xref: /linux/arch/x86/kernel/apic/io_apic.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
46 
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/nmi.h>
58 #include <asm/msidef.h>
59 #include <asm/hypertransport.h>
60 #include <asm/setup.h>
61 #include <asm/irq_remapping.h>
62 #include <asm/hpet.h>
63 #include <asm/hw_irq.h>
64 
65 #include <asm/apic.h>
66 
67 #define __apicdebuginit(type) static type __init
68 #define for_each_irq_pin(entry, head) \
69 	for (entry = head; entry; entry = entry->next)
70 
71 /*
72  *      Is the SiS APIC rmw bug present ?
73  *      -1 = don't know, 0 = no, 1 = yes
74  */
75 int sis_apic_bug = -1;
76 
77 static DEFINE_RAW_SPINLOCK(ioapic_lock);
78 static DEFINE_RAW_SPINLOCK(vector_lock);
79 
80 /*
81  * # of IRQ routing registers
82  */
83 int nr_ioapic_registers[MAX_IO_APICS];
84 
85 /* I/O APIC entries */
86 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
87 int nr_ioapics;
88 
89 /* IO APIC gsi routing info */
90 struct mp_ioapic_gsi  mp_gsi_routing[MAX_IO_APICS];
91 
92 /* The one past the highest gsi number used */
93 u32 gsi_top;
94 
95 /* MP IRQ source entries */
96 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
97 
98 /* # of MP IRQ source entries */
99 int mp_irq_entries;
100 
101 /* GSI interrupts */
102 static int nr_irqs_gsi = NR_IRQS_LEGACY;
103 
104 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
105 int mp_bus_id_to_type[MAX_MP_BUSSES];
106 #endif
107 
108 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
109 
110 int skip_ioapic_setup;
111 
112 void arch_disable_smp_support(void)
113 {
114 #ifdef CONFIG_PCI
115 	noioapicquirk = 1;
116 	noioapicreroute = -1;
117 #endif
118 	skip_ioapic_setup = 1;
119 }
120 
121 static int __init parse_noapic(char *str)
122 {
123 	/* disable IO-APIC */
124 	arch_disable_smp_support();
125 	return 0;
126 }
127 early_param("noapic", parse_noapic);
128 
129 struct irq_pin_list {
130 	int apic, pin;
131 	struct irq_pin_list *next;
132 };
133 
134 static struct irq_pin_list *get_one_free_irq_2_pin(int node)
135 {
136 	struct irq_pin_list *pin;
137 
138 	pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
139 
140 	return pin;
141 }
142 
143 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
144 #ifdef CONFIG_SPARSE_IRQ
145 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
146 #else
147 static struct irq_cfg irq_cfgx[NR_IRQS];
148 #endif
149 
150 int __init arch_early_irq_init(void)
151 {
152 	struct irq_cfg *cfg;
153 	struct irq_desc *desc;
154 	int count;
155 	int node;
156 	int i;
157 
158 	if (!legacy_pic->nr_legacy_irqs) {
159 		nr_irqs_gsi = 0;
160 		io_apic_irqs = ~0UL;
161 	}
162 
163 	cfg = irq_cfgx;
164 	count = ARRAY_SIZE(irq_cfgx);
165 	node= cpu_to_node(boot_cpu_id);
166 
167 	for (i = 0; i < count; i++) {
168 		desc = irq_to_desc(i);
169 		desc->chip_data = &cfg[i];
170 		zalloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node);
171 		zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node);
172 		/*
173 		 * For legacy IRQ's, start with assigning irq0 to irq15 to
174 		 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
175 		 */
176 		if (i < legacy_pic->nr_legacy_irqs) {
177 			cfg[i].vector = IRQ0_VECTOR + i;
178 			cpumask_set_cpu(0, cfg[i].domain);
179 		}
180 	}
181 
182 	return 0;
183 }
184 
185 #ifdef CONFIG_SPARSE_IRQ
186 struct irq_cfg *irq_cfg(unsigned int irq)
187 {
188 	struct irq_cfg *cfg = NULL;
189 	struct irq_desc *desc;
190 
191 	desc = irq_to_desc(irq);
192 	if (desc)
193 		cfg = desc->chip_data;
194 
195 	return cfg;
196 }
197 
198 static struct irq_cfg *get_one_free_irq_cfg(int node)
199 {
200 	struct irq_cfg *cfg;
201 
202 	cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
203 	if (cfg) {
204 		if (!zalloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
205 			kfree(cfg);
206 			cfg = NULL;
207 		} else if (!zalloc_cpumask_var_node(&cfg->old_domain,
208 							  GFP_ATOMIC, node)) {
209 			free_cpumask_var(cfg->domain);
210 			kfree(cfg);
211 			cfg = NULL;
212 		}
213 	}
214 
215 	return cfg;
216 }
217 
218 int arch_init_chip_data(struct irq_desc *desc, int node)
219 {
220 	struct irq_cfg *cfg;
221 
222 	cfg = desc->chip_data;
223 	if (!cfg) {
224 		desc->chip_data = get_one_free_irq_cfg(node);
225 		if (!desc->chip_data) {
226 			printk(KERN_ERR "can not alloc irq_cfg\n");
227 			BUG_ON(1);
228 		}
229 	}
230 
231 	return 0;
232 }
233 
234 /* for move_irq_desc */
235 static void
236 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int node)
237 {
238 	struct irq_pin_list *old_entry, *head, *tail, *entry;
239 
240 	cfg->irq_2_pin = NULL;
241 	old_entry = old_cfg->irq_2_pin;
242 	if (!old_entry)
243 		return;
244 
245 	entry = get_one_free_irq_2_pin(node);
246 	if (!entry)
247 		return;
248 
249 	entry->apic	= old_entry->apic;
250 	entry->pin	= old_entry->pin;
251 	head		= entry;
252 	tail		= entry;
253 	old_entry	= old_entry->next;
254 	while (old_entry) {
255 		entry = get_one_free_irq_2_pin(node);
256 		if (!entry) {
257 			entry = head;
258 			while (entry) {
259 				head = entry->next;
260 				kfree(entry);
261 				entry = head;
262 			}
263 			/* still use the old one */
264 			return;
265 		}
266 		entry->apic	= old_entry->apic;
267 		entry->pin	= old_entry->pin;
268 		tail->next	= entry;
269 		tail		= entry;
270 		old_entry	= old_entry->next;
271 	}
272 
273 	tail->next = NULL;
274 	cfg->irq_2_pin = head;
275 }
276 
277 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
278 {
279 	struct irq_pin_list *entry, *next;
280 
281 	if (old_cfg->irq_2_pin == cfg->irq_2_pin)
282 		return;
283 
284 	entry = old_cfg->irq_2_pin;
285 
286 	while (entry) {
287 		next = entry->next;
288 		kfree(entry);
289 		entry = next;
290 	}
291 	old_cfg->irq_2_pin = NULL;
292 }
293 
294 void arch_init_copy_chip_data(struct irq_desc *old_desc,
295 				 struct irq_desc *desc, int node)
296 {
297 	struct irq_cfg *cfg;
298 	struct irq_cfg *old_cfg;
299 
300 	cfg = get_one_free_irq_cfg(node);
301 
302 	if (!cfg)
303 		return;
304 
305 	desc->chip_data = cfg;
306 
307 	old_cfg = old_desc->chip_data;
308 
309 	memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
310 
311 	init_copy_irq_2_pin(old_cfg, cfg, node);
312 }
313 
314 static void free_irq_cfg(struct irq_cfg *old_cfg)
315 {
316 	kfree(old_cfg);
317 }
318 
319 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
320 {
321 	struct irq_cfg *old_cfg, *cfg;
322 
323 	old_cfg = old_desc->chip_data;
324 	cfg = desc->chip_data;
325 
326 	if (old_cfg == cfg)
327 		return;
328 
329 	if (old_cfg) {
330 		free_irq_2_pin(old_cfg, cfg);
331 		free_irq_cfg(old_cfg);
332 		old_desc->chip_data = NULL;
333 	}
334 }
335 /* end for move_irq_desc */
336 
337 #else
338 struct irq_cfg *irq_cfg(unsigned int irq)
339 {
340 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
341 }
342 
343 #endif
344 
345 struct io_apic {
346 	unsigned int index;
347 	unsigned int unused[3];
348 	unsigned int data;
349 	unsigned int unused2[11];
350 	unsigned int eoi;
351 };
352 
353 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
354 {
355 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
356 		+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
357 }
358 
359 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
360 {
361 	struct io_apic __iomem *io_apic = io_apic_base(apic);
362 	writel(vector, &io_apic->eoi);
363 }
364 
365 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
366 {
367 	struct io_apic __iomem *io_apic = io_apic_base(apic);
368 	writel(reg, &io_apic->index);
369 	return readl(&io_apic->data);
370 }
371 
372 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
373 {
374 	struct io_apic __iomem *io_apic = io_apic_base(apic);
375 	writel(reg, &io_apic->index);
376 	writel(value, &io_apic->data);
377 }
378 
379 /*
380  * Re-write a value: to be used for read-modify-write
381  * cycles where the read already set up the index register.
382  *
383  * Older SiS APIC requires we rewrite the index register
384  */
385 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
386 {
387 	struct io_apic __iomem *io_apic = io_apic_base(apic);
388 
389 	if (sis_apic_bug)
390 		writel(reg, &io_apic->index);
391 	writel(value, &io_apic->data);
392 }
393 
394 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
395 {
396 	struct irq_pin_list *entry;
397 	unsigned long flags;
398 
399 	raw_spin_lock_irqsave(&ioapic_lock, flags);
400 	for_each_irq_pin(entry, cfg->irq_2_pin) {
401 		unsigned int reg;
402 		int pin;
403 
404 		pin = entry->pin;
405 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
406 		/* Is the remote IRR bit set? */
407 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
408 			raw_spin_unlock_irqrestore(&ioapic_lock, flags);
409 			return true;
410 		}
411 	}
412 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
413 
414 	return false;
415 }
416 
417 union entry_union {
418 	struct { u32 w1, w2; };
419 	struct IO_APIC_route_entry entry;
420 };
421 
422 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
423 {
424 	union entry_union eu;
425 	unsigned long flags;
426 	raw_spin_lock_irqsave(&ioapic_lock, flags);
427 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
428 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
429 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
430 	return eu.entry;
431 }
432 
433 /*
434  * When we write a new IO APIC routing entry, we need to write the high
435  * word first! If the mask bit in the low word is clear, we will enable
436  * the interrupt, and we need to make sure the entry is fully populated
437  * before that happens.
438  */
439 static void
440 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
441 {
442 	union entry_union eu = {{0, 0}};
443 
444 	eu.entry = e;
445 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
446 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
447 }
448 
449 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
450 {
451 	unsigned long flags;
452 	raw_spin_lock_irqsave(&ioapic_lock, flags);
453 	__ioapic_write_entry(apic, pin, e);
454 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
455 }
456 
457 /*
458  * When we mask an IO APIC routing entry, we need to write the low
459  * word first, in order to set the mask bit before we change the
460  * high bits!
461  */
462 static void ioapic_mask_entry(int apic, int pin)
463 {
464 	unsigned long flags;
465 	union entry_union eu = { .entry.mask = 1 };
466 
467 	raw_spin_lock_irqsave(&ioapic_lock, flags);
468 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
469 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
470 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
471 }
472 
473 /*
474  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
475  * shared ISA-space IRQs, so we have to support them. We are super
476  * fast in the common case, and fast for shared ISA-space IRQs.
477  */
478 static int
479 add_pin_to_irq_node_nopanic(struct irq_cfg *cfg, int node, int apic, int pin)
480 {
481 	struct irq_pin_list **last, *entry;
482 
483 	/* don't allow duplicates */
484 	last = &cfg->irq_2_pin;
485 	for_each_irq_pin(entry, cfg->irq_2_pin) {
486 		if (entry->apic == apic && entry->pin == pin)
487 			return 0;
488 		last = &entry->next;
489 	}
490 
491 	entry = get_one_free_irq_2_pin(node);
492 	if (!entry) {
493 		printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
494 				node, apic, pin);
495 		return -ENOMEM;
496 	}
497 	entry->apic = apic;
498 	entry->pin = pin;
499 
500 	*last = entry;
501 	return 0;
502 }
503 
504 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
505 {
506 	if (add_pin_to_irq_node_nopanic(cfg, node, apic, pin))
507 		panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
508 }
509 
510 /*
511  * Reroute an IRQ to a different pin.
512  */
513 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
514 					   int oldapic, int oldpin,
515 					   int newapic, int newpin)
516 {
517 	struct irq_pin_list *entry;
518 
519 	for_each_irq_pin(entry, cfg->irq_2_pin) {
520 		if (entry->apic == oldapic && entry->pin == oldpin) {
521 			entry->apic = newapic;
522 			entry->pin = newpin;
523 			/* every one is different, right? */
524 			return;
525 		}
526 	}
527 
528 	/* old apic/pin didn't exist, so just add new ones */
529 	add_pin_to_irq_node(cfg, node, newapic, newpin);
530 }
531 
532 static void __io_apic_modify_irq(struct irq_pin_list *entry,
533 				 int mask_and, int mask_or,
534 				 void (*final)(struct irq_pin_list *entry))
535 {
536 	unsigned int reg, pin;
537 
538 	pin = entry->pin;
539 	reg = io_apic_read(entry->apic, 0x10 + pin * 2);
540 	reg &= mask_and;
541 	reg |= mask_or;
542 	io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
543 	if (final)
544 		final(entry);
545 }
546 
547 static void io_apic_modify_irq(struct irq_cfg *cfg,
548 			       int mask_and, int mask_or,
549 			       void (*final)(struct irq_pin_list *entry))
550 {
551 	struct irq_pin_list *entry;
552 
553 	for_each_irq_pin(entry, cfg->irq_2_pin)
554 		__io_apic_modify_irq(entry, mask_and, mask_or, final);
555 }
556 
557 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
558 {
559 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
560 			     IO_APIC_REDIR_MASKED, NULL);
561 }
562 
563 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
564 {
565 	__io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
566 			     IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
567 }
568 
569 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
570 {
571 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
572 }
573 
574 static void io_apic_sync(struct irq_pin_list *entry)
575 {
576 	/*
577 	 * Synchronize the IO-APIC and the CPU by doing
578 	 * a dummy read from the IO-APIC
579 	 */
580 	struct io_apic __iomem *io_apic;
581 	io_apic = io_apic_base(entry->apic);
582 	readl(&io_apic->data);
583 }
584 
585 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
586 {
587 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
588 }
589 
590 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
591 {
592 	struct irq_cfg *cfg = desc->chip_data;
593 	unsigned long flags;
594 
595 	BUG_ON(!cfg);
596 
597 	raw_spin_lock_irqsave(&ioapic_lock, flags);
598 	__mask_IO_APIC_irq(cfg);
599 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
600 }
601 
602 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
603 {
604 	struct irq_cfg *cfg = desc->chip_data;
605 	unsigned long flags;
606 
607 	raw_spin_lock_irqsave(&ioapic_lock, flags);
608 	__unmask_IO_APIC_irq(cfg);
609 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
610 }
611 
612 static void mask_IO_APIC_irq(unsigned int irq)
613 {
614 	struct irq_desc *desc = irq_to_desc(irq);
615 
616 	mask_IO_APIC_irq_desc(desc);
617 }
618 static void unmask_IO_APIC_irq(unsigned int irq)
619 {
620 	struct irq_desc *desc = irq_to_desc(irq);
621 
622 	unmask_IO_APIC_irq_desc(desc);
623 }
624 
625 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
626 {
627 	struct IO_APIC_route_entry entry;
628 
629 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
630 	entry = ioapic_read_entry(apic, pin);
631 	if (entry.delivery_mode == dest_SMI)
632 		return;
633 	/*
634 	 * Disable it in the IO-APIC irq-routing table:
635 	 */
636 	ioapic_mask_entry(apic, pin);
637 }
638 
639 static void clear_IO_APIC (void)
640 {
641 	int apic, pin;
642 
643 	for (apic = 0; apic < nr_ioapics; apic++)
644 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
645 			clear_IO_APIC_pin(apic, pin);
646 }
647 
648 #ifdef CONFIG_X86_32
649 /*
650  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
651  * specific CPU-side IRQs.
652  */
653 
654 #define MAX_PIRQS 8
655 static int pirq_entries[MAX_PIRQS] = {
656 	[0 ... MAX_PIRQS - 1] = -1
657 };
658 
659 static int __init ioapic_pirq_setup(char *str)
660 {
661 	int i, max;
662 	int ints[MAX_PIRQS+1];
663 
664 	get_options(str, ARRAY_SIZE(ints), ints);
665 
666 	apic_printk(APIC_VERBOSE, KERN_INFO
667 			"PIRQ redirection, working around broken MP-BIOS.\n");
668 	max = MAX_PIRQS;
669 	if (ints[0] < MAX_PIRQS)
670 		max = ints[0];
671 
672 	for (i = 0; i < max; i++) {
673 		apic_printk(APIC_VERBOSE, KERN_DEBUG
674 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
675 		/*
676 		 * PIRQs are mapped upside down, usually.
677 		 */
678 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
679 	}
680 	return 1;
681 }
682 
683 __setup("pirq=", ioapic_pirq_setup);
684 #endif /* CONFIG_X86_32 */
685 
686 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
687 {
688 	int apic;
689 	struct IO_APIC_route_entry **ioapic_entries;
690 
691 	ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
692 				GFP_ATOMIC);
693 	if (!ioapic_entries)
694 		return 0;
695 
696 	for (apic = 0; apic < nr_ioapics; apic++) {
697 		ioapic_entries[apic] =
698 			kzalloc(sizeof(struct IO_APIC_route_entry) *
699 				nr_ioapic_registers[apic], GFP_ATOMIC);
700 		if (!ioapic_entries[apic])
701 			goto nomem;
702 	}
703 
704 	return ioapic_entries;
705 
706 nomem:
707 	while (--apic >= 0)
708 		kfree(ioapic_entries[apic]);
709 	kfree(ioapic_entries);
710 
711 	return 0;
712 }
713 
714 /*
715  * Saves all the IO-APIC RTE's
716  */
717 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
718 {
719 	int apic, pin;
720 
721 	if (!ioapic_entries)
722 		return -ENOMEM;
723 
724 	for (apic = 0; apic < nr_ioapics; apic++) {
725 		if (!ioapic_entries[apic])
726 			return -ENOMEM;
727 
728 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
729 			ioapic_entries[apic][pin] =
730 				ioapic_read_entry(apic, pin);
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Mask all IO APIC entries.
738  */
739 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
740 {
741 	int apic, pin;
742 
743 	if (!ioapic_entries)
744 		return;
745 
746 	for (apic = 0; apic < nr_ioapics; apic++) {
747 		if (!ioapic_entries[apic])
748 			break;
749 
750 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
751 			struct IO_APIC_route_entry entry;
752 
753 			entry = ioapic_entries[apic][pin];
754 			if (!entry.mask) {
755 				entry.mask = 1;
756 				ioapic_write_entry(apic, pin, entry);
757 			}
758 		}
759 	}
760 }
761 
762 /*
763  * Restore IO APIC entries which was saved in ioapic_entries.
764  */
765 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
766 {
767 	int apic, pin;
768 
769 	if (!ioapic_entries)
770 		return -ENOMEM;
771 
772 	for (apic = 0; apic < nr_ioapics; apic++) {
773 		if (!ioapic_entries[apic])
774 			return -ENOMEM;
775 
776 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
777 			ioapic_write_entry(apic, pin,
778 					ioapic_entries[apic][pin]);
779 	}
780 	return 0;
781 }
782 
783 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
784 {
785 	int apic;
786 
787 	for (apic = 0; apic < nr_ioapics; apic++)
788 		kfree(ioapic_entries[apic]);
789 
790 	kfree(ioapic_entries);
791 }
792 
793 /*
794  * Find the IRQ entry number of a certain pin.
795  */
796 static int find_irq_entry(int apic, int pin, int type)
797 {
798 	int i;
799 
800 	for (i = 0; i < mp_irq_entries; i++)
801 		if (mp_irqs[i].irqtype == type &&
802 		    (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
803 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
804 		    mp_irqs[i].dstirq == pin)
805 			return i;
806 
807 	return -1;
808 }
809 
810 /*
811  * Find the pin to which IRQ[irq] (ISA) is connected
812  */
813 static int __init find_isa_irq_pin(int irq, int type)
814 {
815 	int i;
816 
817 	for (i = 0; i < mp_irq_entries; i++) {
818 		int lbus = mp_irqs[i].srcbus;
819 
820 		if (test_bit(lbus, mp_bus_not_pci) &&
821 		    (mp_irqs[i].irqtype == type) &&
822 		    (mp_irqs[i].srcbusirq == irq))
823 
824 			return mp_irqs[i].dstirq;
825 	}
826 	return -1;
827 }
828 
829 static int __init find_isa_irq_apic(int irq, int type)
830 {
831 	int i;
832 
833 	for (i = 0; i < mp_irq_entries; i++) {
834 		int lbus = mp_irqs[i].srcbus;
835 
836 		if (test_bit(lbus, mp_bus_not_pci) &&
837 		    (mp_irqs[i].irqtype == type) &&
838 		    (mp_irqs[i].srcbusirq == irq))
839 			break;
840 	}
841 	if (i < mp_irq_entries) {
842 		int apic;
843 		for(apic = 0; apic < nr_ioapics; apic++) {
844 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
845 				return apic;
846 		}
847 	}
848 
849 	return -1;
850 }
851 
852 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
853 /*
854  * EISA Edge/Level control register, ELCR
855  */
856 static int EISA_ELCR(unsigned int irq)
857 {
858 	if (irq < legacy_pic->nr_legacy_irqs) {
859 		unsigned int port = 0x4d0 + (irq >> 3);
860 		return (inb(port) >> (irq & 7)) & 1;
861 	}
862 	apic_printk(APIC_VERBOSE, KERN_INFO
863 			"Broken MPtable reports ISA irq %d\n", irq);
864 	return 0;
865 }
866 
867 #endif
868 
869 /* ISA interrupts are always polarity zero edge triggered,
870  * when listed as conforming in the MP table. */
871 
872 #define default_ISA_trigger(idx)	(0)
873 #define default_ISA_polarity(idx)	(0)
874 
875 /* EISA interrupts are always polarity zero and can be edge or level
876  * trigger depending on the ELCR value.  If an interrupt is listed as
877  * EISA conforming in the MP table, that means its trigger type must
878  * be read in from the ELCR */
879 
880 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
881 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
882 
883 /* PCI interrupts are always polarity one level triggered,
884  * when listed as conforming in the MP table. */
885 
886 #define default_PCI_trigger(idx)	(1)
887 #define default_PCI_polarity(idx)	(1)
888 
889 /* MCA interrupts are always polarity zero level triggered,
890  * when listed as conforming in the MP table. */
891 
892 #define default_MCA_trigger(idx)	(1)
893 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
894 
895 static int MPBIOS_polarity(int idx)
896 {
897 	int bus = mp_irqs[idx].srcbus;
898 	int polarity;
899 
900 	/*
901 	 * Determine IRQ line polarity (high active or low active):
902 	 */
903 	switch (mp_irqs[idx].irqflag & 3)
904 	{
905 		case 0: /* conforms, ie. bus-type dependent polarity */
906 			if (test_bit(bus, mp_bus_not_pci))
907 				polarity = default_ISA_polarity(idx);
908 			else
909 				polarity = default_PCI_polarity(idx);
910 			break;
911 		case 1: /* high active */
912 		{
913 			polarity = 0;
914 			break;
915 		}
916 		case 2: /* reserved */
917 		{
918 			printk(KERN_WARNING "broken BIOS!!\n");
919 			polarity = 1;
920 			break;
921 		}
922 		case 3: /* low active */
923 		{
924 			polarity = 1;
925 			break;
926 		}
927 		default: /* invalid */
928 		{
929 			printk(KERN_WARNING "broken BIOS!!\n");
930 			polarity = 1;
931 			break;
932 		}
933 	}
934 	return polarity;
935 }
936 
937 static int MPBIOS_trigger(int idx)
938 {
939 	int bus = mp_irqs[idx].srcbus;
940 	int trigger;
941 
942 	/*
943 	 * Determine IRQ trigger mode (edge or level sensitive):
944 	 */
945 	switch ((mp_irqs[idx].irqflag>>2) & 3)
946 	{
947 		case 0: /* conforms, ie. bus-type dependent */
948 			if (test_bit(bus, mp_bus_not_pci))
949 				trigger = default_ISA_trigger(idx);
950 			else
951 				trigger = default_PCI_trigger(idx);
952 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
953 			switch (mp_bus_id_to_type[bus]) {
954 				case MP_BUS_ISA: /* ISA pin */
955 				{
956 					/* set before the switch */
957 					break;
958 				}
959 				case MP_BUS_EISA: /* EISA pin */
960 				{
961 					trigger = default_EISA_trigger(idx);
962 					break;
963 				}
964 				case MP_BUS_PCI: /* PCI pin */
965 				{
966 					/* set before the switch */
967 					break;
968 				}
969 				case MP_BUS_MCA: /* MCA pin */
970 				{
971 					trigger = default_MCA_trigger(idx);
972 					break;
973 				}
974 				default:
975 				{
976 					printk(KERN_WARNING "broken BIOS!!\n");
977 					trigger = 1;
978 					break;
979 				}
980 			}
981 #endif
982 			break;
983 		case 1: /* edge */
984 		{
985 			trigger = 0;
986 			break;
987 		}
988 		case 2: /* reserved */
989 		{
990 			printk(KERN_WARNING "broken BIOS!!\n");
991 			trigger = 1;
992 			break;
993 		}
994 		case 3: /* level */
995 		{
996 			trigger = 1;
997 			break;
998 		}
999 		default: /* invalid */
1000 		{
1001 			printk(KERN_WARNING "broken BIOS!!\n");
1002 			trigger = 0;
1003 			break;
1004 		}
1005 	}
1006 	return trigger;
1007 }
1008 
1009 static inline int irq_polarity(int idx)
1010 {
1011 	return MPBIOS_polarity(idx);
1012 }
1013 
1014 static inline int irq_trigger(int idx)
1015 {
1016 	return MPBIOS_trigger(idx);
1017 }
1018 
1019 static int pin_2_irq(int idx, int apic, int pin)
1020 {
1021 	int irq;
1022 	int bus = mp_irqs[idx].srcbus;
1023 
1024 	/*
1025 	 * Debugging check, we are in big trouble if this message pops up!
1026 	 */
1027 	if (mp_irqs[idx].dstirq != pin)
1028 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1029 
1030 	if (test_bit(bus, mp_bus_not_pci)) {
1031 		irq = mp_irqs[idx].srcbusirq;
1032 	} else {
1033 		u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
1034 
1035 		if (gsi >= NR_IRQS_LEGACY)
1036 			irq = gsi;
1037 		else
1038 			irq = gsi_top + gsi;
1039 	}
1040 
1041 #ifdef CONFIG_X86_32
1042 	/*
1043 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1044 	 */
1045 	if ((pin >= 16) && (pin <= 23)) {
1046 		if (pirq_entries[pin-16] != -1) {
1047 			if (!pirq_entries[pin-16]) {
1048 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1049 						"disabling PIRQ%d\n", pin-16);
1050 			} else {
1051 				irq = pirq_entries[pin-16];
1052 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1053 						"using PIRQ%d -> IRQ %d\n",
1054 						pin-16, irq);
1055 			}
1056 		}
1057 	}
1058 #endif
1059 
1060 	return irq;
1061 }
1062 
1063 /*
1064  * Find a specific PCI IRQ entry.
1065  * Not an __init, possibly needed by modules
1066  */
1067 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
1068 				struct io_apic_irq_attr *irq_attr)
1069 {
1070 	int apic, i, best_guess = -1;
1071 
1072 	apic_printk(APIC_DEBUG,
1073 		    "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1074 		    bus, slot, pin);
1075 	if (test_bit(bus, mp_bus_not_pci)) {
1076 		apic_printk(APIC_VERBOSE,
1077 			    "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1078 		return -1;
1079 	}
1080 	for (i = 0; i < mp_irq_entries; i++) {
1081 		int lbus = mp_irqs[i].srcbus;
1082 
1083 		for (apic = 0; apic < nr_ioapics; apic++)
1084 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1085 			    mp_irqs[i].dstapic == MP_APIC_ALL)
1086 				break;
1087 
1088 		if (!test_bit(lbus, mp_bus_not_pci) &&
1089 		    !mp_irqs[i].irqtype &&
1090 		    (bus == lbus) &&
1091 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1092 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1093 
1094 			if (!(apic || IO_APIC_IRQ(irq)))
1095 				continue;
1096 
1097 			if (pin == (mp_irqs[i].srcbusirq & 3)) {
1098 				set_io_apic_irq_attr(irq_attr, apic,
1099 						     mp_irqs[i].dstirq,
1100 						     irq_trigger(i),
1101 						     irq_polarity(i));
1102 				return irq;
1103 			}
1104 			/*
1105 			 * Use the first all-but-pin matching entry as a
1106 			 * best-guess fuzzy result for broken mptables.
1107 			 */
1108 			if (best_guess < 0) {
1109 				set_io_apic_irq_attr(irq_attr, apic,
1110 						     mp_irqs[i].dstirq,
1111 						     irq_trigger(i),
1112 						     irq_polarity(i));
1113 				best_guess = irq;
1114 			}
1115 		}
1116 	}
1117 	return best_guess;
1118 }
1119 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1120 
1121 void lock_vector_lock(void)
1122 {
1123 	/* Used to the online set of cpus does not change
1124 	 * during assign_irq_vector.
1125 	 */
1126 	raw_spin_lock(&vector_lock);
1127 }
1128 
1129 void unlock_vector_lock(void)
1130 {
1131 	raw_spin_unlock(&vector_lock);
1132 }
1133 
1134 static int
1135 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1136 {
1137 	/*
1138 	 * NOTE! The local APIC isn't very good at handling
1139 	 * multiple interrupts at the same interrupt level.
1140 	 * As the interrupt level is determined by taking the
1141 	 * vector number and shifting that right by 4, we
1142 	 * want to spread these out a bit so that they don't
1143 	 * all fall in the same interrupt level.
1144 	 *
1145 	 * Also, we've got to be careful not to trash gate
1146 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1147 	 */
1148 	static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1149 	static int current_offset = VECTOR_OFFSET_START % 8;
1150 	unsigned int old_vector;
1151 	int cpu, err;
1152 	cpumask_var_t tmp_mask;
1153 
1154 	if (cfg->move_in_progress)
1155 		return -EBUSY;
1156 
1157 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1158 		return -ENOMEM;
1159 
1160 	old_vector = cfg->vector;
1161 	if (old_vector) {
1162 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1163 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1164 		if (!cpumask_empty(tmp_mask)) {
1165 			free_cpumask_var(tmp_mask);
1166 			return 0;
1167 		}
1168 	}
1169 
1170 	/* Only try and allocate irqs on cpus that are present */
1171 	err = -ENOSPC;
1172 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1173 		int new_cpu;
1174 		int vector, offset;
1175 
1176 		apic->vector_allocation_domain(cpu, tmp_mask);
1177 
1178 		vector = current_vector;
1179 		offset = current_offset;
1180 next:
1181 		vector += 8;
1182 		if (vector >= first_system_vector) {
1183 			/* If out of vectors on large boxen, must share them. */
1184 			offset = (offset + 1) % 8;
1185 			vector = FIRST_EXTERNAL_VECTOR + offset;
1186 		}
1187 		if (unlikely(current_vector == vector))
1188 			continue;
1189 
1190 		if (test_bit(vector, used_vectors))
1191 			goto next;
1192 
1193 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1194 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1195 				goto next;
1196 		/* Found one! */
1197 		current_vector = vector;
1198 		current_offset = offset;
1199 		if (old_vector) {
1200 			cfg->move_in_progress = 1;
1201 			cpumask_copy(cfg->old_domain, cfg->domain);
1202 		}
1203 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1204 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1205 		cfg->vector = vector;
1206 		cpumask_copy(cfg->domain, tmp_mask);
1207 		err = 0;
1208 		break;
1209 	}
1210 	free_cpumask_var(tmp_mask);
1211 	return err;
1212 }
1213 
1214 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1215 {
1216 	int err;
1217 	unsigned long flags;
1218 
1219 	raw_spin_lock_irqsave(&vector_lock, flags);
1220 	err = __assign_irq_vector(irq, cfg, mask);
1221 	raw_spin_unlock_irqrestore(&vector_lock, flags);
1222 	return err;
1223 }
1224 
1225 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1226 {
1227 	int cpu, vector;
1228 
1229 	BUG_ON(!cfg->vector);
1230 
1231 	vector = cfg->vector;
1232 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1233 		per_cpu(vector_irq, cpu)[vector] = -1;
1234 
1235 	cfg->vector = 0;
1236 	cpumask_clear(cfg->domain);
1237 
1238 	if (likely(!cfg->move_in_progress))
1239 		return;
1240 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1241 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1242 								vector++) {
1243 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1244 				continue;
1245 			per_cpu(vector_irq, cpu)[vector] = -1;
1246 			break;
1247 		}
1248 	}
1249 	cfg->move_in_progress = 0;
1250 }
1251 
1252 void __setup_vector_irq(int cpu)
1253 {
1254 	/* Initialize vector_irq on a new cpu */
1255 	int irq, vector;
1256 	struct irq_cfg *cfg;
1257 	struct irq_desc *desc;
1258 
1259 	/*
1260 	 * vector_lock will make sure that we don't run into irq vector
1261 	 * assignments that might be happening on another cpu in parallel,
1262 	 * while we setup our initial vector to irq mappings.
1263 	 */
1264 	raw_spin_lock(&vector_lock);
1265 	/* Mark the inuse vectors */
1266 	for_each_irq_desc(irq, desc) {
1267 		cfg = desc->chip_data;
1268 
1269 		/*
1270 		 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1271 		 * will be part of the irq_cfg's domain.
1272 		 */
1273 		if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1274 			cpumask_set_cpu(cpu, cfg->domain);
1275 
1276 		if (!cpumask_test_cpu(cpu, cfg->domain))
1277 			continue;
1278 		vector = cfg->vector;
1279 		per_cpu(vector_irq, cpu)[vector] = irq;
1280 	}
1281 	/* Mark the free vectors */
1282 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1283 		irq = per_cpu(vector_irq, cpu)[vector];
1284 		if (irq < 0)
1285 			continue;
1286 
1287 		cfg = irq_cfg(irq);
1288 		if (!cpumask_test_cpu(cpu, cfg->domain))
1289 			per_cpu(vector_irq, cpu)[vector] = -1;
1290 	}
1291 	raw_spin_unlock(&vector_lock);
1292 }
1293 
1294 static struct irq_chip ioapic_chip;
1295 static struct irq_chip ir_ioapic_chip;
1296 
1297 #define IOAPIC_AUTO     -1
1298 #define IOAPIC_EDGE     0
1299 #define IOAPIC_LEVEL    1
1300 
1301 #ifdef CONFIG_X86_32
1302 static inline int IO_APIC_irq_trigger(int irq)
1303 {
1304 	int apic, idx, pin;
1305 
1306 	for (apic = 0; apic < nr_ioapics; apic++) {
1307 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1308 			idx = find_irq_entry(apic, pin, mp_INT);
1309 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1310 				return irq_trigger(idx);
1311 		}
1312 	}
1313 	/*
1314          * nonexistent IRQs are edge default
1315          */
1316 	return 0;
1317 }
1318 #else
1319 static inline int IO_APIC_irq_trigger(int irq)
1320 {
1321 	return 1;
1322 }
1323 #endif
1324 
1325 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1326 {
1327 
1328 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1329 	    trigger == IOAPIC_LEVEL)
1330 		desc->status |= IRQ_LEVEL;
1331 	else
1332 		desc->status &= ~IRQ_LEVEL;
1333 
1334 	if (irq_remapped(irq)) {
1335 		desc->status |= IRQ_MOVE_PCNTXT;
1336 		if (trigger)
1337 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1338 						      handle_fasteoi_irq,
1339 						     "fasteoi");
1340 		else
1341 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1342 						      handle_edge_irq, "edge");
1343 		return;
1344 	}
1345 
1346 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1347 	    trigger == IOAPIC_LEVEL)
1348 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1349 					      handle_fasteoi_irq,
1350 					      "fasteoi");
1351 	else
1352 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1353 					      handle_edge_irq, "edge");
1354 }
1355 
1356 int setup_ioapic_entry(int apic_id, int irq,
1357 		       struct IO_APIC_route_entry *entry,
1358 		       unsigned int destination, int trigger,
1359 		       int polarity, int vector, int pin)
1360 {
1361 	/*
1362 	 * add it to the IO-APIC irq-routing table:
1363 	 */
1364 	memset(entry,0,sizeof(*entry));
1365 
1366 	if (intr_remapping_enabled) {
1367 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1368 		struct irte irte;
1369 		struct IR_IO_APIC_route_entry *ir_entry =
1370 			(struct IR_IO_APIC_route_entry *) entry;
1371 		int index;
1372 
1373 		if (!iommu)
1374 			panic("No mapping iommu for ioapic %d\n", apic_id);
1375 
1376 		index = alloc_irte(iommu, irq, 1);
1377 		if (index < 0)
1378 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1379 
1380 		memset(&irte, 0, sizeof(irte));
1381 
1382 		irte.present = 1;
1383 		irte.dst_mode = apic->irq_dest_mode;
1384 		/*
1385 		 * Trigger mode in the IRTE will always be edge, and the
1386 		 * actual level or edge trigger will be setup in the IO-APIC
1387 		 * RTE. This will help simplify level triggered irq migration.
1388 		 * For more details, see the comments above explainig IO-APIC
1389 		 * irq migration in the presence of interrupt-remapping.
1390 		 */
1391 		irte.trigger_mode = 0;
1392 		irte.dlvry_mode = apic->irq_delivery_mode;
1393 		irte.vector = vector;
1394 		irte.dest_id = IRTE_DEST(destination);
1395 
1396 		/* Set source-id of interrupt request */
1397 		set_ioapic_sid(&irte, apic_id);
1398 
1399 		modify_irte(irq, &irte);
1400 
1401 		ir_entry->index2 = (index >> 15) & 0x1;
1402 		ir_entry->zero = 0;
1403 		ir_entry->format = 1;
1404 		ir_entry->index = (index & 0x7fff);
1405 		/*
1406 		 * IO-APIC RTE will be configured with virtual vector.
1407 		 * irq handler will do the explicit EOI to the io-apic.
1408 		 */
1409 		ir_entry->vector = pin;
1410 	} else {
1411 		entry->delivery_mode = apic->irq_delivery_mode;
1412 		entry->dest_mode = apic->irq_dest_mode;
1413 		entry->dest = destination;
1414 		entry->vector = vector;
1415 	}
1416 
1417 	entry->mask = 0;				/* enable IRQ */
1418 	entry->trigger = trigger;
1419 	entry->polarity = polarity;
1420 
1421 	/* Mask level triggered irqs.
1422 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1423 	 */
1424 	if (trigger)
1425 		entry->mask = 1;
1426 	return 0;
1427 }
1428 
1429 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1430 			      int trigger, int polarity)
1431 {
1432 	struct irq_cfg *cfg;
1433 	struct IO_APIC_route_entry entry;
1434 	unsigned int dest;
1435 
1436 	if (!IO_APIC_IRQ(irq))
1437 		return;
1438 
1439 	cfg = desc->chip_data;
1440 
1441 	/*
1442 	 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1443 	 * controllers like 8259. Now that IO-APIC can handle this irq, update
1444 	 * the cfg->domain.
1445 	 */
1446 	if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1447 		apic->vector_allocation_domain(0, cfg->domain);
1448 
1449 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1450 		return;
1451 
1452 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1453 
1454 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1455 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1456 		    "IRQ %d Mode:%i Active:%i)\n",
1457 		    apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1458 		    irq, trigger, polarity);
1459 
1460 
1461 	if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1462 			       dest, trigger, polarity, cfg->vector, pin)) {
1463 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1464 		       mp_ioapics[apic_id].apicid, pin);
1465 		__clear_irq_vector(irq, cfg);
1466 		return;
1467 	}
1468 
1469 	ioapic_register_intr(irq, desc, trigger);
1470 	if (irq < legacy_pic->nr_legacy_irqs)
1471 		legacy_pic->chip->mask(irq);
1472 
1473 	ioapic_write_entry(apic_id, pin, entry);
1474 }
1475 
1476 static struct {
1477 	DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1478 } mp_ioapic_routing[MAX_IO_APICS];
1479 
1480 static void __init setup_IO_APIC_irqs(void)
1481 {
1482 	int apic_id, pin, idx, irq;
1483 	int notcon = 0;
1484 	struct irq_desc *desc;
1485 	struct irq_cfg *cfg;
1486 	int node = cpu_to_node(boot_cpu_id);
1487 
1488 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1489 
1490 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1491 	for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1492 		idx = find_irq_entry(apic_id, pin, mp_INT);
1493 		if (idx == -1) {
1494 			if (!notcon) {
1495 				notcon = 1;
1496 				apic_printk(APIC_VERBOSE,
1497 					KERN_DEBUG " %d-%d",
1498 					mp_ioapics[apic_id].apicid, pin);
1499 			} else
1500 				apic_printk(APIC_VERBOSE, " %d-%d",
1501 					mp_ioapics[apic_id].apicid, pin);
1502 			continue;
1503 		}
1504 		if (notcon) {
1505 			apic_printk(APIC_VERBOSE,
1506 				" (apicid-pin) not connected\n");
1507 			notcon = 0;
1508 		}
1509 
1510 		irq = pin_2_irq(idx, apic_id, pin);
1511 
1512 		if ((apic_id > 0) && (irq > 16))
1513 			continue;
1514 
1515 		/*
1516 		 * Skip the timer IRQ if there's a quirk handler
1517 		 * installed and if it returns 1:
1518 		 */
1519 		if (apic->multi_timer_check &&
1520 				apic->multi_timer_check(apic_id, irq))
1521 			continue;
1522 
1523 		desc = irq_to_desc_alloc_node(irq, node);
1524 		if (!desc) {
1525 			printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1526 			continue;
1527 		}
1528 		cfg = desc->chip_data;
1529 		add_pin_to_irq_node(cfg, node, apic_id, pin);
1530 		/*
1531 		 * don't mark it in pin_programmed, so later acpi could
1532 		 * set it correctly when irq < 16
1533 		 */
1534 		setup_IO_APIC_irq(apic_id, pin, irq, desc,
1535 				irq_trigger(idx), irq_polarity(idx));
1536 	}
1537 
1538 	if (notcon)
1539 		apic_printk(APIC_VERBOSE,
1540 			" (apicid-pin) not connected\n");
1541 }
1542 
1543 /*
1544  * for the gsit that is not in first ioapic
1545  * but could not use acpi_register_gsi()
1546  * like some special sci in IBM x3330
1547  */
1548 void setup_IO_APIC_irq_extra(u32 gsi)
1549 {
1550 	int apic_id = 0, pin, idx, irq;
1551 	int node = cpu_to_node(boot_cpu_id);
1552 	struct irq_desc *desc;
1553 	struct irq_cfg *cfg;
1554 
1555 	/*
1556 	 * Convert 'gsi' to 'ioapic.pin'.
1557 	 */
1558 	apic_id = mp_find_ioapic(gsi);
1559 	if (apic_id < 0)
1560 		return;
1561 
1562 	pin = mp_find_ioapic_pin(apic_id, gsi);
1563 	idx = find_irq_entry(apic_id, pin, mp_INT);
1564 	if (idx == -1)
1565 		return;
1566 
1567 	irq = pin_2_irq(idx, apic_id, pin);
1568 #ifdef CONFIG_SPARSE_IRQ
1569 	desc = irq_to_desc(irq);
1570 	if (desc)
1571 		return;
1572 #endif
1573 	desc = irq_to_desc_alloc_node(irq, node);
1574 	if (!desc) {
1575 		printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1576 		return;
1577 	}
1578 
1579 	cfg = desc->chip_data;
1580 	add_pin_to_irq_node(cfg, node, apic_id, pin);
1581 
1582 	if (test_bit(pin, mp_ioapic_routing[apic_id].pin_programmed)) {
1583 		pr_debug("Pin %d-%d already programmed\n",
1584 			 mp_ioapics[apic_id].apicid, pin);
1585 		return;
1586 	}
1587 	set_bit(pin, mp_ioapic_routing[apic_id].pin_programmed);
1588 
1589 	setup_IO_APIC_irq(apic_id, pin, irq, desc,
1590 			irq_trigger(idx), irq_polarity(idx));
1591 }
1592 
1593 /*
1594  * Set up the timer pin, possibly with the 8259A-master behind.
1595  */
1596 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1597 					int vector)
1598 {
1599 	struct IO_APIC_route_entry entry;
1600 
1601 	if (intr_remapping_enabled)
1602 		return;
1603 
1604 	memset(&entry, 0, sizeof(entry));
1605 
1606 	/*
1607 	 * We use logical delivery to get the timer IRQ
1608 	 * to the first CPU.
1609 	 */
1610 	entry.dest_mode = apic->irq_dest_mode;
1611 	entry.mask = 0;			/* don't mask IRQ for edge */
1612 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1613 	entry.delivery_mode = apic->irq_delivery_mode;
1614 	entry.polarity = 0;
1615 	entry.trigger = 0;
1616 	entry.vector = vector;
1617 
1618 	/*
1619 	 * The timer IRQ doesn't have to know that behind the
1620 	 * scene we may have a 8259A-master in AEOI mode ...
1621 	 */
1622 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1623 
1624 	/*
1625 	 * Add it to the IO-APIC irq-routing table:
1626 	 */
1627 	ioapic_write_entry(apic_id, pin, entry);
1628 }
1629 
1630 
1631 __apicdebuginit(void) print_IO_APIC(void)
1632 {
1633 	int apic, i;
1634 	union IO_APIC_reg_00 reg_00;
1635 	union IO_APIC_reg_01 reg_01;
1636 	union IO_APIC_reg_02 reg_02;
1637 	union IO_APIC_reg_03 reg_03;
1638 	unsigned long flags;
1639 	struct irq_cfg *cfg;
1640 	struct irq_desc *desc;
1641 	unsigned int irq;
1642 
1643 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1644 	for (i = 0; i < nr_ioapics; i++)
1645 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1646 		       mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1647 
1648 	/*
1649 	 * We are a bit conservative about what we expect.  We have to
1650 	 * know about every hardware change ASAP.
1651 	 */
1652 	printk(KERN_INFO "testing the IO APIC.......................\n");
1653 
1654 	for (apic = 0; apic < nr_ioapics; apic++) {
1655 
1656 	raw_spin_lock_irqsave(&ioapic_lock, flags);
1657 	reg_00.raw = io_apic_read(apic, 0);
1658 	reg_01.raw = io_apic_read(apic, 1);
1659 	if (reg_01.bits.version >= 0x10)
1660 		reg_02.raw = io_apic_read(apic, 2);
1661 	if (reg_01.bits.version >= 0x20)
1662 		reg_03.raw = io_apic_read(apic, 3);
1663 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1664 
1665 	printk("\n");
1666 	printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1667 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1668 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1669 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1670 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1671 
1672 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1673 	printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1674 
1675 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1676 	printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1677 
1678 	/*
1679 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1680 	 * but the value of reg_02 is read as the previous read register
1681 	 * value, so ignore it if reg_02 == reg_01.
1682 	 */
1683 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1684 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1685 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1686 	}
1687 
1688 	/*
1689 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1690 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1691 	 * register value, so ignore it if reg_03 == reg_0[12].
1692 	 */
1693 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1694 	    reg_03.raw != reg_01.raw) {
1695 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1696 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1697 	}
1698 
1699 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1700 
1701 	printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1702 			  " Stat Dmod Deli Vect:\n");
1703 
1704 	for (i = 0; i <= reg_01.bits.entries; i++) {
1705 		struct IO_APIC_route_entry entry;
1706 
1707 		entry = ioapic_read_entry(apic, i);
1708 
1709 		printk(KERN_DEBUG " %02x %03X ",
1710 			i,
1711 			entry.dest
1712 		);
1713 
1714 		printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1715 			entry.mask,
1716 			entry.trigger,
1717 			entry.irr,
1718 			entry.polarity,
1719 			entry.delivery_status,
1720 			entry.dest_mode,
1721 			entry.delivery_mode,
1722 			entry.vector
1723 		);
1724 	}
1725 	}
1726 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1727 	for_each_irq_desc(irq, desc) {
1728 		struct irq_pin_list *entry;
1729 
1730 		cfg = desc->chip_data;
1731 		entry = cfg->irq_2_pin;
1732 		if (!entry)
1733 			continue;
1734 		printk(KERN_DEBUG "IRQ%d ", irq);
1735 		for_each_irq_pin(entry, cfg->irq_2_pin)
1736 			printk("-> %d:%d", entry->apic, entry->pin);
1737 		printk("\n");
1738 	}
1739 
1740 	printk(KERN_INFO ".................................... done.\n");
1741 
1742 	return;
1743 }
1744 
1745 __apicdebuginit(void) print_APIC_field(int base)
1746 {
1747 	int i;
1748 
1749 	printk(KERN_DEBUG);
1750 
1751 	for (i = 0; i < 8; i++)
1752 		printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1753 
1754 	printk(KERN_CONT "\n");
1755 }
1756 
1757 __apicdebuginit(void) print_local_APIC(void *dummy)
1758 {
1759 	unsigned int i, v, ver, maxlvt;
1760 	u64 icr;
1761 
1762 	printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1763 		smp_processor_id(), hard_smp_processor_id());
1764 	v = apic_read(APIC_ID);
1765 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1766 	v = apic_read(APIC_LVR);
1767 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1768 	ver = GET_APIC_VERSION(v);
1769 	maxlvt = lapic_get_maxlvt();
1770 
1771 	v = apic_read(APIC_TASKPRI);
1772 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1773 
1774 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1775 		if (!APIC_XAPIC(ver)) {
1776 			v = apic_read(APIC_ARBPRI);
1777 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1778 			       v & APIC_ARBPRI_MASK);
1779 		}
1780 		v = apic_read(APIC_PROCPRI);
1781 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1782 	}
1783 
1784 	/*
1785 	 * Remote read supported only in the 82489DX and local APIC for
1786 	 * Pentium processors.
1787 	 */
1788 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1789 		v = apic_read(APIC_RRR);
1790 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1791 	}
1792 
1793 	v = apic_read(APIC_LDR);
1794 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1795 	if (!x2apic_enabled()) {
1796 		v = apic_read(APIC_DFR);
1797 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1798 	}
1799 	v = apic_read(APIC_SPIV);
1800 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1801 
1802 	printk(KERN_DEBUG "... APIC ISR field:\n");
1803 	print_APIC_field(APIC_ISR);
1804 	printk(KERN_DEBUG "... APIC TMR field:\n");
1805 	print_APIC_field(APIC_TMR);
1806 	printk(KERN_DEBUG "... APIC IRR field:\n");
1807 	print_APIC_field(APIC_IRR);
1808 
1809 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1810 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1811 			apic_write(APIC_ESR, 0);
1812 
1813 		v = apic_read(APIC_ESR);
1814 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1815 	}
1816 
1817 	icr = apic_icr_read();
1818 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1819 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1820 
1821 	v = apic_read(APIC_LVTT);
1822 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1823 
1824 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1825 		v = apic_read(APIC_LVTPC);
1826 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1827 	}
1828 	v = apic_read(APIC_LVT0);
1829 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1830 	v = apic_read(APIC_LVT1);
1831 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1832 
1833 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1834 		v = apic_read(APIC_LVTERR);
1835 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1836 	}
1837 
1838 	v = apic_read(APIC_TMICT);
1839 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1840 	v = apic_read(APIC_TMCCT);
1841 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1842 	v = apic_read(APIC_TDCR);
1843 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1844 
1845 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1846 		v = apic_read(APIC_EFEAT);
1847 		maxlvt = (v >> 16) & 0xff;
1848 		printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1849 		v = apic_read(APIC_ECTRL);
1850 		printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1851 		for (i = 0; i < maxlvt; i++) {
1852 			v = apic_read(APIC_EILVTn(i));
1853 			printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1854 		}
1855 	}
1856 	printk("\n");
1857 }
1858 
1859 __apicdebuginit(void) print_local_APICs(int maxcpu)
1860 {
1861 	int cpu;
1862 
1863 	if (!maxcpu)
1864 		return;
1865 
1866 	preempt_disable();
1867 	for_each_online_cpu(cpu) {
1868 		if (cpu >= maxcpu)
1869 			break;
1870 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1871 	}
1872 	preempt_enable();
1873 }
1874 
1875 __apicdebuginit(void) print_PIC(void)
1876 {
1877 	unsigned int v;
1878 	unsigned long flags;
1879 
1880 	if (!legacy_pic->nr_legacy_irqs)
1881 		return;
1882 
1883 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1884 
1885 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1886 
1887 	v = inb(0xa1) << 8 | inb(0x21);
1888 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1889 
1890 	v = inb(0xa0) << 8 | inb(0x20);
1891 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1892 
1893 	outb(0x0b,0xa0);
1894 	outb(0x0b,0x20);
1895 	v = inb(0xa0) << 8 | inb(0x20);
1896 	outb(0x0a,0xa0);
1897 	outb(0x0a,0x20);
1898 
1899 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1900 
1901 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1902 
1903 	v = inb(0x4d1) << 8 | inb(0x4d0);
1904 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1905 }
1906 
1907 static int __initdata show_lapic = 1;
1908 static __init int setup_show_lapic(char *arg)
1909 {
1910 	int num = -1;
1911 
1912 	if (strcmp(arg, "all") == 0) {
1913 		show_lapic = CONFIG_NR_CPUS;
1914 	} else {
1915 		get_option(&arg, &num);
1916 		if (num >= 0)
1917 			show_lapic = num;
1918 	}
1919 
1920 	return 1;
1921 }
1922 __setup("show_lapic=", setup_show_lapic);
1923 
1924 __apicdebuginit(int) print_ICs(void)
1925 {
1926 	if (apic_verbosity == APIC_QUIET)
1927 		return 0;
1928 
1929 	print_PIC();
1930 
1931 	/* don't print out if apic is not there */
1932 	if (!cpu_has_apic && !apic_from_smp_config())
1933 		return 0;
1934 
1935 	print_local_APICs(show_lapic);
1936 	print_IO_APIC();
1937 
1938 	return 0;
1939 }
1940 
1941 fs_initcall(print_ICs);
1942 
1943 
1944 /* Where if anywhere is the i8259 connect in external int mode */
1945 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1946 
1947 void __init enable_IO_APIC(void)
1948 {
1949 	int i8259_apic, i8259_pin;
1950 	int apic;
1951 
1952 	if (!legacy_pic->nr_legacy_irqs)
1953 		return;
1954 
1955 	for(apic = 0; apic < nr_ioapics; apic++) {
1956 		int pin;
1957 		/* See if any of the pins is in ExtINT mode */
1958 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1959 			struct IO_APIC_route_entry entry;
1960 			entry = ioapic_read_entry(apic, pin);
1961 
1962 			/* If the interrupt line is enabled and in ExtInt mode
1963 			 * I have found the pin where the i8259 is connected.
1964 			 */
1965 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1966 				ioapic_i8259.apic = apic;
1967 				ioapic_i8259.pin  = pin;
1968 				goto found_i8259;
1969 			}
1970 		}
1971 	}
1972  found_i8259:
1973 	/* Look to see what if the MP table has reported the ExtINT */
1974 	/* If we could not find the appropriate pin by looking at the ioapic
1975 	 * the i8259 probably is not connected the ioapic but give the
1976 	 * mptable a chance anyway.
1977 	 */
1978 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
1979 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1980 	/* Trust the MP table if nothing is setup in the hardware */
1981 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1982 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1983 		ioapic_i8259.pin  = i8259_pin;
1984 		ioapic_i8259.apic = i8259_apic;
1985 	}
1986 	/* Complain if the MP table and the hardware disagree */
1987 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1988 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1989 	{
1990 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1991 	}
1992 
1993 	/*
1994 	 * Do not trust the IO-APIC being empty at bootup
1995 	 */
1996 	clear_IO_APIC();
1997 }
1998 
1999 /*
2000  * Not an __init, needed by the reboot code
2001  */
2002 void disable_IO_APIC(void)
2003 {
2004 	/*
2005 	 * Clear the IO-APIC before rebooting:
2006 	 */
2007 	clear_IO_APIC();
2008 
2009 	if (!legacy_pic->nr_legacy_irqs)
2010 		return;
2011 
2012 	/*
2013 	 * If the i8259 is routed through an IOAPIC
2014 	 * Put that IOAPIC in virtual wire mode
2015 	 * so legacy interrupts can be delivered.
2016 	 *
2017 	 * With interrupt-remapping, for now we will use virtual wire A mode,
2018 	 * as virtual wire B is little complex (need to configure both
2019 	 * IOAPIC RTE aswell as interrupt-remapping table entry).
2020 	 * As this gets called during crash dump, keep this simple for now.
2021 	 */
2022 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
2023 		struct IO_APIC_route_entry entry;
2024 
2025 		memset(&entry, 0, sizeof(entry));
2026 		entry.mask            = 0; /* Enabled */
2027 		entry.trigger         = 0; /* Edge */
2028 		entry.irr             = 0;
2029 		entry.polarity        = 0; /* High */
2030 		entry.delivery_status = 0;
2031 		entry.dest_mode       = 0; /* Physical */
2032 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
2033 		entry.vector          = 0;
2034 		entry.dest            = read_apic_id();
2035 
2036 		/*
2037 		 * Add it to the IO-APIC irq-routing table:
2038 		 */
2039 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2040 	}
2041 
2042 	/*
2043 	 * Use virtual wire A mode when interrupt remapping is enabled.
2044 	 */
2045 	if (cpu_has_apic || apic_from_smp_config())
2046 		disconnect_bsp_APIC(!intr_remapping_enabled &&
2047 				ioapic_i8259.pin != -1);
2048 }
2049 
2050 #ifdef CONFIG_X86_32
2051 /*
2052  * function to set the IO-APIC physical IDs based on the
2053  * values stored in the MPC table.
2054  *
2055  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
2056  */
2057 
2058 void __init setup_ioapic_ids_from_mpc(void)
2059 {
2060 	union IO_APIC_reg_00 reg_00;
2061 	physid_mask_t phys_id_present_map;
2062 	int apic_id;
2063 	int i;
2064 	unsigned char old_id;
2065 	unsigned long flags;
2066 
2067 	if (acpi_ioapic)
2068 		return;
2069 	/*
2070 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2071 	 * no meaning without the serial APIC bus.
2072 	 */
2073 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2074 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2075 		return;
2076 	/*
2077 	 * This is broken; anything with a real cpu count has to
2078 	 * circumvent this idiocy regardless.
2079 	 */
2080 	apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
2081 
2082 	/*
2083 	 * Set the IOAPIC ID to the value stored in the MPC table.
2084 	 */
2085 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2086 
2087 		/* Read the register 0 value */
2088 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2089 		reg_00.raw = io_apic_read(apic_id, 0);
2090 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2091 
2092 		old_id = mp_ioapics[apic_id].apicid;
2093 
2094 		if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2095 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2096 				apic_id, mp_ioapics[apic_id].apicid);
2097 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2098 				reg_00.bits.ID);
2099 			mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2100 		}
2101 
2102 		/*
2103 		 * Sanity check, is the ID really free? Every APIC in a
2104 		 * system must have a unique ID or we get lots of nice
2105 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
2106 		 */
2107 		if (apic->check_apicid_used(&phys_id_present_map,
2108 					mp_ioapics[apic_id].apicid)) {
2109 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2110 				apic_id, mp_ioapics[apic_id].apicid);
2111 			for (i = 0; i < get_physical_broadcast(); i++)
2112 				if (!physid_isset(i, phys_id_present_map))
2113 					break;
2114 			if (i >= get_physical_broadcast())
2115 				panic("Max APIC ID exceeded!\n");
2116 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2117 				i);
2118 			physid_set(i, phys_id_present_map);
2119 			mp_ioapics[apic_id].apicid = i;
2120 		} else {
2121 			physid_mask_t tmp;
2122 			apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
2123 			apic_printk(APIC_VERBOSE, "Setting %d in the "
2124 					"phys_id_present_map\n",
2125 					mp_ioapics[apic_id].apicid);
2126 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
2127 		}
2128 
2129 
2130 		/*
2131 		 * We need to adjust the IRQ routing table
2132 		 * if the ID changed.
2133 		 */
2134 		if (old_id != mp_ioapics[apic_id].apicid)
2135 			for (i = 0; i < mp_irq_entries; i++)
2136 				if (mp_irqs[i].dstapic == old_id)
2137 					mp_irqs[i].dstapic
2138 						= mp_ioapics[apic_id].apicid;
2139 
2140 		/*
2141 		 * Read the right value from the MPC table and
2142 		 * write it into the ID register.
2143 		 */
2144 		apic_printk(APIC_VERBOSE, KERN_INFO
2145 			"...changing IO-APIC physical APIC ID to %d ...",
2146 			mp_ioapics[apic_id].apicid);
2147 
2148 		reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2149 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2150 		io_apic_write(apic_id, 0, reg_00.raw);
2151 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2152 
2153 		/*
2154 		 * Sanity check
2155 		 */
2156 		raw_spin_lock_irqsave(&ioapic_lock, flags);
2157 		reg_00.raw = io_apic_read(apic_id, 0);
2158 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2159 		if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2160 			printk("could not set ID!\n");
2161 		else
2162 			apic_printk(APIC_VERBOSE, " ok.\n");
2163 	}
2164 }
2165 #endif
2166 
2167 int no_timer_check __initdata;
2168 
2169 static int __init notimercheck(char *s)
2170 {
2171 	no_timer_check = 1;
2172 	return 1;
2173 }
2174 __setup("no_timer_check", notimercheck);
2175 
2176 /*
2177  * There is a nasty bug in some older SMP boards, their mptable lies
2178  * about the timer IRQ. We do the following to work around the situation:
2179  *
2180  *	- timer IRQ defaults to IO-APIC IRQ
2181  *	- if this function detects that timer IRQs are defunct, then we fall
2182  *	  back to ISA timer IRQs
2183  */
2184 static int __init timer_irq_works(void)
2185 {
2186 	unsigned long t1 = jiffies;
2187 	unsigned long flags;
2188 
2189 	if (no_timer_check)
2190 		return 1;
2191 
2192 	local_save_flags(flags);
2193 	local_irq_enable();
2194 	/* Let ten ticks pass... */
2195 	mdelay((10 * 1000) / HZ);
2196 	local_irq_restore(flags);
2197 
2198 	/*
2199 	 * Expect a few ticks at least, to be sure some possible
2200 	 * glue logic does not lock up after one or two first
2201 	 * ticks in a non-ExtINT mode.  Also the local APIC
2202 	 * might have cached one ExtINT interrupt.  Finally, at
2203 	 * least one tick may be lost due to delays.
2204 	 */
2205 
2206 	/* jiffies wrap? */
2207 	if (time_after(jiffies, t1 + 4))
2208 		return 1;
2209 	return 0;
2210 }
2211 
2212 /*
2213  * In the SMP+IOAPIC case it might happen that there are an unspecified
2214  * number of pending IRQ events unhandled. These cases are very rare,
2215  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2216  * better to do it this way as thus we do not have to be aware of
2217  * 'pending' interrupts in the IRQ path, except at this point.
2218  */
2219 /*
2220  * Edge triggered needs to resend any interrupt
2221  * that was delayed but this is now handled in the device
2222  * independent code.
2223  */
2224 
2225 /*
2226  * Starting up a edge-triggered IO-APIC interrupt is
2227  * nasty - we need to make sure that we get the edge.
2228  * If it is already asserted for some reason, we need
2229  * return 1 to indicate that is was pending.
2230  *
2231  * This is not complete - we should be able to fake
2232  * an edge even if it isn't on the 8259A...
2233  */
2234 
2235 static unsigned int startup_ioapic_irq(unsigned int irq)
2236 {
2237 	int was_pending = 0;
2238 	unsigned long flags;
2239 	struct irq_cfg *cfg;
2240 
2241 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2242 	if (irq < legacy_pic->nr_legacy_irqs) {
2243 		legacy_pic->chip->mask(irq);
2244 		if (legacy_pic->irq_pending(irq))
2245 			was_pending = 1;
2246 	}
2247 	cfg = irq_cfg(irq);
2248 	__unmask_IO_APIC_irq(cfg);
2249 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2250 
2251 	return was_pending;
2252 }
2253 
2254 static int ioapic_retrigger_irq(unsigned int irq)
2255 {
2256 
2257 	struct irq_cfg *cfg = irq_cfg(irq);
2258 	unsigned long flags;
2259 
2260 	raw_spin_lock_irqsave(&vector_lock, flags);
2261 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2262 	raw_spin_unlock_irqrestore(&vector_lock, flags);
2263 
2264 	return 1;
2265 }
2266 
2267 /*
2268  * Level and edge triggered IO-APIC interrupts need different handling,
2269  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2270  * handled with the level-triggered descriptor, but that one has slightly
2271  * more overhead. Level-triggered interrupts cannot be handled with the
2272  * edge-triggered handler, without risking IRQ storms and other ugly
2273  * races.
2274  */
2275 
2276 #ifdef CONFIG_SMP
2277 void send_cleanup_vector(struct irq_cfg *cfg)
2278 {
2279 	cpumask_var_t cleanup_mask;
2280 
2281 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2282 		unsigned int i;
2283 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2284 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2285 	} else {
2286 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2287 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2288 		free_cpumask_var(cleanup_mask);
2289 	}
2290 	cfg->move_in_progress = 0;
2291 }
2292 
2293 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2294 {
2295 	int apic, pin;
2296 	struct irq_pin_list *entry;
2297 	u8 vector = cfg->vector;
2298 
2299 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2300 		unsigned int reg;
2301 
2302 		apic = entry->apic;
2303 		pin = entry->pin;
2304 		/*
2305 		 * With interrupt-remapping, destination information comes
2306 		 * from interrupt-remapping table entry.
2307 		 */
2308 		if (!irq_remapped(irq))
2309 			io_apic_write(apic, 0x11 + pin*2, dest);
2310 		reg = io_apic_read(apic, 0x10 + pin*2);
2311 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2312 		reg |= vector;
2313 		io_apic_modify(apic, 0x10 + pin*2, reg);
2314 	}
2315 }
2316 
2317 /*
2318  * Either sets desc->affinity to a valid value, and returns
2319  * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2320  * leaves desc->affinity untouched.
2321  */
2322 unsigned int
2323 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask,
2324 		  unsigned int *dest_id)
2325 {
2326 	struct irq_cfg *cfg;
2327 	unsigned int irq;
2328 
2329 	if (!cpumask_intersects(mask, cpu_online_mask))
2330 		return -1;
2331 
2332 	irq = desc->irq;
2333 	cfg = desc->chip_data;
2334 	if (assign_irq_vector(irq, cfg, mask))
2335 		return -1;
2336 
2337 	cpumask_copy(desc->affinity, mask);
2338 
2339 	*dest_id = apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
2340 	return 0;
2341 }
2342 
2343 static int
2344 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2345 {
2346 	struct irq_cfg *cfg;
2347 	unsigned long flags;
2348 	unsigned int dest;
2349 	unsigned int irq;
2350 	int ret = -1;
2351 
2352 	irq = desc->irq;
2353 	cfg = desc->chip_data;
2354 
2355 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2356 	ret = set_desc_affinity(desc, mask, &dest);
2357 	if (!ret) {
2358 		/* Only the high 8 bits are valid. */
2359 		dest = SET_APIC_LOGICAL_ID(dest);
2360 		__target_IO_APIC_irq(irq, dest, cfg);
2361 	}
2362 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2363 
2364 	return ret;
2365 }
2366 
2367 static int
2368 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
2369 {
2370 	struct irq_desc *desc;
2371 
2372 	desc = irq_to_desc(irq);
2373 
2374 	return set_ioapic_affinity_irq_desc(desc, mask);
2375 }
2376 
2377 #ifdef CONFIG_INTR_REMAP
2378 
2379 /*
2380  * Migrate the IO-APIC irq in the presence of intr-remapping.
2381  *
2382  * For both level and edge triggered, irq migration is a simple atomic
2383  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2384  *
2385  * For level triggered, we eliminate the io-apic RTE modification (with the
2386  * updated vector information), by using a virtual vector (io-apic pin number).
2387  * Real vector that is used for interrupting cpu will be coming from
2388  * the interrupt-remapping table entry.
2389  */
2390 static int
2391 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2392 {
2393 	struct irq_cfg *cfg;
2394 	struct irte irte;
2395 	unsigned int dest;
2396 	unsigned int irq;
2397 	int ret = -1;
2398 
2399 	if (!cpumask_intersects(mask, cpu_online_mask))
2400 		return ret;
2401 
2402 	irq = desc->irq;
2403 	if (get_irte(irq, &irte))
2404 		return ret;
2405 
2406 	cfg = desc->chip_data;
2407 	if (assign_irq_vector(irq, cfg, mask))
2408 		return ret;
2409 
2410 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2411 
2412 	irte.vector = cfg->vector;
2413 	irte.dest_id = IRTE_DEST(dest);
2414 
2415 	/*
2416 	 * Modified the IRTE and flushes the Interrupt entry cache.
2417 	 */
2418 	modify_irte(irq, &irte);
2419 
2420 	if (cfg->move_in_progress)
2421 		send_cleanup_vector(cfg);
2422 
2423 	cpumask_copy(desc->affinity, mask);
2424 
2425 	return 0;
2426 }
2427 
2428 /*
2429  * Migrates the IRQ destination in the process context.
2430  */
2431 static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2432 					    const struct cpumask *mask)
2433 {
2434 	return migrate_ioapic_irq_desc(desc, mask);
2435 }
2436 static int set_ir_ioapic_affinity_irq(unsigned int irq,
2437 				       const struct cpumask *mask)
2438 {
2439 	struct irq_desc *desc = irq_to_desc(irq);
2440 
2441 	return set_ir_ioapic_affinity_irq_desc(desc, mask);
2442 }
2443 #else
2444 static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2445 						   const struct cpumask *mask)
2446 {
2447 	return 0;
2448 }
2449 #endif
2450 
2451 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2452 {
2453 	unsigned vector, me;
2454 
2455 	ack_APIC_irq();
2456 	exit_idle();
2457 	irq_enter();
2458 
2459 	me = smp_processor_id();
2460 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2461 		unsigned int irq;
2462 		unsigned int irr;
2463 		struct irq_desc *desc;
2464 		struct irq_cfg *cfg;
2465 		irq = __get_cpu_var(vector_irq)[vector];
2466 
2467 		if (irq == -1)
2468 			continue;
2469 
2470 		desc = irq_to_desc(irq);
2471 		if (!desc)
2472 			continue;
2473 
2474 		cfg = irq_cfg(irq);
2475 		raw_spin_lock(&desc->lock);
2476 
2477 		/*
2478 		 * Check if the irq migration is in progress. If so, we
2479 		 * haven't received the cleanup request yet for this irq.
2480 		 */
2481 		if (cfg->move_in_progress)
2482 			goto unlock;
2483 
2484 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2485 			goto unlock;
2486 
2487 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2488 		/*
2489 		 * Check if the vector that needs to be cleanedup is
2490 		 * registered at the cpu's IRR. If so, then this is not
2491 		 * the best time to clean it up. Lets clean it up in the
2492 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2493 		 * to myself.
2494 		 */
2495 		if (irr  & (1 << (vector % 32))) {
2496 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2497 			goto unlock;
2498 		}
2499 		__get_cpu_var(vector_irq)[vector] = -1;
2500 unlock:
2501 		raw_spin_unlock(&desc->lock);
2502 	}
2503 
2504 	irq_exit();
2505 }
2506 
2507 static void __irq_complete_move(struct irq_desc **descp, unsigned vector)
2508 {
2509 	struct irq_desc *desc = *descp;
2510 	struct irq_cfg *cfg = desc->chip_data;
2511 	unsigned me;
2512 
2513 	if (likely(!cfg->move_in_progress))
2514 		return;
2515 
2516 	me = smp_processor_id();
2517 
2518 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2519 		send_cleanup_vector(cfg);
2520 }
2521 
2522 static void irq_complete_move(struct irq_desc **descp)
2523 {
2524 	__irq_complete_move(descp, ~get_irq_regs()->orig_ax);
2525 }
2526 
2527 void irq_force_complete_move(int irq)
2528 {
2529 	struct irq_desc *desc = irq_to_desc(irq);
2530 	struct irq_cfg *cfg = desc->chip_data;
2531 
2532 	if (!cfg)
2533 		return;
2534 
2535 	__irq_complete_move(&desc, cfg->vector);
2536 }
2537 #else
2538 static inline void irq_complete_move(struct irq_desc **descp) {}
2539 #endif
2540 
2541 static void ack_apic_edge(unsigned int irq)
2542 {
2543 	struct irq_desc *desc = irq_to_desc(irq);
2544 
2545 	irq_complete_move(&desc);
2546 	move_native_irq(irq);
2547 	ack_APIC_irq();
2548 }
2549 
2550 atomic_t irq_mis_count;
2551 
2552 /*
2553  * IO-APIC versions below 0x20 don't support EOI register.
2554  * For the record, here is the information about various versions:
2555  *     0Xh     82489DX
2556  *     1Xh     I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2557  *     2Xh     I/O(x)APIC which is PCI 2.2 Compliant
2558  *     30h-FFh Reserved
2559  *
2560  * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2561  * version as 0x2. This is an error with documentation and these ICH chips
2562  * use io-apic's of version 0x20.
2563  *
2564  * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2565  * Otherwise, we simulate the EOI message manually by changing the trigger
2566  * mode to edge and then back to level, with RTE being masked during this.
2567 */
2568 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2569 {
2570 	struct irq_pin_list *entry;
2571 
2572 	for_each_irq_pin(entry, cfg->irq_2_pin) {
2573 		if (mp_ioapics[entry->apic].apicver >= 0x20) {
2574 			/*
2575 			 * Intr-remapping uses pin number as the virtual vector
2576 			 * in the RTE. Actual vector is programmed in
2577 			 * intr-remapping table entry. Hence for the io-apic
2578 			 * EOI we use the pin number.
2579 			 */
2580 			if (irq_remapped(irq))
2581 				io_apic_eoi(entry->apic, entry->pin);
2582 			else
2583 				io_apic_eoi(entry->apic, cfg->vector);
2584 		} else {
2585 			__mask_and_edge_IO_APIC_irq(entry);
2586 			__unmask_and_level_IO_APIC_irq(entry);
2587 		}
2588 	}
2589 }
2590 
2591 static void eoi_ioapic_irq(struct irq_desc *desc)
2592 {
2593 	struct irq_cfg *cfg;
2594 	unsigned long flags;
2595 	unsigned int irq;
2596 
2597 	irq = desc->irq;
2598 	cfg = desc->chip_data;
2599 
2600 	raw_spin_lock_irqsave(&ioapic_lock, flags);
2601 	__eoi_ioapic_irq(irq, cfg);
2602 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2603 }
2604 
2605 static void ack_apic_level(unsigned int irq)
2606 {
2607 	struct irq_desc *desc = irq_to_desc(irq);
2608 	unsigned long v;
2609 	int i;
2610 	struct irq_cfg *cfg;
2611 	int do_unmask_irq = 0;
2612 
2613 	irq_complete_move(&desc);
2614 #ifdef CONFIG_GENERIC_PENDING_IRQ
2615 	/* If we are moving the irq we need to mask it */
2616 	if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2617 		do_unmask_irq = 1;
2618 		mask_IO_APIC_irq_desc(desc);
2619 	}
2620 #endif
2621 
2622 	/*
2623 	 * It appears there is an erratum which affects at least version 0x11
2624 	 * of I/O APIC (that's the 82093AA and cores integrated into various
2625 	 * chipsets).  Under certain conditions a level-triggered interrupt is
2626 	 * erroneously delivered as edge-triggered one but the respective IRR
2627 	 * bit gets set nevertheless.  As a result the I/O unit expects an EOI
2628 	 * message but it will never arrive and further interrupts are blocked
2629 	 * from the source.  The exact reason is so far unknown, but the
2630 	 * phenomenon was observed when two consecutive interrupt requests
2631 	 * from a given source get delivered to the same CPU and the source is
2632 	 * temporarily disabled in between.
2633 	 *
2634 	 * A workaround is to simulate an EOI message manually.  We achieve it
2635 	 * by setting the trigger mode to edge and then to level when the edge
2636 	 * trigger mode gets detected in the TMR of a local APIC for a
2637 	 * level-triggered interrupt.  We mask the source for the time of the
2638 	 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2639 	 * The idea is from Manfred Spraul.  --macro
2640 	 *
2641 	 * Also in the case when cpu goes offline, fixup_irqs() will forward
2642 	 * any unhandled interrupt on the offlined cpu to the new cpu
2643 	 * destination that is handling the corresponding interrupt. This
2644 	 * interrupt forwarding is done via IPI's. Hence, in this case also
2645 	 * level-triggered io-apic interrupt will be seen as an edge
2646 	 * interrupt in the IRR. And we can't rely on the cpu's EOI
2647 	 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2648 	 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2649 	 * supporting EOI register, we do an explicit EOI to clear the
2650 	 * remote IRR and on IO-APIC's which don't have an EOI register,
2651 	 * we use the above logic (mask+edge followed by unmask+level) from
2652 	 * Manfred Spraul to clear the remote IRR.
2653 	 */
2654 	cfg = desc->chip_data;
2655 	i = cfg->vector;
2656 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2657 
2658 	/*
2659 	 * We must acknowledge the irq before we move it or the acknowledge will
2660 	 * not propagate properly.
2661 	 */
2662 	ack_APIC_irq();
2663 
2664 	/*
2665 	 * Tail end of clearing remote IRR bit (either by delivering the EOI
2666 	 * message via io-apic EOI register write or simulating it using
2667 	 * mask+edge followed by unnask+level logic) manually when the
2668 	 * level triggered interrupt is seen as the edge triggered interrupt
2669 	 * at the cpu.
2670 	 */
2671 	if (!(v & (1 << (i & 0x1f)))) {
2672 		atomic_inc(&irq_mis_count);
2673 
2674 		eoi_ioapic_irq(desc);
2675 	}
2676 
2677 	/* Now we can move and renable the irq */
2678 	if (unlikely(do_unmask_irq)) {
2679 		/* Only migrate the irq if the ack has been received.
2680 		 *
2681 		 * On rare occasions the broadcast level triggered ack gets
2682 		 * delayed going to ioapics, and if we reprogram the
2683 		 * vector while Remote IRR is still set the irq will never
2684 		 * fire again.
2685 		 *
2686 		 * To prevent this scenario we read the Remote IRR bit
2687 		 * of the ioapic.  This has two effects.
2688 		 * - On any sane system the read of the ioapic will
2689 		 *   flush writes (and acks) going to the ioapic from
2690 		 *   this cpu.
2691 		 * - We get to see if the ACK has actually been delivered.
2692 		 *
2693 		 * Based on failed experiments of reprogramming the
2694 		 * ioapic entry from outside of irq context starting
2695 		 * with masking the ioapic entry and then polling until
2696 		 * Remote IRR was clear before reprogramming the
2697 		 * ioapic I don't trust the Remote IRR bit to be
2698 		 * completey accurate.
2699 		 *
2700 		 * However there appears to be no other way to plug
2701 		 * this race, so if the Remote IRR bit is not
2702 		 * accurate and is causing problems then it is a hardware bug
2703 		 * and you can go talk to the chipset vendor about it.
2704 		 */
2705 		cfg = desc->chip_data;
2706 		if (!io_apic_level_ack_pending(cfg))
2707 			move_masked_irq(irq);
2708 		unmask_IO_APIC_irq_desc(desc);
2709 	}
2710 }
2711 
2712 #ifdef CONFIG_INTR_REMAP
2713 static void ir_ack_apic_edge(unsigned int irq)
2714 {
2715 	ack_APIC_irq();
2716 }
2717 
2718 static void ir_ack_apic_level(unsigned int irq)
2719 {
2720 	struct irq_desc *desc = irq_to_desc(irq);
2721 
2722 	ack_APIC_irq();
2723 	eoi_ioapic_irq(desc);
2724 }
2725 #endif /* CONFIG_INTR_REMAP */
2726 
2727 static struct irq_chip ioapic_chip __read_mostly = {
2728 	.name		= "IO-APIC",
2729 	.startup	= startup_ioapic_irq,
2730 	.mask		= mask_IO_APIC_irq,
2731 	.unmask		= unmask_IO_APIC_irq,
2732 	.ack		= ack_apic_edge,
2733 	.eoi		= ack_apic_level,
2734 #ifdef CONFIG_SMP
2735 	.set_affinity	= set_ioapic_affinity_irq,
2736 #endif
2737 	.retrigger	= ioapic_retrigger_irq,
2738 };
2739 
2740 static struct irq_chip ir_ioapic_chip __read_mostly = {
2741 	.name		= "IR-IO-APIC",
2742 	.startup	= startup_ioapic_irq,
2743 	.mask		= mask_IO_APIC_irq,
2744 	.unmask		= unmask_IO_APIC_irq,
2745 #ifdef CONFIG_INTR_REMAP
2746 	.ack		= ir_ack_apic_edge,
2747 	.eoi		= ir_ack_apic_level,
2748 #ifdef CONFIG_SMP
2749 	.set_affinity	= set_ir_ioapic_affinity_irq,
2750 #endif
2751 #endif
2752 	.retrigger	= ioapic_retrigger_irq,
2753 };
2754 
2755 static inline void init_IO_APIC_traps(void)
2756 {
2757 	int irq;
2758 	struct irq_desc *desc;
2759 	struct irq_cfg *cfg;
2760 
2761 	/*
2762 	 * NOTE! The local APIC isn't very good at handling
2763 	 * multiple interrupts at the same interrupt level.
2764 	 * As the interrupt level is determined by taking the
2765 	 * vector number and shifting that right by 4, we
2766 	 * want to spread these out a bit so that they don't
2767 	 * all fall in the same interrupt level.
2768 	 *
2769 	 * Also, we've got to be careful not to trash gate
2770 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2771 	 */
2772 	for_each_irq_desc(irq, desc) {
2773 		cfg = desc->chip_data;
2774 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2775 			/*
2776 			 * Hmm.. We don't have an entry for this,
2777 			 * so default to an old-fashioned 8259
2778 			 * interrupt if we can..
2779 			 */
2780 			if (irq < legacy_pic->nr_legacy_irqs)
2781 				legacy_pic->make_irq(irq);
2782 			else
2783 				/* Strange. Oh, well.. */
2784 				desc->chip = &no_irq_chip;
2785 		}
2786 	}
2787 }
2788 
2789 /*
2790  * The local APIC irq-chip implementation:
2791  */
2792 
2793 static void mask_lapic_irq(unsigned int irq)
2794 {
2795 	unsigned long v;
2796 
2797 	v = apic_read(APIC_LVT0);
2798 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2799 }
2800 
2801 static void unmask_lapic_irq(unsigned int irq)
2802 {
2803 	unsigned long v;
2804 
2805 	v = apic_read(APIC_LVT0);
2806 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2807 }
2808 
2809 static void ack_lapic_irq(unsigned int irq)
2810 {
2811 	ack_APIC_irq();
2812 }
2813 
2814 static struct irq_chip lapic_chip __read_mostly = {
2815 	.name		= "local-APIC",
2816 	.mask		= mask_lapic_irq,
2817 	.unmask		= unmask_lapic_irq,
2818 	.ack		= ack_lapic_irq,
2819 };
2820 
2821 static void lapic_register_intr(int irq, struct irq_desc *desc)
2822 {
2823 	desc->status &= ~IRQ_LEVEL;
2824 	set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2825 				      "edge");
2826 }
2827 
2828 static void __init setup_nmi(void)
2829 {
2830 	/*
2831 	 * Dirty trick to enable the NMI watchdog ...
2832 	 * We put the 8259A master into AEOI mode and
2833 	 * unmask on all local APICs LVT0 as NMI.
2834 	 *
2835 	 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2836 	 * is from Maciej W. Rozycki - so we do not have to EOI from
2837 	 * the NMI handler or the timer interrupt.
2838 	 */
2839 	apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2840 
2841 	enable_NMI_through_LVT0();
2842 
2843 	apic_printk(APIC_VERBOSE, " done.\n");
2844 }
2845 
2846 /*
2847  * This looks a bit hackish but it's about the only one way of sending
2848  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2849  * not support the ExtINT mode, unfortunately.  We need to send these
2850  * cycles as some i82489DX-based boards have glue logic that keeps the
2851  * 8259A interrupt line asserted until INTA.  --macro
2852  */
2853 static inline void __init unlock_ExtINT_logic(void)
2854 {
2855 	int apic, pin, i;
2856 	struct IO_APIC_route_entry entry0, entry1;
2857 	unsigned char save_control, save_freq_select;
2858 
2859 	pin  = find_isa_irq_pin(8, mp_INT);
2860 	if (pin == -1) {
2861 		WARN_ON_ONCE(1);
2862 		return;
2863 	}
2864 	apic = find_isa_irq_apic(8, mp_INT);
2865 	if (apic == -1) {
2866 		WARN_ON_ONCE(1);
2867 		return;
2868 	}
2869 
2870 	entry0 = ioapic_read_entry(apic, pin);
2871 	clear_IO_APIC_pin(apic, pin);
2872 
2873 	memset(&entry1, 0, sizeof(entry1));
2874 
2875 	entry1.dest_mode = 0;			/* physical delivery */
2876 	entry1.mask = 0;			/* unmask IRQ now */
2877 	entry1.dest = hard_smp_processor_id();
2878 	entry1.delivery_mode = dest_ExtINT;
2879 	entry1.polarity = entry0.polarity;
2880 	entry1.trigger = 0;
2881 	entry1.vector = 0;
2882 
2883 	ioapic_write_entry(apic, pin, entry1);
2884 
2885 	save_control = CMOS_READ(RTC_CONTROL);
2886 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2887 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2888 		   RTC_FREQ_SELECT);
2889 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2890 
2891 	i = 100;
2892 	while (i-- > 0) {
2893 		mdelay(10);
2894 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2895 			i -= 10;
2896 	}
2897 
2898 	CMOS_WRITE(save_control, RTC_CONTROL);
2899 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2900 	clear_IO_APIC_pin(apic, pin);
2901 
2902 	ioapic_write_entry(apic, pin, entry0);
2903 }
2904 
2905 static int disable_timer_pin_1 __initdata;
2906 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2907 static int __init disable_timer_pin_setup(char *arg)
2908 {
2909 	disable_timer_pin_1 = 1;
2910 	return 0;
2911 }
2912 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2913 
2914 int timer_through_8259 __initdata;
2915 
2916 /*
2917  * This code may look a bit paranoid, but it's supposed to cooperate with
2918  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2919  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2920  * fanatically on his truly buggy board.
2921  *
2922  * FIXME: really need to revamp this for all platforms.
2923  */
2924 static inline void __init check_timer(void)
2925 {
2926 	struct irq_desc *desc = irq_to_desc(0);
2927 	struct irq_cfg *cfg = desc->chip_data;
2928 	int node = cpu_to_node(boot_cpu_id);
2929 	int apic1, pin1, apic2, pin2;
2930 	unsigned long flags;
2931 	int no_pin1 = 0;
2932 
2933 	local_irq_save(flags);
2934 
2935 	/*
2936 	 * get/set the timer IRQ vector:
2937 	 */
2938 	legacy_pic->chip->mask(0);
2939 	assign_irq_vector(0, cfg, apic->target_cpus());
2940 
2941 	/*
2942 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2943 	 * wire has to be disabled in the local APIC.  Also
2944 	 * timer interrupts need to be acknowledged manually in
2945 	 * the 8259A for the i82489DX when using the NMI
2946 	 * watchdog as that APIC treats NMIs as level-triggered.
2947 	 * The AEOI mode will finish them in the 8259A
2948 	 * automatically.
2949 	 */
2950 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2951 	legacy_pic->init(1);
2952 #ifdef CONFIG_X86_32
2953 	{
2954 		unsigned int ver;
2955 
2956 		ver = apic_read(APIC_LVR);
2957 		ver = GET_APIC_VERSION(ver);
2958 		timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2959 	}
2960 #endif
2961 
2962 	pin1  = find_isa_irq_pin(0, mp_INT);
2963 	apic1 = find_isa_irq_apic(0, mp_INT);
2964 	pin2  = ioapic_i8259.pin;
2965 	apic2 = ioapic_i8259.apic;
2966 
2967 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2968 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2969 		    cfg->vector, apic1, pin1, apic2, pin2);
2970 
2971 	/*
2972 	 * Some BIOS writers are clueless and report the ExtINTA
2973 	 * I/O APIC input from the cascaded 8259A as the timer
2974 	 * interrupt input.  So just in case, if only one pin
2975 	 * was found above, try it both directly and through the
2976 	 * 8259A.
2977 	 */
2978 	if (pin1 == -1) {
2979 		if (intr_remapping_enabled)
2980 			panic("BIOS bug: timer not connected to IO-APIC");
2981 		pin1 = pin2;
2982 		apic1 = apic2;
2983 		no_pin1 = 1;
2984 	} else if (pin2 == -1) {
2985 		pin2 = pin1;
2986 		apic2 = apic1;
2987 	}
2988 
2989 	if (pin1 != -1) {
2990 		/*
2991 		 * Ok, does IRQ0 through the IOAPIC work?
2992 		 */
2993 		if (no_pin1) {
2994 			add_pin_to_irq_node(cfg, node, apic1, pin1);
2995 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2996 		} else {
2997 			/* for edge trigger, setup_IO_APIC_irq already
2998 			 * leave it unmasked.
2999 			 * so only need to unmask if it is level-trigger
3000 			 * do we really have level trigger timer?
3001 			 */
3002 			int idx;
3003 			idx = find_irq_entry(apic1, pin1, mp_INT);
3004 			if (idx != -1 && irq_trigger(idx))
3005 				unmask_IO_APIC_irq_desc(desc);
3006 		}
3007 		if (timer_irq_works()) {
3008 			if (nmi_watchdog == NMI_IO_APIC) {
3009 				setup_nmi();
3010 				legacy_pic->chip->unmask(0);
3011 			}
3012 			if (disable_timer_pin_1 > 0)
3013 				clear_IO_APIC_pin(0, pin1);
3014 			goto out;
3015 		}
3016 		if (intr_remapping_enabled)
3017 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
3018 		local_irq_disable();
3019 		clear_IO_APIC_pin(apic1, pin1);
3020 		if (!no_pin1)
3021 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
3022 				    "8254 timer not connected to IO-APIC\n");
3023 
3024 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
3025 			    "(IRQ0) through the 8259A ...\n");
3026 		apic_printk(APIC_QUIET, KERN_INFO
3027 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
3028 		/*
3029 		 * legacy devices should be connected to IO APIC #0
3030 		 */
3031 		replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
3032 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
3033 		legacy_pic->chip->unmask(0);
3034 		if (timer_irq_works()) {
3035 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
3036 			timer_through_8259 = 1;
3037 			if (nmi_watchdog == NMI_IO_APIC) {
3038 				legacy_pic->chip->mask(0);
3039 				setup_nmi();
3040 				legacy_pic->chip->unmask(0);
3041 			}
3042 			goto out;
3043 		}
3044 		/*
3045 		 * Cleanup, just in case ...
3046 		 */
3047 		local_irq_disable();
3048 		legacy_pic->chip->mask(0);
3049 		clear_IO_APIC_pin(apic2, pin2);
3050 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
3051 	}
3052 
3053 	if (nmi_watchdog == NMI_IO_APIC) {
3054 		apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
3055 			    "through the IO-APIC - disabling NMI Watchdog!\n");
3056 		nmi_watchdog = NMI_NONE;
3057 	}
3058 #ifdef CONFIG_X86_32
3059 	timer_ack = 0;
3060 #endif
3061 
3062 	apic_printk(APIC_QUIET, KERN_INFO
3063 		    "...trying to set up timer as Virtual Wire IRQ...\n");
3064 
3065 	lapic_register_intr(0, desc);
3066 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
3067 	legacy_pic->chip->unmask(0);
3068 
3069 	if (timer_irq_works()) {
3070 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3071 		goto out;
3072 	}
3073 	local_irq_disable();
3074 	legacy_pic->chip->mask(0);
3075 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3076 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3077 
3078 	apic_printk(APIC_QUIET, KERN_INFO
3079 		    "...trying to set up timer as ExtINT IRQ...\n");
3080 
3081 	legacy_pic->init(0);
3082 	legacy_pic->make_irq(0);
3083 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
3084 
3085 	unlock_ExtINT_logic();
3086 
3087 	if (timer_irq_works()) {
3088 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3089 		goto out;
3090 	}
3091 	local_irq_disable();
3092 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3093 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
3094 		"report.  Then try booting with the 'noapic' option.\n");
3095 out:
3096 	local_irq_restore(flags);
3097 }
3098 
3099 /*
3100  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3101  * to devices.  However there may be an I/O APIC pin available for
3102  * this interrupt regardless.  The pin may be left unconnected, but
3103  * typically it will be reused as an ExtINT cascade interrupt for
3104  * the master 8259A.  In the MPS case such a pin will normally be
3105  * reported as an ExtINT interrupt in the MP table.  With ACPI
3106  * there is no provision for ExtINT interrupts, and in the absence
3107  * of an override it would be treated as an ordinary ISA I/O APIC
3108  * interrupt, that is edge-triggered and unmasked by default.  We
3109  * used to do this, but it caused problems on some systems because
3110  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3111  * the same ExtINT cascade interrupt to drive the local APIC of the
3112  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
3113  * the I/O APIC in all cases now.  No actual device should request
3114  * it anyway.  --macro
3115  */
3116 #define PIC_IRQS	(1UL << PIC_CASCADE_IR)
3117 
3118 void __init setup_IO_APIC(void)
3119 {
3120 
3121 	/*
3122 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3123 	 */
3124 	io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
3125 
3126 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3127 	/*
3128          * Set up IO-APIC IRQ routing.
3129          */
3130 	x86_init.mpparse.setup_ioapic_ids();
3131 
3132 	sync_Arb_IDs();
3133 	setup_IO_APIC_irqs();
3134 	init_IO_APIC_traps();
3135 	if (legacy_pic->nr_legacy_irqs)
3136 		check_timer();
3137 }
3138 
3139 /*
3140  *      Called after all the initialization is done. If we didnt find any
3141  *      APIC bugs then we can allow the modify fast path
3142  */
3143 
3144 static int __init io_apic_bug_finalize(void)
3145 {
3146 	if (sis_apic_bug == -1)
3147 		sis_apic_bug = 0;
3148 	return 0;
3149 }
3150 
3151 late_initcall(io_apic_bug_finalize);
3152 
3153 struct sysfs_ioapic_data {
3154 	struct sys_device dev;
3155 	struct IO_APIC_route_entry entry[0];
3156 };
3157 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3158 
3159 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3160 {
3161 	struct IO_APIC_route_entry *entry;
3162 	struct sysfs_ioapic_data *data;
3163 	int i;
3164 
3165 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3166 	entry = data->entry;
3167 	for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3168 		*entry = ioapic_read_entry(dev->id, i);
3169 
3170 	return 0;
3171 }
3172 
3173 static int ioapic_resume(struct sys_device *dev)
3174 {
3175 	struct IO_APIC_route_entry *entry;
3176 	struct sysfs_ioapic_data *data;
3177 	unsigned long flags;
3178 	union IO_APIC_reg_00 reg_00;
3179 	int i;
3180 
3181 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3182 	entry = data->entry;
3183 
3184 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3185 	reg_00.raw = io_apic_read(dev->id, 0);
3186 	if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3187 		reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3188 		io_apic_write(dev->id, 0, reg_00.raw);
3189 	}
3190 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3191 	for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3192 		ioapic_write_entry(dev->id, i, entry[i]);
3193 
3194 	return 0;
3195 }
3196 
3197 static struct sysdev_class ioapic_sysdev_class = {
3198 	.name = "ioapic",
3199 	.suspend = ioapic_suspend,
3200 	.resume = ioapic_resume,
3201 };
3202 
3203 static int __init ioapic_init_sysfs(void)
3204 {
3205 	struct sys_device * dev;
3206 	int i, size, error;
3207 
3208 	error = sysdev_class_register(&ioapic_sysdev_class);
3209 	if (error)
3210 		return error;
3211 
3212 	for (i = 0; i < nr_ioapics; i++ ) {
3213 		size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3214 			* sizeof(struct IO_APIC_route_entry);
3215 		mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3216 		if (!mp_ioapic_data[i]) {
3217 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3218 			continue;
3219 		}
3220 		dev = &mp_ioapic_data[i]->dev;
3221 		dev->id = i;
3222 		dev->cls = &ioapic_sysdev_class;
3223 		error = sysdev_register(dev);
3224 		if (error) {
3225 			kfree(mp_ioapic_data[i]);
3226 			mp_ioapic_data[i] = NULL;
3227 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3228 			continue;
3229 		}
3230 	}
3231 
3232 	return 0;
3233 }
3234 
3235 device_initcall(ioapic_init_sysfs);
3236 
3237 /*
3238  * Dynamic irq allocate and deallocation
3239  */
3240 unsigned int create_irq_nr(unsigned int irq_want, int node)
3241 {
3242 	/* Allocate an unused irq */
3243 	unsigned int irq;
3244 	unsigned int new;
3245 	unsigned long flags;
3246 	struct irq_cfg *cfg_new = NULL;
3247 	struct irq_desc *desc_new = NULL;
3248 
3249 	irq = 0;
3250 	if (irq_want < nr_irqs_gsi)
3251 		irq_want = nr_irqs_gsi;
3252 
3253 	raw_spin_lock_irqsave(&vector_lock, flags);
3254 	for (new = irq_want; new < nr_irqs; new++) {
3255 		desc_new = irq_to_desc_alloc_node(new, node);
3256 		if (!desc_new) {
3257 			printk(KERN_INFO "can not get irq_desc for %d\n", new);
3258 			continue;
3259 		}
3260 		cfg_new = desc_new->chip_data;
3261 
3262 		if (cfg_new->vector != 0)
3263 			continue;
3264 
3265 		desc_new = move_irq_desc(desc_new, node);
3266 		cfg_new = desc_new->chip_data;
3267 
3268 		if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3269 			irq = new;
3270 		break;
3271 	}
3272 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3273 
3274 	if (irq > 0)
3275 		dynamic_irq_init_keep_chip_data(irq);
3276 
3277 	return irq;
3278 }
3279 
3280 int create_irq(void)
3281 {
3282 	int node = cpu_to_node(boot_cpu_id);
3283 	unsigned int irq_want;
3284 	int irq;
3285 
3286 	irq_want = nr_irqs_gsi;
3287 	irq = create_irq_nr(irq_want, node);
3288 
3289 	if (irq == 0)
3290 		irq = -1;
3291 
3292 	return irq;
3293 }
3294 
3295 void destroy_irq(unsigned int irq)
3296 {
3297 	unsigned long flags;
3298 
3299 	dynamic_irq_cleanup_keep_chip_data(irq);
3300 
3301 	free_irte(irq);
3302 	raw_spin_lock_irqsave(&vector_lock, flags);
3303 	__clear_irq_vector(irq, get_irq_chip_data(irq));
3304 	raw_spin_unlock_irqrestore(&vector_lock, flags);
3305 }
3306 
3307 /*
3308  * MSI message composition
3309  */
3310 #ifdef CONFIG_PCI_MSI
3311 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3312 			   struct msi_msg *msg, u8 hpet_id)
3313 {
3314 	struct irq_cfg *cfg;
3315 	int err;
3316 	unsigned dest;
3317 
3318 	if (disable_apic)
3319 		return -ENXIO;
3320 
3321 	cfg = irq_cfg(irq);
3322 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3323 	if (err)
3324 		return err;
3325 
3326 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3327 
3328 	if (irq_remapped(irq)) {
3329 		struct irte irte;
3330 		int ir_index;
3331 		u16 sub_handle;
3332 
3333 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3334 		BUG_ON(ir_index == -1);
3335 
3336 		memset (&irte, 0, sizeof(irte));
3337 
3338 		irte.present = 1;
3339 		irte.dst_mode = apic->irq_dest_mode;
3340 		irte.trigger_mode = 0; /* edge */
3341 		irte.dlvry_mode = apic->irq_delivery_mode;
3342 		irte.vector = cfg->vector;
3343 		irte.dest_id = IRTE_DEST(dest);
3344 
3345 		/* Set source-id of interrupt request */
3346 		if (pdev)
3347 			set_msi_sid(&irte, pdev);
3348 		else
3349 			set_hpet_sid(&irte, hpet_id);
3350 
3351 		modify_irte(irq, &irte);
3352 
3353 		msg->address_hi = MSI_ADDR_BASE_HI;
3354 		msg->data = sub_handle;
3355 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3356 				  MSI_ADDR_IR_SHV |
3357 				  MSI_ADDR_IR_INDEX1(ir_index) |
3358 				  MSI_ADDR_IR_INDEX2(ir_index);
3359 	} else {
3360 		if (x2apic_enabled())
3361 			msg->address_hi = MSI_ADDR_BASE_HI |
3362 					  MSI_ADDR_EXT_DEST_ID(dest);
3363 		else
3364 			msg->address_hi = MSI_ADDR_BASE_HI;
3365 
3366 		msg->address_lo =
3367 			MSI_ADDR_BASE_LO |
3368 			((apic->irq_dest_mode == 0) ?
3369 				MSI_ADDR_DEST_MODE_PHYSICAL:
3370 				MSI_ADDR_DEST_MODE_LOGICAL) |
3371 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3372 				MSI_ADDR_REDIRECTION_CPU:
3373 				MSI_ADDR_REDIRECTION_LOWPRI) |
3374 			MSI_ADDR_DEST_ID(dest);
3375 
3376 		msg->data =
3377 			MSI_DATA_TRIGGER_EDGE |
3378 			MSI_DATA_LEVEL_ASSERT |
3379 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3380 				MSI_DATA_DELIVERY_FIXED:
3381 				MSI_DATA_DELIVERY_LOWPRI) |
3382 			MSI_DATA_VECTOR(cfg->vector);
3383 	}
3384 	return err;
3385 }
3386 
3387 #ifdef CONFIG_SMP
3388 static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3389 {
3390 	struct irq_desc *desc = irq_to_desc(irq);
3391 	struct irq_cfg *cfg;
3392 	struct msi_msg msg;
3393 	unsigned int dest;
3394 
3395 	if (set_desc_affinity(desc, mask, &dest))
3396 		return -1;
3397 
3398 	cfg = desc->chip_data;
3399 
3400 	get_cached_msi_msg_desc(desc, &msg);
3401 
3402 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3403 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3404 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3405 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3406 
3407 	write_msi_msg_desc(desc, &msg);
3408 
3409 	return 0;
3410 }
3411 #ifdef CONFIG_INTR_REMAP
3412 /*
3413  * Migrate the MSI irq to another cpumask. This migration is
3414  * done in the process context using interrupt-remapping hardware.
3415  */
3416 static int
3417 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3418 {
3419 	struct irq_desc *desc = irq_to_desc(irq);
3420 	struct irq_cfg *cfg = desc->chip_data;
3421 	unsigned int dest;
3422 	struct irte irte;
3423 
3424 	if (get_irte(irq, &irte))
3425 		return -1;
3426 
3427 	if (set_desc_affinity(desc, mask, &dest))
3428 		return -1;
3429 
3430 	irte.vector = cfg->vector;
3431 	irte.dest_id = IRTE_DEST(dest);
3432 
3433 	/*
3434 	 * atomically update the IRTE with the new destination and vector.
3435 	 */
3436 	modify_irte(irq, &irte);
3437 
3438 	/*
3439 	 * After this point, all the interrupts will start arriving
3440 	 * at the new destination. So, time to cleanup the previous
3441 	 * vector allocation.
3442 	 */
3443 	if (cfg->move_in_progress)
3444 		send_cleanup_vector(cfg);
3445 
3446 	return 0;
3447 }
3448 
3449 #endif
3450 #endif /* CONFIG_SMP */
3451 
3452 /*
3453  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3454  * which implement the MSI or MSI-X Capability Structure.
3455  */
3456 static struct irq_chip msi_chip = {
3457 	.name		= "PCI-MSI",
3458 	.unmask		= unmask_msi_irq,
3459 	.mask		= mask_msi_irq,
3460 	.ack		= ack_apic_edge,
3461 #ifdef CONFIG_SMP
3462 	.set_affinity	= set_msi_irq_affinity,
3463 #endif
3464 	.retrigger	= ioapic_retrigger_irq,
3465 };
3466 
3467 static struct irq_chip msi_ir_chip = {
3468 	.name		= "IR-PCI-MSI",
3469 	.unmask		= unmask_msi_irq,
3470 	.mask		= mask_msi_irq,
3471 #ifdef CONFIG_INTR_REMAP
3472 	.ack		= ir_ack_apic_edge,
3473 #ifdef CONFIG_SMP
3474 	.set_affinity	= ir_set_msi_irq_affinity,
3475 #endif
3476 #endif
3477 	.retrigger	= ioapic_retrigger_irq,
3478 };
3479 
3480 /*
3481  * Map the PCI dev to the corresponding remapping hardware unit
3482  * and allocate 'nvec' consecutive interrupt-remapping table entries
3483  * in it.
3484  */
3485 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3486 {
3487 	struct intel_iommu *iommu;
3488 	int index;
3489 
3490 	iommu = map_dev_to_ir(dev);
3491 	if (!iommu) {
3492 		printk(KERN_ERR
3493 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3494 		return -ENOENT;
3495 	}
3496 
3497 	index = alloc_irte(iommu, irq, nvec);
3498 	if (index < 0) {
3499 		printk(KERN_ERR
3500 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3501 		       pci_name(dev));
3502 		return -ENOSPC;
3503 	}
3504 	return index;
3505 }
3506 
3507 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3508 {
3509 	int ret;
3510 	struct msi_msg msg;
3511 
3512 	ret = msi_compose_msg(dev, irq, &msg, -1);
3513 	if (ret < 0)
3514 		return ret;
3515 
3516 	set_irq_msi(irq, msidesc);
3517 	write_msi_msg(irq, &msg);
3518 
3519 	if (irq_remapped(irq)) {
3520 		struct irq_desc *desc = irq_to_desc(irq);
3521 		/*
3522 		 * irq migration in process context
3523 		 */
3524 		desc->status |= IRQ_MOVE_PCNTXT;
3525 		set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3526 	} else
3527 		set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3528 
3529 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3530 
3531 	return 0;
3532 }
3533 
3534 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3535 {
3536 	unsigned int irq;
3537 	int ret, sub_handle;
3538 	struct msi_desc *msidesc;
3539 	unsigned int irq_want;
3540 	struct intel_iommu *iommu = NULL;
3541 	int index = 0;
3542 	int node;
3543 
3544 	/* x86 doesn't support multiple MSI yet */
3545 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3546 		return 1;
3547 
3548 	node = dev_to_node(&dev->dev);
3549 	irq_want = nr_irqs_gsi;
3550 	sub_handle = 0;
3551 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3552 		irq = create_irq_nr(irq_want, node);
3553 		if (irq == 0)
3554 			return -1;
3555 		irq_want = irq + 1;
3556 		if (!intr_remapping_enabled)
3557 			goto no_ir;
3558 
3559 		if (!sub_handle) {
3560 			/*
3561 			 * allocate the consecutive block of IRTE's
3562 			 * for 'nvec'
3563 			 */
3564 			index = msi_alloc_irte(dev, irq, nvec);
3565 			if (index < 0) {
3566 				ret = index;
3567 				goto error;
3568 			}
3569 		} else {
3570 			iommu = map_dev_to_ir(dev);
3571 			if (!iommu) {
3572 				ret = -ENOENT;
3573 				goto error;
3574 			}
3575 			/*
3576 			 * setup the mapping between the irq and the IRTE
3577 			 * base index, the sub_handle pointing to the
3578 			 * appropriate interrupt remap table entry.
3579 			 */
3580 			set_irte_irq(irq, iommu, index, sub_handle);
3581 		}
3582 no_ir:
3583 		ret = setup_msi_irq(dev, msidesc, irq);
3584 		if (ret < 0)
3585 			goto error;
3586 		sub_handle++;
3587 	}
3588 	return 0;
3589 
3590 error:
3591 	destroy_irq(irq);
3592 	return ret;
3593 }
3594 
3595 void arch_teardown_msi_irq(unsigned int irq)
3596 {
3597 	destroy_irq(irq);
3598 }
3599 
3600 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3601 #ifdef CONFIG_SMP
3602 static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3603 {
3604 	struct irq_desc *desc = irq_to_desc(irq);
3605 	struct irq_cfg *cfg;
3606 	struct msi_msg msg;
3607 	unsigned int dest;
3608 
3609 	if (set_desc_affinity(desc, mask, &dest))
3610 		return -1;
3611 
3612 	cfg = desc->chip_data;
3613 
3614 	dmar_msi_read(irq, &msg);
3615 
3616 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3617 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3618 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3619 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3620 
3621 	dmar_msi_write(irq, &msg);
3622 
3623 	return 0;
3624 }
3625 
3626 #endif /* CONFIG_SMP */
3627 
3628 static struct irq_chip dmar_msi_type = {
3629 	.name = "DMAR_MSI",
3630 	.unmask = dmar_msi_unmask,
3631 	.mask = dmar_msi_mask,
3632 	.ack = ack_apic_edge,
3633 #ifdef CONFIG_SMP
3634 	.set_affinity = dmar_msi_set_affinity,
3635 #endif
3636 	.retrigger = ioapic_retrigger_irq,
3637 };
3638 
3639 int arch_setup_dmar_msi(unsigned int irq)
3640 {
3641 	int ret;
3642 	struct msi_msg msg;
3643 
3644 	ret = msi_compose_msg(NULL, irq, &msg, -1);
3645 	if (ret < 0)
3646 		return ret;
3647 	dmar_msi_write(irq, &msg);
3648 	set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3649 		"edge");
3650 	return 0;
3651 }
3652 #endif
3653 
3654 #ifdef CONFIG_HPET_TIMER
3655 
3656 #ifdef CONFIG_SMP
3657 static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3658 {
3659 	struct irq_desc *desc = irq_to_desc(irq);
3660 	struct irq_cfg *cfg;
3661 	struct msi_msg msg;
3662 	unsigned int dest;
3663 
3664 	if (set_desc_affinity(desc, mask, &dest))
3665 		return -1;
3666 
3667 	cfg = desc->chip_data;
3668 
3669 	hpet_msi_read(irq, &msg);
3670 
3671 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3672 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3673 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3674 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3675 
3676 	hpet_msi_write(irq, &msg);
3677 
3678 	return 0;
3679 }
3680 
3681 #endif /* CONFIG_SMP */
3682 
3683 static struct irq_chip ir_hpet_msi_type = {
3684 	.name = "IR-HPET_MSI",
3685 	.unmask = hpet_msi_unmask,
3686 	.mask = hpet_msi_mask,
3687 #ifdef CONFIG_INTR_REMAP
3688 	.ack = ir_ack_apic_edge,
3689 #ifdef CONFIG_SMP
3690 	.set_affinity = ir_set_msi_irq_affinity,
3691 #endif
3692 #endif
3693 	.retrigger = ioapic_retrigger_irq,
3694 };
3695 
3696 static struct irq_chip hpet_msi_type = {
3697 	.name = "HPET_MSI",
3698 	.unmask = hpet_msi_unmask,
3699 	.mask = hpet_msi_mask,
3700 	.ack = ack_apic_edge,
3701 #ifdef CONFIG_SMP
3702 	.set_affinity = hpet_msi_set_affinity,
3703 #endif
3704 	.retrigger = ioapic_retrigger_irq,
3705 };
3706 
3707 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3708 {
3709 	int ret;
3710 	struct msi_msg msg;
3711 	struct irq_desc *desc = irq_to_desc(irq);
3712 
3713 	if (intr_remapping_enabled) {
3714 		struct intel_iommu *iommu = map_hpet_to_ir(id);
3715 		int index;
3716 
3717 		if (!iommu)
3718 			return -1;
3719 
3720 		index = alloc_irte(iommu, irq, 1);
3721 		if (index < 0)
3722 			return -1;
3723 	}
3724 
3725 	ret = msi_compose_msg(NULL, irq, &msg, id);
3726 	if (ret < 0)
3727 		return ret;
3728 
3729 	hpet_msi_write(irq, &msg);
3730 	desc->status |= IRQ_MOVE_PCNTXT;
3731 	if (irq_remapped(irq))
3732 		set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type,
3733 					      handle_edge_irq, "edge");
3734 	else
3735 		set_irq_chip_and_handler_name(irq, &hpet_msi_type,
3736 					      handle_edge_irq, "edge");
3737 
3738 	return 0;
3739 }
3740 #endif
3741 
3742 #endif /* CONFIG_PCI_MSI */
3743 /*
3744  * Hypertransport interrupt support
3745  */
3746 #ifdef CONFIG_HT_IRQ
3747 
3748 #ifdef CONFIG_SMP
3749 
3750 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3751 {
3752 	struct ht_irq_msg msg;
3753 	fetch_ht_irq_msg(irq, &msg);
3754 
3755 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3756 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3757 
3758 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3759 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3760 
3761 	write_ht_irq_msg(irq, &msg);
3762 }
3763 
3764 static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3765 {
3766 	struct irq_desc *desc = irq_to_desc(irq);
3767 	struct irq_cfg *cfg;
3768 	unsigned int dest;
3769 
3770 	if (set_desc_affinity(desc, mask, &dest))
3771 		return -1;
3772 
3773 	cfg = desc->chip_data;
3774 
3775 	target_ht_irq(irq, dest, cfg->vector);
3776 
3777 	return 0;
3778 }
3779 
3780 #endif
3781 
3782 static struct irq_chip ht_irq_chip = {
3783 	.name		= "PCI-HT",
3784 	.mask		= mask_ht_irq,
3785 	.unmask		= unmask_ht_irq,
3786 	.ack		= ack_apic_edge,
3787 #ifdef CONFIG_SMP
3788 	.set_affinity	= set_ht_irq_affinity,
3789 #endif
3790 	.retrigger	= ioapic_retrigger_irq,
3791 };
3792 
3793 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3794 {
3795 	struct irq_cfg *cfg;
3796 	int err;
3797 
3798 	if (disable_apic)
3799 		return -ENXIO;
3800 
3801 	cfg = irq_cfg(irq);
3802 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3803 	if (!err) {
3804 		struct ht_irq_msg msg;
3805 		unsigned dest;
3806 
3807 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3808 						    apic->target_cpus());
3809 
3810 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3811 
3812 		msg.address_lo =
3813 			HT_IRQ_LOW_BASE |
3814 			HT_IRQ_LOW_DEST_ID(dest) |
3815 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3816 			((apic->irq_dest_mode == 0) ?
3817 				HT_IRQ_LOW_DM_PHYSICAL :
3818 				HT_IRQ_LOW_DM_LOGICAL) |
3819 			HT_IRQ_LOW_RQEOI_EDGE |
3820 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3821 				HT_IRQ_LOW_MT_FIXED :
3822 				HT_IRQ_LOW_MT_ARBITRATED) |
3823 			HT_IRQ_LOW_IRQ_MASKED;
3824 
3825 		write_ht_irq_msg(irq, &msg);
3826 
3827 		set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3828 					      handle_edge_irq, "edge");
3829 
3830 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3831 	}
3832 	return err;
3833 }
3834 #endif /* CONFIG_HT_IRQ */
3835 
3836 int __init io_apic_get_redir_entries (int ioapic)
3837 {
3838 	union IO_APIC_reg_01	reg_01;
3839 	unsigned long flags;
3840 
3841 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3842 	reg_01.raw = io_apic_read(ioapic, 1);
3843 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3844 
3845 	/* The register returns the maximum index redir index
3846 	 * supported, which is one less than the total number of redir
3847 	 * entries.
3848 	 */
3849 	return reg_01.bits.entries + 1;
3850 }
3851 
3852 void __init probe_nr_irqs_gsi(void)
3853 {
3854 	int nr;
3855 
3856 	nr = gsi_top + NR_IRQS_LEGACY;
3857 	if (nr > nr_irqs_gsi)
3858 		nr_irqs_gsi = nr;
3859 
3860 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3861 }
3862 
3863 #ifdef CONFIG_SPARSE_IRQ
3864 int __init arch_probe_nr_irqs(void)
3865 {
3866 	int nr;
3867 
3868 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3869 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3870 
3871 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3872 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3873 	/*
3874 	 * for MSI and HT dyn irq
3875 	 */
3876 	nr += nr_irqs_gsi * 16;
3877 #endif
3878 	if (nr < nr_irqs)
3879 		nr_irqs = nr;
3880 
3881 	return 0;
3882 }
3883 #endif
3884 
3885 static int __io_apic_set_pci_routing(struct device *dev, int irq,
3886 				struct io_apic_irq_attr *irq_attr)
3887 {
3888 	struct irq_desc *desc;
3889 	struct irq_cfg *cfg;
3890 	int node;
3891 	int ioapic, pin;
3892 	int trigger, polarity;
3893 
3894 	ioapic = irq_attr->ioapic;
3895 	if (!IO_APIC_IRQ(irq)) {
3896 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3897 			ioapic);
3898 		return -EINVAL;
3899 	}
3900 
3901 	if (dev)
3902 		node = dev_to_node(dev);
3903 	else
3904 		node = cpu_to_node(boot_cpu_id);
3905 
3906 	desc = irq_to_desc_alloc_node(irq, node);
3907 	if (!desc) {
3908 		printk(KERN_INFO "can not get irq_desc %d\n", irq);
3909 		return 0;
3910 	}
3911 
3912 	pin = irq_attr->ioapic_pin;
3913 	trigger = irq_attr->trigger;
3914 	polarity = irq_attr->polarity;
3915 
3916 	/*
3917 	 * IRQs < 16 are already in the irq_2_pin[] map
3918 	 */
3919 	if (irq >= legacy_pic->nr_legacy_irqs) {
3920 		cfg = desc->chip_data;
3921 		if (add_pin_to_irq_node_nopanic(cfg, node, ioapic, pin)) {
3922 			printk(KERN_INFO "can not add pin %d for irq %d\n",
3923 				pin, irq);
3924 			return 0;
3925 		}
3926 	}
3927 
3928 	setup_IO_APIC_irq(ioapic, pin, irq, desc, trigger, polarity);
3929 
3930 	return 0;
3931 }
3932 
3933 int io_apic_set_pci_routing(struct device *dev, int irq,
3934 				struct io_apic_irq_attr *irq_attr)
3935 {
3936 	int ioapic, pin;
3937 	/*
3938 	 * Avoid pin reprogramming.  PRTs typically include entries
3939 	 * with redundant pin->gsi mappings (but unique PCI devices);
3940 	 * we only program the IOAPIC on the first.
3941 	 */
3942 	ioapic = irq_attr->ioapic;
3943 	pin = irq_attr->ioapic_pin;
3944 	if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3945 		pr_debug("Pin %d-%d already programmed\n",
3946 			 mp_ioapics[ioapic].apicid, pin);
3947 		return 0;
3948 	}
3949 	set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3950 
3951 	return __io_apic_set_pci_routing(dev, irq, irq_attr);
3952 }
3953 
3954 u8 __init io_apic_unique_id(u8 id)
3955 {
3956 #ifdef CONFIG_X86_32
3957 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3958 	    !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3959 		return io_apic_get_unique_id(nr_ioapics, id);
3960 	else
3961 		return id;
3962 #else
3963 	int i;
3964 	DECLARE_BITMAP(used, 256);
3965 
3966 	bitmap_zero(used, 256);
3967 	for (i = 0; i < nr_ioapics; i++) {
3968 		struct mpc_ioapic *ia = &mp_ioapics[i];
3969 		__set_bit(ia->apicid, used);
3970 	}
3971 	if (!test_bit(id, used))
3972 		return id;
3973 	return find_first_zero_bit(used, 256);
3974 #endif
3975 }
3976 
3977 #ifdef CONFIG_X86_32
3978 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3979 {
3980 	union IO_APIC_reg_00 reg_00;
3981 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3982 	physid_mask_t tmp;
3983 	unsigned long flags;
3984 	int i = 0;
3985 
3986 	/*
3987 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3988 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3989 	 * supports up to 16 on one shared APIC bus.
3990 	 *
3991 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3992 	 *      advantage of new APIC bus architecture.
3993 	 */
3994 
3995 	if (physids_empty(apic_id_map))
3996 		apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3997 
3998 	raw_spin_lock_irqsave(&ioapic_lock, flags);
3999 	reg_00.raw = io_apic_read(ioapic, 0);
4000 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
4001 
4002 	if (apic_id >= get_physical_broadcast()) {
4003 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
4004 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
4005 		apic_id = reg_00.bits.ID;
4006 	}
4007 
4008 	/*
4009 	 * Every APIC in a system must have a unique ID or we get lots of nice
4010 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
4011 	 */
4012 	if (apic->check_apicid_used(&apic_id_map, apic_id)) {
4013 
4014 		for (i = 0; i < get_physical_broadcast(); i++) {
4015 			if (!apic->check_apicid_used(&apic_id_map, i))
4016 				break;
4017 		}
4018 
4019 		if (i == get_physical_broadcast())
4020 			panic("Max apic_id exceeded!\n");
4021 
4022 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
4023 			"trying %d\n", ioapic, apic_id, i);
4024 
4025 		apic_id = i;
4026 	}
4027 
4028 	apic->apicid_to_cpu_present(apic_id, &tmp);
4029 	physids_or(apic_id_map, apic_id_map, tmp);
4030 
4031 	if (reg_00.bits.ID != apic_id) {
4032 		reg_00.bits.ID = apic_id;
4033 
4034 		raw_spin_lock_irqsave(&ioapic_lock, flags);
4035 		io_apic_write(ioapic, 0, reg_00.raw);
4036 		reg_00.raw = io_apic_read(ioapic, 0);
4037 		raw_spin_unlock_irqrestore(&ioapic_lock, flags);
4038 
4039 		/* Sanity check */
4040 		if (reg_00.bits.ID != apic_id) {
4041 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
4042 			return -1;
4043 		}
4044 	}
4045 
4046 	apic_printk(APIC_VERBOSE, KERN_INFO
4047 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
4048 
4049 	return apic_id;
4050 }
4051 #endif
4052 
4053 int __init io_apic_get_version(int ioapic)
4054 {
4055 	union IO_APIC_reg_01	reg_01;
4056 	unsigned long flags;
4057 
4058 	raw_spin_lock_irqsave(&ioapic_lock, flags);
4059 	reg_01.raw = io_apic_read(ioapic, 1);
4060 	raw_spin_unlock_irqrestore(&ioapic_lock, flags);
4061 
4062 	return reg_01.bits.version;
4063 }
4064 
4065 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
4066 {
4067 	int ioapic, pin, idx;
4068 
4069 	if (skip_ioapic_setup)
4070 		return -1;
4071 
4072 	ioapic = mp_find_ioapic(gsi);
4073 	if (ioapic < 0)
4074 		return -1;
4075 
4076 	pin = mp_find_ioapic_pin(ioapic, gsi);
4077 	if (pin < 0)
4078 		return -1;
4079 
4080 	idx = find_irq_entry(ioapic, pin, mp_INT);
4081 	if (idx < 0)
4082 		return -1;
4083 
4084 	*trigger = irq_trigger(idx);
4085 	*polarity = irq_polarity(idx);
4086 	return 0;
4087 }
4088 
4089 /*
4090  * This function currently is only a helper for the i386 smp boot process where
4091  * we need to reprogram the ioredtbls to cater for the cpus which have come online
4092  * so mask in all cases should simply be apic->target_cpus()
4093  */
4094 #ifdef CONFIG_SMP
4095 void __init setup_ioapic_dest(void)
4096 {
4097 	int pin, ioapic, irq, irq_entry;
4098 	struct irq_desc *desc;
4099 	const struct cpumask *mask;
4100 
4101 	if (skip_ioapic_setup == 1)
4102 		return;
4103 
4104 	for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
4105 	for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4106 		irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4107 		if (irq_entry == -1)
4108 			continue;
4109 		irq = pin_2_irq(irq_entry, ioapic, pin);
4110 
4111 		if ((ioapic > 0) && (irq > 16))
4112 			continue;
4113 
4114 		desc = irq_to_desc(irq);
4115 
4116 		/*
4117 		 * Honour affinities which have been set in early boot
4118 		 */
4119 		if (desc->status &
4120 		    (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4121 			mask = desc->affinity;
4122 		else
4123 			mask = apic->target_cpus();
4124 
4125 		if (intr_remapping_enabled)
4126 			set_ir_ioapic_affinity_irq_desc(desc, mask);
4127 		else
4128 			set_ioapic_affinity_irq_desc(desc, mask);
4129 	}
4130 
4131 }
4132 #endif
4133 
4134 #define IOAPIC_RESOURCE_NAME_SIZE 11
4135 
4136 static struct resource *ioapic_resources;
4137 
4138 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
4139 {
4140 	unsigned long n;
4141 	struct resource *res;
4142 	char *mem;
4143 	int i;
4144 
4145 	if (nr_ioapics <= 0)
4146 		return NULL;
4147 
4148 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4149 	n *= nr_ioapics;
4150 
4151 	mem = alloc_bootmem(n);
4152 	res = (void *)mem;
4153 
4154 	mem += sizeof(struct resource) * nr_ioapics;
4155 
4156 	for (i = 0; i < nr_ioapics; i++) {
4157 		res[i].name = mem;
4158 		res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4159 		snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
4160 		mem += IOAPIC_RESOURCE_NAME_SIZE;
4161 	}
4162 
4163 	ioapic_resources = res;
4164 
4165 	return res;
4166 }
4167 
4168 void __init ioapic_init_mappings(void)
4169 {
4170 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4171 	struct resource *ioapic_res;
4172 	int i;
4173 
4174 	ioapic_res = ioapic_setup_resources(nr_ioapics);
4175 	for (i = 0; i < nr_ioapics; i++) {
4176 		if (smp_found_config) {
4177 			ioapic_phys = mp_ioapics[i].apicaddr;
4178 #ifdef CONFIG_X86_32
4179 			if (!ioapic_phys) {
4180 				printk(KERN_ERR
4181 				       "WARNING: bogus zero IO-APIC "
4182 				       "address found in MPTABLE, "
4183 				       "disabling IO/APIC support!\n");
4184 				smp_found_config = 0;
4185 				skip_ioapic_setup = 1;
4186 				goto fake_ioapic_page;
4187 			}
4188 #endif
4189 		} else {
4190 #ifdef CONFIG_X86_32
4191 fake_ioapic_page:
4192 #endif
4193 			ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
4194 			ioapic_phys = __pa(ioapic_phys);
4195 		}
4196 		set_fixmap_nocache(idx, ioapic_phys);
4197 		apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
4198 			__fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
4199 			ioapic_phys);
4200 		idx++;
4201 
4202 		ioapic_res->start = ioapic_phys;
4203 		ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
4204 		ioapic_res++;
4205 	}
4206 }
4207 
4208 void __init ioapic_insert_resources(void)
4209 {
4210 	int i;
4211 	struct resource *r = ioapic_resources;
4212 
4213 	if (!r) {
4214 		if (nr_ioapics > 0)
4215 			printk(KERN_ERR
4216 				"IO APIC resources couldn't be allocated.\n");
4217 		return;
4218 	}
4219 
4220 	for (i = 0; i < nr_ioapics; i++) {
4221 		insert_resource(&iomem_resource, r);
4222 		r++;
4223 	}
4224 }
4225 
4226 int mp_find_ioapic(u32 gsi)
4227 {
4228 	int i = 0;
4229 
4230 	/* Find the IOAPIC that manages this GSI. */
4231 	for (i = 0; i < nr_ioapics; i++) {
4232 		if ((gsi >= mp_gsi_routing[i].gsi_base)
4233 		    && (gsi <= mp_gsi_routing[i].gsi_end))
4234 			return i;
4235 	}
4236 
4237 	printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
4238 	return -1;
4239 }
4240 
4241 int mp_find_ioapic_pin(int ioapic, u32 gsi)
4242 {
4243 	if (WARN_ON(ioapic == -1))
4244 		return -1;
4245 	if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
4246 		return -1;
4247 
4248 	return gsi - mp_gsi_routing[ioapic].gsi_base;
4249 }
4250 
4251 static int bad_ioapic(unsigned long address)
4252 {
4253 	if (nr_ioapics >= MAX_IO_APICS) {
4254 		printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded "
4255 		       "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
4256 		return 1;
4257 	}
4258 	if (!address) {
4259 		printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
4260 		       " found in table, skipping!\n");
4261 		return 1;
4262 	}
4263 	return 0;
4264 }
4265 
4266 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4267 {
4268 	int idx = 0;
4269 	int entries;
4270 
4271 	if (bad_ioapic(address))
4272 		return;
4273 
4274 	idx = nr_ioapics;
4275 
4276 	mp_ioapics[idx].type = MP_IOAPIC;
4277 	mp_ioapics[idx].flags = MPC_APIC_USABLE;
4278 	mp_ioapics[idx].apicaddr = address;
4279 
4280 	set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4281 	mp_ioapics[idx].apicid = io_apic_unique_id(id);
4282 	mp_ioapics[idx].apicver = io_apic_get_version(idx);
4283 
4284 	/*
4285 	 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4286 	 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4287 	 */
4288 	entries = io_apic_get_redir_entries(idx);
4289 	mp_gsi_routing[idx].gsi_base = gsi_base;
4290 	mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
4291 
4292 	/*
4293 	 * The number of IO-APIC IRQ registers (== #pins):
4294 	 */
4295 	nr_ioapic_registers[idx] = entries;
4296 
4297 	if (mp_gsi_routing[idx].gsi_end >= gsi_top)
4298 		gsi_top = mp_gsi_routing[idx].gsi_end + 1;
4299 
4300 	printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4301 	       "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4302 	       mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4303 	       mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4304 
4305 	nr_ioapics++;
4306 }
4307 
4308 /* Enable IOAPIC early just for system timer */
4309 void __init pre_init_apic_IRQ0(void)
4310 {
4311 	struct irq_cfg *cfg;
4312 	struct irq_desc *desc;
4313 
4314 	printk(KERN_INFO "Early APIC setup for system timer0\n");
4315 #ifndef CONFIG_SMP
4316 	phys_cpu_present_map = physid_mask_of_physid(boot_cpu_physical_apicid);
4317 #endif
4318 	desc = irq_to_desc_alloc_node(0, 0);
4319 
4320 	setup_local_APIC();
4321 
4322 	cfg = irq_cfg(0);
4323 	add_pin_to_irq_node(cfg, 0, 0, 0);
4324 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
4325 
4326 	setup_IO_APIC_irq(0, 0, 0, desc, 0, 0);
4327 }
4328