id()); 1064 v = apic_read(APIC_ID); 1065 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1066 v = apic_read(APIC_LVR); 1067 pr_info("... APIC VERSION: %08x\n", v); 1068 ver = GET_APIC_VERSION(v); 1069 maxlvt = lapic_get_maxlvt(); 1070 1071 v = apic_read(APIC_TASKPRI); 1072 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1073 1074 /* !82489DX */ 1075 if (APIC_INTEGRATED(ver)) { 1076 if (!APIC_XAPIC(ver)) { 1077 v = apic_read(APIC_ARBPRI); 1078 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 1079 v, v & APIC_ARBPRI_MASK); 1080 } 1081 v = apic_read(APIC_PROCPRI); 1082 pr_debug("... APIC PROCPRI: %08x\n", v); 1083 } 1084 1085 /* 1086 * Remote read supported only in the 82489DX and local APIC for 1087 * Pentium processors. 1088 */ 1089 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1090 v = apic_read(APIC_RRR); 1091 pr_debug("... APIC RRR: %08x\n", v); 1092 } 1093 1094 v = apic_read(APIC_LDR); 1095 pr_debug("... APIC LDR: %08x\n", v); 1096 if (!x2apic_enabled()) { 1097 v = apic_read(APIC_DFR); 1098 pr_debug("... APIC DFR: %08x\n", v); 1099 } 1100 v = apic_read(APIC_SPIV); 1101 pr_debug("... APIC SPIV: %08x\n", v); 1102 1103 pr_debug("... APIC ISR field:\n"); 1104 print_APIC_field(APIC_ISR); 1105 pr_debug("... APIC TMR field:\n"); 1106 print_APIC_field(APIC_TMR); 1107 pr_debug("... APIC IRR field:\n"); 1108 print_APIC_field(APIC_IRR); 1109 1110 /* !82489DX */ 1111 if (APIC_INTEGRATED(ver)) { 1112 /* Due to the Pentium erratum 3AP. */ 1113 if (maxlvt > 3) 1114 apic_write(APIC_ESR, 0); 1115 1116 v = apic_read(APIC_ESR); 1117 pr_debug("... APIC ESR: %08x\n", v); 1118 } 1119 1120 icr = apic_icr_read(); 1121 pr_debug("... APIC ICR: %08x\n", (u32)icr); 1122 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1123 1124 v = apic_read(APIC_LVTT); 1125 pr_debug("... APIC LVTT: %08x\n", v); 1126 1127 if (maxlvt > 3) { 1128 /* PC is LVT#4. */ 1129 v = apic_read(APIC_LVTPC); 1130 pr_debug("... APIC LVTPC: %08x\n", v); 1131 } 1132 v = apic_read(APIC_LVT0); 1133 pr_debug("... APIC LVT0: %08x\n", v); 1134 v = apic_read(APIC_LVT1); 1135 pr_debug("... APIC LVT1: %08x\n", v); 1136 1137 if (maxlvt > 2) { 1138 /* ERR is LVT#3. */ 1139 v = apic_read(APIC_LVTERR); 1140 pr_debug("... APIC LVTERR: %08x\n", v); 1141 } 1142 1143 v = apic_read(APIC_TMICT); 1144 pr_debug("... APIC TMICT: %08x\n", v); 1145 v = apic_read(APIC_TMCCT); 1146 pr_debug("... APIC TMCCT: %08x\n", v); 1147 v = apic_read(APIC_TDCR); 1148 pr_debug("... APIC TDCR: %08x\n", v); 1149 1150 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1151 v = apic_read(APIC_EFEAT); 1152 maxlvt = (v >> 16) & 0xff; 1153 pr_debug("... APIC EFEAT: %08x\n", v); 1154 v = apic_read(APIC_ECTRL); 1155 pr_debug("... APIC ECTRL: %08x\n", v); 1156 for (i = 0; i < maxlvt; i++) { 1157 v = apic_read(APIC_EILVTn(i)); 1158 pr_debug("... APIC EILVT%d: %08x\n", i, v); 1159 } 1160 } 1161 pr_cont("\n"); 1162 } 1163 1164 static void __init print_local_APICs(int maxcpu) 1165 { 1166 int cpu; 1167 1168 if (!maxcpu) 1169 return; 1170 1171 preempt_disable(); 1172 for_each_online_cpu(cpu) { 1173 if (cpu >= maxcpu) 1174 break; 1175 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1176 } 1177 preempt_enable(); 1178 } 1179 1180 static void __init print_PIC(void) 1181 { 1182 unsigned int v; 1183 unsigned long flags; 1184 1185 if (!nr_legacy_irqs()) 1186 return; 1187 1188 pr_debug("\nprinting PIC contents\n"); 1189 1190 raw_spin_lock_irqsave(&i8259A_lock, flags); 1191 1192 v = inb(0xa1) << 8 | inb(0x21); 1193 pr_debug("... PIC IMR: %04x\n", v); 1194 1195 v = inb(0xa0) << 8 | inb(0x20); 1196 pr_debug("... PIC IRR: %04x\n", v); 1197 1198 outb(0x0b, 0xa0); 1199 outb(0x0b, 0x20); 1200 v = inb(0xa0) << 8 | inb(0x20); 1201 outb(0x0a, 0xa0); 1202 outb(0x0a, 0x20); 1203 1204 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 1205 1206 pr_debug("... PIC ISR: %04x\n", v); 1207 1208 v = inb(0x4d1) << 8 | inb(0x4d0); 1209 pr_debug("... PIC ELCR: %04x\n", v); 1210 } 1211 1212 static int show_lapic __initdata = 1; 1213 static __init int setup_show_lapic(char *arg) 1214 { 1215 int num = -1; 1216 1217 if (strcmp(arg, "all") == 0) { 1218 show_lapic = CONFIG_NR_CPUS; 1219 } else { 1220 get_option(&arg, &num); 1221 if (num >= 0) 1222 show_lapic = num; 1223 } 1224 1225 return 1; 1226 } 1227 __setup("show_lapic=", setup_show_lapic); 1228 1229 static int __init print_ICs(void) 1230 { 1231 if (apic_verbosity == APIC_QUIET) 1232 return 0; 1233 1234 print_PIC(); 1235 1236 /* don't print out if apic is not there */ 1237 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1238 return 0; 1239 1240 print_local_APICs(show_lapic); 1241 print_IO_APICs(); 1242 1243 return 0; 1244 } 1245 1246 late_initcall(print_ICs); 1247