xref: /linux/arch/x86/kernel/apic/msi.c (revision 3503d56cc7233ced602e38a4c13caa64f00ab2aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Support of MSI, HPET and DMAR interrupts.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *	Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *	Convert to hierarchical irqdomain
9  */
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/pci.h>
14 #include <linux/dmar.h>
15 #include <linux/hpet.h>
16 #include <linux/msi.h>
17 #include <asm/irqdomain.h>
18 #include <asm/msidef.h>
19 #include <asm/hpet.h>
20 #include <asm/hw_irq.h>
21 #include <asm/apic.h>
22 #include <asm/irq_remapping.h>
23 
24 static struct irq_domain *msi_default_domain;
25 
26 static void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg)
27 {
28 	msg->address_hi = MSI_ADDR_BASE_HI;
29 
30 	if (x2apic_enabled())
31 		msg->address_hi |= MSI_ADDR_EXT_DEST_ID(cfg->dest_apicid);
32 
33 	msg->address_lo =
34 		MSI_ADDR_BASE_LO |
35 		((apic->irq_dest_mode == 0) ?
36 			MSI_ADDR_DEST_MODE_PHYSICAL :
37 			MSI_ADDR_DEST_MODE_LOGICAL) |
38 		MSI_ADDR_REDIRECTION_CPU |
39 		MSI_ADDR_DEST_ID(cfg->dest_apicid);
40 
41 	msg->data =
42 		MSI_DATA_TRIGGER_EDGE |
43 		MSI_DATA_LEVEL_ASSERT |
44 		MSI_DATA_DELIVERY_FIXED |
45 		MSI_DATA_VECTOR(cfg->vector);
46 }
47 
48 static void irq_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
49 {
50 	__irq_msi_compose_msg(irqd_cfg(data), msg);
51 }
52 
53 static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg)
54 {
55 	struct msi_msg msg[2] = { [1] = { }, };
56 
57 	__irq_msi_compose_msg(cfg, msg);
58 	irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg);
59 }
60 
61 static int
62 msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force)
63 {
64 	struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd);
65 	struct irq_data *parent = irqd->parent_data;
66 	unsigned int cpu;
67 	int ret;
68 
69 	/* Save the current configuration */
70 	cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
71 	old_cfg = *cfg;
72 
73 	/* Allocate a new target vector */
74 	ret = parent->chip->irq_set_affinity(parent, mask, force);
75 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
76 		return ret;
77 
78 	/*
79 	 * For non-maskable and non-remapped MSI interrupts the migration
80 	 * to a different destination CPU and a different vector has to be
81 	 * done careful to handle the possible stray interrupt which can be
82 	 * caused by the non-atomic update of the address/data pair.
83 	 *
84 	 * Direct update is possible when:
85 	 * - The MSI is maskable (remapped MSI does not use this code path)).
86 	 *   The quirk bit is not set in this case.
87 	 * - The new vector is the same as the old vector
88 	 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up)
89 	 * - The new destination CPU is the same as the old destination CPU
90 	 */
91 	if (!irqd_msi_nomask_quirk(irqd) ||
92 	    cfg->vector == old_cfg.vector ||
93 	    old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR ||
94 	    cfg->dest_apicid == old_cfg.dest_apicid) {
95 		irq_msi_update_msg(irqd, cfg);
96 		return ret;
97 	}
98 
99 	/*
100 	 * Paranoia: Validate that the interrupt target is the local
101 	 * CPU.
102 	 */
103 	if (WARN_ON_ONCE(cpu != smp_processor_id())) {
104 		irq_msi_update_msg(irqd, cfg);
105 		return ret;
106 	}
107 
108 	/*
109 	 * Redirect the interrupt to the new vector on the current CPU
110 	 * first. This might cause a spurious interrupt on this vector if
111 	 * the device raises an interrupt right between this update and the
112 	 * update to the final destination CPU.
113 	 *
114 	 * If the vector is in use then the installed device handler will
115 	 * denote it as spurious which is no harm as this is a rare event
116 	 * and interrupt handlers have to cope with spurious interrupts
117 	 * anyway. If the vector is unused, then it is marked so it won't
118 	 * trigger the 'No irq handler for vector' warning in
119 	 * common_interrupt().
120 	 *
121 	 * This requires to hold vector lock to prevent concurrent updates to
122 	 * the affected vector.
123 	 */
124 	lock_vector_lock();
125 
126 	/*
127 	 * Mark the new target vector on the local CPU if it is currently
128 	 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in
129 	 * the CPU hotplug path for a similar purpose. This cannot be
130 	 * undone here as the current CPU has interrupts disabled and
131 	 * cannot handle the interrupt before the whole set_affinity()
132 	 * section is done. In the CPU unplug case, the current CPU is
133 	 * about to vanish and will not handle any interrupts anymore. The
134 	 * vector is cleaned up when the CPU comes online again.
135 	 */
136 	if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector])))
137 		this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED);
138 
139 	/* Redirect it to the new vector on the local CPU temporarily */
140 	old_cfg.vector = cfg->vector;
141 	irq_msi_update_msg(irqd, &old_cfg);
142 
143 	/* Now transition it to the target CPU */
144 	irq_msi_update_msg(irqd, cfg);
145 
146 	/*
147 	 * All interrupts after this point are now targeted at the new
148 	 * vector/CPU.
149 	 *
150 	 * Drop vector lock before testing whether the temporary assignment
151 	 * to the local CPU was hit by an interrupt raised in the device,
152 	 * because the retrigger function acquires vector lock again.
153 	 */
154 	unlock_vector_lock();
155 
156 	/*
157 	 * Check whether the transition raced with a device interrupt and
158 	 * is pending in the local APICs IRR. It is safe to do this outside
159 	 * of vector lock as the irq_desc::lock of this interrupt is still
160 	 * held and interrupts are disabled: The check is not accessing the
161 	 * underlying vector store. It's just checking the local APIC's
162 	 * IRR.
163 	 */
164 	if (lapic_vector_set_in_irr(cfg->vector))
165 		irq_data_get_irq_chip(irqd)->irq_retrigger(irqd);
166 
167 	return ret;
168 }
169 
170 /*
171  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
172  * which implement the MSI or MSI-X Capability Structure.
173  */
174 static struct irq_chip pci_msi_controller = {
175 	.name			= "PCI-MSI",
176 	.irq_unmask		= pci_msi_unmask_irq,
177 	.irq_mask		= pci_msi_mask_irq,
178 	.irq_ack		= irq_chip_ack_parent,
179 	.irq_retrigger		= irq_chip_retrigger_hierarchy,
180 	.irq_compose_msi_msg	= irq_msi_compose_msg,
181 	.irq_set_affinity	= msi_set_affinity,
182 	.flags			= IRQCHIP_SKIP_SET_WAKE,
183 };
184 
185 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
186 {
187 	struct irq_domain *domain;
188 	struct irq_alloc_info info;
189 
190 	init_irq_alloc_info(&info, NULL);
191 	info.type = X86_IRQ_ALLOC_TYPE_MSI;
192 	info.msi_dev = dev;
193 
194 	domain = irq_remapping_get_irq_domain(&info);
195 	if (domain == NULL)
196 		domain = msi_default_domain;
197 	if (domain == NULL)
198 		return -ENOSYS;
199 
200 	return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
201 }
202 
203 void native_teardown_msi_irq(unsigned int irq)
204 {
205 	irq_domain_free_irqs(irq, 1);
206 }
207 
208 static irq_hw_number_t pci_msi_get_hwirq(struct msi_domain_info *info,
209 					 msi_alloc_info_t *arg)
210 {
211 	return arg->msi_hwirq;
212 }
213 
214 int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec,
215 		    msi_alloc_info_t *arg)
216 {
217 	struct pci_dev *pdev = to_pci_dev(dev);
218 	struct msi_desc *desc = first_pci_msi_entry(pdev);
219 
220 	init_irq_alloc_info(arg, NULL);
221 	arg->msi_dev = pdev;
222 	if (desc->msi_attrib.is_msix) {
223 		arg->type = X86_IRQ_ALLOC_TYPE_MSIX;
224 	} else {
225 		arg->type = X86_IRQ_ALLOC_TYPE_MSI;
226 		arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
227 	}
228 
229 	return 0;
230 }
231 EXPORT_SYMBOL_GPL(pci_msi_prepare);
232 
233 void pci_msi_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
234 {
235 	arg->msi_hwirq = pci_msi_domain_calc_hwirq(arg->msi_dev, desc);
236 }
237 EXPORT_SYMBOL_GPL(pci_msi_set_desc);
238 
239 static struct msi_domain_ops pci_msi_domain_ops = {
240 	.get_hwirq	= pci_msi_get_hwirq,
241 	.msi_prepare	= pci_msi_prepare,
242 	.set_desc	= pci_msi_set_desc,
243 };
244 
245 static struct msi_domain_info pci_msi_domain_info = {
246 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
247 			  MSI_FLAG_PCI_MSIX,
248 	.ops		= &pci_msi_domain_ops,
249 	.chip		= &pci_msi_controller,
250 	.handler	= handle_edge_irq,
251 	.handler_name	= "edge",
252 };
253 
254 void __init arch_init_msi_domain(struct irq_domain *parent)
255 {
256 	struct fwnode_handle *fn;
257 
258 	if (disable_apic)
259 		return;
260 
261 	fn = irq_domain_alloc_named_fwnode("PCI-MSI");
262 	if (fn) {
263 		msi_default_domain =
264 			pci_msi_create_irq_domain(fn, &pci_msi_domain_info,
265 						  parent);
266 		irq_domain_free_fwnode(fn);
267 	}
268 	if (!msi_default_domain)
269 		pr_warn("failed to initialize irqdomain for MSI/MSI-x.\n");
270 	else
271 		msi_default_domain->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK;
272 }
273 
274 #ifdef CONFIG_IRQ_REMAP
275 static struct irq_chip pci_msi_ir_controller = {
276 	.name			= "IR-PCI-MSI",
277 	.irq_unmask		= pci_msi_unmask_irq,
278 	.irq_mask		= pci_msi_mask_irq,
279 	.irq_ack		= irq_chip_ack_parent,
280 	.irq_retrigger		= irq_chip_retrigger_hierarchy,
281 	.irq_set_vcpu_affinity	= irq_chip_set_vcpu_affinity_parent,
282 	.flags			= IRQCHIP_SKIP_SET_WAKE,
283 };
284 
285 static struct msi_domain_info pci_msi_ir_domain_info = {
286 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
287 			  MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
288 	.ops		= &pci_msi_domain_ops,
289 	.chip		= &pci_msi_ir_controller,
290 	.handler	= handle_edge_irq,
291 	.handler_name	= "edge",
292 };
293 
294 struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent,
295 						    const char *name, int id)
296 {
297 	struct fwnode_handle *fn;
298 	struct irq_domain *d;
299 
300 	fn = irq_domain_alloc_named_id_fwnode(name, id);
301 	if (!fn)
302 		return NULL;
303 	d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent);
304 	irq_domain_free_fwnode(fn);
305 	return d;
306 }
307 #endif
308 
309 #ifdef CONFIG_DMAR_TABLE
310 static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
311 {
312 	dmar_msi_write(data->irq, msg);
313 }
314 
315 static struct irq_chip dmar_msi_controller = {
316 	.name			= "DMAR-MSI",
317 	.irq_unmask		= dmar_msi_unmask,
318 	.irq_mask		= dmar_msi_mask,
319 	.irq_ack		= irq_chip_ack_parent,
320 	.irq_set_affinity	= msi_domain_set_affinity,
321 	.irq_retrigger		= irq_chip_retrigger_hierarchy,
322 	.irq_compose_msi_msg	= irq_msi_compose_msg,
323 	.irq_write_msi_msg	= dmar_msi_write_msg,
324 	.flags			= IRQCHIP_SKIP_SET_WAKE,
325 };
326 
327 static irq_hw_number_t dmar_msi_get_hwirq(struct msi_domain_info *info,
328 					  msi_alloc_info_t *arg)
329 {
330 	return arg->dmar_id;
331 }
332 
333 static int dmar_msi_init(struct irq_domain *domain,
334 			 struct msi_domain_info *info, unsigned int virq,
335 			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
336 {
337 	irq_domain_set_info(domain, virq, arg->dmar_id, info->chip, NULL,
338 			    handle_edge_irq, arg->dmar_data, "edge");
339 
340 	return 0;
341 }
342 
343 static struct msi_domain_ops dmar_msi_domain_ops = {
344 	.get_hwirq	= dmar_msi_get_hwirq,
345 	.msi_init	= dmar_msi_init,
346 };
347 
348 static struct msi_domain_info dmar_msi_domain_info = {
349 	.ops		= &dmar_msi_domain_ops,
350 	.chip		= &dmar_msi_controller,
351 };
352 
353 static struct irq_domain *dmar_get_irq_domain(void)
354 {
355 	static struct irq_domain *dmar_domain;
356 	static DEFINE_MUTEX(dmar_lock);
357 	struct fwnode_handle *fn;
358 
359 	mutex_lock(&dmar_lock);
360 	if (dmar_domain)
361 		goto out;
362 
363 	fn = irq_domain_alloc_named_fwnode("DMAR-MSI");
364 	if (fn) {
365 		dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info,
366 						    x86_vector_domain);
367 		irq_domain_free_fwnode(fn);
368 	}
369 out:
370 	mutex_unlock(&dmar_lock);
371 	return dmar_domain;
372 }
373 
374 int dmar_alloc_hwirq(int id, int node, void *arg)
375 {
376 	struct irq_domain *domain = dmar_get_irq_domain();
377 	struct irq_alloc_info info;
378 
379 	if (!domain)
380 		return -1;
381 
382 	init_irq_alloc_info(&info, NULL);
383 	info.type = X86_IRQ_ALLOC_TYPE_DMAR;
384 	info.dmar_id = id;
385 	info.dmar_data = arg;
386 
387 	return irq_domain_alloc_irqs(domain, 1, node, &info);
388 }
389 
390 void dmar_free_hwirq(int irq)
391 {
392 	irq_domain_free_irqs(irq, 1);
393 }
394 #endif
395 
396 /*
397  * MSI message composition
398  */
399 #ifdef CONFIG_HPET_TIMER
400 static inline int hpet_dev_id(struct irq_domain *domain)
401 {
402 	struct msi_domain_info *info = msi_get_domain_info(domain);
403 
404 	return (int)(long)info->data;
405 }
406 
407 static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
408 {
409 	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
410 }
411 
412 static struct irq_chip hpet_msi_controller __ro_after_init = {
413 	.name = "HPET-MSI",
414 	.irq_unmask = hpet_msi_unmask,
415 	.irq_mask = hpet_msi_mask,
416 	.irq_ack = irq_chip_ack_parent,
417 	.irq_set_affinity = msi_domain_set_affinity,
418 	.irq_retrigger = irq_chip_retrigger_hierarchy,
419 	.irq_compose_msi_msg = irq_msi_compose_msg,
420 	.irq_write_msi_msg = hpet_msi_write_msg,
421 	.flags = IRQCHIP_SKIP_SET_WAKE,
422 };
423 
424 static irq_hw_number_t hpet_msi_get_hwirq(struct msi_domain_info *info,
425 					  msi_alloc_info_t *arg)
426 {
427 	return arg->hpet_index;
428 }
429 
430 static int hpet_msi_init(struct irq_domain *domain,
431 			 struct msi_domain_info *info, unsigned int virq,
432 			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
433 {
434 	irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
435 	irq_domain_set_info(domain, virq, arg->hpet_index, info->chip, NULL,
436 			    handle_edge_irq, arg->hpet_data, "edge");
437 
438 	return 0;
439 }
440 
441 static void hpet_msi_free(struct irq_domain *domain,
442 			  struct msi_domain_info *info, unsigned int virq)
443 {
444 	irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
445 }
446 
447 static struct msi_domain_ops hpet_msi_domain_ops = {
448 	.get_hwirq	= hpet_msi_get_hwirq,
449 	.msi_init	= hpet_msi_init,
450 	.msi_free	= hpet_msi_free,
451 };
452 
453 static struct msi_domain_info hpet_msi_domain_info = {
454 	.ops		= &hpet_msi_domain_ops,
455 	.chip		= &hpet_msi_controller,
456 };
457 
458 struct irq_domain *hpet_create_irq_domain(int hpet_id)
459 {
460 	struct msi_domain_info *domain_info;
461 	struct irq_domain *parent, *d;
462 	struct irq_alloc_info info;
463 	struct fwnode_handle *fn;
464 
465 	if (x86_vector_domain == NULL)
466 		return NULL;
467 
468 	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
469 	if (!domain_info)
470 		return NULL;
471 
472 	*domain_info = hpet_msi_domain_info;
473 	domain_info->data = (void *)(long)hpet_id;
474 
475 	init_irq_alloc_info(&info, NULL);
476 	info.type = X86_IRQ_ALLOC_TYPE_HPET;
477 	info.hpet_id = hpet_id;
478 	parent = irq_remapping_get_ir_irq_domain(&info);
479 	if (parent == NULL)
480 		parent = x86_vector_domain;
481 	else
482 		hpet_msi_controller.name = "IR-HPET-MSI";
483 
484 	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
485 					      hpet_id);
486 	if (!fn) {
487 		kfree(domain_info);
488 		return NULL;
489 	}
490 
491 	d = msi_create_irq_domain(fn, domain_info, parent);
492 	irq_domain_free_fwnode(fn);
493 	return d;
494 }
495 
496 int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
497 		    int dev_num)
498 {
499 	struct irq_alloc_info info;
500 
501 	init_irq_alloc_info(&info, NULL);
502 	info.type = X86_IRQ_ALLOC_TYPE_HPET;
503 	info.hpet_data = hc;
504 	info.hpet_id = hpet_dev_id(domain);
505 	info.hpet_index = dev_num;
506 
507 	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
508 }
509 #endif
510