xref: /linux/arch/x86/kernel/apic/vector.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Local APIC related interfaces to support IOAPIC, MSI, etc.
3  *
4  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *	Moved from arch/x86/kernel/apic/io_apic.c.
6  * Jiang Liu <jiang.liu@linux.intel.com>
7  *	Enable support of hierarchical irqdomains
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/compiler.h>
18 #include <linux/slab.h>
19 #include <asm/irqdomain.h>
20 #include <asm/hw_irq.h>
21 #include <asm/traps.h>
22 #include <asm/apic.h>
23 #include <asm/i8259.h>
24 #include <asm/desc.h>
25 #include <asm/irq_remapping.h>
26 
27 #include <asm/trace/irq_vectors.h>
28 
29 struct apic_chip_data {
30 	struct irq_cfg		hw_irq_cfg;
31 	unsigned int		vector;
32 	unsigned int		prev_vector;
33 	unsigned int		cpu;
34 	unsigned int		prev_cpu;
35 	unsigned int		irq;
36 	struct hlist_node	clist;
37 	unsigned int		move_in_progress	: 1,
38 				is_managed		: 1,
39 				can_reserve		: 1,
40 				has_reserved		: 1;
41 };
42 
43 struct irq_domain *x86_vector_domain;
44 EXPORT_SYMBOL_GPL(x86_vector_domain);
45 static DEFINE_RAW_SPINLOCK(vector_lock);
46 static cpumask_var_t vector_searchmask;
47 static struct irq_chip lapic_controller;
48 static struct irq_matrix *vector_matrix;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
51 #endif
52 
53 void lock_vector_lock(void)
54 {
55 	/* Used to the online set of cpus does not change
56 	 * during assign_irq_vector.
57 	 */
58 	raw_spin_lock(&vector_lock);
59 }
60 
61 void unlock_vector_lock(void)
62 {
63 	raw_spin_unlock(&vector_lock);
64 }
65 
66 void init_irq_alloc_info(struct irq_alloc_info *info,
67 			 const struct cpumask *mask)
68 {
69 	memset(info, 0, sizeof(*info));
70 	info->mask = mask;
71 }
72 
73 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
74 {
75 	if (src)
76 		*dst = *src;
77 	else
78 		memset(dst, 0, sizeof(*dst));
79 }
80 
81 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
82 {
83 	if (!irqd)
84 		return NULL;
85 
86 	while (irqd->parent_data)
87 		irqd = irqd->parent_data;
88 
89 	return irqd->chip_data;
90 }
91 
92 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
93 {
94 	struct apic_chip_data *apicd = apic_chip_data(irqd);
95 
96 	return apicd ? &apicd->hw_irq_cfg : NULL;
97 }
98 EXPORT_SYMBOL_GPL(irqd_cfg);
99 
100 struct irq_cfg *irq_cfg(unsigned int irq)
101 {
102 	return irqd_cfg(irq_get_irq_data(irq));
103 }
104 
105 static struct apic_chip_data *alloc_apic_chip_data(int node)
106 {
107 	struct apic_chip_data *apicd;
108 
109 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
110 	if (apicd)
111 		INIT_HLIST_NODE(&apicd->clist);
112 	return apicd;
113 }
114 
115 static void free_apic_chip_data(struct apic_chip_data *apicd)
116 {
117 	kfree(apicd);
118 }
119 
120 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
121 				unsigned int cpu)
122 {
123 	struct apic_chip_data *apicd = apic_chip_data(irqd);
124 
125 	lockdep_assert_held(&vector_lock);
126 
127 	apicd->hw_irq_cfg.vector = vector;
128 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
129 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
130 	trace_vector_config(irqd->irq, vector, cpu,
131 			    apicd->hw_irq_cfg.dest_apicid);
132 }
133 
134 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
135 			       unsigned int newcpu)
136 {
137 	struct apic_chip_data *apicd = apic_chip_data(irqd);
138 	struct irq_desc *desc = irq_data_to_desc(irqd);
139 	bool managed = irqd_affinity_is_managed(irqd);
140 
141 	lockdep_assert_held(&vector_lock);
142 
143 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
144 			    apicd->cpu);
145 
146 	/*
147 	 * If there is no vector associated or if the associated vector is
148 	 * the shutdown vector, which is associated to make PCI/MSI
149 	 * shutdown mode work, then there is nothing to release. Clear out
150 	 * prev_vector for this and the offlined target case.
151 	 */
152 	apicd->prev_vector = 0;
153 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
154 		goto setnew;
155 	/*
156 	 * If the target CPU of the previous vector is online, then mark
157 	 * the vector as move in progress and store it for cleanup when the
158 	 * first interrupt on the new vector arrives. If the target CPU is
159 	 * offline then the regular release mechanism via the cleanup
160 	 * vector is not possible and the vector can be immediately freed
161 	 * in the underlying matrix allocator.
162 	 */
163 	if (cpu_online(apicd->cpu)) {
164 		apicd->move_in_progress = true;
165 		apicd->prev_vector = apicd->vector;
166 		apicd->prev_cpu = apicd->cpu;
167 	} else {
168 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
169 				managed);
170 	}
171 
172 setnew:
173 	apicd->vector = newvec;
174 	apicd->cpu = newcpu;
175 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
176 	per_cpu(vector_irq, newcpu)[newvec] = desc;
177 }
178 
179 static void vector_assign_managed_shutdown(struct irq_data *irqd)
180 {
181 	unsigned int cpu = cpumask_first(cpu_online_mask);
182 
183 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
184 }
185 
186 static int reserve_managed_vector(struct irq_data *irqd)
187 {
188 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
189 	struct apic_chip_data *apicd = apic_chip_data(irqd);
190 	unsigned long flags;
191 	int ret;
192 
193 	raw_spin_lock_irqsave(&vector_lock, flags);
194 	apicd->is_managed = true;
195 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
196 	raw_spin_unlock_irqrestore(&vector_lock, flags);
197 	trace_vector_reserve_managed(irqd->irq, ret);
198 	return ret;
199 }
200 
201 static void reserve_irq_vector_locked(struct irq_data *irqd)
202 {
203 	struct apic_chip_data *apicd = apic_chip_data(irqd);
204 
205 	irq_matrix_reserve(vector_matrix);
206 	apicd->can_reserve = true;
207 	apicd->has_reserved = true;
208 	irqd_set_can_reserve(irqd);
209 	trace_vector_reserve(irqd->irq, 0);
210 	vector_assign_managed_shutdown(irqd);
211 }
212 
213 static int reserve_irq_vector(struct irq_data *irqd)
214 {
215 	unsigned long flags;
216 
217 	raw_spin_lock_irqsave(&vector_lock, flags);
218 	reserve_irq_vector_locked(irqd);
219 	raw_spin_unlock_irqrestore(&vector_lock, flags);
220 	return 0;
221 }
222 
223 static int
224 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
225 {
226 	struct apic_chip_data *apicd = apic_chip_data(irqd);
227 	bool resvd = apicd->has_reserved;
228 	unsigned int cpu = apicd->cpu;
229 	int vector = apicd->vector;
230 
231 	lockdep_assert_held(&vector_lock);
232 
233 	/*
234 	 * If the current target CPU is online and in the new requested
235 	 * affinity mask, there is no point in moving the interrupt from
236 	 * one CPU to another.
237 	 */
238 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
239 		return 0;
240 
241 	/*
242 	 * Careful here. @apicd might either have move_in_progress set or
243 	 * be enqueued for cleanup. Assigning a new vector would either
244 	 * leave a stale vector on some CPU around or in case of a pending
245 	 * cleanup corrupt the hlist.
246 	 */
247 	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
248 		return -EBUSY;
249 
250 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
251 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
252 	if (vector < 0)
253 		return vector;
254 	apic_update_vector(irqd, vector, cpu);
255 	apic_update_irq_cfg(irqd, vector, cpu);
256 
257 	return 0;
258 }
259 
260 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
261 {
262 	unsigned long flags;
263 	int ret;
264 
265 	raw_spin_lock_irqsave(&vector_lock, flags);
266 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
267 	ret = assign_vector_locked(irqd, vector_searchmask);
268 	raw_spin_unlock_irqrestore(&vector_lock, flags);
269 	return ret;
270 }
271 
272 static int assign_irq_vector_any_locked(struct irq_data *irqd)
273 {
274 	/* Get the affinity mask - either irq_default_affinity or (user) set */
275 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
276 	int node = irq_data_get_node(irqd);
277 
278 	if (node == NUMA_NO_NODE)
279 		goto all;
280 	/* Try the intersection of @affmsk and node mask */
281 	cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
282 	if (!assign_vector_locked(irqd, vector_searchmask))
283 		return 0;
284 	/* Try the node mask */
285 	if (!assign_vector_locked(irqd, cpumask_of_node(node)))
286 		return 0;
287 all:
288 	/* Try the full affinity mask */
289 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
290 	if (!assign_vector_locked(irqd, vector_searchmask))
291 		return 0;
292 	/* Try the full online mask */
293 	return assign_vector_locked(irqd, cpu_online_mask);
294 }
295 
296 static int
297 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
298 {
299 	if (irqd_affinity_is_managed(irqd))
300 		return reserve_managed_vector(irqd);
301 	if (info->mask)
302 		return assign_irq_vector(irqd, info->mask);
303 	/*
304 	 * Make only a global reservation with no guarantee. A real vector
305 	 * is associated at activation time.
306 	 */
307 	return reserve_irq_vector(irqd);
308 }
309 
310 static int
311 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
312 {
313 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
314 	struct apic_chip_data *apicd = apic_chip_data(irqd);
315 	int vector, cpu;
316 
317 	cpumask_and(vector_searchmask, dest, affmsk);
318 
319 	/* set_affinity might call here for nothing */
320 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
321 		return 0;
322 	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
323 					  &cpu);
324 	trace_vector_alloc_managed(irqd->irq, vector, vector);
325 	if (vector < 0)
326 		return vector;
327 	apic_update_vector(irqd, vector, cpu);
328 	apic_update_irq_cfg(irqd, vector, cpu);
329 	return 0;
330 }
331 
332 static void clear_irq_vector(struct irq_data *irqd)
333 {
334 	struct apic_chip_data *apicd = apic_chip_data(irqd);
335 	bool managed = irqd_affinity_is_managed(irqd);
336 	unsigned int vector = apicd->vector;
337 
338 	lockdep_assert_held(&vector_lock);
339 
340 	if (!vector)
341 		return;
342 
343 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
344 			   apicd->prev_cpu);
345 
346 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_UNUSED;
347 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
348 	apicd->vector = 0;
349 
350 	/* Clean up move in progress */
351 	vector = apicd->prev_vector;
352 	if (!vector)
353 		return;
354 
355 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED;
356 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
357 	apicd->prev_vector = 0;
358 	apicd->move_in_progress = 0;
359 	hlist_del_init(&apicd->clist);
360 }
361 
362 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
363 {
364 	struct apic_chip_data *apicd = apic_chip_data(irqd);
365 	unsigned long flags;
366 
367 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
368 				apicd->can_reserve, false);
369 
370 	/* Regular fixed assigned interrupt */
371 	if (!apicd->is_managed && !apicd->can_reserve)
372 		return;
373 	/* If the interrupt has a global reservation, nothing to do */
374 	if (apicd->has_reserved)
375 		return;
376 
377 	raw_spin_lock_irqsave(&vector_lock, flags);
378 	clear_irq_vector(irqd);
379 	if (apicd->can_reserve)
380 		reserve_irq_vector_locked(irqd);
381 	else
382 		vector_assign_managed_shutdown(irqd);
383 	raw_spin_unlock_irqrestore(&vector_lock, flags);
384 }
385 
386 static int activate_reserved(struct irq_data *irqd)
387 {
388 	struct apic_chip_data *apicd = apic_chip_data(irqd);
389 	int ret;
390 
391 	ret = assign_irq_vector_any_locked(irqd);
392 	if (!ret) {
393 		apicd->has_reserved = false;
394 		/*
395 		 * Core might have disabled reservation mode after
396 		 * allocating the irq descriptor. Ideally this should
397 		 * happen before allocation time, but that would require
398 		 * completely convoluted ways of transporting that
399 		 * information.
400 		 */
401 		if (!irqd_can_reserve(irqd))
402 			apicd->can_reserve = false;
403 	}
404 	return ret;
405 }
406 
407 static int activate_managed(struct irq_data *irqd)
408 {
409 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
410 	int ret;
411 
412 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
413 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
414 		/* Something in the core code broke! Survive gracefully */
415 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
416 		return -EINVAL;
417 	}
418 
419 	ret = assign_managed_vector(irqd, vector_searchmask);
420 	/*
421 	 * This should not happen. The vector reservation got buggered.  Handle
422 	 * it gracefully.
423 	 */
424 	if (WARN_ON_ONCE(ret < 0)) {
425 		pr_err("Managed startup irq %u, no vector available\n",
426 		       irqd->irq);
427 	}
428 	return ret;
429 }
430 
431 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
432 			       bool reserve)
433 {
434 	struct apic_chip_data *apicd = apic_chip_data(irqd);
435 	unsigned long flags;
436 	int ret = 0;
437 
438 	trace_vector_activate(irqd->irq, apicd->is_managed,
439 			      apicd->can_reserve, reserve);
440 
441 	/* Nothing to do for fixed assigned vectors */
442 	if (!apicd->can_reserve && !apicd->is_managed)
443 		return 0;
444 
445 	raw_spin_lock_irqsave(&vector_lock, flags);
446 	if (reserve || irqd_is_managed_and_shutdown(irqd))
447 		vector_assign_managed_shutdown(irqd);
448 	else if (apicd->is_managed)
449 		ret = activate_managed(irqd);
450 	else if (apicd->has_reserved)
451 		ret = activate_reserved(irqd);
452 	raw_spin_unlock_irqrestore(&vector_lock, flags);
453 	return ret;
454 }
455 
456 static void vector_free_reserved_and_managed(struct irq_data *irqd)
457 {
458 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
459 	struct apic_chip_data *apicd = apic_chip_data(irqd);
460 
461 	trace_vector_teardown(irqd->irq, apicd->is_managed,
462 			      apicd->has_reserved);
463 
464 	if (apicd->has_reserved)
465 		irq_matrix_remove_reserved(vector_matrix);
466 	if (apicd->is_managed)
467 		irq_matrix_remove_managed(vector_matrix, dest);
468 }
469 
470 static void x86_vector_free_irqs(struct irq_domain *domain,
471 				 unsigned int virq, unsigned int nr_irqs)
472 {
473 	struct apic_chip_data *apicd;
474 	struct irq_data *irqd;
475 	unsigned long flags;
476 	int i;
477 
478 	for (i = 0; i < nr_irqs; i++) {
479 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
480 		if (irqd && irqd->chip_data) {
481 			raw_spin_lock_irqsave(&vector_lock, flags);
482 			clear_irq_vector(irqd);
483 			vector_free_reserved_and_managed(irqd);
484 			apicd = irqd->chip_data;
485 			irq_domain_reset_irq_data(irqd);
486 			raw_spin_unlock_irqrestore(&vector_lock, flags);
487 			free_apic_chip_data(apicd);
488 		}
489 	}
490 }
491 
492 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
493 				    struct apic_chip_data *apicd)
494 {
495 	unsigned long flags;
496 	bool realloc = false;
497 
498 	apicd->vector = ISA_IRQ_VECTOR(virq);
499 	apicd->cpu = 0;
500 
501 	raw_spin_lock_irqsave(&vector_lock, flags);
502 	/*
503 	 * If the interrupt is activated, then it must stay at this vector
504 	 * position. That's usually the timer interrupt (0).
505 	 */
506 	if (irqd_is_activated(irqd)) {
507 		trace_vector_setup(virq, true, 0);
508 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
509 	} else {
510 		/* Release the vector */
511 		apicd->can_reserve = true;
512 		irqd_set_can_reserve(irqd);
513 		clear_irq_vector(irqd);
514 		realloc = true;
515 	}
516 	raw_spin_unlock_irqrestore(&vector_lock, flags);
517 	return realloc;
518 }
519 
520 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
521 				 unsigned int nr_irqs, void *arg)
522 {
523 	struct irq_alloc_info *info = arg;
524 	struct apic_chip_data *apicd;
525 	struct irq_data *irqd;
526 	int i, err, node;
527 
528 	if (disable_apic)
529 		return -ENXIO;
530 
531 	/* Currently vector allocator can't guarantee contiguous allocations */
532 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
533 		return -ENOSYS;
534 
535 	for (i = 0; i < nr_irqs; i++) {
536 		irqd = irq_domain_get_irq_data(domain, virq + i);
537 		BUG_ON(!irqd);
538 		node = irq_data_get_node(irqd);
539 		WARN_ON_ONCE(irqd->chip_data);
540 		apicd = alloc_apic_chip_data(node);
541 		if (!apicd) {
542 			err = -ENOMEM;
543 			goto error;
544 		}
545 
546 		apicd->irq = virq + i;
547 		irqd->chip = &lapic_controller;
548 		irqd->chip_data = apicd;
549 		irqd->hwirq = virq + i;
550 		irqd_set_single_target(irqd);
551 		/*
552 		 * Legacy vectors are already assigned when the IOAPIC
553 		 * takes them over. They stay on the same vector. This is
554 		 * required for check_timer() to work correctly as it might
555 		 * switch back to legacy mode. Only update the hardware
556 		 * config.
557 		 */
558 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
559 			if (!vector_configure_legacy(virq + i, irqd, apicd))
560 				continue;
561 		}
562 
563 		err = assign_irq_vector_policy(irqd, info);
564 		trace_vector_setup(virq + i, false, err);
565 		if (err) {
566 			irqd->chip_data = NULL;
567 			free_apic_chip_data(apicd);
568 			goto error;
569 		}
570 	}
571 
572 	return 0;
573 
574 error:
575 	x86_vector_free_irqs(domain, virq, i);
576 	return err;
577 }
578 
579 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
580 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
581 				  struct irq_data *irqd, int ind)
582 {
583 	struct apic_chip_data apicd;
584 	unsigned long flags;
585 	int irq;
586 
587 	if (!irqd) {
588 		irq_matrix_debug_show(m, vector_matrix, ind);
589 		return;
590 	}
591 
592 	irq = irqd->irq;
593 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
594 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
595 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
596 		return;
597 	}
598 
599 	if (!irqd->chip_data) {
600 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
601 		return;
602 	}
603 
604 	raw_spin_lock_irqsave(&vector_lock, flags);
605 	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
606 	raw_spin_unlock_irqrestore(&vector_lock, flags);
607 
608 	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
609 	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
610 	if (apicd.prev_vector) {
611 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
612 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
613 	}
614 	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
615 	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
616 	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
617 	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
618 	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
619 }
620 #endif
621 
622 static const struct irq_domain_ops x86_vector_domain_ops = {
623 	.alloc		= x86_vector_alloc_irqs,
624 	.free		= x86_vector_free_irqs,
625 	.activate	= x86_vector_activate,
626 	.deactivate	= x86_vector_deactivate,
627 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
628 	.debug_show	= x86_vector_debug_show,
629 #endif
630 };
631 
632 int __init arch_probe_nr_irqs(void)
633 {
634 	int nr;
635 
636 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
637 		nr_irqs = NR_VECTORS * nr_cpu_ids;
638 
639 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
640 #if defined(CONFIG_PCI_MSI)
641 	/*
642 	 * for MSI and HT dyn irq
643 	 */
644 	if (gsi_top <= NR_IRQS_LEGACY)
645 		nr +=  8 * nr_cpu_ids;
646 	else
647 		nr += gsi_top * 16;
648 #endif
649 	if (nr < nr_irqs)
650 		nr_irqs = nr;
651 
652 	/*
653 	 * We don't know if PIC is present at this point so we need to do
654 	 * probe() to get the right number of legacy IRQs.
655 	 */
656 	return legacy_pic->probe();
657 }
658 
659 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
660 {
661 	/*
662 	 * Use assign system here so it wont get accounted as allocated
663 	 * and moveable in the cpu hotplug check and it prevents managed
664 	 * irq reservation from touching it.
665 	 */
666 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
667 }
668 
669 void __init lapic_assign_system_vectors(void)
670 {
671 	unsigned int i, vector = 0;
672 
673 	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
674 		irq_matrix_assign_system(vector_matrix, vector, false);
675 
676 	if (nr_legacy_irqs() > 1)
677 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
678 
679 	/* System vectors are reserved, online it */
680 	irq_matrix_online(vector_matrix);
681 
682 	/* Mark the preallocated legacy interrupts */
683 	for (i = 0; i < nr_legacy_irqs(); i++) {
684 		if (i != PIC_CASCADE_IR)
685 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
686 	}
687 }
688 
689 int __init arch_early_irq_init(void)
690 {
691 	struct fwnode_handle *fn;
692 
693 	fn = irq_domain_alloc_named_fwnode("VECTOR");
694 	BUG_ON(!fn);
695 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
696 						   NULL);
697 	BUG_ON(x86_vector_domain == NULL);
698 	irq_domain_free_fwnode(fn);
699 	irq_set_default_host(x86_vector_domain);
700 
701 	arch_init_msi_domain(x86_vector_domain);
702 
703 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
704 
705 	/*
706 	 * Allocate the vector matrix allocator data structure and limit the
707 	 * search area.
708 	 */
709 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
710 					 FIRST_SYSTEM_VECTOR);
711 	BUG_ON(!vector_matrix);
712 
713 	return arch_early_ioapic_init();
714 }
715 
716 #ifdef CONFIG_SMP
717 
718 static struct irq_desc *__setup_vector_irq(int vector)
719 {
720 	int isairq = vector - ISA_IRQ_VECTOR(0);
721 
722 	/* Check whether the irq is in the legacy space */
723 	if (isairq < 0 || isairq >= nr_legacy_irqs())
724 		return VECTOR_UNUSED;
725 	/* Check whether the irq is handled by the IOAPIC */
726 	if (test_bit(isairq, &io_apic_irqs))
727 		return VECTOR_UNUSED;
728 	return irq_to_desc(isairq);
729 }
730 
731 /* Online the local APIC infrastructure and initialize the vectors */
732 void lapic_online(void)
733 {
734 	unsigned int vector;
735 
736 	lockdep_assert_held(&vector_lock);
737 
738 	/* Online the vector matrix array for this CPU */
739 	irq_matrix_online(vector_matrix);
740 
741 	/*
742 	 * The interrupt affinity logic never targets interrupts to offline
743 	 * CPUs. The exception are the legacy PIC interrupts. In general
744 	 * they are only targeted to CPU0, but depending on the platform
745 	 * they can be distributed to any online CPU in hardware. The
746 	 * kernel has no influence on that. So all active legacy vectors
747 	 * must be installed on all CPUs. All non legacy interrupts can be
748 	 * cleared.
749 	 */
750 	for (vector = 0; vector < NR_VECTORS; vector++)
751 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
752 }
753 
754 void lapic_offline(void)
755 {
756 	lock_vector_lock();
757 	irq_matrix_offline(vector_matrix);
758 	unlock_vector_lock();
759 }
760 
761 static int apic_set_affinity(struct irq_data *irqd,
762 			     const struct cpumask *dest, bool force)
763 {
764 	struct apic_chip_data *apicd = apic_chip_data(irqd);
765 	int err;
766 
767 	/*
768 	 * Core code can call here for inactive interrupts. For inactive
769 	 * interrupts which use managed or reservation mode there is no
770 	 * point in going through the vector assignment right now as the
771 	 * activation will assign a vector which fits the destination
772 	 * cpumask. Let the core code store the destination mask and be
773 	 * done with it.
774 	 */
775 	if (!irqd_is_activated(irqd) &&
776 	    (apicd->is_managed || apicd->can_reserve))
777 		return IRQ_SET_MASK_OK;
778 
779 	raw_spin_lock(&vector_lock);
780 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
781 	if (irqd_affinity_is_managed(irqd))
782 		err = assign_managed_vector(irqd, vector_searchmask);
783 	else
784 		err = assign_vector_locked(irqd, vector_searchmask);
785 	raw_spin_unlock(&vector_lock);
786 	return err ? err : IRQ_SET_MASK_OK;
787 }
788 
789 #else
790 # define apic_set_affinity	NULL
791 #endif
792 
793 static int apic_retrigger_irq(struct irq_data *irqd)
794 {
795 	struct apic_chip_data *apicd = apic_chip_data(irqd);
796 	unsigned long flags;
797 
798 	raw_spin_lock_irqsave(&vector_lock, flags);
799 	apic->send_IPI(apicd->cpu, apicd->vector);
800 	raw_spin_unlock_irqrestore(&vector_lock, flags);
801 
802 	return 1;
803 }
804 
805 void apic_ack_irq(struct irq_data *irqd)
806 {
807 	irq_move_irq(irqd);
808 	ack_APIC_irq();
809 }
810 
811 void apic_ack_edge(struct irq_data *irqd)
812 {
813 	irq_complete_move(irqd_cfg(irqd));
814 	apic_ack_irq(irqd);
815 }
816 
817 static struct irq_chip lapic_controller = {
818 	.name			= "APIC",
819 	.irq_ack		= apic_ack_edge,
820 	.irq_set_affinity	= apic_set_affinity,
821 	.irq_retrigger		= apic_retrigger_irq,
822 };
823 
824 #ifdef CONFIG_SMP
825 
826 static void free_moved_vector(struct apic_chip_data *apicd)
827 {
828 	unsigned int vector = apicd->prev_vector;
829 	unsigned int cpu = apicd->prev_cpu;
830 	bool managed = apicd->is_managed;
831 
832 	/*
833 	 * This should never happen. Managed interrupts are not
834 	 * migrated except on CPU down, which does not involve the
835 	 * cleanup vector. But try to keep the accounting correct
836 	 * nevertheless.
837 	 */
838 	WARN_ON_ONCE(managed);
839 
840 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
841 	irq_matrix_free(vector_matrix, cpu, vector, managed);
842 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
843 	hlist_del_init(&apicd->clist);
844 	apicd->prev_vector = 0;
845 	apicd->move_in_progress = 0;
846 }
847 
848 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
849 {
850 	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
851 	struct apic_chip_data *apicd;
852 	struct hlist_node *tmp;
853 
854 	entering_ack_irq();
855 	/* Prevent vectors vanishing under us */
856 	raw_spin_lock(&vector_lock);
857 
858 	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
859 		unsigned int irr, vector = apicd->prev_vector;
860 
861 		/*
862 		 * Paranoia: Check if the vector that needs to be cleaned
863 		 * up is registered at the APICs IRR. If so, then this is
864 		 * not the best time to clean it up. Clean it up in the
865 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
866 		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
867 		 * priority external vector, so on return from this
868 		 * interrupt the device interrupt will happen first.
869 		 */
870 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
871 		if (irr & (1U << (vector % 32))) {
872 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
873 			continue;
874 		}
875 		free_moved_vector(apicd);
876 	}
877 
878 	raw_spin_unlock(&vector_lock);
879 	exiting_irq();
880 }
881 
882 static void __send_cleanup_vector(struct apic_chip_data *apicd)
883 {
884 	unsigned int cpu;
885 
886 	raw_spin_lock(&vector_lock);
887 	apicd->move_in_progress = 0;
888 	cpu = apicd->prev_cpu;
889 	if (cpu_online(cpu)) {
890 		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
891 		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
892 	} else {
893 		apicd->prev_vector = 0;
894 	}
895 	raw_spin_unlock(&vector_lock);
896 }
897 
898 void send_cleanup_vector(struct irq_cfg *cfg)
899 {
900 	struct apic_chip_data *apicd;
901 
902 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
903 	if (apicd->move_in_progress)
904 		__send_cleanup_vector(apicd);
905 }
906 
907 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
908 {
909 	struct apic_chip_data *apicd;
910 
911 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
912 	if (likely(!apicd->move_in_progress))
913 		return;
914 
915 	if (vector == apicd->vector && apicd->cpu == smp_processor_id())
916 		__send_cleanup_vector(apicd);
917 }
918 
919 void irq_complete_move(struct irq_cfg *cfg)
920 {
921 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
922 }
923 
924 /*
925  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
926  */
927 void irq_force_complete_move(struct irq_desc *desc)
928 {
929 	struct apic_chip_data *apicd;
930 	struct irq_data *irqd;
931 	unsigned int vector;
932 
933 	/*
934 	 * The function is called for all descriptors regardless of which
935 	 * irqdomain they belong to. For example if an IRQ is provided by
936 	 * an irq_chip as part of a GPIO driver, the chip data for that
937 	 * descriptor is specific to the irq_chip in question.
938 	 *
939 	 * Check first that the chip_data is what we expect
940 	 * (apic_chip_data) before touching it any further.
941 	 */
942 	irqd = irq_domain_get_irq_data(x86_vector_domain,
943 				       irq_desc_get_irq(desc));
944 	if (!irqd)
945 		return;
946 
947 	raw_spin_lock(&vector_lock);
948 	apicd = apic_chip_data(irqd);
949 	if (!apicd)
950 		goto unlock;
951 
952 	/*
953 	 * If prev_vector is empty, no action required.
954 	 */
955 	vector = apicd->prev_vector;
956 	if (!vector)
957 		goto unlock;
958 
959 	/*
960 	 * This is tricky. If the cleanup of the old vector has not been
961 	 * done yet, then the following setaffinity call will fail with
962 	 * -EBUSY. This can leave the interrupt in a stale state.
963 	 *
964 	 * All CPUs are stuck in stop machine with interrupts disabled so
965 	 * calling __irq_complete_move() would be completely pointless.
966 	 *
967 	 * 1) The interrupt is in move_in_progress state. That means that we
968 	 *    have not seen an interrupt since the io_apic was reprogrammed to
969 	 *    the new vector.
970 	 *
971 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
972 	 *    have not been processed yet.
973 	 */
974 	if (apicd->move_in_progress) {
975 		/*
976 		 * In theory there is a race:
977 		 *
978 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
979 		 *			      is effective, i.e. it's raised on
980 		 *			      the old vector.
981 		 *
982 		 * So if the target cpu cannot handle that interrupt before
983 		 * the old vector is cleaned up, we get a spurious interrupt
984 		 * and in the worst case the ioapic irq line becomes stale.
985 		 *
986 		 * But in case of cpu hotplug this should be a non issue
987 		 * because if the affinity update happens right before all
988 		 * cpus rendevouz in stop machine, there is no way that the
989 		 * interrupt can be blocked on the target cpu because all cpus
990 		 * loops first with interrupts enabled in stop machine, so the
991 		 * old vector is not yet cleaned up when the interrupt fires.
992 		 *
993 		 * So the only way to run into this issue is if the delivery
994 		 * of the interrupt on the apic/system bus would be delayed
995 		 * beyond the point where the target cpu disables interrupts
996 		 * in stop machine. I doubt that it can happen, but at least
997 		 * there is a theroretical chance. Virtualization might be
998 		 * able to expose this, but AFAICT the IOAPIC emulation is not
999 		 * as stupid as the real hardware.
1000 		 *
1001 		 * Anyway, there is nothing we can do about that at this point
1002 		 * w/o refactoring the whole fixup_irq() business completely.
1003 		 * We print at least the irq number and the old vector number,
1004 		 * so we have the necessary information when a problem in that
1005 		 * area arises.
1006 		 */
1007 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1008 			irqd->irq, vector);
1009 	}
1010 	free_moved_vector(apicd);
1011 unlock:
1012 	raw_spin_unlock(&vector_lock);
1013 }
1014 
1015 #ifdef CONFIG_HOTPLUG_CPU
1016 /*
1017  * Note, this is not accurate accounting, but at least good enough to
1018  * prevent that the actual interrupt move will run out of vectors.
1019  */
1020 int lapic_can_unplug_cpu(void)
1021 {
1022 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1023 	int ret = 0;
1024 
1025 	raw_spin_lock(&vector_lock);
1026 	tomove = irq_matrix_allocated(vector_matrix);
1027 	avl = irq_matrix_available(vector_matrix, true);
1028 	if (avl < tomove) {
1029 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1030 			cpu, tomove, avl);
1031 		ret = -ENOSPC;
1032 		goto out;
1033 	}
1034 	rsvd = irq_matrix_reserved(vector_matrix);
1035 	if (avl < rsvd) {
1036 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1037 			rsvd, avl);
1038 	}
1039 out:
1040 	raw_spin_unlock(&vector_lock);
1041 	return ret;
1042 }
1043 #endif /* HOTPLUG_CPU */
1044 #endif /* SMP */
1045 
1046 static void __init print_APIC_field(int base)
1047 {
1048 	int i;
1049 
1050 	printk(KERN_DEBUG);
1051 
1052 	for (i = 0; i < 8; i++)
1053 		pr_cont("%08x", apic_read(base + i*0x10));
1054 
1055 	pr_cont("\n");
1056 }
1057 
1058 static void __init print_local_APIC(void *dummy)
1059 {
1060 	unsigned int i, v, ver, maxlvt;
1061 	u64 icr;
1062 
1063 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1064 		 smp_processor_id(), hard_smp_processor_id());
1065 	v = apic_read(APIC_ID);
1066 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1067 	v = apic_read(APIC_LVR);
1068 	pr_info("... APIC VERSION: %08x\n", v);
1069 	ver = GET_APIC_VERSION(v);
1070 	maxlvt = lapic_get_maxlvt();
1071 
1072 	v = apic_read(APIC_TASKPRI);
1073 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1074 
1075 	/* !82489DX */
1076 	if (APIC_INTEGRATED(ver)) {
1077 		if (!APIC_XAPIC(ver)) {
1078 			v = apic_read(APIC_ARBPRI);
1079 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1080 				 v, v & APIC_ARBPRI_MASK);
1081 		}
1082 		v = apic_read(APIC_PROCPRI);
1083 		pr_debug("... APIC PROCPRI: %08x\n", v);
1084 	}
1085 
1086 	/*
1087 	 * Remote read supported only in the 82489DX and local APIC for
1088 	 * Pentium processors.
1089 	 */
1090 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1091 		v = apic_read(APIC_RRR);
1092 		pr_debug("... APIC RRR: %08x\n", v);
1093 	}
1094 
1095 	v = apic_read(APIC_LDR);
1096 	pr_debug("... APIC LDR: %08x\n", v);
1097 	if (!x2apic_enabled()) {
1098 		v = apic_read(APIC_DFR);
1099 		pr_debug("... APIC DFR: %08x\n", v);
1100 	}
1101 	v = apic_read(APIC_SPIV);
1102 	pr_debug("... APIC SPIV: %08x\n", v);
1103 
1104 	pr_debug("... APIC ISR field:\n");
1105 	print_APIC_field(APIC_ISR);
1106 	pr_debug("... APIC TMR field:\n");
1107 	print_APIC_field(APIC_TMR);
1108 	pr_debug("... APIC IRR field:\n");
1109 	print_APIC_field(APIC_IRR);
1110 
1111 	/* !82489DX */
1112 	if (APIC_INTEGRATED(ver)) {
1113 		/* Due to the Pentium erratum 3AP. */
1114 		if (maxlvt > 3)
1115 			apic_write(APIC_ESR, 0);
1116 
1117 		v = apic_read(APIC_ESR);
1118 		pr_debug("... APIC ESR: %08x\n", v);
1119 	}
1120 
1121 	icr = apic_icr_read();
1122 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1123 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1124 
1125 	v = apic_read(APIC_LVTT);
1126 	pr_debug("... APIC LVTT: %08x\n", v);
1127 
1128 	if (maxlvt > 3) {
1129 		/* PC is LVT#4. */
1130 		v = apic_read(APIC_LVTPC);
1131 		pr_debug("... APIC LVTPC: %08x\n", v);
1132 	}
1133 	v = apic_read(APIC_LVT0);
1134 	pr_debug("... APIC LVT0: %08x\n", v);
1135 	v = apic_read(APIC_LVT1);
1136 	pr_debug("... APIC LVT1: %08x\n", v);
1137 
1138 	if (maxlvt > 2) {
1139 		/* ERR is LVT#3. */
1140 		v = apic_read(APIC_LVTERR);
1141 		pr_debug("... APIC LVTERR: %08x\n", v);
1142 	}
1143 
1144 	v = apic_read(APIC_TMICT);
1145 	pr_debug("... APIC TMICT: %08x\n", v);
1146 	v = apic_read(APIC_TMCCT);
1147 	pr_debug("... APIC TMCCT: %08x\n", v);
1148 	v = apic_read(APIC_TDCR);
1149 	pr_debug("... APIC TDCR: %08x\n", v);
1150 
1151 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1152 		v = apic_read(APIC_EFEAT);
1153 		maxlvt = (v >> 16) & 0xff;
1154 		pr_debug("... APIC EFEAT: %08x\n", v);
1155 		v = apic_read(APIC_ECTRL);
1156 		pr_debug("... APIC ECTRL: %08x\n", v);
1157 		for (i = 0; i < maxlvt; i++) {
1158 			v = apic_read(APIC_EILVTn(i));
1159 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1160 		}
1161 	}
1162 	pr_cont("\n");
1163 }
1164 
1165 static void __init print_local_APICs(int maxcpu)
1166 {
1167 	int cpu;
1168 
1169 	if (!maxcpu)
1170 		return;
1171 
1172 	preempt_disable();
1173 	for_each_online_cpu(cpu) {
1174 		if (cpu >= maxcpu)
1175 			break;
1176 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1177 	}
1178 	preempt_enable();
1179 }
1180 
1181 static void __init print_PIC(void)
1182 {
1183 	unsigned int v;
1184 	unsigned long flags;
1185 
1186 	if (!nr_legacy_irqs())
1187 		return;
1188 
1189 	pr_debug("\nprinting PIC contents\n");
1190 
1191 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1192 
1193 	v = inb(0xa1) << 8 | inb(0x21);
1194 	pr_debug("... PIC  IMR: %04x\n", v);
1195 
1196 	v = inb(0xa0) << 8 | inb(0x20);
1197 	pr_debug("... PIC  IRR: %04x\n", v);
1198 
1199 	outb(0x0b, 0xa0);
1200 	outb(0x0b, 0x20);
1201 	v = inb(0xa0) << 8 | inb(0x20);
1202 	outb(0x0a, 0xa0);
1203 	outb(0x0a, 0x20);
1204 
1205 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1206 
1207 	pr_debug("... PIC  ISR: %04x\n", v);
1208 
1209 	v = inb(0x4d1) << 8 | inb(0x4d0);
1210 	pr_debug("... PIC ELCR: %04x\n", v);
1211 }
1212 
1213 static int show_lapic __initdata = 1;
1214 static __init int setup_show_lapic(char *arg)
1215 {
1216 	int num = -1;
1217 
1218 	if (strcmp(arg, "all") == 0) {
1219 		show_lapic = CONFIG_NR_CPUS;
1220 	} else {
1221 		get_option(&arg, &num);
1222 		if (num >= 0)
1223 			show_lapic = num;
1224 	}
1225 
1226 	return 1;
1227 }
1228 __setup("show_lapic=", setup_show_lapic);
1229 
1230 static int __init print_ICs(void)
1231 {
1232 	if (apic_verbosity == APIC_QUIET)
1233 		return 0;
1234 
1235 	print_PIC();
1236 
1237 	/* don't print out if apic is not there */
1238 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1239 		return 0;
1240 
1241 	print_local_APICs(show_lapic);
1242 	print_IO_APICs();
1243 
1244 	return 0;
1245 }
1246 
1247 late_initcall(print_ICs);
1248