xref: /linux/arch/x86/kernel/apic/msi.c (revision ca64d84e93762f4e587e040a44ad9f6089afc777)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Support of MSI, HPET and DMAR interrupts.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *	Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *	Convert to hierarchical irqdomain
9  */
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/pci.h>
14 #include <linux/dmar.h>
15 #include <linux/hpet.h>
16 #include <linux/msi.h>
17 #include <asm/irqdomain.h>
18 #include <asm/msidef.h>
19 #include <asm/hpet.h>
20 #include <asm/hw_irq.h>
21 #include <asm/apic.h>
22 #include <asm/irq_remapping.h>
23 
24 static struct irq_domain *msi_default_domain;
25 
26 static void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg)
27 {
28 	msg->address_hi = MSI_ADDR_BASE_HI;
29 
30 	if (x2apic_enabled())
31 		msg->address_hi |= MSI_ADDR_EXT_DEST_ID(cfg->dest_apicid);
32 
33 	msg->address_lo =
34 		MSI_ADDR_BASE_LO |
35 		((apic->irq_dest_mode == 0) ?
36 			MSI_ADDR_DEST_MODE_PHYSICAL :
37 			MSI_ADDR_DEST_MODE_LOGICAL) |
38 		MSI_ADDR_REDIRECTION_CPU |
39 		MSI_ADDR_DEST_ID(cfg->dest_apicid);
40 
41 	msg->data =
42 		MSI_DATA_TRIGGER_EDGE |
43 		MSI_DATA_LEVEL_ASSERT |
44 		MSI_DATA_DELIVERY_FIXED |
45 		MSI_DATA_VECTOR(cfg->vector);
46 }
47 
48 static void irq_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
49 {
50 	__irq_msi_compose_msg(irqd_cfg(data), msg);
51 }
52 
53 static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg)
54 {
55 	struct msi_msg msg[2] = { [1] = { }, };
56 
57 	__irq_msi_compose_msg(cfg, msg);
58 	irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg);
59 }
60 
61 static int
62 msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force)
63 {
64 	struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd);
65 	struct irq_data *parent = irqd->parent_data;
66 	unsigned int cpu;
67 	int ret;
68 
69 	/* Save the current configuration */
70 	cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
71 	old_cfg = *cfg;
72 
73 	/* Allocate a new target vector */
74 	ret = parent->chip->irq_set_affinity(parent, mask, force);
75 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
76 		return ret;
77 
78 	/*
79 	 * For non-maskable and non-remapped MSI interrupts the migration
80 	 * to a different destination CPU and a different vector has to be
81 	 * done careful to handle the possible stray interrupt which can be
82 	 * caused by the non-atomic update of the address/data pair.
83 	 *
84 	 * Direct update is possible when:
85 	 * - The MSI is maskable (remapped MSI does not use this code path)).
86 	 *   The quirk bit is not set in this case.
87 	 * - The new vector is the same as the old vector
88 	 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up)
89 	 * - The new destination CPU is the same as the old destination CPU
90 	 */
91 	if (!irqd_msi_nomask_quirk(irqd) ||
92 	    cfg->vector == old_cfg.vector ||
93 	    old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR ||
94 	    cfg->dest_apicid == old_cfg.dest_apicid) {
95 		irq_msi_update_msg(irqd, cfg);
96 		return ret;
97 	}
98 
99 	/*
100 	 * Paranoia: Validate that the interrupt target is the local
101 	 * CPU.
102 	 */
103 	if (WARN_ON_ONCE(cpu != smp_processor_id())) {
104 		irq_msi_update_msg(irqd, cfg);
105 		return ret;
106 	}
107 
108 	/*
109 	 * Redirect the interrupt to the new vector on the current CPU
110 	 * first. This might cause a spurious interrupt on this vector if
111 	 * the device raises an interrupt right between this update and the
112 	 * update to the final destination CPU.
113 	 *
114 	 * If the vector is in use then the installed device handler will
115 	 * denote it as spurious which is no harm as this is a rare event
116 	 * and interrupt handlers have to cope with spurious interrupts
117 	 * anyway. If the vector is unused, then it is marked so it won't
118 	 * trigger the 'No irq handler for vector' warning in do_IRQ().
119 	 *
120 	 * This requires to hold vector lock to prevent concurrent updates to
121 	 * the affected vector.
122 	 */
123 	lock_vector_lock();
124 
125 	/*
126 	 * Mark the new target vector on the local CPU if it is currently
127 	 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in
128 	 * the CPU hotplug path for a similar purpose. This cannot be
129 	 * undone here as the current CPU has interrupts disabled and
130 	 * cannot handle the interrupt before the whole set_affinity()
131 	 * section is done. In the CPU unplug case, the current CPU is
132 	 * about to vanish and will not handle any interrupts anymore. The
133 	 * vector is cleaned up when the CPU comes online again.
134 	 */
135 	if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector])))
136 		this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED);
137 
138 	/* Redirect it to the new vector on the local CPU temporarily */
139 	old_cfg.vector = cfg->vector;
140 	irq_msi_update_msg(irqd, &old_cfg);
141 
142 	/* Now transition it to the target CPU */
143 	irq_msi_update_msg(irqd, cfg);
144 
145 	/*
146 	 * All interrupts after this point are now targeted at the new
147 	 * vector/CPU.
148 	 *
149 	 * Drop vector lock before testing whether the temporary assignment
150 	 * to the local CPU was hit by an interrupt raised in the device,
151 	 * because the retrigger function acquires vector lock again.
152 	 */
153 	unlock_vector_lock();
154 
155 	/*
156 	 * Check whether the transition raced with a device interrupt and
157 	 * is pending in the local APICs IRR. It is safe to do this outside
158 	 * of vector lock as the irq_desc::lock of this interrupt is still
159 	 * held and interrupts are disabled: The check is not accessing the
160 	 * underlying vector store. It's just checking the local APIC's
161 	 * IRR.
162 	 */
163 	if (lapic_vector_set_in_irr(cfg->vector))
164 		irq_data_get_irq_chip(irqd)->irq_retrigger(irqd);
165 
166 	return ret;
167 }
168 
169 /*
170  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
171  * which implement the MSI or MSI-X Capability Structure.
172  */
173 static struct irq_chip pci_msi_controller = {
174 	.name			= "PCI-MSI",
175 	.irq_unmask		= pci_msi_unmask_irq,
176 	.irq_mask		= pci_msi_mask_irq,
177 	.irq_ack		= irq_chip_ack_parent,
178 	.irq_retrigger		= irq_chip_retrigger_hierarchy,
179 	.irq_compose_msi_msg	= irq_msi_compose_msg,
180 	.irq_set_affinity	= msi_set_affinity,
181 	.flags			= IRQCHIP_SKIP_SET_WAKE,
182 };
183 
184 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
185 {
186 	struct irq_domain *domain;
187 	struct irq_alloc_info info;
188 
189 	init_irq_alloc_info(&info, NULL);
190 	info.type = X86_IRQ_ALLOC_TYPE_MSI;
191 	info.msi_dev = dev;
192 
193 	domain = irq_remapping_get_irq_domain(&info);
194 	if (domain == NULL)
195 		domain = msi_default_domain;
196 	if (domain == NULL)
197 		return -ENOSYS;
198 
199 	return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
200 }
201 
202 void native_teardown_msi_irq(unsigned int irq)
203 {
204 	irq_domain_free_irqs(irq, 1);
205 }
206 
207 static irq_hw_number_t pci_msi_get_hwirq(struct msi_domain_info *info,
208 					 msi_alloc_info_t *arg)
209 {
210 	return arg->msi_hwirq;
211 }
212 
213 int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec,
214 		    msi_alloc_info_t *arg)
215 {
216 	struct pci_dev *pdev = to_pci_dev(dev);
217 	struct msi_desc *desc = first_pci_msi_entry(pdev);
218 
219 	init_irq_alloc_info(arg, NULL);
220 	arg->msi_dev = pdev;
221 	if (desc->msi_attrib.is_msix) {
222 		arg->type = X86_IRQ_ALLOC_TYPE_MSIX;
223 	} else {
224 		arg->type = X86_IRQ_ALLOC_TYPE_MSI;
225 		arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
226 	}
227 
228 	return 0;
229 }
230 EXPORT_SYMBOL_GPL(pci_msi_prepare);
231 
232 void pci_msi_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
233 {
234 	arg->msi_hwirq = pci_msi_domain_calc_hwirq(arg->msi_dev, desc);
235 }
236 EXPORT_SYMBOL_GPL(pci_msi_set_desc);
237 
238 static struct msi_domain_ops pci_msi_domain_ops = {
239 	.get_hwirq	= pci_msi_get_hwirq,
240 	.msi_prepare	= pci_msi_prepare,
241 	.set_desc	= pci_msi_set_desc,
242 };
243 
244 static struct msi_domain_info pci_msi_domain_info = {
245 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
246 			  MSI_FLAG_PCI_MSIX,
247 	.ops		= &pci_msi_domain_ops,
248 	.chip		= &pci_msi_controller,
249 	.handler	= handle_edge_irq,
250 	.handler_name	= "edge",
251 };
252 
253 void __init arch_init_msi_domain(struct irq_domain *parent)
254 {
255 	struct fwnode_handle *fn;
256 
257 	if (disable_apic)
258 		return;
259 
260 	fn = irq_domain_alloc_named_fwnode("PCI-MSI");
261 	if (fn) {
262 		msi_default_domain =
263 			pci_msi_create_irq_domain(fn, &pci_msi_domain_info,
264 						  parent);
265 		irq_domain_free_fwnode(fn);
266 	}
267 	if (!msi_default_domain)
268 		pr_warn("failed to initialize irqdomain for MSI/MSI-x.\n");
269 	else
270 		msi_default_domain->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK;
271 }
272 
273 #ifdef CONFIG_IRQ_REMAP
274 static struct irq_chip pci_msi_ir_controller = {
275 	.name			= "IR-PCI-MSI",
276 	.irq_unmask		= pci_msi_unmask_irq,
277 	.irq_mask		= pci_msi_mask_irq,
278 	.irq_ack		= irq_chip_ack_parent,
279 	.irq_retrigger		= irq_chip_retrigger_hierarchy,
280 	.irq_set_vcpu_affinity	= irq_chip_set_vcpu_affinity_parent,
281 	.flags			= IRQCHIP_SKIP_SET_WAKE,
282 };
283 
284 static struct msi_domain_info pci_msi_ir_domain_info = {
285 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
286 			  MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
287 	.ops		= &pci_msi_domain_ops,
288 	.chip		= &pci_msi_ir_controller,
289 	.handler	= handle_edge_irq,
290 	.handler_name	= "edge",
291 };
292 
293 struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent,
294 						    const char *name, int id)
295 {
296 	struct fwnode_handle *fn;
297 	struct irq_domain *d;
298 
299 	fn = irq_domain_alloc_named_id_fwnode(name, id);
300 	if (!fn)
301 		return NULL;
302 	d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent);
303 	irq_domain_free_fwnode(fn);
304 	return d;
305 }
306 #endif
307 
308 #ifdef CONFIG_DMAR_TABLE
309 static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
310 {
311 	dmar_msi_write(data->irq, msg);
312 }
313 
314 static struct irq_chip dmar_msi_controller = {
315 	.name			= "DMAR-MSI",
316 	.irq_unmask		= dmar_msi_unmask,
317 	.irq_mask		= dmar_msi_mask,
318 	.irq_ack		= irq_chip_ack_parent,
319 	.irq_set_affinity	= msi_domain_set_affinity,
320 	.irq_retrigger		= irq_chip_retrigger_hierarchy,
321 	.irq_compose_msi_msg	= irq_msi_compose_msg,
322 	.irq_write_msi_msg	= dmar_msi_write_msg,
323 	.flags			= IRQCHIP_SKIP_SET_WAKE,
324 };
325 
326 static irq_hw_number_t dmar_msi_get_hwirq(struct msi_domain_info *info,
327 					  msi_alloc_info_t *arg)
328 {
329 	return arg->dmar_id;
330 }
331 
332 static int dmar_msi_init(struct irq_domain *domain,
333 			 struct msi_domain_info *info, unsigned int virq,
334 			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
335 {
336 	irq_domain_set_info(domain, virq, arg->dmar_id, info->chip, NULL,
337 			    handle_edge_irq, arg->dmar_data, "edge");
338 
339 	return 0;
340 }
341 
342 static struct msi_domain_ops dmar_msi_domain_ops = {
343 	.get_hwirq	= dmar_msi_get_hwirq,
344 	.msi_init	= dmar_msi_init,
345 };
346 
347 static struct msi_domain_info dmar_msi_domain_info = {
348 	.ops		= &dmar_msi_domain_ops,
349 	.chip		= &dmar_msi_controller,
350 };
351 
352 static struct irq_domain *dmar_get_irq_domain(void)
353 {
354 	static struct irq_domain *dmar_domain;
355 	static DEFINE_MUTEX(dmar_lock);
356 	struct fwnode_handle *fn;
357 
358 	mutex_lock(&dmar_lock);
359 	if (dmar_domain)
360 		goto out;
361 
362 	fn = irq_domain_alloc_named_fwnode("DMAR-MSI");
363 	if (fn) {
364 		dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info,
365 						    x86_vector_domain);
366 		irq_domain_free_fwnode(fn);
367 	}
368 out:
369 	mutex_unlock(&dmar_lock);
370 	return dmar_domain;
371 }
372 
373 int dmar_alloc_hwirq(int id, int node, void *arg)
374 {
375 	struct irq_domain *domain = dmar_get_irq_domain();
376 	struct irq_alloc_info info;
377 
378 	if (!domain)
379 		return -1;
380 
381 	init_irq_alloc_info(&info, NULL);
382 	info.type = X86_IRQ_ALLOC_TYPE_DMAR;
383 	info.dmar_id = id;
384 	info.dmar_data = arg;
385 
386 	return irq_domain_alloc_irqs(domain, 1, node, &info);
387 }
388 
389 void dmar_free_hwirq(int irq)
390 {
391 	irq_domain_free_irqs(irq, 1);
392 }
393 #endif
394 
395 /*
396  * MSI message composition
397  */
398 #ifdef CONFIG_HPET_TIMER
399 static inline int hpet_dev_id(struct irq_domain *domain)
400 {
401 	struct msi_domain_info *info = msi_get_domain_info(domain);
402 
403 	return (int)(long)info->data;
404 }
405 
406 static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
407 {
408 	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
409 }
410 
411 static struct irq_chip hpet_msi_controller __ro_after_init = {
412 	.name = "HPET-MSI",
413 	.irq_unmask = hpet_msi_unmask,
414 	.irq_mask = hpet_msi_mask,
415 	.irq_ack = irq_chip_ack_parent,
416 	.irq_set_affinity = msi_domain_set_affinity,
417 	.irq_retrigger = irq_chip_retrigger_hierarchy,
418 	.irq_compose_msi_msg = irq_msi_compose_msg,
419 	.irq_write_msi_msg = hpet_msi_write_msg,
420 	.flags = IRQCHIP_SKIP_SET_WAKE,
421 };
422 
423 static irq_hw_number_t hpet_msi_get_hwirq(struct msi_domain_info *info,
424 					  msi_alloc_info_t *arg)
425 {
426 	return arg->hpet_index;
427 }
428 
429 static int hpet_msi_init(struct irq_domain *domain,
430 			 struct msi_domain_info *info, unsigned int virq,
431 			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
432 {
433 	irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
434 	irq_domain_set_info(domain, virq, arg->hpet_index, info->chip, NULL,
435 			    handle_edge_irq, arg->hpet_data, "edge");
436 
437 	return 0;
438 }
439 
440 static void hpet_msi_free(struct irq_domain *domain,
441 			  struct msi_domain_info *info, unsigned int virq)
442 {
443 	irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
444 }
445 
446 static struct msi_domain_ops hpet_msi_domain_ops = {
447 	.get_hwirq	= hpet_msi_get_hwirq,
448 	.msi_init	= hpet_msi_init,
449 	.msi_free	= hpet_msi_free,
450 };
451 
452 static struct msi_domain_info hpet_msi_domain_info = {
453 	.ops		= &hpet_msi_domain_ops,
454 	.chip		= &hpet_msi_controller,
455 };
456 
457 struct irq_domain *hpet_create_irq_domain(int hpet_id)
458 {
459 	struct msi_domain_info *domain_info;
460 	struct irq_domain *parent, *d;
461 	struct irq_alloc_info info;
462 	struct fwnode_handle *fn;
463 
464 	if (x86_vector_domain == NULL)
465 		return NULL;
466 
467 	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
468 	if (!domain_info)
469 		return NULL;
470 
471 	*domain_info = hpet_msi_domain_info;
472 	domain_info->data = (void *)(long)hpet_id;
473 
474 	init_irq_alloc_info(&info, NULL);
475 	info.type = X86_IRQ_ALLOC_TYPE_HPET;
476 	info.hpet_id = hpet_id;
477 	parent = irq_remapping_get_ir_irq_domain(&info);
478 	if (parent == NULL)
479 		parent = x86_vector_domain;
480 	else
481 		hpet_msi_controller.name = "IR-HPET-MSI";
482 
483 	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
484 					      hpet_id);
485 	if (!fn) {
486 		kfree(domain_info);
487 		return NULL;
488 	}
489 
490 	d = msi_create_irq_domain(fn, domain_info, parent);
491 	irq_domain_free_fwnode(fn);
492 	return d;
493 }
494 
495 int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
496 		    int dev_num)
497 {
498 	struct irq_alloc_info info;
499 
500 	init_irq_alloc_info(&info, NULL);
501 	info.type = X86_IRQ_ALLOC_TYPE_HPET;
502 	info.hpet_data = hc;
503 	info.hpet_id = hpet_dev_id(domain);
504 	info.hpet_index = dev_num;
505 
506 	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
507 }
508 #endif
509