xref: /linux/arch/x86/kernel/apic/vector.c (revision 145ff1ec090dce9beb5a9590b5dc288e7bb2e65d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Local APIC related interfaces to support IOAPIC, MSI, etc.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *	Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *	Enable support of hierarchical irqdomains
9  */
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/seq_file.h>
13 #include <linux/init.h>
14 #include <linux/compiler.h>
15 #include <linux/slab.h>
16 #include <asm/irqdomain.h>
17 #include <asm/hw_irq.h>
18 #include <asm/traps.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23 
24 #include <asm/trace/irq_vectors.h>
25 
26 struct apic_chip_data {
27 	struct irq_cfg		hw_irq_cfg;
28 	unsigned int		vector;
29 	unsigned int		prev_vector;
30 	unsigned int		cpu;
31 	unsigned int		prev_cpu;
32 	unsigned int		irq;
33 	struct hlist_node	clist;
34 	unsigned int		move_in_progress	: 1,
35 				is_managed		: 1,
36 				can_reserve		: 1,
37 				has_reserved		: 1;
38 };
39 
40 struct irq_domain *x86_vector_domain;
41 EXPORT_SYMBOL_GPL(x86_vector_domain);
42 static DEFINE_RAW_SPINLOCK(vector_lock);
43 static cpumask_var_t vector_searchmask;
44 static struct irq_chip lapic_controller;
45 static struct irq_matrix *vector_matrix;
46 #ifdef CONFIG_SMP
47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
48 #endif
49 
50 void lock_vector_lock(void)
51 {
52 	/* Used to the online set of cpus does not change
53 	 * during assign_irq_vector.
54 	 */
55 	raw_spin_lock(&vector_lock);
56 }
57 
58 void unlock_vector_lock(void)
59 {
60 	raw_spin_unlock(&vector_lock);
61 }
62 
63 void init_irq_alloc_info(struct irq_alloc_info *info,
64 			 const struct cpumask *mask)
65 {
66 	memset(info, 0, sizeof(*info));
67 	info->mask = mask;
68 }
69 
70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
71 {
72 	if (src)
73 		*dst = *src;
74 	else
75 		memset(dst, 0, sizeof(*dst));
76 }
77 
78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
79 {
80 	if (!irqd)
81 		return NULL;
82 
83 	while (irqd->parent_data)
84 		irqd = irqd->parent_data;
85 
86 	return irqd->chip_data;
87 }
88 
89 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
90 {
91 	struct apic_chip_data *apicd = apic_chip_data(irqd);
92 
93 	return apicd ? &apicd->hw_irq_cfg : NULL;
94 }
95 EXPORT_SYMBOL_GPL(irqd_cfg);
96 
97 struct irq_cfg *irq_cfg(unsigned int irq)
98 {
99 	return irqd_cfg(irq_get_irq_data(irq));
100 }
101 
102 static struct apic_chip_data *alloc_apic_chip_data(int node)
103 {
104 	struct apic_chip_data *apicd;
105 
106 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
107 	if (apicd)
108 		INIT_HLIST_NODE(&apicd->clist);
109 	return apicd;
110 }
111 
112 static void free_apic_chip_data(struct apic_chip_data *apicd)
113 {
114 	kfree(apicd);
115 }
116 
117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
118 				unsigned int cpu)
119 {
120 	struct apic_chip_data *apicd = apic_chip_data(irqd);
121 
122 	lockdep_assert_held(&vector_lock);
123 
124 	apicd->hw_irq_cfg.vector = vector;
125 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
126 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
127 	trace_vector_config(irqd->irq, vector, cpu,
128 			    apicd->hw_irq_cfg.dest_apicid);
129 }
130 
131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
132 			       unsigned int newcpu)
133 {
134 	struct apic_chip_data *apicd = apic_chip_data(irqd);
135 	struct irq_desc *desc = irq_data_to_desc(irqd);
136 	bool managed = irqd_affinity_is_managed(irqd);
137 
138 	lockdep_assert_held(&vector_lock);
139 
140 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
141 			    apicd->cpu);
142 
143 	/*
144 	 * If there is no vector associated or if the associated vector is
145 	 * the shutdown vector, which is associated to make PCI/MSI
146 	 * shutdown mode work, then there is nothing to release. Clear out
147 	 * prev_vector for this and the offlined target case.
148 	 */
149 	apicd->prev_vector = 0;
150 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
151 		goto setnew;
152 	/*
153 	 * If the target CPU of the previous vector is online, then mark
154 	 * the vector as move in progress and store it for cleanup when the
155 	 * first interrupt on the new vector arrives. If the target CPU is
156 	 * offline then the regular release mechanism via the cleanup
157 	 * vector is not possible and the vector can be immediately freed
158 	 * in the underlying matrix allocator.
159 	 */
160 	if (cpu_online(apicd->cpu)) {
161 		apicd->move_in_progress = true;
162 		apicd->prev_vector = apicd->vector;
163 		apicd->prev_cpu = apicd->cpu;
164 	} else {
165 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
166 				managed);
167 	}
168 
169 setnew:
170 	apicd->vector = newvec;
171 	apicd->cpu = newcpu;
172 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
173 	per_cpu(vector_irq, newcpu)[newvec] = desc;
174 }
175 
176 static void vector_assign_managed_shutdown(struct irq_data *irqd)
177 {
178 	unsigned int cpu = cpumask_first(cpu_online_mask);
179 
180 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
181 }
182 
183 static int reserve_managed_vector(struct irq_data *irqd)
184 {
185 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
186 	struct apic_chip_data *apicd = apic_chip_data(irqd);
187 	unsigned long flags;
188 	int ret;
189 
190 	raw_spin_lock_irqsave(&vector_lock, flags);
191 	apicd->is_managed = true;
192 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
193 	raw_spin_unlock_irqrestore(&vector_lock, flags);
194 	trace_vector_reserve_managed(irqd->irq, ret);
195 	return ret;
196 }
197 
198 static void reserve_irq_vector_locked(struct irq_data *irqd)
199 {
200 	struct apic_chip_data *apicd = apic_chip_data(irqd);
201 
202 	irq_matrix_reserve(vector_matrix);
203 	apicd->can_reserve = true;
204 	apicd->has_reserved = true;
205 	irqd_set_can_reserve(irqd);
206 	trace_vector_reserve(irqd->irq, 0);
207 	vector_assign_managed_shutdown(irqd);
208 }
209 
210 static int reserve_irq_vector(struct irq_data *irqd)
211 {
212 	unsigned long flags;
213 
214 	raw_spin_lock_irqsave(&vector_lock, flags);
215 	reserve_irq_vector_locked(irqd);
216 	raw_spin_unlock_irqrestore(&vector_lock, flags);
217 	return 0;
218 }
219 
220 static int
221 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
222 {
223 	struct apic_chip_data *apicd = apic_chip_data(irqd);
224 	bool resvd = apicd->has_reserved;
225 	unsigned int cpu = apicd->cpu;
226 	int vector = apicd->vector;
227 
228 	lockdep_assert_held(&vector_lock);
229 
230 	/*
231 	 * If the current target CPU is online and in the new requested
232 	 * affinity mask, there is no point in moving the interrupt from
233 	 * one CPU to another.
234 	 */
235 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
236 		return 0;
237 
238 	/*
239 	 * Careful here. @apicd might either have move_in_progress set or
240 	 * be enqueued for cleanup. Assigning a new vector would either
241 	 * leave a stale vector on some CPU around or in case of a pending
242 	 * cleanup corrupt the hlist.
243 	 */
244 	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
245 		return -EBUSY;
246 
247 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
248 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
249 	if (vector < 0)
250 		return vector;
251 	apic_update_vector(irqd, vector, cpu);
252 	apic_update_irq_cfg(irqd, vector, cpu);
253 
254 	return 0;
255 }
256 
257 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
258 {
259 	unsigned long flags;
260 	int ret;
261 
262 	raw_spin_lock_irqsave(&vector_lock, flags);
263 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
264 	ret = assign_vector_locked(irqd, vector_searchmask);
265 	raw_spin_unlock_irqrestore(&vector_lock, flags);
266 	return ret;
267 }
268 
269 static int assign_irq_vector_any_locked(struct irq_data *irqd)
270 {
271 	/* Get the affinity mask - either irq_default_affinity or (user) set */
272 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
273 	int node = irq_data_get_node(irqd);
274 
275 	if (node == NUMA_NO_NODE)
276 		goto all;
277 	/* Try the intersection of @affmsk and node mask */
278 	cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
279 	if (!assign_vector_locked(irqd, vector_searchmask))
280 		return 0;
281 	/* Try the node mask */
282 	if (!assign_vector_locked(irqd, cpumask_of_node(node)))
283 		return 0;
284 all:
285 	/* Try the full affinity mask */
286 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
287 	if (!assign_vector_locked(irqd, vector_searchmask))
288 		return 0;
289 	/* Try the full online mask */
290 	return assign_vector_locked(irqd, cpu_online_mask);
291 }
292 
293 static int
294 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
295 {
296 	if (irqd_affinity_is_managed(irqd))
297 		return reserve_managed_vector(irqd);
298 	if (info->mask)
299 		return assign_irq_vector(irqd, info->mask);
300 	/*
301 	 * Make only a global reservation with no guarantee. A real vector
302 	 * is associated at activation time.
303 	 */
304 	return reserve_irq_vector(irqd);
305 }
306 
307 static int
308 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
309 {
310 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
311 	struct apic_chip_data *apicd = apic_chip_data(irqd);
312 	int vector, cpu;
313 
314 	cpumask_and(vector_searchmask, dest, affmsk);
315 
316 	/* set_affinity might call here for nothing */
317 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
318 		return 0;
319 	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
320 					  &cpu);
321 	trace_vector_alloc_managed(irqd->irq, vector, vector);
322 	if (vector < 0)
323 		return vector;
324 	apic_update_vector(irqd, vector, cpu);
325 	apic_update_irq_cfg(irqd, vector, cpu);
326 	return 0;
327 }
328 
329 static void clear_irq_vector(struct irq_data *irqd)
330 {
331 	struct apic_chip_data *apicd = apic_chip_data(irqd);
332 	bool managed = irqd_affinity_is_managed(irqd);
333 	unsigned int vector = apicd->vector;
334 
335 	lockdep_assert_held(&vector_lock);
336 
337 	if (!vector)
338 		return;
339 
340 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
341 			   apicd->prev_cpu);
342 
343 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
344 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
345 	apicd->vector = 0;
346 
347 	/* Clean up move in progress */
348 	vector = apicd->prev_vector;
349 	if (!vector)
350 		return;
351 
352 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
353 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
354 	apicd->prev_vector = 0;
355 	apicd->move_in_progress = 0;
356 	hlist_del_init(&apicd->clist);
357 }
358 
359 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
360 {
361 	struct apic_chip_data *apicd = apic_chip_data(irqd);
362 	unsigned long flags;
363 
364 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
365 				apicd->can_reserve, false);
366 
367 	/* Regular fixed assigned interrupt */
368 	if (!apicd->is_managed && !apicd->can_reserve)
369 		return;
370 	/* If the interrupt has a global reservation, nothing to do */
371 	if (apicd->has_reserved)
372 		return;
373 
374 	raw_spin_lock_irqsave(&vector_lock, flags);
375 	clear_irq_vector(irqd);
376 	if (apicd->can_reserve)
377 		reserve_irq_vector_locked(irqd);
378 	else
379 		vector_assign_managed_shutdown(irqd);
380 	raw_spin_unlock_irqrestore(&vector_lock, flags);
381 }
382 
383 static int activate_reserved(struct irq_data *irqd)
384 {
385 	struct apic_chip_data *apicd = apic_chip_data(irqd);
386 	int ret;
387 
388 	ret = assign_irq_vector_any_locked(irqd);
389 	if (!ret) {
390 		apicd->has_reserved = false;
391 		/*
392 		 * Core might have disabled reservation mode after
393 		 * allocating the irq descriptor. Ideally this should
394 		 * happen before allocation time, but that would require
395 		 * completely convoluted ways of transporting that
396 		 * information.
397 		 */
398 		if (!irqd_can_reserve(irqd))
399 			apicd->can_reserve = false;
400 	}
401 
402 	/*
403 	 * Check to ensure that the effective affinity mask is a subset
404 	 * the user supplied affinity mask, and warn the user if it is not
405 	 */
406 	if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
407 			    irq_data_get_affinity_mask(irqd))) {
408 		pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
409 			irqd->irq);
410 	}
411 
412 	return ret;
413 }
414 
415 static int activate_managed(struct irq_data *irqd)
416 {
417 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
418 	int ret;
419 
420 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
421 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
422 		/* Something in the core code broke! Survive gracefully */
423 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
424 		return -EINVAL;
425 	}
426 
427 	ret = assign_managed_vector(irqd, vector_searchmask);
428 	/*
429 	 * This should not happen. The vector reservation got buggered.  Handle
430 	 * it gracefully.
431 	 */
432 	if (WARN_ON_ONCE(ret < 0)) {
433 		pr_err("Managed startup irq %u, no vector available\n",
434 		       irqd->irq);
435 	}
436 	return ret;
437 }
438 
439 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
440 			       bool reserve)
441 {
442 	struct apic_chip_data *apicd = apic_chip_data(irqd);
443 	unsigned long flags;
444 	int ret = 0;
445 
446 	trace_vector_activate(irqd->irq, apicd->is_managed,
447 			      apicd->can_reserve, reserve);
448 
449 	raw_spin_lock_irqsave(&vector_lock, flags);
450 	if (!apicd->can_reserve && !apicd->is_managed)
451 		assign_irq_vector_any_locked(irqd);
452 	else if (reserve || irqd_is_managed_and_shutdown(irqd))
453 		vector_assign_managed_shutdown(irqd);
454 	else if (apicd->is_managed)
455 		ret = activate_managed(irqd);
456 	else if (apicd->has_reserved)
457 		ret = activate_reserved(irqd);
458 	raw_spin_unlock_irqrestore(&vector_lock, flags);
459 	return ret;
460 }
461 
462 static void vector_free_reserved_and_managed(struct irq_data *irqd)
463 {
464 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
465 	struct apic_chip_data *apicd = apic_chip_data(irqd);
466 
467 	trace_vector_teardown(irqd->irq, apicd->is_managed,
468 			      apicd->has_reserved);
469 
470 	if (apicd->has_reserved)
471 		irq_matrix_remove_reserved(vector_matrix);
472 	if (apicd->is_managed)
473 		irq_matrix_remove_managed(vector_matrix, dest);
474 }
475 
476 static void x86_vector_free_irqs(struct irq_domain *domain,
477 				 unsigned int virq, unsigned int nr_irqs)
478 {
479 	struct apic_chip_data *apicd;
480 	struct irq_data *irqd;
481 	unsigned long flags;
482 	int i;
483 
484 	for (i = 0; i < nr_irqs; i++) {
485 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
486 		if (irqd && irqd->chip_data) {
487 			raw_spin_lock_irqsave(&vector_lock, flags);
488 			clear_irq_vector(irqd);
489 			vector_free_reserved_and_managed(irqd);
490 			apicd = irqd->chip_data;
491 			irq_domain_reset_irq_data(irqd);
492 			raw_spin_unlock_irqrestore(&vector_lock, flags);
493 			free_apic_chip_data(apicd);
494 		}
495 	}
496 }
497 
498 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
499 				    struct apic_chip_data *apicd)
500 {
501 	unsigned long flags;
502 	bool realloc = false;
503 
504 	apicd->vector = ISA_IRQ_VECTOR(virq);
505 	apicd->cpu = 0;
506 
507 	raw_spin_lock_irqsave(&vector_lock, flags);
508 	/*
509 	 * If the interrupt is activated, then it must stay at this vector
510 	 * position. That's usually the timer interrupt (0).
511 	 */
512 	if (irqd_is_activated(irqd)) {
513 		trace_vector_setup(virq, true, 0);
514 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
515 	} else {
516 		/* Release the vector */
517 		apicd->can_reserve = true;
518 		irqd_set_can_reserve(irqd);
519 		clear_irq_vector(irqd);
520 		realloc = true;
521 	}
522 	raw_spin_unlock_irqrestore(&vector_lock, flags);
523 	return realloc;
524 }
525 
526 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
527 				 unsigned int nr_irqs, void *arg)
528 {
529 	struct irq_alloc_info *info = arg;
530 	struct apic_chip_data *apicd;
531 	struct irq_data *irqd;
532 	int i, err, node;
533 
534 	if (disable_apic)
535 		return -ENXIO;
536 
537 	/* Currently vector allocator can't guarantee contiguous allocations */
538 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
539 		return -ENOSYS;
540 
541 	for (i = 0; i < nr_irqs; i++) {
542 		irqd = irq_domain_get_irq_data(domain, virq + i);
543 		BUG_ON(!irqd);
544 		node = irq_data_get_node(irqd);
545 		WARN_ON_ONCE(irqd->chip_data);
546 		apicd = alloc_apic_chip_data(node);
547 		if (!apicd) {
548 			err = -ENOMEM;
549 			goto error;
550 		}
551 
552 		apicd->irq = virq + i;
553 		irqd->chip = &lapic_controller;
554 		irqd->chip_data = apicd;
555 		irqd->hwirq = virq + i;
556 		irqd_set_single_target(irqd);
557 		/*
558 		 * Prevent that any of these interrupts is invoked in
559 		 * non interrupt context via e.g. generic_handle_irq()
560 		 * as that can corrupt the affinity move state.
561 		 */
562 		irqd_set_handle_enforce_irqctx(irqd);
563 		/*
564 		 * Legacy vectors are already assigned when the IOAPIC
565 		 * takes them over. They stay on the same vector. This is
566 		 * required for check_timer() to work correctly as it might
567 		 * switch back to legacy mode. Only update the hardware
568 		 * config.
569 		 */
570 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
571 			if (!vector_configure_legacy(virq + i, irqd, apicd))
572 				continue;
573 		}
574 
575 		err = assign_irq_vector_policy(irqd, info);
576 		trace_vector_setup(virq + i, false, err);
577 		if (err) {
578 			irqd->chip_data = NULL;
579 			free_apic_chip_data(apicd);
580 			goto error;
581 		}
582 	}
583 
584 	return 0;
585 
586 error:
587 	x86_vector_free_irqs(domain, virq, i);
588 	return err;
589 }
590 
591 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
592 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
593 				  struct irq_data *irqd, int ind)
594 {
595 	struct apic_chip_data apicd;
596 	unsigned long flags;
597 	int irq;
598 
599 	if (!irqd) {
600 		irq_matrix_debug_show(m, vector_matrix, ind);
601 		return;
602 	}
603 
604 	irq = irqd->irq;
605 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
606 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
607 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
608 		return;
609 	}
610 
611 	if (!irqd->chip_data) {
612 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
613 		return;
614 	}
615 
616 	raw_spin_lock_irqsave(&vector_lock, flags);
617 	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
618 	raw_spin_unlock_irqrestore(&vector_lock, flags);
619 
620 	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
621 	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
622 	if (apicd.prev_vector) {
623 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
624 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
625 	}
626 	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
627 	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
628 	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
629 	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
630 	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
631 }
632 #endif
633 
634 static const struct irq_domain_ops x86_vector_domain_ops = {
635 	.alloc		= x86_vector_alloc_irqs,
636 	.free		= x86_vector_free_irqs,
637 	.activate	= x86_vector_activate,
638 	.deactivate	= x86_vector_deactivate,
639 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
640 	.debug_show	= x86_vector_debug_show,
641 #endif
642 };
643 
644 int __init arch_probe_nr_irqs(void)
645 {
646 	int nr;
647 
648 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
649 		nr_irqs = NR_VECTORS * nr_cpu_ids;
650 
651 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
652 #if defined(CONFIG_PCI_MSI)
653 	/*
654 	 * for MSI and HT dyn irq
655 	 */
656 	if (gsi_top <= NR_IRQS_LEGACY)
657 		nr +=  8 * nr_cpu_ids;
658 	else
659 		nr += gsi_top * 16;
660 #endif
661 	if (nr < nr_irqs)
662 		nr_irqs = nr;
663 
664 	/*
665 	 * We don't know if PIC is present at this point so we need to do
666 	 * probe() to get the right number of legacy IRQs.
667 	 */
668 	return legacy_pic->probe();
669 }
670 
671 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
672 {
673 	/*
674 	 * Use assign system here so it wont get accounted as allocated
675 	 * and moveable in the cpu hotplug check and it prevents managed
676 	 * irq reservation from touching it.
677 	 */
678 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
679 }
680 
681 void __init lapic_assign_system_vectors(void)
682 {
683 	unsigned int i, vector = 0;
684 
685 	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
686 		irq_matrix_assign_system(vector_matrix, vector, false);
687 
688 	if (nr_legacy_irqs() > 1)
689 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
690 
691 	/* System vectors are reserved, online it */
692 	irq_matrix_online(vector_matrix);
693 
694 	/* Mark the preallocated legacy interrupts */
695 	for (i = 0; i < nr_legacy_irqs(); i++) {
696 		if (i != PIC_CASCADE_IR)
697 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
698 	}
699 }
700 
701 int __init arch_early_irq_init(void)
702 {
703 	struct fwnode_handle *fn;
704 
705 	fn = irq_domain_alloc_named_fwnode("VECTOR");
706 	BUG_ON(!fn);
707 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
708 						   NULL);
709 	BUG_ON(x86_vector_domain == NULL);
710 	irq_set_default_host(x86_vector_domain);
711 
712 	arch_init_msi_domain(x86_vector_domain);
713 
714 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
715 
716 	/*
717 	 * Allocate the vector matrix allocator data structure and limit the
718 	 * search area.
719 	 */
720 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
721 					 FIRST_SYSTEM_VECTOR);
722 	BUG_ON(!vector_matrix);
723 
724 	return arch_early_ioapic_init();
725 }
726 
727 #ifdef CONFIG_SMP
728 
729 static struct irq_desc *__setup_vector_irq(int vector)
730 {
731 	int isairq = vector - ISA_IRQ_VECTOR(0);
732 
733 	/* Check whether the irq is in the legacy space */
734 	if (isairq < 0 || isairq >= nr_legacy_irqs())
735 		return VECTOR_UNUSED;
736 	/* Check whether the irq is handled by the IOAPIC */
737 	if (test_bit(isairq, &io_apic_irqs))
738 		return VECTOR_UNUSED;
739 	return irq_to_desc(isairq);
740 }
741 
742 /* Online the local APIC infrastructure and initialize the vectors */
743 void lapic_online(void)
744 {
745 	unsigned int vector;
746 
747 	lockdep_assert_held(&vector_lock);
748 
749 	/* Online the vector matrix array for this CPU */
750 	irq_matrix_online(vector_matrix);
751 
752 	/*
753 	 * The interrupt affinity logic never targets interrupts to offline
754 	 * CPUs. The exception are the legacy PIC interrupts. In general
755 	 * they are only targeted to CPU0, but depending on the platform
756 	 * they can be distributed to any online CPU in hardware. The
757 	 * kernel has no influence on that. So all active legacy vectors
758 	 * must be installed on all CPUs. All non legacy interrupts can be
759 	 * cleared.
760 	 */
761 	for (vector = 0; vector < NR_VECTORS; vector++)
762 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
763 }
764 
765 void lapic_offline(void)
766 {
767 	lock_vector_lock();
768 	irq_matrix_offline(vector_matrix);
769 	unlock_vector_lock();
770 }
771 
772 static int apic_set_affinity(struct irq_data *irqd,
773 			     const struct cpumask *dest, bool force)
774 {
775 	int err;
776 
777 	if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
778 		return -EIO;
779 
780 	raw_spin_lock(&vector_lock);
781 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
782 	if (irqd_affinity_is_managed(irqd))
783 		err = assign_managed_vector(irqd, vector_searchmask);
784 	else
785 		err = assign_vector_locked(irqd, vector_searchmask);
786 	raw_spin_unlock(&vector_lock);
787 	return err ? err : IRQ_SET_MASK_OK;
788 }
789 
790 #else
791 # define apic_set_affinity	NULL
792 #endif
793 
794 static int apic_retrigger_irq(struct irq_data *irqd)
795 {
796 	struct apic_chip_data *apicd = apic_chip_data(irqd);
797 	unsigned long flags;
798 
799 	raw_spin_lock_irqsave(&vector_lock, flags);
800 	apic->send_IPI(apicd->cpu, apicd->vector);
801 	raw_spin_unlock_irqrestore(&vector_lock, flags);
802 
803 	return 1;
804 }
805 
806 void apic_ack_irq(struct irq_data *irqd)
807 {
808 	irq_move_irq(irqd);
809 	ack_APIC_irq();
810 }
811 
812 void apic_ack_edge(struct irq_data *irqd)
813 {
814 	irq_complete_move(irqd_cfg(irqd));
815 	apic_ack_irq(irqd);
816 }
817 
818 static struct irq_chip lapic_controller = {
819 	.name			= "APIC",
820 	.irq_ack		= apic_ack_edge,
821 	.irq_set_affinity	= apic_set_affinity,
822 	.irq_retrigger		= apic_retrigger_irq,
823 };
824 
825 #ifdef CONFIG_SMP
826 
827 static void free_moved_vector(struct apic_chip_data *apicd)
828 {
829 	unsigned int vector = apicd->prev_vector;
830 	unsigned int cpu = apicd->prev_cpu;
831 	bool managed = apicd->is_managed;
832 
833 	/*
834 	 * Managed interrupts are usually not migrated away
835 	 * from an online CPU, but CPU isolation 'managed_irq'
836 	 * can make that happen.
837 	 * 1) Activation does not take the isolation into account
838 	 *    to keep the code simple
839 	 * 2) Migration away from an isolated CPU can happen when
840 	 *    a non-isolated CPU which is in the calculated
841 	 *    affinity mask comes online.
842 	 */
843 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
844 	irq_matrix_free(vector_matrix, cpu, vector, managed);
845 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
846 	hlist_del_init(&apicd->clist);
847 	apicd->prev_vector = 0;
848 	apicd->move_in_progress = 0;
849 }
850 
851 DEFINE_IDTENTRY_SYSVEC(sysvec_irq_move_cleanup)
852 {
853 	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
854 	struct apic_chip_data *apicd;
855 	struct hlist_node *tmp;
856 
857 	ack_APIC_irq();
858 	/* Prevent vectors vanishing under us */
859 	raw_spin_lock(&vector_lock);
860 
861 	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
862 		unsigned int irr, vector = apicd->prev_vector;
863 
864 		/*
865 		 * Paranoia: Check if the vector that needs to be cleaned
866 		 * up is registered at the APICs IRR. If so, then this is
867 		 * not the best time to clean it up. Clean it up in the
868 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
869 		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
870 		 * priority external vector, so on return from this
871 		 * interrupt the device interrupt will happen first.
872 		 */
873 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
874 		if (irr & (1U << (vector % 32))) {
875 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
876 			continue;
877 		}
878 		free_moved_vector(apicd);
879 	}
880 
881 	raw_spin_unlock(&vector_lock);
882 }
883 
884 static void __send_cleanup_vector(struct apic_chip_data *apicd)
885 {
886 	unsigned int cpu;
887 
888 	raw_spin_lock(&vector_lock);
889 	apicd->move_in_progress = 0;
890 	cpu = apicd->prev_cpu;
891 	if (cpu_online(cpu)) {
892 		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
893 		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
894 	} else {
895 		apicd->prev_vector = 0;
896 	}
897 	raw_spin_unlock(&vector_lock);
898 }
899 
900 void send_cleanup_vector(struct irq_cfg *cfg)
901 {
902 	struct apic_chip_data *apicd;
903 
904 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
905 	if (apicd->move_in_progress)
906 		__send_cleanup_vector(apicd);
907 }
908 
909 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
910 {
911 	struct apic_chip_data *apicd;
912 
913 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
914 	if (likely(!apicd->move_in_progress))
915 		return;
916 
917 	if (vector == apicd->vector && apicd->cpu == smp_processor_id())
918 		__send_cleanup_vector(apicd);
919 }
920 
921 void irq_complete_move(struct irq_cfg *cfg)
922 {
923 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
924 }
925 
926 /*
927  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
928  */
929 void irq_force_complete_move(struct irq_desc *desc)
930 {
931 	struct apic_chip_data *apicd;
932 	struct irq_data *irqd;
933 	unsigned int vector;
934 
935 	/*
936 	 * The function is called for all descriptors regardless of which
937 	 * irqdomain they belong to. For example if an IRQ is provided by
938 	 * an irq_chip as part of a GPIO driver, the chip data for that
939 	 * descriptor is specific to the irq_chip in question.
940 	 *
941 	 * Check first that the chip_data is what we expect
942 	 * (apic_chip_data) before touching it any further.
943 	 */
944 	irqd = irq_domain_get_irq_data(x86_vector_domain,
945 				       irq_desc_get_irq(desc));
946 	if (!irqd)
947 		return;
948 
949 	raw_spin_lock(&vector_lock);
950 	apicd = apic_chip_data(irqd);
951 	if (!apicd)
952 		goto unlock;
953 
954 	/*
955 	 * If prev_vector is empty, no action required.
956 	 */
957 	vector = apicd->prev_vector;
958 	if (!vector)
959 		goto unlock;
960 
961 	/*
962 	 * This is tricky. If the cleanup of the old vector has not been
963 	 * done yet, then the following setaffinity call will fail with
964 	 * -EBUSY. This can leave the interrupt in a stale state.
965 	 *
966 	 * All CPUs are stuck in stop machine with interrupts disabled so
967 	 * calling __irq_complete_move() would be completely pointless.
968 	 *
969 	 * 1) The interrupt is in move_in_progress state. That means that we
970 	 *    have not seen an interrupt since the io_apic was reprogrammed to
971 	 *    the new vector.
972 	 *
973 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
974 	 *    have not been processed yet.
975 	 */
976 	if (apicd->move_in_progress) {
977 		/*
978 		 * In theory there is a race:
979 		 *
980 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
981 		 *			      is effective, i.e. it's raised on
982 		 *			      the old vector.
983 		 *
984 		 * So if the target cpu cannot handle that interrupt before
985 		 * the old vector is cleaned up, we get a spurious interrupt
986 		 * and in the worst case the ioapic irq line becomes stale.
987 		 *
988 		 * But in case of cpu hotplug this should be a non issue
989 		 * because if the affinity update happens right before all
990 		 * cpus rendevouz in stop machine, there is no way that the
991 		 * interrupt can be blocked on the target cpu because all cpus
992 		 * loops first with interrupts enabled in stop machine, so the
993 		 * old vector is not yet cleaned up when the interrupt fires.
994 		 *
995 		 * So the only way to run into this issue is if the delivery
996 		 * of the interrupt on the apic/system bus would be delayed
997 		 * beyond the point where the target cpu disables interrupts
998 		 * in stop machine. I doubt that it can happen, but at least
999 		 * there is a theroretical chance. Virtualization might be
1000 		 * able to expose this, but AFAICT the IOAPIC emulation is not
1001 		 * as stupid as the real hardware.
1002 		 *
1003 		 * Anyway, there is nothing we can do about that at this point
1004 		 * w/o refactoring the whole fixup_irq() business completely.
1005 		 * We print at least the irq number and the old vector number,
1006 		 * so we have the necessary information when a problem in that
1007 		 * area arises.
1008 		 */
1009 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1010 			irqd->irq, vector);
1011 	}
1012 	free_moved_vector(apicd);
1013 unlock:
1014 	raw_spin_unlock(&vector_lock);
1015 }
1016 
1017 #ifdef CONFIG_HOTPLUG_CPU
1018 /*
1019  * Note, this is not accurate accounting, but at least good enough to
1020  * prevent that the actual interrupt move will run out of vectors.
1021  */
1022 int lapic_can_unplug_cpu(void)
1023 {
1024 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1025 	int ret = 0;
1026 
1027 	raw_spin_lock(&vector_lock);
1028 	tomove = irq_matrix_allocated(vector_matrix);
1029 	avl = irq_matrix_available(vector_matrix, true);
1030 	if (avl < tomove) {
1031 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1032 			cpu, tomove, avl);
1033 		ret = -ENOSPC;
1034 		goto out;
1035 	}
1036 	rsvd = irq_matrix_reserved(vector_matrix);
1037 	if (avl < rsvd) {
1038 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1039 			rsvd, avl);
1040 	}
1041 out:
1042 	raw_spin_unlock(&vector_lock);
1043 	return ret;
1044 }
1045 #endif /* HOTPLUG_CPU */
1046 #endif /* SMP */
1047 
1048 static void __init print_APIC_field(int base)
1049 {
1050 	int i;
1051 
1052 	printk(KERN_DEBUG);
1053 
1054 	for (i = 0; i < 8; i++)
1055 		pr_cont("%08x", apic_read(base + i*0x10));
1056 
1057 	pr_cont("\n");
1058 }
1059 
1060 static void __init print_local_APIC(void *dummy)
1061 {
1062 	unsigned int i, v, ver, maxlvt;
1063 	u64 icr;
1064 
1065 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1066 		 smp_processor_id(), hard_smp_processor_id());
1067 	v = apic_read(APIC_ID);
1068 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1069 	v = apic_read(APIC_LVR);
1070 	pr_info("... APIC VERSION: %08x\n", v);
1071 	ver = GET_APIC_VERSION(v);
1072 	maxlvt = lapic_get_maxlvt();
1073 
1074 	v = apic_read(APIC_TASKPRI);
1075 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1076 
1077 	/* !82489DX */
1078 	if (APIC_INTEGRATED(ver)) {
1079 		if (!APIC_XAPIC(ver)) {
1080 			v = apic_read(APIC_ARBPRI);
1081 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1082 				 v, v & APIC_ARBPRI_MASK);
1083 		}
1084 		v = apic_read(APIC_PROCPRI);
1085 		pr_debug("... APIC PROCPRI: %08x\n", v);
1086 	}
1087 
1088 	/*
1089 	 * Remote read supported only in the 82489DX and local APIC for
1090 	 * Pentium processors.
1091 	 */
1092 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1093 		v = apic_read(APIC_RRR);
1094 		pr_debug("... APIC RRR: %08x\n", v);
1095 	}
1096 
1097 	v = apic_read(APIC_LDR);
1098 	pr_debug("... APIC LDR: %08x\n", v);
1099 	if (!x2apic_enabled()) {
1100 		v = apic_read(APIC_DFR);
1101 		pr_debug("... APIC DFR: %08x\n", v);
1102 	}
1103 	v = apic_read(APIC_SPIV);
1104 	pr_debug("... APIC SPIV: %08x\n", v);
1105 
1106 	pr_debug("... APIC ISR field:\n");
1107 	print_APIC_field(APIC_ISR);
1108 	pr_debug("... APIC TMR field:\n");
1109 	print_APIC_field(APIC_TMR);
1110 	pr_debug("... APIC IRR field:\n");
1111 	print_APIC_field(APIC_IRR);
1112 
1113 	/* !82489DX */
1114 	if (APIC_INTEGRATED(ver)) {
1115 		/* Due to the Pentium erratum 3AP. */
1116 		if (maxlvt > 3)
1117 			apic_write(APIC_ESR, 0);
1118 
1119 		v = apic_read(APIC_ESR);
1120 		pr_debug("... APIC ESR: %08x\n", v);
1121 	}
1122 
1123 	icr = apic_icr_read();
1124 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1125 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1126 
1127 	v = apic_read(APIC_LVTT);
1128 	pr_debug("... APIC LVTT: %08x\n", v);
1129 
1130 	if (maxlvt > 3) {
1131 		/* PC is LVT#4. */
1132 		v = apic_read(APIC_LVTPC);
1133 		pr_debug("... APIC LVTPC: %08x\n", v);
1134 	}
1135 	v = apic_read(APIC_LVT0);
1136 	pr_debug("... APIC LVT0: %08x\n", v);
1137 	v = apic_read(APIC_LVT1);
1138 	pr_debug("... APIC LVT1: %08x\n", v);
1139 
1140 	if (maxlvt > 2) {
1141 		/* ERR is LVT#3. */
1142 		v = apic_read(APIC_LVTERR);
1143 		pr_debug("... APIC LVTERR: %08x\n", v);
1144 	}
1145 
1146 	v = apic_read(APIC_TMICT);
1147 	pr_debug("... APIC TMICT: %08x\n", v);
1148 	v = apic_read(APIC_TMCCT);
1149 	pr_debug("... APIC TMCCT: %08x\n", v);
1150 	v = apic_read(APIC_TDCR);
1151 	pr_debug("... APIC TDCR: %08x\n", v);
1152 
1153 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1154 		v = apic_read(APIC_EFEAT);
1155 		maxlvt = (v >> 16) & 0xff;
1156 		pr_debug("... APIC EFEAT: %08x\n", v);
1157 		v = apic_read(APIC_ECTRL);
1158 		pr_debug("... APIC ECTRL: %08x\n", v);
1159 		for (i = 0; i < maxlvt; i++) {
1160 			v = apic_read(APIC_EILVTn(i));
1161 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1162 		}
1163 	}
1164 	pr_cont("\n");
1165 }
1166 
1167 static void __init print_local_APICs(int maxcpu)
1168 {
1169 	int cpu;
1170 
1171 	if (!maxcpu)
1172 		return;
1173 
1174 	preempt_disable();
1175 	for_each_online_cpu(cpu) {
1176 		if (cpu >= maxcpu)
1177 			break;
1178 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1179 	}
1180 	preempt_enable();
1181 }
1182 
1183 static void __init print_PIC(void)
1184 {
1185 	unsigned int v;
1186 	unsigned long flags;
1187 
1188 	if (!nr_legacy_irqs())
1189 		return;
1190 
1191 	pr_debug("\nprinting PIC contents\n");
1192 
1193 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1194 
1195 	v = inb(0xa1) << 8 | inb(0x21);
1196 	pr_debug("... PIC  IMR: %04x\n", v);
1197 
1198 	v = inb(0xa0) << 8 | inb(0x20);
1199 	pr_debug("... PIC  IRR: %04x\n", v);
1200 
1201 	outb(0x0b, 0xa0);
1202 	outb(0x0b, 0x20);
1203 	v = inb(0xa0) << 8 | inb(0x20);
1204 	outb(0x0a, 0xa0);
1205 	outb(0x0a, 0x20);
1206 
1207 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1208 
1209 	pr_debug("... PIC  ISR: %04x\n", v);
1210 
1211 	v = inb(0x4d1) << 8 | inb(0x4d0);
1212 	pr_debug("... PIC ELCR: %04x\n", v);
1213 }
1214 
1215 static int show_lapic __initdata = 1;
1216 static __init int setup_show_lapic(char *arg)
1217 {
1218 	int num = -1;
1219 
1220 	if (strcmp(arg, "all") == 0) {
1221 		show_lapic = CONFIG_NR_CPUS;
1222 	} else {
1223 		get_option(&arg, &num);
1224 		if (num >= 0)
1225 			show_lapic = num;
1226 	}
1227 
1228 	return 1;
1229 }
1230 __setup("show_lapic=", setup_show_lapic);
1231 
1232 static int __init print_ICs(void)
1233 {
1234 	if (apic_verbosity == APIC_QUIET)
1235 		return 0;
1236 
1237 	print_PIC();
1238 
1239 	/* don't print out if apic is not there */
1240 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1241 		return 0;
1242 
1243 	print_local_APICs(show_lapic);
1244 	print_IO_APICs();
1245 
1246 	return 0;
1247 }
1248 
1249 late_initcall(print_ICs);
1250