1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Local APIC related interfaces to support IOAPIC, MSI, etc. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * Moved from arch/x86/kernel/apic/io_apic.c. 7 * Jiang Liu <jiang.liu@linux.intel.com> 8 * Enable support of hierarchical irqdomains 9 */ 10 #include <linux/interrupt.h> 11 #include <linux/irq.h> 12 #include <linux/seq_file.h> 13 #include <linux/init.h> 14 #include <linux/compiler.h> 15 #include <linux/slab.h> 16 #include <asm/irqdomain.h> 17 #include <asm/hw_irq.h> 18 #include <asm/traps.h> 19 #include <asm/apic.h> 20 #include <asm/i8259.h> 21 #include <asm/desc.h> 22 #include <asm/irq_remapping.h> 23 24 #include <asm/trace/irq_vectors.h> 25 26 struct apic_chip_data { 27 struct irq_cfg hw_irq_cfg; 28 unsigned int vector; 29 unsigned int prev_vector; 30 unsigned int cpu; 31 unsigned int prev_cpu; 32 unsigned int irq; 33 struct hlist_node clist; 34 unsigned int move_in_progress : 1, 35 is_managed : 1, 36 can_reserve : 1, 37 has_reserved : 1; 38 }; 39 40 struct irq_domain *x86_vector_domain; 41 EXPORT_SYMBOL_GPL(x86_vector_domain); 42 static DEFINE_RAW_SPINLOCK(vector_lock); 43 static cpumask_var_t vector_searchmask; 44 static struct irq_chip lapic_controller; 45 static struct irq_matrix *vector_matrix; 46 #ifdef CONFIG_SMP 47 48 static void vector_cleanup_callback(struct timer_list *tmr); 49 50 struct vector_cleanup { 51 struct hlist_head head; 52 struct timer_list timer; 53 }; 54 55 static DEFINE_PER_CPU(struct vector_cleanup, vector_cleanup) = { 56 .head = HLIST_HEAD_INIT, 57 .timer = __TIMER_INITIALIZER(vector_cleanup_callback, TIMER_PINNED), 58 }; 59 #endif 60 61 void lock_vector_lock(void) 62 { 63 /* Used to the online set of cpus does not change 64 * during assign_irq_vector. 65 */ 66 raw_spin_lock(&vector_lock); 67 } 68 69 void unlock_vector_lock(void) 70 { 71 raw_spin_unlock(&vector_lock); 72 } 73 74 void init_irq_alloc_info(struct irq_alloc_info *info, 75 const struct cpumask *mask) 76 { 77 memset(info, 0, sizeof(*info)); 78 info->mask = mask; 79 } 80 81 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) 82 { 83 if (src) 84 *dst = *src; 85 else 86 memset(dst, 0, sizeof(*dst)); 87 } 88 89 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd) 90 { 91 if (!irqd) 92 return NULL; 93 94 while (irqd->parent_data) 95 irqd = irqd->parent_data; 96 97 return irqd->chip_data; 98 } 99 100 struct irq_cfg *irqd_cfg(struct irq_data *irqd) 101 { 102 struct apic_chip_data *apicd = apic_chip_data(irqd); 103 104 return apicd ? &apicd->hw_irq_cfg : NULL; 105 } 106 EXPORT_SYMBOL_GPL(irqd_cfg); 107 108 struct irq_cfg *irq_cfg(unsigned int irq) 109 { 110 return irqd_cfg(irq_get_irq_data(irq)); 111 } 112 113 static struct apic_chip_data *alloc_apic_chip_data(int node) 114 { 115 struct apic_chip_data *apicd; 116 117 apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node); 118 if (apicd) 119 INIT_HLIST_NODE(&apicd->clist); 120 return apicd; 121 } 122 123 static void free_apic_chip_data(struct apic_chip_data *apicd) 124 { 125 kfree(apicd); 126 } 127 128 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector, 129 unsigned int cpu) 130 { 131 struct apic_chip_data *apicd = apic_chip_data(irqd); 132 133 lockdep_assert_held(&vector_lock); 134 135 apicd->hw_irq_cfg.vector = vector; 136 apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu); 137 138 apic_update_vector(cpu, vector, true); 139 140 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 141 trace_vector_config(irqd->irq, vector, cpu, apicd->hw_irq_cfg.dest_apicid); 142 } 143 144 static void apic_free_vector(unsigned int cpu, unsigned int vector, bool managed) 145 { 146 apic_update_vector(cpu, vector, false); 147 irq_matrix_free(vector_matrix, cpu, vector, managed); 148 } 149 150 static void chip_data_update(struct irq_data *irqd, unsigned int newvec, unsigned int newcpu) 151 { 152 struct apic_chip_data *apicd = apic_chip_data(irqd); 153 struct irq_desc *desc = irq_data_to_desc(irqd); 154 bool managed = irqd_affinity_is_managed(irqd); 155 156 lockdep_assert_held(&vector_lock); 157 158 trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector, 159 apicd->cpu); 160 161 /* 162 * If there is no vector associated or if the associated vector is 163 * the shutdown vector, which is associated to make PCI/MSI 164 * shutdown mode work, then there is nothing to release. Clear out 165 * prev_vector for this and the offlined target case. 166 */ 167 apicd->prev_vector = 0; 168 if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR) 169 goto setnew; 170 /* 171 * If the target CPU of the previous vector is online, then mark 172 * the vector as move in progress and store it for cleanup when the 173 * first interrupt on the new vector arrives. If the target CPU is 174 * offline then the regular release mechanism via the cleanup 175 * vector is not possible and the vector can be immediately freed 176 * in the underlying matrix allocator. 177 */ 178 if (cpu_online(apicd->cpu)) { 179 apicd->move_in_progress = true; 180 apicd->prev_vector = apicd->vector; 181 apicd->prev_cpu = apicd->cpu; 182 WARN_ON_ONCE(apicd->cpu == newcpu); 183 } else { 184 apic_free_vector(apicd->cpu, apicd->vector, managed); 185 } 186 187 setnew: 188 apicd->vector = newvec; 189 apicd->cpu = newcpu; 190 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec])); 191 per_cpu(vector_irq, newcpu)[newvec] = desc; 192 apic_update_irq_cfg(irqd, newvec, newcpu); 193 } 194 195 static void vector_assign_managed_shutdown(struct irq_data *irqd) 196 { 197 unsigned int cpu = cpumask_first(cpu_online_mask); 198 199 apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu); 200 } 201 202 static int reserve_managed_vector(struct irq_data *irqd) 203 { 204 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 205 struct apic_chip_data *apicd = apic_chip_data(irqd); 206 unsigned long flags; 207 int ret; 208 209 raw_spin_lock_irqsave(&vector_lock, flags); 210 apicd->is_managed = true; 211 ret = irq_matrix_reserve_managed(vector_matrix, affmsk); 212 raw_spin_unlock_irqrestore(&vector_lock, flags); 213 trace_vector_reserve_managed(irqd->irq, ret); 214 return ret; 215 } 216 217 static void reserve_irq_vector_locked(struct irq_data *irqd) 218 { 219 struct apic_chip_data *apicd = apic_chip_data(irqd); 220 221 irq_matrix_reserve(vector_matrix); 222 apicd->can_reserve = true; 223 apicd->has_reserved = true; 224 irqd_set_can_reserve(irqd); 225 trace_vector_reserve(irqd->irq, 0); 226 vector_assign_managed_shutdown(irqd); 227 } 228 229 static int reserve_irq_vector(struct irq_data *irqd) 230 { 231 unsigned long flags; 232 233 raw_spin_lock_irqsave(&vector_lock, flags); 234 reserve_irq_vector_locked(irqd); 235 raw_spin_unlock_irqrestore(&vector_lock, flags); 236 return 0; 237 } 238 239 static int 240 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest) 241 { 242 struct apic_chip_data *apicd = apic_chip_data(irqd); 243 bool resvd = apicd->has_reserved; 244 unsigned int cpu = apicd->cpu; 245 int vector = apicd->vector; 246 247 lockdep_assert_held(&vector_lock); 248 249 /* 250 * If the current target CPU is online and in the new requested 251 * affinity mask, there is no point in moving the interrupt from 252 * one CPU to another. 253 */ 254 if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest)) 255 return 0; 256 257 /* 258 * Careful here. @apicd might either have move_in_progress set or 259 * be enqueued for cleanup. Assigning a new vector would either 260 * leave a stale vector on some CPU around or in case of a pending 261 * cleanup corrupt the hlist. 262 */ 263 if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist)) 264 return -EBUSY; 265 266 vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu); 267 trace_vector_alloc(irqd->irq, vector, resvd, vector); 268 if (vector < 0) 269 return vector; 270 chip_data_update(irqd, vector, cpu); 271 272 return 0; 273 } 274 275 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest) 276 { 277 unsigned long flags; 278 int ret; 279 280 raw_spin_lock_irqsave(&vector_lock, flags); 281 cpumask_and(vector_searchmask, dest, cpu_online_mask); 282 ret = assign_vector_locked(irqd, vector_searchmask); 283 raw_spin_unlock_irqrestore(&vector_lock, flags); 284 return ret; 285 } 286 287 static int assign_irq_vector_any_locked(struct irq_data *irqd) 288 { 289 /* Get the affinity mask - either irq_default_affinity or (user) set */ 290 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 291 int node = irq_data_get_node(irqd); 292 293 if (node != NUMA_NO_NODE) { 294 /* Try the intersection of @affmsk and node mask */ 295 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk); 296 if (!assign_vector_locked(irqd, vector_searchmask)) 297 return 0; 298 } 299 300 /* Try the full affinity mask */ 301 cpumask_and(vector_searchmask, affmsk, cpu_online_mask); 302 if (!assign_vector_locked(irqd, vector_searchmask)) 303 return 0; 304 305 if (node != NUMA_NO_NODE) { 306 /* Try the node mask */ 307 if (!assign_vector_locked(irqd, cpumask_of_node(node))) 308 return 0; 309 } 310 311 /* Try the full online mask */ 312 return assign_vector_locked(irqd, cpu_online_mask); 313 } 314 315 static int 316 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info) 317 { 318 if (irqd_affinity_is_managed(irqd)) 319 return reserve_managed_vector(irqd); 320 if (info->mask) 321 return assign_irq_vector(irqd, info->mask); 322 /* 323 * Make only a global reservation with no guarantee. A real vector 324 * is associated at activation time. 325 */ 326 return reserve_irq_vector(irqd); 327 } 328 329 static int 330 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest) 331 { 332 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); 333 struct apic_chip_data *apicd = apic_chip_data(irqd); 334 int vector, cpu; 335 336 cpumask_and(vector_searchmask, dest, affmsk); 337 338 /* set_affinity might call here for nothing */ 339 if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask)) 340 return 0; 341 vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask, 342 &cpu); 343 trace_vector_alloc_managed(irqd->irq, vector, vector); 344 if (vector < 0) 345 return vector; 346 chip_data_update(irqd, vector, cpu); 347 348 return 0; 349 } 350 351 static void clear_irq_vector(struct irq_data *irqd) 352 { 353 struct apic_chip_data *apicd = apic_chip_data(irqd); 354 bool managed = irqd_affinity_is_managed(irqd); 355 unsigned int vector = apicd->vector; 356 357 lockdep_assert_held(&vector_lock); 358 359 if (!vector) 360 return; 361 362 trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector, 363 apicd->prev_cpu); 364 365 per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN; 366 apic_free_vector(apicd->cpu, vector, managed); 367 apicd->vector = 0; 368 369 /* Clean up move in progress */ 370 vector = apicd->prev_vector; 371 if (!vector) 372 return; 373 374 per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN; 375 apic_free_vector(apicd->prev_cpu, vector, managed); 376 apicd->prev_vector = 0; 377 apicd->move_in_progress = 0; 378 hlist_del_init(&apicd->clist); 379 } 380 381 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd) 382 { 383 struct apic_chip_data *apicd = apic_chip_data(irqd); 384 unsigned long flags; 385 386 trace_vector_deactivate(irqd->irq, apicd->is_managed, 387 apicd->can_reserve, false); 388 389 /* Regular fixed assigned interrupt */ 390 if (!apicd->is_managed && !apicd->can_reserve) 391 return; 392 /* If the interrupt has a global reservation, nothing to do */ 393 if (apicd->has_reserved) 394 return; 395 396 raw_spin_lock_irqsave(&vector_lock, flags); 397 clear_irq_vector(irqd); 398 if (apicd->can_reserve) 399 reserve_irq_vector_locked(irqd); 400 else 401 vector_assign_managed_shutdown(irqd); 402 raw_spin_unlock_irqrestore(&vector_lock, flags); 403 } 404 405 static int activate_reserved(struct irq_data *irqd) 406 { 407 struct apic_chip_data *apicd = apic_chip_data(irqd); 408 int ret; 409 410 ret = assign_irq_vector_any_locked(irqd); 411 if (!ret) { 412 apicd->has_reserved = false; 413 /* 414 * Core might have disabled reservation mode after 415 * allocating the irq descriptor. Ideally this should 416 * happen before allocation time, but that would require 417 * completely convoluted ways of transporting that 418 * information. 419 */ 420 if (!irqd_can_reserve(irqd)) 421 apicd->can_reserve = false; 422 } 423 424 /* 425 * Check to ensure that the effective affinity mask is a subset 426 * the user supplied affinity mask, and warn the user if it is not 427 */ 428 if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd), 429 irq_data_get_affinity_mask(irqd))) { 430 pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n", 431 irqd->irq); 432 } 433 434 return ret; 435 } 436 437 static int activate_managed(struct irq_data *irqd) 438 { 439 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 440 int ret; 441 442 cpumask_and(vector_searchmask, dest, cpu_online_mask); 443 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) { 444 /* Something in the core code broke! Survive gracefully */ 445 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq); 446 return -EINVAL; 447 } 448 449 ret = assign_managed_vector(irqd, vector_searchmask); 450 /* 451 * This should not happen. The vector reservation got buggered. Handle 452 * it gracefully. 453 */ 454 if (WARN_ON_ONCE(ret < 0)) { 455 pr_err("Managed startup irq %u, no vector available\n", 456 irqd->irq); 457 } 458 return ret; 459 } 460 461 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd, 462 bool reserve) 463 { 464 struct apic_chip_data *apicd = apic_chip_data(irqd); 465 unsigned long flags; 466 int ret = 0; 467 468 trace_vector_activate(irqd->irq, apicd->is_managed, 469 apicd->can_reserve, reserve); 470 471 raw_spin_lock_irqsave(&vector_lock, flags); 472 if (!apicd->can_reserve && !apicd->is_managed) 473 assign_irq_vector_any_locked(irqd); 474 else if (reserve || irqd_is_managed_and_shutdown(irqd)) 475 vector_assign_managed_shutdown(irqd); 476 else if (apicd->is_managed) 477 ret = activate_managed(irqd); 478 else if (apicd->has_reserved) 479 ret = activate_reserved(irqd); 480 raw_spin_unlock_irqrestore(&vector_lock, flags); 481 return ret; 482 } 483 484 static void vector_free_reserved_and_managed(struct irq_data *irqd) 485 { 486 const struct cpumask *dest = irq_data_get_affinity_mask(irqd); 487 struct apic_chip_data *apicd = apic_chip_data(irqd); 488 489 trace_vector_teardown(irqd->irq, apicd->is_managed, 490 apicd->has_reserved); 491 492 if (apicd->has_reserved) 493 irq_matrix_remove_reserved(vector_matrix); 494 if (apicd->is_managed) 495 irq_matrix_remove_managed(vector_matrix, dest); 496 } 497 498 static void x86_vector_free_irqs(struct irq_domain *domain, 499 unsigned int virq, unsigned int nr_irqs) 500 { 501 struct apic_chip_data *apicd; 502 struct irq_data *irqd; 503 unsigned long flags; 504 int i; 505 506 for (i = 0; i < nr_irqs; i++) { 507 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i); 508 if (irqd && irqd->chip_data) { 509 raw_spin_lock_irqsave(&vector_lock, flags); 510 clear_irq_vector(irqd); 511 vector_free_reserved_and_managed(irqd); 512 apicd = irqd->chip_data; 513 irq_domain_reset_irq_data(irqd); 514 raw_spin_unlock_irqrestore(&vector_lock, flags); 515 free_apic_chip_data(apicd); 516 } 517 } 518 } 519 520 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd, 521 struct apic_chip_data *apicd) 522 { 523 unsigned long flags; 524 bool realloc = false; 525 526 apicd->vector = ISA_IRQ_VECTOR(virq); 527 apicd->cpu = 0; 528 529 raw_spin_lock_irqsave(&vector_lock, flags); 530 /* 531 * If the interrupt is activated, then it must stay at this vector 532 * position. That's usually the timer interrupt (0). 533 */ 534 if (irqd_is_activated(irqd)) { 535 trace_vector_setup(virq, true, 0); 536 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu); 537 } else { 538 /* Release the vector */ 539 apicd->can_reserve = true; 540 irqd_set_can_reserve(irqd); 541 clear_irq_vector(irqd); 542 realloc = true; 543 } 544 raw_spin_unlock_irqrestore(&vector_lock, flags); 545 return realloc; 546 } 547 548 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, 549 unsigned int nr_irqs, void *arg) 550 { 551 struct irq_alloc_info *info = arg; 552 struct apic_chip_data *apicd; 553 struct irq_data *irqd; 554 int i, err, node; 555 556 if (apic_is_disabled) 557 return -ENXIO; 558 559 /* 560 * Catch any attempt to touch the cascade interrupt on a PIC 561 * equipped system. 562 */ 563 if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY && 564 virq == PIC_CASCADE_IR)) 565 return -EINVAL; 566 567 for (i = 0; i < nr_irqs; i++) { 568 irqd = irq_domain_get_irq_data(domain, virq + i); 569 BUG_ON(!irqd); 570 node = irq_data_get_node(irqd); 571 WARN_ON_ONCE(irqd->chip_data); 572 apicd = alloc_apic_chip_data(node); 573 if (!apicd) { 574 err = -ENOMEM; 575 goto error; 576 } 577 578 apicd->irq = virq + i; 579 irqd->chip = &lapic_controller; 580 irqd->chip_data = apicd; 581 irqd->hwirq = virq + i; 582 irqd_set_single_target(irqd); 583 /* 584 * Prevent that any of these interrupts is invoked in 585 * non interrupt context via e.g. generic_handle_irq() 586 * as that can corrupt the affinity move state. 587 */ 588 irqd_set_handle_enforce_irqctx(irqd); 589 590 /* Don't invoke affinity setter on deactivated interrupts */ 591 irqd_set_affinity_on_activate(irqd); 592 593 /* 594 * Legacy vectors are already assigned when the IOAPIC 595 * takes them over. They stay on the same vector. This is 596 * required for check_timer() to work correctly as it might 597 * switch back to legacy mode. Only update the hardware 598 * config. 599 */ 600 if (info->flags & X86_IRQ_ALLOC_LEGACY) { 601 if (!vector_configure_legacy(virq + i, irqd, apicd)) 602 continue; 603 } 604 605 err = assign_irq_vector_policy(irqd, info); 606 trace_vector_setup(virq + i, false, err); 607 if (err) { 608 irqd->chip_data = NULL; 609 free_apic_chip_data(apicd); 610 goto error; 611 } 612 } 613 614 return 0; 615 616 error: 617 x86_vector_free_irqs(domain, virq, i); 618 return err; 619 } 620 621 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 622 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d, 623 struct irq_data *irqd, int ind) 624 { 625 struct apic_chip_data apicd; 626 unsigned long flags; 627 int irq; 628 629 if (!irqd) { 630 irq_matrix_debug_show(m, vector_matrix, ind); 631 return; 632 } 633 634 irq = irqd->irq; 635 if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) { 636 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq)); 637 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, ""); 638 return; 639 } 640 641 if (!irqd->chip_data) { 642 seq_printf(m, "%*sVector: Not assigned\n", ind, ""); 643 return; 644 } 645 646 raw_spin_lock_irqsave(&vector_lock, flags); 647 memcpy(&apicd, irqd->chip_data, sizeof(apicd)); 648 raw_spin_unlock_irqrestore(&vector_lock, flags); 649 650 seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector); 651 seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu); 652 if (apicd.prev_vector) { 653 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector); 654 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu); 655 } 656 seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0); 657 seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0); 658 seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0); 659 seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0); 660 seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist)); 661 } 662 #endif 663 664 int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec) 665 { 666 if (fwspec->param_count != 1) 667 return 0; 668 669 if (is_fwnode_irqchip(fwspec->fwnode)) { 670 const char *fwname = fwnode_get_name(fwspec->fwnode); 671 return fwname && !strncmp(fwname, "IO-APIC-", 8) && 672 simple_strtol(fwname+8, NULL, 10) == fwspec->param[0]; 673 } 674 return to_of_node(fwspec->fwnode) && 675 of_device_is_compatible(to_of_node(fwspec->fwnode), 676 "intel,ce4100-ioapic"); 677 } 678 679 int x86_fwspec_is_hpet(struct irq_fwspec *fwspec) 680 { 681 if (fwspec->param_count != 1) 682 return 0; 683 684 if (is_fwnode_irqchip(fwspec->fwnode)) { 685 const char *fwname = fwnode_get_name(fwspec->fwnode); 686 return fwname && !strncmp(fwname, "HPET-MSI-", 9) && 687 simple_strtol(fwname+9, NULL, 10) == fwspec->param[0]; 688 } 689 return 0; 690 } 691 692 static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec, 693 enum irq_domain_bus_token bus_token) 694 { 695 /* 696 * HPET and I/OAPIC cannot be parented in the vector domain 697 * if IRQ remapping is enabled. APIC IDs above 15 bits are 698 * only permitted if IRQ remapping is enabled, so check that. 699 */ 700 if (apic_id_valid(32768)) 701 return 0; 702 703 return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec); 704 } 705 706 static const struct irq_domain_ops x86_vector_domain_ops = { 707 .select = x86_vector_select, 708 .alloc = x86_vector_alloc_irqs, 709 .free = x86_vector_free_irqs, 710 .activate = x86_vector_activate, 711 .deactivate = x86_vector_deactivate, 712 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS 713 .debug_show = x86_vector_debug_show, 714 #endif 715 }; 716 717 int __init arch_probe_nr_irqs(void) 718 { 719 int nr; 720 721 if (irq_get_nr_irqs() > NR_VECTORS * nr_cpu_ids) 722 irq_set_nr_irqs(NR_VECTORS * nr_cpu_ids); 723 724 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; 725 #if defined(CONFIG_PCI_MSI) 726 /* 727 * for MSI and HT dyn irq 728 */ 729 if (gsi_top <= NR_IRQS_LEGACY) 730 nr += 8 * nr_cpu_ids; 731 else 732 nr += gsi_top * 16; 733 #endif 734 if (nr < irq_get_nr_irqs()) 735 irq_set_nr_irqs(nr); 736 737 /* 738 * We don't know if PIC is present at this point so we need to do 739 * probe() to get the right number of legacy IRQs. 740 */ 741 return legacy_pic->probe(); 742 } 743 744 void lapic_assign_legacy_vector(unsigned int irq, bool replace) 745 { 746 /* 747 * Use assign system here so it won't get accounted as allocated 748 * and movable in the cpu hotplug check and it prevents managed 749 * irq reservation from touching it. 750 */ 751 irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace); 752 } 753 754 void __init lapic_update_legacy_vectors(void) 755 { 756 unsigned int i; 757 758 if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0) 759 return; 760 761 /* 762 * If the IO/APIC is disabled via config, kernel command line or 763 * lack of enumeration then all legacy interrupts are routed 764 * through the PIC. Make sure that they are marked as legacy 765 * vectors. PIC_CASCADE_IRQ has already been marked in 766 * lapic_assign_system_vectors(). 767 */ 768 for (i = 0; i < nr_legacy_irqs(); i++) { 769 if (i != PIC_CASCADE_IR) 770 lapic_assign_legacy_vector(i, true); 771 } 772 } 773 774 void __init lapic_assign_system_vectors(void) 775 { 776 unsigned int i, vector; 777 778 for_each_set_bit(vector, system_vectors, NR_VECTORS) 779 irq_matrix_assign_system(vector_matrix, vector, false); 780 781 if (nr_legacy_irqs() > 1) 782 lapic_assign_legacy_vector(PIC_CASCADE_IR, false); 783 784 /* System vectors are reserved, online it */ 785 irq_matrix_online(vector_matrix); 786 787 /* Mark the preallocated legacy interrupts */ 788 for (i = 0; i < nr_legacy_irqs(); i++) { 789 /* 790 * Don't touch the cascade interrupt. It's unusable 791 * on PIC equipped machines. See the large comment 792 * in the IO/APIC code. 793 */ 794 if (i != PIC_CASCADE_IR) 795 irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i)); 796 } 797 } 798 799 int __init arch_early_irq_init(void) 800 { 801 struct fwnode_handle *fn; 802 803 fn = irq_domain_alloc_named_fwnode("VECTOR"); 804 BUG_ON(!fn); 805 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, 806 NULL); 807 BUG_ON(x86_vector_domain == NULL); 808 irq_set_default_domain(x86_vector_domain); 809 810 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); 811 812 /* 813 * Allocate the vector matrix allocator data structure and limit the 814 * search area. 815 */ 816 vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR, 817 FIRST_SYSTEM_VECTOR); 818 BUG_ON(!vector_matrix); 819 820 return arch_early_ioapic_init(); 821 } 822 823 #ifdef CONFIG_SMP 824 825 static struct irq_desc *__setup_vector_irq(int vector) 826 { 827 int isairq = vector - ISA_IRQ_VECTOR(0); 828 829 /* Check whether the irq is in the legacy space */ 830 if (isairq < 0 || isairq >= nr_legacy_irqs()) 831 return VECTOR_UNUSED; 832 /* Check whether the irq is handled by the IOAPIC */ 833 if (test_bit(isairq, &io_apic_irqs)) 834 return VECTOR_UNUSED; 835 return irq_to_desc(isairq); 836 } 837 838 /* Online the local APIC infrastructure and initialize the vectors */ 839 void lapic_online(void) 840 { 841 unsigned int vector; 842 843 lockdep_assert_held(&vector_lock); 844 845 /* Online the vector matrix array for this CPU */ 846 irq_matrix_online(vector_matrix); 847 848 /* 849 * The interrupt affinity logic never targets interrupts to offline 850 * CPUs. The exception are the legacy PIC interrupts. In general 851 * they are only targeted to CPU0, but depending on the platform 852 * they can be distributed to any online CPU in hardware. The 853 * kernel has no influence on that. So all active legacy vectors 854 * must be installed on all CPUs. All non legacy interrupts can be 855 * cleared. 856 */ 857 for (vector = 0; vector < NR_VECTORS; vector++) 858 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector)); 859 } 860 861 static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr); 862 863 void lapic_offline(void) 864 { 865 struct vector_cleanup *cl = this_cpu_ptr(&vector_cleanup); 866 867 lock_vector_lock(); 868 869 /* In case the vector cleanup timer has not expired */ 870 __vector_cleanup(cl, false); 871 872 irq_matrix_offline(vector_matrix); 873 WARN_ON_ONCE(timer_delete_sync_try(&cl->timer) < 0); 874 WARN_ON_ONCE(!hlist_empty(&cl->head)); 875 876 unlock_vector_lock(); 877 } 878 879 static int apic_set_affinity(struct irq_data *irqd, 880 const struct cpumask *dest, bool force) 881 { 882 int err; 883 884 if (WARN_ON_ONCE(!irqd_is_activated(irqd))) 885 return -EIO; 886 887 raw_spin_lock(&vector_lock); 888 cpumask_and(vector_searchmask, dest, cpu_online_mask); 889 if (irqd_affinity_is_managed(irqd)) 890 err = assign_managed_vector(irqd, vector_searchmask); 891 else 892 err = assign_vector_locked(irqd, vector_searchmask); 893 raw_spin_unlock(&vector_lock); 894 return err ? err : IRQ_SET_MASK_OK; 895 } 896 897 static void free_moved_vector(struct apic_chip_data *apicd) 898 { 899 unsigned int vector = apicd->prev_vector; 900 unsigned int cpu = apicd->prev_cpu; 901 bool managed = apicd->is_managed; 902 903 /* 904 * Managed interrupts are usually not migrated away 905 * from an online CPU, but CPU isolation 'managed_irq' 906 * can make that happen. 907 * 1) Activation does not take the isolation into account 908 * to keep the code simple 909 * 2) Migration away from an isolated CPU can happen when 910 * a non-isolated CPU which is in the calculated 911 * affinity mask comes online. 912 */ 913 trace_vector_free_moved(apicd->irq, cpu, vector, managed); 914 apic_free_vector(cpu, vector, managed); 915 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; 916 hlist_del_init(&apicd->clist); 917 apicd->prev_vector = 0; 918 apicd->move_in_progress = 0; 919 } 920 921 /* 922 * Called from fixup_irqs() with @desc->lock held and interrupts disabled. 923 */ 924 static void apic_force_complete_move(struct irq_data *irqd) 925 { 926 unsigned int cpu = smp_processor_id(); 927 struct apic_chip_data *apicd; 928 unsigned int vector; 929 930 guard(raw_spinlock)(&vector_lock); 931 apicd = apic_chip_data(irqd); 932 if (!apicd) 933 return; 934 935 /* 936 * If prev_vector is empty or the descriptor is neither currently 937 * nor previously on the outgoing CPU no action required. 938 */ 939 vector = apicd->prev_vector; 940 if (!vector || (apicd->cpu != cpu && apicd->prev_cpu != cpu)) 941 return; 942 943 /* 944 * This is tricky. If the cleanup of the old vector has not been 945 * done yet, then the following setaffinity call will fail with 946 * -EBUSY. This can leave the interrupt in a stale state. 947 * 948 * All CPUs are stuck in stop machine with interrupts disabled so 949 * calling __irq_complete_move() would be completely pointless. 950 * 951 * 1) The interrupt is in move_in_progress state. That means that we 952 * have not seen an interrupt since the io_apic was reprogrammed to 953 * the new vector. 954 * 955 * 2) The interrupt has fired on the new vector, but the cleanup IPIs 956 * have not been processed yet. 957 */ 958 if (apicd->move_in_progress) { 959 /* 960 * In theory there is a race: 961 * 962 * set_ioapic(new_vector) <-- Interrupt is raised before update 963 * is effective, i.e. it's raised on 964 * the old vector. 965 * 966 * So if the target cpu cannot handle that interrupt before 967 * the old vector is cleaned up, we get a spurious interrupt 968 * and in the worst case the ioapic irq line becomes stale. 969 * 970 * But in case of cpu hotplug this should be a non issue 971 * because if the affinity update happens right before all 972 * cpus rendezvous in stop machine, there is no way that the 973 * interrupt can be blocked on the target cpu because all cpus 974 * loops first with interrupts enabled in stop machine, so the 975 * old vector is not yet cleaned up when the interrupt fires. 976 * 977 * So the only way to run into this issue is if the delivery 978 * of the interrupt on the apic/system bus would be delayed 979 * beyond the point where the target cpu disables interrupts 980 * in stop machine. I doubt that it can happen, but at least 981 * there is a theoretical chance. Virtualization might be 982 * able to expose this, but AFAICT the IOAPIC emulation is not 983 * as stupid as the real hardware. 984 * 985 * Anyway, there is nothing we can do about that at this point 986 * w/o refactoring the whole fixup_irq() business completely. 987 * We print at least the irq number and the old vector number, 988 * so we have the necessary information when a problem in that 989 * area arises. 990 */ 991 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", 992 irqd->irq, vector); 993 } 994 free_moved_vector(apicd); 995 } 996 997 #else 998 # define apic_set_affinity NULL 999 # define apic_force_complete_move NULL 1000 #endif 1001 1002 static int apic_retrigger_irq(struct irq_data *irqd) 1003 { 1004 struct apic_chip_data *apicd = apic_chip_data(irqd); 1005 unsigned long flags; 1006 1007 raw_spin_lock_irqsave(&vector_lock, flags); 1008 __apic_send_IPI(apicd->cpu, apicd->vector); 1009 raw_spin_unlock_irqrestore(&vector_lock, flags); 1010 1011 return 1; 1012 } 1013 1014 void apic_ack_irq(struct irq_data *irqd) 1015 { 1016 irq_move_irq(irqd); 1017 apic_eoi(); 1018 } 1019 1020 void apic_ack_edge(struct irq_data *irqd) 1021 { 1022 irq_complete_move(irqd_cfg(irqd)); 1023 apic_ack_irq(irqd); 1024 } 1025 1026 static void x86_vector_msi_compose_msg(struct irq_data *data, 1027 struct msi_msg *msg) 1028 { 1029 __irq_msi_compose_msg(irqd_cfg(data), msg, false); 1030 } 1031 1032 static struct irq_chip lapic_controller = { 1033 .name = "APIC", 1034 .irq_ack = apic_ack_edge, 1035 .irq_set_affinity = apic_set_affinity, 1036 .irq_compose_msi_msg = x86_vector_msi_compose_msg, 1037 .irq_force_complete_move = apic_force_complete_move, 1038 .irq_retrigger = apic_retrigger_irq, 1039 }; 1040 1041 #ifdef CONFIG_SMP 1042 1043 static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr) 1044 { 1045 struct apic_chip_data *apicd; 1046 struct hlist_node *tmp; 1047 bool rearm = false; 1048 1049 lockdep_assert_held(&vector_lock); 1050 1051 hlist_for_each_entry_safe(apicd, tmp, &cl->head, clist) { 1052 unsigned int vector = apicd->prev_vector; 1053 1054 /* 1055 * Paranoia: Check if the vector that needs to be cleaned 1056 * up is registered at the APICs IRR. That's clearly a 1057 * hardware issue if the vector arrived on the old target 1058 * _after_ interrupts were disabled above. Keep @apicd 1059 * on the list and schedule the timer again to give the CPU 1060 * a chance to handle the pending interrupt. 1061 * 1062 * Do not check IRR when called from lapic_offline(), because 1063 * fixup_irqs() was just called to scan IRR for set bits and 1064 * forward them to new destination CPUs via IPIs. 1065 */ 1066 if (check_irr && is_vector_pending(vector)) { 1067 pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd->irq); 1068 rearm = true; 1069 continue; 1070 } 1071 free_moved_vector(apicd); 1072 } 1073 1074 /* 1075 * Must happen under vector_lock to make the timer_pending() check 1076 * in __vector_schedule_cleanup() race free against the rearm here. 1077 */ 1078 if (rearm) 1079 mod_timer(&cl->timer, jiffies + 1); 1080 } 1081 1082 static void vector_cleanup_callback(struct timer_list *tmr) 1083 { 1084 struct vector_cleanup *cl = container_of(tmr, typeof(*cl), timer); 1085 1086 /* Prevent vectors vanishing under us */ 1087 raw_spin_lock_irq(&vector_lock); 1088 __vector_cleanup(cl, true); 1089 raw_spin_unlock_irq(&vector_lock); 1090 } 1091 1092 static void __vector_schedule_cleanup(struct apic_chip_data *apicd) 1093 { 1094 unsigned int cpu = apicd->prev_cpu; 1095 1096 raw_spin_lock(&vector_lock); 1097 apicd->move_in_progress = 0; 1098 if (cpu_online(cpu)) { 1099 struct vector_cleanup *cl = per_cpu_ptr(&vector_cleanup, cpu); 1100 1101 hlist_add_head(&apicd->clist, &cl->head); 1102 1103 /* 1104 * The lockless timer_pending() check is safe here. If it 1105 * returns true, then the callback will observe this new 1106 * apic data in the hlist as everything is serialized by 1107 * vector lock. 1108 * 1109 * If it returns false then the timer is either not armed 1110 * or the other CPU executes the callback, which again 1111 * would be blocked on vector lock. Rearming it in the 1112 * latter case makes it fire for nothing. 1113 * 1114 * This is also safe against the callback rearming the timer 1115 * because that's serialized via vector lock too. 1116 */ 1117 if (!timer_pending(&cl->timer)) { 1118 cl->timer.expires = jiffies + 1; 1119 add_timer_on(&cl->timer, cpu); 1120 } 1121 } else { 1122 pr_warn("IRQ %u schedule cleanup for offline CPU %u\n", apicd->irq, cpu); 1123 free_moved_vector(apicd); 1124 } 1125 raw_spin_unlock(&vector_lock); 1126 } 1127 1128 void vector_schedule_cleanup(struct irq_cfg *cfg) 1129 { 1130 struct apic_chip_data *apicd; 1131 1132 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 1133 if (apicd->move_in_progress) 1134 __vector_schedule_cleanup(apicd); 1135 } 1136 1137 void irq_complete_move(struct irq_cfg *cfg) 1138 { 1139 struct apic_chip_data *apicd; 1140 1141 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); 1142 if (likely(!apicd->move_in_progress)) 1143 return; 1144 1145 /* 1146 * If the interrupt arrived on the new target CPU, cleanup the 1147 * vector on the old target CPU. A vector check is not required 1148 * because an interrupt can never move from one vector to another 1149 * on the same CPU. 1150 */ 1151 if (apicd->cpu == smp_processor_id()) 1152 __vector_schedule_cleanup(apicd); 1153 } 1154 1155 #ifdef CONFIG_HOTPLUG_CPU 1156 /* 1157 * Note, this is not accurate accounting, but at least good enough to 1158 * prevent that the actual interrupt move will run out of vectors. 1159 */ 1160 int lapic_can_unplug_cpu(void) 1161 { 1162 unsigned int rsvd, avl, tomove, cpu = smp_processor_id(); 1163 int ret = 0; 1164 1165 raw_spin_lock(&vector_lock); 1166 tomove = irq_matrix_allocated(vector_matrix); 1167 avl = irq_matrix_available(vector_matrix, true); 1168 if (avl < tomove) { 1169 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n", 1170 cpu, tomove, avl); 1171 ret = -ENOSPC; 1172 goto out; 1173 } 1174 rsvd = irq_matrix_reserved(vector_matrix); 1175 if (avl < rsvd) { 1176 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n", 1177 rsvd, avl); 1178 } 1179 out: 1180 raw_spin_unlock(&vector_lock); 1181 return ret; 1182 } 1183 #endif /* HOTPLUG_CPU */ 1184 #endif /* SMP */ 1185 1186 static void __init print_APIC_field(int base) 1187 { 1188 int i; 1189 1190 printk(KERN_DEBUG); 1191 1192 for (i = 0; i < 8; i++) 1193 pr_cont("%08x", apic_read(base + i*0x10)); 1194 1195 pr_cont("\n"); 1196 } 1197 1198 static void __init print_local_APIC(void *dummy) 1199 { 1200 unsigned int i, v, ver, maxlvt; 1201 u64 icr; 1202 1203 pr_debug("printing local APIC contents on CPU#%d/%d:\n", 1204 smp_processor_id(), read_apic_id()); 1205 v = apic_read(APIC_ID); 1206 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1207 v = apic_read(APIC_LVR); 1208 pr_info("... APIC VERSION: %08x\n", v); 1209 ver = GET_APIC_VERSION(v); 1210 maxlvt = lapic_get_maxlvt(); 1211 1212 v = apic_read(APIC_TASKPRI); 1213 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1214 1215 /* !82489DX */ 1216 if (APIC_INTEGRATED(ver)) { 1217 if (!APIC_XAPIC(ver)) { 1218 v = apic_read(APIC_ARBPRI); 1219 pr_debug("... APIC ARBPRI: %08x (%02x)\n", 1220 v, v & APIC_ARBPRI_MASK); 1221 } 1222 v = apic_read(APIC_PROCPRI); 1223 pr_debug("... APIC PROCPRI: %08x\n", v); 1224 } 1225 1226 /* 1227 * Remote read supported only in the 82489DX and local APIC for 1228 * Pentium processors. 1229 */ 1230 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1231 v = apic_read(APIC_RRR); 1232 pr_debug("... APIC RRR: %08x\n", v); 1233 } 1234 1235 v = apic_read(APIC_LDR); 1236 pr_debug("... APIC LDR: %08x\n", v); 1237 if (!x2apic_enabled()) { 1238 v = apic_read(APIC_DFR); 1239 pr_debug("... APIC DFR: %08x\n", v); 1240 } 1241 v = apic_read(APIC_SPIV); 1242 pr_debug("... APIC SPIV: %08x\n", v); 1243 1244 pr_debug("... APIC ISR field:\n"); 1245 print_APIC_field(APIC_ISR); 1246 pr_debug("... APIC TMR field:\n"); 1247 print_APIC_field(APIC_TMR); 1248 pr_debug("... APIC IRR field:\n"); 1249 print_APIC_field(APIC_IRR); 1250 1251 /* !82489DX */ 1252 if (APIC_INTEGRATED(ver)) { 1253 /* Due to the Pentium erratum 3AP. */ 1254 if (maxlvt > 3) 1255 apic_write(APIC_ESR, 0); 1256 1257 v = apic_read(APIC_ESR); 1258 pr_debug("... APIC ESR: %08x\n", v); 1259 } 1260 1261 icr = apic_icr_read(); 1262 pr_debug("... APIC ICR: %08x\n", (u32)icr); 1263 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1264 1265 v = apic_read(APIC_LVTT); 1266 pr_debug("... APIC LVTT: %08x\n", v); 1267 1268 if (maxlvt > 3) { 1269 /* PC is LVT#4. */ 1270 v = apic_read(APIC_LVTPC); 1271 pr_debug("... APIC LVTPC: %08x\n", v); 1272 } 1273 v = apic_read(APIC_LVT0); 1274 pr_debug("... APIC LVT0: %08x\n", v); 1275 v = apic_read(APIC_LVT1); 1276 pr_debug("... APIC LVT1: %08x\n", v); 1277 1278 if (maxlvt > 2) { 1279 /* ERR is LVT#3. */ 1280 v = apic_read(APIC_LVTERR); 1281 pr_debug("... APIC LVTERR: %08x\n", v); 1282 } 1283 1284 v = apic_read(APIC_TMICT); 1285 pr_debug("... APIC TMICT: %08x\n", v); 1286 v = apic_read(APIC_TMCCT); 1287 pr_debug("... APIC TMCCT: %08x\n", v); 1288 v = apic_read(APIC_TDCR); 1289 pr_debug("... APIC TDCR: %08x\n", v); 1290 1291 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1292 v = apic_read(APIC_EFEAT); 1293 maxlvt = (v >> 16) & 0xff; 1294 pr_debug("... APIC EFEAT: %08x\n", v); 1295 v = apic_read(APIC_ECTRL); 1296 pr_debug("... APIC ECTRL: %08x\n", v); 1297 for (i = 0; i < maxlvt; i++) { 1298 v = apic_read(APIC_EILVTn(i)); 1299 pr_debug("... APIC EILVT%d: %08x\n", i, v); 1300 } 1301 } 1302 pr_cont("\n"); 1303 } 1304 1305 static void __init print_local_APICs(int maxcpu) 1306 { 1307 int cpu; 1308 1309 if (!maxcpu) 1310 return; 1311 1312 preempt_disable(); 1313 for_each_online_cpu(cpu) { 1314 if (cpu >= maxcpu) 1315 break; 1316 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1317 } 1318 preempt_enable(); 1319 } 1320 1321 static void __init print_PIC(void) 1322 { 1323 unsigned int v; 1324 unsigned long flags; 1325 1326 if (!nr_legacy_irqs()) 1327 return; 1328 1329 pr_debug("\nprinting PIC contents\n"); 1330 1331 raw_spin_lock_irqsave(&i8259A_lock, flags); 1332 1333 v = inb(0xa1) << 8 | inb(0x21); 1334 pr_debug("... PIC IMR: %04x\n", v); 1335 1336 v = inb(0xa0) << 8 | inb(0x20); 1337 pr_debug("... PIC IRR: %04x\n", v); 1338 1339 outb(0x0b, 0xa0); 1340 outb(0x0b, 0x20); 1341 v = inb(0xa0) << 8 | inb(0x20); 1342 outb(0x0a, 0xa0); 1343 outb(0x0a, 0x20); 1344 1345 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 1346 1347 pr_debug("... PIC ISR: %04x\n", v); 1348 1349 v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1); 1350 pr_debug("... PIC ELCR: %04x\n", v); 1351 } 1352 1353 static int show_lapic __initdata = 1; 1354 static __init int setup_show_lapic(char *arg) 1355 { 1356 int num = -1; 1357 1358 if (strcmp(arg, "all") == 0) { 1359 show_lapic = CONFIG_NR_CPUS; 1360 } else { 1361 get_option(&arg, &num); 1362 if (num >= 0) 1363 show_lapic = num; 1364 } 1365 1366 return 1; 1367 } 1368 __setup("show_lapic=", setup_show_lapic); 1369 1370 static int __init print_ICs(void) 1371 { 1372 if (apic_verbosity == APIC_QUIET) 1373 return 0; 1374 1375 print_PIC(); 1376 1377 /* don't print out if apic is not there */ 1378 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1379 return 0; 1380 1381 print_local_APICs(show_lapic); 1382 print_IO_APICs(); 1383 1384 return 0; 1385 } 1386 1387 late_initcall(print_ICs); 1388