xref: /linux/arch/x86/kernel/apic/vector.c (revision 0c874100108f03401cb3154801d2671bbad40ad4)
1 /*
2  * Local APIC related interfaces to support IOAPIC, MSI, etc.
3  *
4  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *	Moved from arch/x86/kernel/apic/io_apic.c.
6  * Jiang Liu <jiang.liu@linux.intel.com>
7  *	Enable support of hierarchical irqdomains
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/compiler.h>
18 #include <linux/slab.h>
19 #include <asm/irqdomain.h>
20 #include <asm/hw_irq.h>
21 #include <asm/apic.h>
22 #include <asm/i8259.h>
23 #include <asm/desc.h>
24 #include <asm/irq_remapping.h>
25 
26 #include <asm/trace/irq_vectors.h>
27 
28 struct apic_chip_data {
29 	struct irq_cfg		hw_irq_cfg;
30 	unsigned int		vector;
31 	unsigned int		prev_vector;
32 	unsigned int		cpu;
33 	unsigned int		prev_cpu;
34 	unsigned int		irq;
35 	struct hlist_node	clist;
36 	unsigned int		move_in_progress	: 1,
37 				is_managed		: 1,
38 				can_reserve		: 1,
39 				has_reserved		: 1;
40 };
41 
42 struct irq_domain *x86_vector_domain;
43 EXPORT_SYMBOL_GPL(x86_vector_domain);
44 static DEFINE_RAW_SPINLOCK(vector_lock);
45 static cpumask_var_t vector_searchmask;
46 static struct irq_chip lapic_controller;
47 static struct irq_matrix *vector_matrix;
48 #ifdef CONFIG_SMP
49 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
50 #endif
51 
52 void lock_vector_lock(void)
53 {
54 	/* Used to the online set of cpus does not change
55 	 * during assign_irq_vector.
56 	 */
57 	raw_spin_lock(&vector_lock);
58 }
59 
60 void unlock_vector_lock(void)
61 {
62 	raw_spin_unlock(&vector_lock);
63 }
64 
65 void init_irq_alloc_info(struct irq_alloc_info *info,
66 			 const struct cpumask *mask)
67 {
68 	memset(info, 0, sizeof(*info));
69 	info->mask = mask;
70 }
71 
72 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
73 {
74 	if (src)
75 		*dst = *src;
76 	else
77 		memset(dst, 0, sizeof(*dst));
78 }
79 
80 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
81 {
82 	if (!irqd)
83 		return NULL;
84 
85 	while (irqd->parent_data)
86 		irqd = irqd->parent_data;
87 
88 	return irqd->chip_data;
89 }
90 
91 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
92 {
93 	struct apic_chip_data *apicd = apic_chip_data(irqd);
94 
95 	return apicd ? &apicd->hw_irq_cfg : NULL;
96 }
97 EXPORT_SYMBOL_GPL(irqd_cfg);
98 
99 struct irq_cfg *irq_cfg(unsigned int irq)
100 {
101 	return irqd_cfg(irq_get_irq_data(irq));
102 }
103 
104 static struct apic_chip_data *alloc_apic_chip_data(int node)
105 {
106 	struct apic_chip_data *apicd;
107 
108 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
109 	if (apicd)
110 		INIT_HLIST_NODE(&apicd->clist);
111 	return apicd;
112 }
113 
114 static void free_apic_chip_data(struct apic_chip_data *apicd)
115 {
116 	kfree(apicd);
117 }
118 
119 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
120 				unsigned int cpu)
121 {
122 	struct apic_chip_data *apicd = apic_chip_data(irqd);
123 
124 	lockdep_assert_held(&vector_lock);
125 
126 	apicd->hw_irq_cfg.vector = vector;
127 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
128 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
129 	trace_vector_config(irqd->irq, vector, cpu,
130 			    apicd->hw_irq_cfg.dest_apicid);
131 }
132 
133 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
134 			       unsigned int newcpu)
135 {
136 	struct apic_chip_data *apicd = apic_chip_data(irqd);
137 	struct irq_desc *desc = irq_data_to_desc(irqd);
138 	bool managed = irqd_affinity_is_managed(irqd);
139 
140 	lockdep_assert_held(&vector_lock);
141 
142 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
143 			    apicd->cpu);
144 
145 	/*
146 	 * If there is no vector associated or if the associated vector is
147 	 * the shutdown vector, which is associated to make PCI/MSI
148 	 * shutdown mode work, then there is nothing to release. Clear out
149 	 * prev_vector for this and the offlined target case.
150 	 */
151 	apicd->prev_vector = 0;
152 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
153 		goto setnew;
154 	/*
155 	 * If the target CPU of the previous vector is online, then mark
156 	 * the vector as move in progress and store it for cleanup when the
157 	 * first interrupt on the new vector arrives. If the target CPU is
158 	 * offline then the regular release mechanism via the cleanup
159 	 * vector is not possible and the vector can be immediately freed
160 	 * in the underlying matrix allocator.
161 	 */
162 	if (cpu_online(apicd->cpu)) {
163 		apicd->move_in_progress = true;
164 		apicd->prev_vector = apicd->vector;
165 		apicd->prev_cpu = apicd->cpu;
166 	} else {
167 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
168 				managed);
169 	}
170 
171 setnew:
172 	apicd->vector = newvec;
173 	apicd->cpu = newcpu;
174 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
175 	per_cpu(vector_irq, newcpu)[newvec] = desc;
176 }
177 
178 static void vector_assign_managed_shutdown(struct irq_data *irqd)
179 {
180 	unsigned int cpu = cpumask_first(cpu_online_mask);
181 
182 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
183 }
184 
185 static int reserve_managed_vector(struct irq_data *irqd)
186 {
187 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
188 	struct apic_chip_data *apicd = apic_chip_data(irqd);
189 	unsigned long flags;
190 	int ret;
191 
192 	raw_spin_lock_irqsave(&vector_lock, flags);
193 	apicd->is_managed = true;
194 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
195 	raw_spin_unlock_irqrestore(&vector_lock, flags);
196 	trace_vector_reserve_managed(irqd->irq, ret);
197 	return ret;
198 }
199 
200 static void reserve_irq_vector_locked(struct irq_data *irqd)
201 {
202 	struct apic_chip_data *apicd = apic_chip_data(irqd);
203 
204 	irq_matrix_reserve(vector_matrix);
205 	apicd->can_reserve = true;
206 	apicd->has_reserved = true;
207 	irqd_set_can_reserve(irqd);
208 	trace_vector_reserve(irqd->irq, 0);
209 	vector_assign_managed_shutdown(irqd);
210 }
211 
212 static int reserve_irq_vector(struct irq_data *irqd)
213 {
214 	unsigned long flags;
215 
216 	raw_spin_lock_irqsave(&vector_lock, flags);
217 	reserve_irq_vector_locked(irqd);
218 	raw_spin_unlock_irqrestore(&vector_lock, flags);
219 	return 0;
220 }
221 
222 static int
223 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
224 {
225 	struct apic_chip_data *apicd = apic_chip_data(irqd);
226 	bool resvd = apicd->has_reserved;
227 	unsigned int cpu = apicd->cpu;
228 	int vector = apicd->vector;
229 
230 	lockdep_assert_held(&vector_lock);
231 
232 	/*
233 	 * If the current target CPU is online and in the new requested
234 	 * affinity mask, there is no point in moving the interrupt from
235 	 * one CPU to another.
236 	 */
237 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
238 		return 0;
239 
240 	/*
241 	 * Careful here. @apicd might either have move_in_progress set or
242 	 * be enqueued for cleanup. Assigning a new vector would either
243 	 * leave a stale vector on some CPU around or in case of a pending
244 	 * cleanup corrupt the hlist.
245 	 */
246 	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
247 		return -EBUSY;
248 
249 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
250 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
251 	if (vector < 0)
252 		return vector;
253 	apic_update_vector(irqd, vector, cpu);
254 	apic_update_irq_cfg(irqd, vector, cpu);
255 
256 	return 0;
257 }
258 
259 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
260 {
261 	unsigned long flags;
262 	int ret;
263 
264 	raw_spin_lock_irqsave(&vector_lock, flags);
265 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
266 	ret = assign_vector_locked(irqd, vector_searchmask);
267 	raw_spin_unlock_irqrestore(&vector_lock, flags);
268 	return ret;
269 }
270 
271 static int assign_irq_vector_any_locked(struct irq_data *irqd)
272 {
273 	/* Get the affinity mask - either irq_default_affinity or (user) set */
274 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
275 	int node = irq_data_get_node(irqd);
276 
277 	if (node == NUMA_NO_NODE)
278 		goto all;
279 	/* Try the intersection of @affmsk and node mask */
280 	cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
281 	if (!assign_vector_locked(irqd, vector_searchmask))
282 		return 0;
283 	/* Try the node mask */
284 	if (!assign_vector_locked(irqd, cpumask_of_node(node)))
285 		return 0;
286 all:
287 	/* Try the full affinity mask */
288 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
289 	if (!assign_vector_locked(irqd, vector_searchmask))
290 		return 0;
291 	/* Try the full online mask */
292 	return assign_vector_locked(irqd, cpu_online_mask);
293 }
294 
295 static int
296 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
297 {
298 	if (irqd_affinity_is_managed(irqd))
299 		return reserve_managed_vector(irqd);
300 	if (info->mask)
301 		return assign_irq_vector(irqd, info->mask);
302 	/*
303 	 * Make only a global reservation with no guarantee. A real vector
304 	 * is associated at activation time.
305 	 */
306 	return reserve_irq_vector(irqd);
307 }
308 
309 static int
310 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
311 {
312 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
313 	struct apic_chip_data *apicd = apic_chip_data(irqd);
314 	int vector, cpu;
315 
316 	cpumask_and(vector_searchmask, dest, affmsk);
317 
318 	/* set_affinity might call here for nothing */
319 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
320 		return 0;
321 	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
322 					  &cpu);
323 	trace_vector_alloc_managed(irqd->irq, vector, vector);
324 	if (vector < 0)
325 		return vector;
326 	apic_update_vector(irqd, vector, cpu);
327 	apic_update_irq_cfg(irqd, vector, cpu);
328 	return 0;
329 }
330 
331 static void clear_irq_vector(struct irq_data *irqd)
332 {
333 	struct apic_chip_data *apicd = apic_chip_data(irqd);
334 	bool managed = irqd_affinity_is_managed(irqd);
335 	unsigned int vector = apicd->vector;
336 
337 	lockdep_assert_held(&vector_lock);
338 
339 	if (!vector)
340 		return;
341 
342 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
343 			   apicd->prev_cpu);
344 
345 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_UNUSED;
346 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
347 	apicd->vector = 0;
348 
349 	/* Clean up move in progress */
350 	vector = apicd->prev_vector;
351 	if (!vector)
352 		return;
353 
354 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED;
355 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
356 	apicd->prev_vector = 0;
357 	apicd->move_in_progress = 0;
358 	hlist_del_init(&apicd->clist);
359 }
360 
361 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
362 {
363 	struct apic_chip_data *apicd = apic_chip_data(irqd);
364 	unsigned long flags;
365 
366 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
367 				apicd->can_reserve, false);
368 
369 	/* Regular fixed assigned interrupt */
370 	if (!apicd->is_managed && !apicd->can_reserve)
371 		return;
372 	/* If the interrupt has a global reservation, nothing to do */
373 	if (apicd->has_reserved)
374 		return;
375 
376 	raw_spin_lock_irqsave(&vector_lock, flags);
377 	clear_irq_vector(irqd);
378 	if (apicd->can_reserve)
379 		reserve_irq_vector_locked(irqd);
380 	else
381 		vector_assign_managed_shutdown(irqd);
382 	raw_spin_unlock_irqrestore(&vector_lock, flags);
383 }
384 
385 static int activate_reserved(struct irq_data *irqd)
386 {
387 	struct apic_chip_data *apicd = apic_chip_data(irqd);
388 	int ret;
389 
390 	ret = assign_irq_vector_any_locked(irqd);
391 	if (!ret) {
392 		apicd->has_reserved = false;
393 		/*
394 		 * Core might have disabled reservation mode after
395 		 * allocating the irq descriptor. Ideally this should
396 		 * happen before allocation time, but that would require
397 		 * completely convoluted ways of transporting that
398 		 * information.
399 		 */
400 		if (!irqd_can_reserve(irqd))
401 			apicd->can_reserve = false;
402 	}
403 	return ret;
404 }
405 
406 static int activate_managed(struct irq_data *irqd)
407 {
408 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
409 	int ret;
410 
411 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
412 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
413 		/* Something in the core code broke! Survive gracefully */
414 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
415 		return -EINVAL;
416 	}
417 
418 	ret = assign_managed_vector(irqd, vector_searchmask);
419 	/*
420 	 * This should not happen. The vector reservation got buggered.  Handle
421 	 * it gracefully.
422 	 */
423 	if (WARN_ON_ONCE(ret < 0)) {
424 		pr_err("Managed startup irq %u, no vector available\n",
425 		       irqd->irq);
426 	}
427 	return ret;
428 }
429 
430 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
431 			       bool reserve)
432 {
433 	struct apic_chip_data *apicd = apic_chip_data(irqd);
434 	unsigned long flags;
435 	int ret = 0;
436 
437 	trace_vector_activate(irqd->irq, apicd->is_managed,
438 			      apicd->can_reserve, reserve);
439 
440 	/* Nothing to do for fixed assigned vectors */
441 	if (!apicd->can_reserve && !apicd->is_managed)
442 		return 0;
443 
444 	raw_spin_lock_irqsave(&vector_lock, flags);
445 	if (reserve || irqd_is_managed_and_shutdown(irqd))
446 		vector_assign_managed_shutdown(irqd);
447 	else if (apicd->is_managed)
448 		ret = activate_managed(irqd);
449 	else if (apicd->has_reserved)
450 		ret = activate_reserved(irqd);
451 	raw_spin_unlock_irqrestore(&vector_lock, flags);
452 	return ret;
453 }
454 
455 static void vector_free_reserved_and_managed(struct irq_data *irqd)
456 {
457 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
458 	struct apic_chip_data *apicd = apic_chip_data(irqd);
459 
460 	trace_vector_teardown(irqd->irq, apicd->is_managed,
461 			      apicd->has_reserved);
462 
463 	if (apicd->has_reserved)
464 		irq_matrix_remove_reserved(vector_matrix);
465 	if (apicd->is_managed)
466 		irq_matrix_remove_managed(vector_matrix, dest);
467 }
468 
469 static void x86_vector_free_irqs(struct irq_domain *domain,
470 				 unsigned int virq, unsigned int nr_irqs)
471 {
472 	struct apic_chip_data *apicd;
473 	struct irq_data *irqd;
474 	unsigned long flags;
475 	int i;
476 
477 	for (i = 0; i < nr_irqs; i++) {
478 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
479 		if (irqd && irqd->chip_data) {
480 			raw_spin_lock_irqsave(&vector_lock, flags);
481 			clear_irq_vector(irqd);
482 			vector_free_reserved_and_managed(irqd);
483 			apicd = irqd->chip_data;
484 			irq_domain_reset_irq_data(irqd);
485 			raw_spin_unlock_irqrestore(&vector_lock, flags);
486 			free_apic_chip_data(apicd);
487 		}
488 	}
489 }
490 
491 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
492 				    struct apic_chip_data *apicd)
493 {
494 	unsigned long flags;
495 	bool realloc = false;
496 
497 	apicd->vector = ISA_IRQ_VECTOR(virq);
498 	apicd->cpu = 0;
499 
500 	raw_spin_lock_irqsave(&vector_lock, flags);
501 	/*
502 	 * If the interrupt is activated, then it must stay at this vector
503 	 * position. That's usually the timer interrupt (0).
504 	 */
505 	if (irqd_is_activated(irqd)) {
506 		trace_vector_setup(virq, true, 0);
507 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
508 	} else {
509 		/* Release the vector */
510 		apicd->can_reserve = true;
511 		irqd_set_can_reserve(irqd);
512 		clear_irq_vector(irqd);
513 		realloc = true;
514 	}
515 	raw_spin_unlock_irqrestore(&vector_lock, flags);
516 	return realloc;
517 }
518 
519 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
520 				 unsigned int nr_irqs, void *arg)
521 {
522 	struct irq_alloc_info *info = arg;
523 	struct apic_chip_data *apicd;
524 	struct irq_data *irqd;
525 	int i, err, node;
526 
527 	if (disable_apic)
528 		return -ENXIO;
529 
530 	/* Currently vector allocator can't guarantee contiguous allocations */
531 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
532 		return -ENOSYS;
533 
534 	for (i = 0; i < nr_irqs; i++) {
535 		irqd = irq_domain_get_irq_data(domain, virq + i);
536 		BUG_ON(!irqd);
537 		node = irq_data_get_node(irqd);
538 		WARN_ON_ONCE(irqd->chip_data);
539 		apicd = alloc_apic_chip_data(node);
540 		if (!apicd) {
541 			err = -ENOMEM;
542 			goto error;
543 		}
544 
545 		apicd->irq = virq + i;
546 		irqd->chip = &lapic_controller;
547 		irqd->chip_data = apicd;
548 		irqd->hwirq = virq + i;
549 		irqd_set_single_target(irqd);
550 		/*
551 		 * Legacy vectors are already assigned when the IOAPIC
552 		 * takes them over. They stay on the same vector. This is
553 		 * required for check_timer() to work correctly as it might
554 		 * switch back to legacy mode. Only update the hardware
555 		 * config.
556 		 */
557 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
558 			if (!vector_configure_legacy(virq + i, irqd, apicd))
559 				continue;
560 		}
561 
562 		err = assign_irq_vector_policy(irqd, info);
563 		trace_vector_setup(virq + i, false, err);
564 		if (err) {
565 			irqd->chip_data = NULL;
566 			free_apic_chip_data(apicd);
567 			goto error;
568 		}
569 	}
570 
571 	return 0;
572 
573 error:
574 	x86_vector_free_irqs(domain, virq, i);
575 	return err;
576 }
577 
578 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
579 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
580 				  struct irq_data *irqd, int ind)
581 {
582 	struct apic_chip_data apicd;
583 	unsigned long flags;
584 	int irq;
585 
586 	if (!irqd) {
587 		irq_matrix_debug_show(m, vector_matrix, ind);
588 		return;
589 	}
590 
591 	irq = irqd->irq;
592 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
593 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
594 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
595 		return;
596 	}
597 
598 	if (!irqd->chip_data) {
599 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
600 		return;
601 	}
602 
603 	raw_spin_lock_irqsave(&vector_lock, flags);
604 	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
605 	raw_spin_unlock_irqrestore(&vector_lock, flags);
606 
607 	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
608 	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
609 	if (apicd.prev_vector) {
610 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
611 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
612 	}
613 	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
614 	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
615 	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
616 	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
617 	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
618 }
619 #endif
620 
621 static const struct irq_domain_ops x86_vector_domain_ops = {
622 	.alloc		= x86_vector_alloc_irqs,
623 	.free		= x86_vector_free_irqs,
624 	.activate	= x86_vector_activate,
625 	.deactivate	= x86_vector_deactivate,
626 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
627 	.debug_show	= x86_vector_debug_show,
628 #endif
629 };
630 
631 int __init arch_probe_nr_irqs(void)
632 {
633 	int nr;
634 
635 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
636 		nr_irqs = NR_VECTORS * nr_cpu_ids;
637 
638 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
639 #if defined(CONFIG_PCI_MSI)
640 	/*
641 	 * for MSI and HT dyn irq
642 	 */
643 	if (gsi_top <= NR_IRQS_LEGACY)
644 		nr +=  8 * nr_cpu_ids;
645 	else
646 		nr += gsi_top * 16;
647 #endif
648 	if (nr < nr_irqs)
649 		nr_irqs = nr;
650 
651 	/*
652 	 * We don't know if PIC is present at this point so we need to do
653 	 * probe() to get the right number of legacy IRQs.
654 	 */
655 	return legacy_pic->probe();
656 }
657 
658 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
659 {
660 	/*
661 	 * Use assign system here so it wont get accounted as allocated
662 	 * and moveable in the cpu hotplug check and it prevents managed
663 	 * irq reservation from touching it.
664 	 */
665 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
666 }
667 
668 void __init lapic_assign_system_vectors(void)
669 {
670 	unsigned int i, vector = 0;
671 
672 	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
673 		irq_matrix_assign_system(vector_matrix, vector, false);
674 
675 	if (nr_legacy_irqs() > 1)
676 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
677 
678 	/* System vectors are reserved, online it */
679 	irq_matrix_online(vector_matrix);
680 
681 	/* Mark the preallocated legacy interrupts */
682 	for (i = 0; i < nr_legacy_irqs(); i++) {
683 		if (i != PIC_CASCADE_IR)
684 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
685 	}
686 }
687 
688 int __init arch_early_irq_init(void)
689 {
690 	struct fwnode_handle *fn;
691 
692 	fn = irq_domain_alloc_named_fwnode("VECTOR");
693 	BUG_ON(!fn);
694 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
695 						   NULL);
696 	BUG_ON(x86_vector_domain == NULL);
697 	irq_domain_free_fwnode(fn);
698 	irq_set_default_host(x86_vector_domain);
699 
700 	arch_init_msi_domain(x86_vector_domain);
701 
702 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
703 
704 	/*
705 	 * Allocate the vector matrix allocator data structure and limit the
706 	 * search area.
707 	 */
708 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
709 					 FIRST_SYSTEM_VECTOR);
710 	BUG_ON(!vector_matrix);
711 
712 	return arch_early_ioapic_init();
713 }
714 
715 #ifdef CONFIG_SMP
716 
717 static struct irq_desc *__setup_vector_irq(int vector)
718 {
719 	int isairq = vector - ISA_IRQ_VECTOR(0);
720 
721 	/* Check whether the irq is in the legacy space */
722 	if (isairq < 0 || isairq >= nr_legacy_irqs())
723 		return VECTOR_UNUSED;
724 	/* Check whether the irq is handled by the IOAPIC */
725 	if (test_bit(isairq, &io_apic_irqs))
726 		return VECTOR_UNUSED;
727 	return irq_to_desc(isairq);
728 }
729 
730 /* Online the local APIC infrastructure and initialize the vectors */
731 void lapic_online(void)
732 {
733 	unsigned int vector;
734 
735 	lockdep_assert_held(&vector_lock);
736 
737 	/* Online the vector matrix array for this CPU */
738 	irq_matrix_online(vector_matrix);
739 
740 	/*
741 	 * The interrupt affinity logic never targets interrupts to offline
742 	 * CPUs. The exception are the legacy PIC interrupts. In general
743 	 * they are only targeted to CPU0, but depending on the platform
744 	 * they can be distributed to any online CPU in hardware. The
745 	 * kernel has no influence on that. So all active legacy vectors
746 	 * must be installed on all CPUs. All non legacy interrupts can be
747 	 * cleared.
748 	 */
749 	for (vector = 0; vector < NR_VECTORS; vector++)
750 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
751 }
752 
753 void lapic_offline(void)
754 {
755 	lock_vector_lock();
756 	irq_matrix_offline(vector_matrix);
757 	unlock_vector_lock();
758 }
759 
760 static int apic_set_affinity(struct irq_data *irqd,
761 			     const struct cpumask *dest, bool force)
762 {
763 	struct apic_chip_data *apicd = apic_chip_data(irqd);
764 	int err;
765 
766 	/*
767 	 * Core code can call here for inactive interrupts. For inactive
768 	 * interrupts which use managed or reservation mode there is no
769 	 * point in going through the vector assignment right now as the
770 	 * activation will assign a vector which fits the destination
771 	 * cpumask. Let the core code store the destination mask and be
772 	 * done with it.
773 	 */
774 	if (!irqd_is_activated(irqd) &&
775 	    (apicd->is_managed || apicd->can_reserve))
776 		return IRQ_SET_MASK_OK;
777 
778 	raw_spin_lock(&vector_lock);
779 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
780 	if (irqd_affinity_is_managed(irqd))
781 		err = assign_managed_vector(irqd, vector_searchmask);
782 	else
783 		err = assign_vector_locked(irqd, vector_searchmask);
784 	raw_spin_unlock(&vector_lock);
785 	return err ? err : IRQ_SET_MASK_OK;
786 }
787 
788 #else
789 # define apic_set_affinity	NULL
790 #endif
791 
792 static int apic_retrigger_irq(struct irq_data *irqd)
793 {
794 	struct apic_chip_data *apicd = apic_chip_data(irqd);
795 	unsigned long flags;
796 
797 	raw_spin_lock_irqsave(&vector_lock, flags);
798 	apic->send_IPI(apicd->cpu, apicd->vector);
799 	raw_spin_unlock_irqrestore(&vector_lock, flags);
800 
801 	return 1;
802 }
803 
804 void apic_ack_irq(struct irq_data *irqd)
805 {
806 	irq_move_irq(irqd);
807 	ack_APIC_irq();
808 }
809 
810 void apic_ack_edge(struct irq_data *irqd)
811 {
812 	irq_complete_move(irqd_cfg(irqd));
813 	apic_ack_irq(irqd);
814 }
815 
816 static struct irq_chip lapic_controller = {
817 	.name			= "APIC",
818 	.irq_ack		= apic_ack_edge,
819 	.irq_set_affinity	= apic_set_affinity,
820 	.irq_retrigger		= apic_retrigger_irq,
821 };
822 
823 #ifdef CONFIG_SMP
824 
825 static void free_moved_vector(struct apic_chip_data *apicd)
826 {
827 	unsigned int vector = apicd->prev_vector;
828 	unsigned int cpu = apicd->prev_cpu;
829 	bool managed = apicd->is_managed;
830 
831 	/*
832 	 * This should never happen. Managed interrupts are not
833 	 * migrated except on CPU down, which does not involve the
834 	 * cleanup vector. But try to keep the accounting correct
835 	 * nevertheless.
836 	 */
837 	WARN_ON_ONCE(managed);
838 
839 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
840 	irq_matrix_free(vector_matrix, cpu, vector, managed);
841 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
842 	hlist_del_init(&apicd->clist);
843 	apicd->prev_vector = 0;
844 	apicd->move_in_progress = 0;
845 }
846 
847 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
848 {
849 	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
850 	struct apic_chip_data *apicd;
851 	struct hlist_node *tmp;
852 
853 	entering_ack_irq();
854 	/* Prevent vectors vanishing under us */
855 	raw_spin_lock(&vector_lock);
856 
857 	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
858 		unsigned int irr, vector = apicd->prev_vector;
859 
860 		/*
861 		 * Paranoia: Check if the vector that needs to be cleaned
862 		 * up is registered at the APICs IRR. If so, then this is
863 		 * not the best time to clean it up. Clean it up in the
864 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
865 		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
866 		 * priority external vector, so on return from this
867 		 * interrupt the device interrupt will happen first.
868 		 */
869 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
870 		if (irr & (1U << (vector % 32))) {
871 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
872 			continue;
873 		}
874 		free_moved_vector(apicd);
875 	}
876 
877 	raw_spin_unlock(&vector_lock);
878 	exiting_irq();
879 }
880 
881 static void __send_cleanup_vector(struct apic_chip_data *apicd)
882 {
883 	unsigned int cpu;
884 
885 	raw_spin_lock(&vector_lock);
886 	apicd->move_in_progress = 0;
887 	cpu = apicd->prev_cpu;
888 	if (cpu_online(cpu)) {
889 		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
890 		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
891 	} else {
892 		apicd->prev_vector = 0;
893 	}
894 	raw_spin_unlock(&vector_lock);
895 }
896 
897 void send_cleanup_vector(struct irq_cfg *cfg)
898 {
899 	struct apic_chip_data *apicd;
900 
901 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
902 	if (apicd->move_in_progress)
903 		__send_cleanup_vector(apicd);
904 }
905 
906 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
907 {
908 	struct apic_chip_data *apicd;
909 
910 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
911 	if (likely(!apicd->move_in_progress))
912 		return;
913 
914 	if (vector == apicd->vector && apicd->cpu == smp_processor_id())
915 		__send_cleanup_vector(apicd);
916 }
917 
918 void irq_complete_move(struct irq_cfg *cfg)
919 {
920 	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
921 }
922 
923 /*
924  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
925  */
926 void irq_force_complete_move(struct irq_desc *desc)
927 {
928 	struct apic_chip_data *apicd;
929 	struct irq_data *irqd;
930 	unsigned int vector;
931 
932 	/*
933 	 * The function is called for all descriptors regardless of which
934 	 * irqdomain they belong to. For example if an IRQ is provided by
935 	 * an irq_chip as part of a GPIO driver, the chip data for that
936 	 * descriptor is specific to the irq_chip in question.
937 	 *
938 	 * Check first that the chip_data is what we expect
939 	 * (apic_chip_data) before touching it any further.
940 	 */
941 	irqd = irq_domain_get_irq_data(x86_vector_domain,
942 				       irq_desc_get_irq(desc));
943 	if (!irqd)
944 		return;
945 
946 	raw_spin_lock(&vector_lock);
947 	apicd = apic_chip_data(irqd);
948 	if (!apicd)
949 		goto unlock;
950 
951 	/*
952 	 * If prev_vector is empty, no action required.
953 	 */
954 	vector = apicd->prev_vector;
955 	if (!vector)
956 		goto unlock;
957 
958 	/*
959 	 * This is tricky. If the cleanup of the old vector has not been
960 	 * done yet, then the following setaffinity call will fail with
961 	 * -EBUSY. This can leave the interrupt in a stale state.
962 	 *
963 	 * All CPUs are stuck in stop machine with interrupts disabled so
964 	 * calling __irq_complete_move() would be completely pointless.
965 	 *
966 	 * 1) The interrupt is in move_in_progress state. That means that we
967 	 *    have not seen an interrupt since the io_apic was reprogrammed to
968 	 *    the new vector.
969 	 *
970 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
971 	 *    have not been processed yet.
972 	 */
973 	if (apicd->move_in_progress) {
974 		/*
975 		 * In theory there is a race:
976 		 *
977 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
978 		 *			      is effective, i.e. it's raised on
979 		 *			      the old vector.
980 		 *
981 		 * So if the target cpu cannot handle that interrupt before
982 		 * the old vector is cleaned up, we get a spurious interrupt
983 		 * and in the worst case the ioapic irq line becomes stale.
984 		 *
985 		 * But in case of cpu hotplug this should be a non issue
986 		 * because if the affinity update happens right before all
987 		 * cpus rendevouz in stop machine, there is no way that the
988 		 * interrupt can be blocked on the target cpu because all cpus
989 		 * loops first with interrupts enabled in stop machine, so the
990 		 * old vector is not yet cleaned up when the interrupt fires.
991 		 *
992 		 * So the only way to run into this issue is if the delivery
993 		 * of the interrupt on the apic/system bus would be delayed
994 		 * beyond the point where the target cpu disables interrupts
995 		 * in stop machine. I doubt that it can happen, but at least
996 		 * there is a theroretical chance. Virtualization might be
997 		 * able to expose this, but AFAICT the IOAPIC emulation is not
998 		 * as stupid as the real hardware.
999 		 *
1000 		 * Anyway, there is nothing we can do about that at this point
1001 		 * w/o refactoring the whole fixup_irq() business completely.
1002 		 * We print at least the irq number and the old vector number,
1003 		 * so we have the necessary information when a problem in that
1004 		 * area arises.
1005 		 */
1006 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1007 			irqd->irq, vector);
1008 	}
1009 	free_moved_vector(apicd);
1010 unlock:
1011 	raw_spin_unlock(&vector_lock);
1012 }
1013 
1014 #ifdef CONFIG_HOTPLUG_CPU
1015 /*
1016  * Note, this is not accurate accounting, but at least good enough to
1017  * prevent that the actual interrupt move will run out of vectors.
1018  */
1019 int lapic_can_unplug_cpu(void)
1020 {
1021 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1022 	int ret = 0;
1023 
1024 	raw_spin_lock(&vector_lock);
1025 	tomove = irq_matrix_allocated(vector_matrix);
1026 	avl = irq_matrix_available(vector_matrix, true);
1027 	if (avl < tomove) {
1028 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1029 			cpu, tomove, avl);
1030 		ret = -ENOSPC;
1031 		goto out;
1032 	}
1033 	rsvd = irq_matrix_reserved(vector_matrix);
1034 	if (avl < rsvd) {
1035 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1036 			rsvd, avl);
1037 	}
1038 out:
1039 	raw_spin_unlock(&vector_lock);
1040 	return ret;
1041 }
1042 #endif /* HOTPLUG_CPU */
1043 #endif /* SMP */
1044 
1045 static void __init print_APIC_field(int base)
1046 {
1047 	int i;
1048 
1049 	printk(KERN_DEBUG);
1050 
1051 	for (i = 0; i < 8; i++)
1052 		pr_cont("%08x", apic_read(base + i*0x10));
1053 
1054 	pr_cont("\n");
1055 }
1056 
1057 static void __init print_local_APIC(void *dummy)
1058 {
1059 	unsigned int i, v, ver, maxlvt;
1060 	u64 icr;
1061 
1062 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1063 		 smp_processor_id(), hard_smp_processor_id());
1064 	v = apic_read(APIC_ID);
1065 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1066 	v = apic_read(APIC_LVR);
1067 	pr_info("... APIC VERSION: %08x\n", v);
1068 	ver = GET_APIC_VERSION(v);
1069 	maxlvt = lapic_get_maxlvt();
1070 
1071 	v = apic_read(APIC_TASKPRI);
1072 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1073 
1074 	/* !82489DX */
1075 	if (APIC_INTEGRATED(ver)) {
1076 		if (!APIC_XAPIC(ver)) {
1077 			v = apic_read(APIC_ARBPRI);
1078 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1079 				 v, v & APIC_ARBPRI_MASK);
1080 		}
1081 		v = apic_read(APIC_PROCPRI);
1082 		pr_debug("... APIC PROCPRI: %08x\n", v);
1083 	}
1084 
1085 	/*
1086 	 * Remote read supported only in the 82489DX and local APIC for
1087 	 * Pentium processors.
1088 	 */
1089 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1090 		v = apic_read(APIC_RRR);
1091 		pr_debug("... APIC RRR: %08x\n", v);
1092 	}
1093 
1094 	v = apic_read(APIC_LDR);
1095 	pr_debug("... APIC LDR: %08x\n", v);
1096 	if (!x2apic_enabled()) {
1097 		v = apic_read(APIC_DFR);
1098 		pr_debug("... APIC DFR: %08x\n", v);
1099 	}
1100 	v = apic_read(APIC_SPIV);
1101 	pr_debug("... APIC SPIV: %08x\n", v);
1102 
1103 	pr_debug("... APIC ISR field:\n");
1104 	print_APIC_field(APIC_ISR);
1105 	pr_debug("... APIC TMR field:\n");
1106 	print_APIC_field(APIC_TMR);
1107 	pr_debug("... APIC IRR field:\n");
1108 	print_APIC_field(APIC_IRR);
1109 
1110 	/* !82489DX */
1111 	if (APIC_INTEGRATED(ver)) {
1112 		/* Due to the Pentium erratum 3AP. */
1113 		if (maxlvt > 3)
1114 			apic_write(APIC_ESR, 0);
1115 
1116 		v = apic_read(APIC_ESR);
1117 		pr_debug("... APIC ESR: %08x\n", v);
1118 	}
1119 
1120 	icr = apic_icr_read();
1121 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1122 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1123 
1124 	v = apic_read(APIC_LVTT);
1125 	pr_debug("... APIC LVTT: %08x\n", v);
1126 
1127 	if (maxlvt > 3) {
1128 		/* PC is LVT#4. */
1129 		v = apic_read(APIC_LVTPC);
1130 		pr_debug("... APIC LVTPC: %08x\n", v);
1131 	}
1132 	v = apic_read(APIC_LVT0);
1133 	pr_debug("... APIC LVT0: %08x\n", v);
1134 	v = apic_read(APIC_LVT1);
1135 	pr_debug("... APIC LVT1: %08x\n", v);
1136 
1137 	if (maxlvt > 2) {
1138 		/* ERR is LVT#3. */
1139 		v = apic_read(APIC_LVTERR);
1140 		pr_debug("... APIC LVTERR: %08x\n", v);
1141 	}
1142 
1143 	v = apic_read(APIC_TMICT);
1144 	pr_debug("... APIC TMICT: %08x\n", v);
1145 	v = apic_read(APIC_TMCCT);
1146 	pr_debug("... APIC TMCCT: %08x\n", v);
1147 	v = apic_read(APIC_TDCR);
1148 	pr_debug("... APIC TDCR: %08x\n", v);
1149 
1150 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1151 		v = apic_read(APIC_EFEAT);
1152 		maxlvt = (v >> 16) & 0xff;
1153 		pr_debug("... APIC EFEAT: %08x\n", v);
1154 		v = apic_read(APIC_ECTRL);
1155 		pr_debug("... APIC ECTRL: %08x\n", v);
1156 		for (i = 0; i < maxlvt; i++) {
1157 			v = apic_read(APIC_EILVTn(i));
1158 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1159 		}
1160 	}
1161 	pr_cont("\n");
1162 }
1163 
1164 static void __init print_local_APICs(int maxcpu)
1165 {
1166 	int cpu;
1167 
1168 	if (!maxcpu)
1169 		return;
1170 
1171 	preempt_disable();
1172 	for_each_online_cpu(cpu) {
1173 		if (cpu >= maxcpu)
1174 			break;
1175 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1176 	}
1177 	preempt_enable();
1178 }
1179 
1180 static void __init print_PIC(void)
1181 {
1182 	unsigned int v;
1183 	unsigned long flags;
1184 
1185 	if (!nr_legacy_irqs())
1186 		return;
1187 
1188 	pr_debug("\nprinting PIC contents\n");
1189 
1190 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1191 
1192 	v = inb(0xa1) << 8 | inb(0x21);
1193 	pr_debug("... PIC  IMR: %04x\n", v);
1194 
1195 	v = inb(0xa0) << 8 | inb(0x20);
1196 	pr_debug("... PIC  IRR: %04x\n", v);
1197 
1198 	outb(0x0b, 0xa0);
1199 	outb(0x0b, 0x20);
1200 	v = inb(0xa0) << 8 | inb(0x20);
1201 	outb(0x0a, 0xa0);
1202 	outb(0x0a, 0x20);
1203 
1204 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1205 
1206 	pr_debug("... PIC  ISR: %04x\n", v);
1207 
1208 	v = inb(0x4d1) << 8 | inb(0x4d0);
1209 	pr_debug("... PIC ELCR: %04x\n", v);
1210 }
1211 
1212 static int show_lapic __initdata = 1;
1213 static __init int setup_show_lapic(char *arg)
1214 {
1215 	int num = -1;
1216 
1217 	if (strcmp(arg, "all") == 0) {
1218 		show_lapic = CONFIG_NR_CPUS;
1219 	} else {
1220 		get_option(&arg, &num);
1221 		if (num >= 0)
1222 			show_lapic = num;
1223 	}
1224 
1225 	return 1;
1226 }
1227 __setup("show_lapic=", setup_show_lapic);
1228 
1229 static int __init print_ICs(void)
1230 {
1231 	if (apic_verbosity == APIC_QUIET)
1232 		return 0;
1233 
1234 	print_PIC();
1235 
1236 	/* don't print out if apic is not there */
1237 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1238 		return 0;
1239 
1240 	print_local_APICs(show_lapic);
1241 	print_IO_APICs();
1242 
1243 	return 0;
1244 }
1245 
1246 late_initcall(print_ICs);
1247