1 /* 2 * Intel IO-APIC support for multi-Pentium hosts. 3 * 4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 5 * 6 * Many thanks to Stig Venaas for trying out countless experimental 7 * patches and reporting/debugging problems patiently! 8 * 9 * (c) 1999, Multiple IO-APIC support, developed by 10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and 11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>, 12 * further tested and cleaned up by Zach Brown <zab@redhat.com> 13 * and Ingo Molnar <mingo@redhat.com> 14 * 15 * Fixes 16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 17 * thanks to Eric Gilmore 18 * and Rolf G. Tews 19 * for testing these extensively 20 * Paul Diefenbaugh : Added full ACPI support 21 */ 22 23 #include <linux/mm.h> 24 #include <linux/interrupt.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/sched.h> 28 #include <linux/pci.h> 29 #include <linux/mc146818rtc.h> 30 #include <linux/compiler.h> 31 #include <linux/acpi.h> 32 #include <linux/module.h> 33 #include <linux/sysdev.h> 34 #include <linux/msi.h> 35 #include <linux/htirq.h> 36 #include <linux/freezer.h> 37 #include <linux/kthread.h> 38 #include <linux/jiffies.h> /* time_after() */ 39 #include <linux/slab.h> 40 #ifdef CONFIG_ACPI 41 #include <acpi/acpi_bus.h> 42 #endif 43 #include <linux/bootmem.h> 44 #include <linux/dmar.h> 45 #include <linux/hpet.h> 46 47 #include <asm/idle.h> 48 #include <asm/io.h> 49 #include <asm/smp.h> 50 #include <asm/cpu.h> 51 #include <asm/desc.h> 52 #include <asm/proto.h> 53 #include <asm/acpi.h> 54 #include <asm/dma.h> 55 #include <asm/timer.h> 56 #include <asm/i8259.h> 57 #include <asm/nmi.h> 58 #include <asm/msidef.h> 59 #include <asm/hypertransport.h> 60 #include <asm/setup.h> 61 #include <asm/irq_remapping.h> 62 #include <asm/hpet.h> 63 #include <asm/hw_irq.h> 64 65 #include <asm/apic.h> 66 67 #define __apicdebuginit(type) static type __init 68 #define for_each_irq_pin(entry, head) \ 69 for (entry = head; entry; entry = entry->next) 70 71 /* 72 * Is the SiS APIC rmw bug present ? 73 * -1 = don't know, 0 = no, 1 = yes 74 */ 75 int sis_apic_bug = -1; 76 77 static DEFINE_RAW_SPINLOCK(ioapic_lock); 78 static DEFINE_RAW_SPINLOCK(vector_lock); 79 80 /* 81 * # of IRQ routing registers 82 */ 83 int nr_ioapic_registers[MAX_IO_APICS]; 84 85 /* I/O APIC entries */ 86 struct mpc_ioapic mp_ioapics[MAX_IO_APICS]; 87 int nr_ioapics; 88 89 /* IO APIC gsi routing info */ 90 struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS]; 91 92 /* The one past the highest gsi number used */ 93 u32 gsi_top; 94 95 /* MP IRQ source entries */ 96 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; 97 98 /* # of MP IRQ source entries */ 99 int mp_irq_entries; 100 101 /* GSI interrupts */ 102 static int nr_irqs_gsi = NR_IRQS_LEGACY; 103 104 #if defined (CONFIG_MCA) || defined (CONFIG_EISA) 105 int mp_bus_id_to_type[MAX_MP_BUSSES]; 106 #endif 107 108 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); 109 110 int skip_ioapic_setup; 111 112 void arch_disable_smp_support(void) 113 { 114 #ifdef CONFIG_PCI 115 noioapicquirk = 1; 116 noioapicreroute = -1; 117 #endif 118 skip_ioapic_setup = 1; 119 } 120 121 static int __init parse_noapic(char *str) 122 { 123 /* disable IO-APIC */ 124 arch_disable_smp_support(); 125 return 0; 126 } 127 early_param("noapic", parse_noapic); 128 129 struct irq_pin_list { 130 int apic, pin; 131 struct irq_pin_list *next; 132 }; 133 134 static struct irq_pin_list *get_one_free_irq_2_pin(int node) 135 { 136 struct irq_pin_list *pin; 137 138 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node); 139 140 return pin; 141 } 142 143 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */ 144 #ifdef CONFIG_SPARSE_IRQ 145 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY]; 146 #else 147 static struct irq_cfg irq_cfgx[NR_IRQS]; 148 #endif 149 150 int __init arch_early_irq_init(void) 151 { 152 struct irq_cfg *cfg; 153 struct irq_desc *desc; 154 int count; 155 int node; 156 int i; 157 158 if (!legacy_pic->nr_legacy_irqs) { 159 nr_irqs_gsi = 0; 160 io_apic_irqs = ~0UL; 161 } 162 163 cfg = irq_cfgx; 164 count = ARRAY_SIZE(irq_cfgx); 165 node= cpu_to_node(boot_cpu_id); 166 167 for (i = 0; i < count; i++) { 168 desc = irq_to_desc(i); 169 desc->chip_data = &cfg[i]; 170 zalloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node); 171 zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node); 172 /* 173 * For legacy IRQ's, start with assigning irq0 to irq15 to 174 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0. 175 */ 176 if (i < legacy_pic->nr_legacy_irqs) { 177 cfg[i].vector = IRQ0_VECTOR + i; 178 cpumask_set_cpu(0, cfg[i].domain); 179 } 180 } 181 182 return 0; 183 } 184 185 #ifdef CONFIG_SPARSE_IRQ 186 struct irq_cfg *irq_cfg(unsigned int irq) 187 { 188 struct irq_cfg *cfg = NULL; 189 struct irq_desc *desc; 190 191 desc = irq_to_desc(irq); 192 if (desc) 193 cfg = desc->chip_data; 194 195 return cfg; 196 } 197 198 static struct irq_cfg *get_one_free_irq_cfg(int node) 199 { 200 struct irq_cfg *cfg; 201 202 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node); 203 if (cfg) { 204 if (!zalloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) { 205 kfree(cfg); 206 cfg = NULL; 207 } else if (!zalloc_cpumask_var_node(&cfg->old_domain, 208 GFP_ATOMIC, node)) { 209 free_cpumask_var(cfg->domain); 210 kfree(cfg); 211 cfg = NULL; 212 } 213 } 214 215 return cfg; 216 } 217 218 int arch_init_chip_data(struct irq_desc *desc, int node) 219 { 220 struct irq_cfg *cfg; 221 222 cfg = desc->chip_data; 223 if (!cfg) { 224 desc->chip_data = get_one_free_irq_cfg(node); 225 if (!desc->chip_data) { 226 printk(KERN_ERR "can not alloc irq_cfg\n"); 227 BUG_ON(1); 228 } 229 } 230 231 return 0; 232 } 233 234 /* for move_irq_desc */ 235 static void 236 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int node) 237 { 238 struct irq_pin_list *old_entry, *head, *tail, *entry; 239 240 cfg->irq_2_pin = NULL; 241 old_entry = old_cfg->irq_2_pin; 242 if (!old_entry) 243 return; 244 245 entry = get_one_free_irq_2_pin(node); 246 if (!entry) 247 return; 248 249 entry->apic = old_entry->apic; 250 entry->pin = old_entry->pin; 251 head = entry; 252 tail = entry; 253 old_entry = old_entry->next; 254 while (old_entry) { 255 entry = get_one_free_irq_2_pin(node); 256 if (!entry) { 257 entry = head; 258 while (entry) { 259 head = entry->next; 260 kfree(entry); 261 entry = head; 262 } 263 /* still use the old one */ 264 return; 265 } 266 entry->apic = old_entry->apic; 267 entry->pin = old_entry->pin; 268 tail->next = entry; 269 tail = entry; 270 old_entry = old_entry->next; 271 } 272 273 tail->next = NULL; 274 cfg->irq_2_pin = head; 275 } 276 277 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg) 278 { 279 struct irq_pin_list *entry, *next; 280 281 if (old_cfg->irq_2_pin == cfg->irq_2_pin) 282 return; 283 284 entry = old_cfg->irq_2_pin; 285 286 while (entry) { 287 next = entry->next; 288 kfree(entry); 289 entry = next; 290 } 291 old_cfg->irq_2_pin = NULL; 292 } 293 294 void arch_init_copy_chip_data(struct irq_desc *old_desc, 295 struct irq_desc *desc, int node) 296 { 297 struct irq_cfg *cfg; 298 struct irq_cfg *old_cfg; 299 300 cfg = get_one_free_irq_cfg(node); 301 302 if (!cfg) 303 return; 304 305 desc->chip_data = cfg; 306 307 old_cfg = old_desc->chip_data; 308 309 memcpy(cfg, old_cfg, sizeof(struct irq_cfg)); 310 311 init_copy_irq_2_pin(old_cfg, cfg, node); 312 } 313 314 static void free_irq_cfg(struct irq_cfg *old_cfg) 315 { 316 kfree(old_cfg); 317 } 318 319 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc) 320 { 321 struct irq_cfg *old_cfg, *cfg; 322 323 old_cfg = old_desc->chip_data; 324 cfg = desc->chip_data; 325 326 if (old_cfg == cfg) 327 return; 328 329 if (old_cfg) { 330 free_irq_2_pin(old_cfg, cfg); 331 free_irq_cfg(old_cfg); 332 old_desc->chip_data = NULL; 333 } 334 } 335 /* end for move_irq_desc */ 336 337 #else 338 struct irq_cfg *irq_cfg(unsigned int irq) 339 { 340 return irq < nr_irqs ? irq_cfgx + irq : NULL; 341 } 342 343 #endif 344 345 struct io_apic { 346 unsigned int index; 347 unsigned int unused[3]; 348 unsigned int data; 349 unsigned int unused2[11]; 350 unsigned int eoi; 351 }; 352 353 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) 354 { 355 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) 356 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK); 357 } 358 359 static inline void io_apic_eoi(unsigned int apic, unsigned int vector) 360 { 361 struct io_apic __iomem *io_apic = io_apic_base(apic); 362 writel(vector, &io_apic->eoi); 363 } 364 365 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg) 366 { 367 struct io_apic __iomem *io_apic = io_apic_base(apic); 368 writel(reg, &io_apic->index); 369 return readl(&io_apic->data); 370 } 371 372 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value) 373 { 374 struct io_apic __iomem *io_apic = io_apic_base(apic); 375 writel(reg, &io_apic->index); 376 writel(value, &io_apic->data); 377 } 378 379 /* 380 * Re-write a value: to be used for read-modify-write 381 * cycles where the read already set up the index register. 382 * 383 * Older SiS APIC requires we rewrite the index register 384 */ 385 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value) 386 { 387 struct io_apic __iomem *io_apic = io_apic_base(apic); 388 389 if (sis_apic_bug) 390 writel(reg, &io_apic->index); 391 writel(value, &io_apic->data); 392 } 393 394 static bool io_apic_level_ack_pending(struct irq_cfg *cfg) 395 { 396 struct irq_pin_list *entry; 397 unsigned long flags; 398 399 raw_spin_lock_irqsave(&ioapic_lock, flags); 400 for_each_irq_pin(entry, cfg->irq_2_pin) { 401 unsigned int reg; 402 int pin; 403 404 pin = entry->pin; 405 reg = io_apic_read(entry->apic, 0x10 + pin*2); 406 /* Is the remote IRR bit set? */ 407 if (reg & IO_APIC_REDIR_REMOTE_IRR) { 408 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 409 return true; 410 } 411 } 412 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 413 414 return false; 415 } 416 417 union entry_union { 418 struct { u32 w1, w2; }; 419 struct IO_APIC_route_entry entry; 420 }; 421 422 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) 423 { 424 union entry_union eu; 425 unsigned long flags; 426 raw_spin_lock_irqsave(&ioapic_lock, flags); 427 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin); 428 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin); 429 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 430 return eu.entry; 431 } 432 433 /* 434 * When we write a new IO APIC routing entry, we need to write the high 435 * word first! If the mask bit in the low word is clear, we will enable 436 * the interrupt, and we need to make sure the entry is fully populated 437 * before that happens. 438 */ 439 static void 440 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 441 { 442 union entry_union eu = {{0, 0}}; 443 444 eu.entry = e; 445 io_apic_write(apic, 0x11 + 2*pin, eu.w2); 446 io_apic_write(apic, 0x10 + 2*pin, eu.w1); 447 } 448 449 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 450 { 451 unsigned long flags; 452 raw_spin_lock_irqsave(&ioapic_lock, flags); 453 __ioapic_write_entry(apic, pin, e); 454 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 455 } 456 457 /* 458 * When we mask an IO APIC routing entry, we need to write the low 459 * word first, in order to set the mask bit before we change the 460 * high bits! 461 */ 462 static void ioapic_mask_entry(int apic, int pin) 463 { 464 unsigned long flags; 465 union entry_union eu = { .entry.mask = 1 }; 466 467 raw_spin_lock_irqsave(&ioapic_lock, flags); 468 io_apic_write(apic, 0x10 + 2*pin, eu.w1); 469 io_apic_write(apic, 0x11 + 2*pin, eu.w2); 470 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 471 } 472 473 /* 474 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are 475 * shared ISA-space IRQs, so we have to support them. We are super 476 * fast in the common case, and fast for shared ISA-space IRQs. 477 */ 478 static int 479 add_pin_to_irq_node_nopanic(struct irq_cfg *cfg, int node, int apic, int pin) 480 { 481 struct irq_pin_list **last, *entry; 482 483 /* don't allow duplicates */ 484 last = &cfg->irq_2_pin; 485 for_each_irq_pin(entry, cfg->irq_2_pin) { 486 if (entry->apic == apic && entry->pin == pin) 487 return 0; 488 last = &entry->next; 489 } 490 491 entry = get_one_free_irq_2_pin(node); 492 if (!entry) { 493 printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n", 494 node, apic, pin); 495 return -ENOMEM; 496 } 497 entry->apic = apic; 498 entry->pin = pin; 499 500 *last = entry; 501 return 0; 502 } 503 504 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin) 505 { 506 if (add_pin_to_irq_node_nopanic(cfg, node, apic, pin)) 507 panic("IO-APIC: failed to add irq-pin. Can not proceed\n"); 508 } 509 510 /* 511 * Reroute an IRQ to a different pin. 512 */ 513 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node, 514 int oldapic, int oldpin, 515 int newapic, int newpin) 516 { 517 struct irq_pin_list *entry; 518 519 for_each_irq_pin(entry, cfg->irq_2_pin) { 520 if (entry->apic == oldapic && entry->pin == oldpin) { 521 entry->apic = newapic; 522 entry->pin = newpin; 523 /* every one is different, right? */ 524 return; 525 } 526 } 527 528 /* old apic/pin didn't exist, so just add new ones */ 529 add_pin_to_irq_node(cfg, node, newapic, newpin); 530 } 531 532 static void __io_apic_modify_irq(struct irq_pin_list *entry, 533 int mask_and, int mask_or, 534 void (*final)(struct irq_pin_list *entry)) 535 { 536 unsigned int reg, pin; 537 538 pin = entry->pin; 539 reg = io_apic_read(entry->apic, 0x10 + pin * 2); 540 reg &= mask_and; 541 reg |= mask_or; 542 io_apic_modify(entry->apic, 0x10 + pin * 2, reg); 543 if (final) 544 final(entry); 545 } 546 547 static void io_apic_modify_irq(struct irq_cfg *cfg, 548 int mask_and, int mask_or, 549 void (*final)(struct irq_pin_list *entry)) 550 { 551 struct irq_pin_list *entry; 552 553 for_each_irq_pin(entry, cfg->irq_2_pin) 554 __io_apic_modify_irq(entry, mask_and, mask_or, final); 555 } 556 557 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry) 558 { 559 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER, 560 IO_APIC_REDIR_MASKED, NULL); 561 } 562 563 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry) 564 { 565 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED, 566 IO_APIC_REDIR_LEVEL_TRIGGER, NULL); 567 } 568 569 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg) 570 { 571 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL); 572 } 573 574 static void io_apic_sync(struct irq_pin_list *entry) 575 { 576 /* 577 * Synchronize the IO-APIC and the CPU by doing 578 * a dummy read from the IO-APIC 579 */ 580 struct io_apic __iomem *io_apic; 581 io_apic = io_apic_base(entry->apic); 582 readl(&io_apic->data); 583 } 584 585 static void __mask_IO_APIC_irq(struct irq_cfg *cfg) 586 { 587 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync); 588 } 589 590 static void mask_IO_APIC_irq_desc(struct irq_desc *desc) 591 { 592 struct irq_cfg *cfg = desc->chip_data; 593 unsigned long flags; 594 595 BUG_ON(!cfg); 596 597 raw_spin_lock_irqsave(&ioapic_lock, flags); 598 __mask_IO_APIC_irq(cfg); 599 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 600 } 601 602 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc) 603 { 604 struct irq_cfg *cfg = desc->chip_data; 605 unsigned long flags; 606 607 raw_spin_lock_irqsave(&ioapic_lock, flags); 608 __unmask_IO_APIC_irq(cfg); 609 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 610 } 611 612 static void mask_IO_APIC_irq(unsigned int irq) 613 { 614 struct irq_desc *desc = irq_to_desc(irq); 615 616 mask_IO_APIC_irq_desc(desc); 617 } 618 static void unmask_IO_APIC_irq(unsigned int irq) 619 { 620 struct irq_desc *desc = irq_to_desc(irq); 621 622 unmask_IO_APIC_irq_desc(desc); 623 } 624 625 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) 626 { 627 struct IO_APIC_route_entry entry; 628 629 /* Check delivery_mode to be sure we're not clearing an SMI pin */ 630 entry = ioapic_read_entry(apic, pin); 631 if (entry.delivery_mode == dest_SMI) 632 return; 633 /* 634 * Disable it in the IO-APIC irq-routing table: 635 */ 636 ioapic_mask_entry(apic, pin); 637 } 638 639 static void clear_IO_APIC (void) 640 { 641 int apic, pin; 642 643 for (apic = 0; apic < nr_ioapics; apic++) 644 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 645 clear_IO_APIC_pin(apic, pin); 646 } 647 648 #ifdef CONFIG_X86_32 649 /* 650 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to 651 * specific CPU-side IRQs. 652 */ 653 654 #define MAX_PIRQS 8 655 static int pirq_entries[MAX_PIRQS] = { 656 [0 ... MAX_PIRQS - 1] = -1 657 }; 658 659 static int __init ioapic_pirq_setup(char *str) 660 { 661 int i, max; 662 int ints[MAX_PIRQS+1]; 663 664 get_options(str, ARRAY_SIZE(ints), ints); 665 666 apic_printk(APIC_VERBOSE, KERN_INFO 667 "PIRQ redirection, working around broken MP-BIOS.\n"); 668 max = MAX_PIRQS; 669 if (ints[0] < MAX_PIRQS) 670 max = ints[0]; 671 672 for (i = 0; i < max; i++) { 673 apic_printk(APIC_VERBOSE, KERN_DEBUG 674 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); 675 /* 676 * PIRQs are mapped upside down, usually. 677 */ 678 pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; 679 } 680 return 1; 681 } 682 683 __setup("pirq=", ioapic_pirq_setup); 684 #endif /* CONFIG_X86_32 */ 685 686 struct IO_APIC_route_entry **alloc_ioapic_entries(void) 687 { 688 int apic; 689 struct IO_APIC_route_entry **ioapic_entries; 690 691 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics, 692 GFP_ATOMIC); 693 if (!ioapic_entries) 694 return 0; 695 696 for (apic = 0; apic < nr_ioapics; apic++) { 697 ioapic_entries[apic] = 698 kzalloc(sizeof(struct IO_APIC_route_entry) * 699 nr_ioapic_registers[apic], GFP_ATOMIC); 700 if (!ioapic_entries[apic]) 701 goto nomem; 702 } 703 704 return ioapic_entries; 705 706 nomem: 707 while (--apic >= 0) 708 kfree(ioapic_entries[apic]); 709 kfree(ioapic_entries); 710 711 return 0; 712 } 713 714 /* 715 * Saves all the IO-APIC RTE's 716 */ 717 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) 718 { 719 int apic, pin; 720 721 if (!ioapic_entries) 722 return -ENOMEM; 723 724 for (apic = 0; apic < nr_ioapics; apic++) { 725 if (!ioapic_entries[apic]) 726 return -ENOMEM; 727 728 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 729 ioapic_entries[apic][pin] = 730 ioapic_read_entry(apic, pin); 731 } 732 733 return 0; 734 } 735 736 /* 737 * Mask all IO APIC entries. 738 */ 739 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) 740 { 741 int apic, pin; 742 743 if (!ioapic_entries) 744 return; 745 746 for (apic = 0; apic < nr_ioapics; apic++) { 747 if (!ioapic_entries[apic]) 748 break; 749 750 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 751 struct IO_APIC_route_entry entry; 752 753 entry = ioapic_entries[apic][pin]; 754 if (!entry.mask) { 755 entry.mask = 1; 756 ioapic_write_entry(apic, pin, entry); 757 } 758 } 759 } 760 } 761 762 /* 763 * Restore IO APIC entries which was saved in ioapic_entries. 764 */ 765 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries) 766 { 767 int apic, pin; 768 769 if (!ioapic_entries) 770 return -ENOMEM; 771 772 for (apic = 0; apic < nr_ioapics; apic++) { 773 if (!ioapic_entries[apic]) 774 return -ENOMEM; 775 776 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) 777 ioapic_write_entry(apic, pin, 778 ioapic_entries[apic][pin]); 779 } 780 return 0; 781 } 782 783 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries) 784 { 785 int apic; 786 787 for (apic = 0; apic < nr_ioapics; apic++) 788 kfree(ioapic_entries[apic]); 789 790 kfree(ioapic_entries); 791 } 792 793 /* 794 * Find the IRQ entry number of a certain pin. 795 */ 796 static int find_irq_entry(int apic, int pin, int type) 797 { 798 int i; 799 800 for (i = 0; i < mp_irq_entries; i++) 801 if (mp_irqs[i].irqtype == type && 802 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid || 803 mp_irqs[i].dstapic == MP_APIC_ALL) && 804 mp_irqs[i].dstirq == pin) 805 return i; 806 807 return -1; 808 } 809 810 /* 811 * Find the pin to which IRQ[irq] (ISA) is connected 812 */ 813 static int __init find_isa_irq_pin(int irq, int type) 814 { 815 int i; 816 817 for (i = 0; i < mp_irq_entries; i++) { 818 int lbus = mp_irqs[i].srcbus; 819 820 if (test_bit(lbus, mp_bus_not_pci) && 821 (mp_irqs[i].irqtype == type) && 822 (mp_irqs[i].srcbusirq == irq)) 823 824 return mp_irqs[i].dstirq; 825 } 826 return -1; 827 } 828 829 static int __init find_isa_irq_apic(int irq, int type) 830 { 831 int i; 832 833 for (i = 0; i < mp_irq_entries; i++) { 834 int lbus = mp_irqs[i].srcbus; 835 836 if (test_bit(lbus, mp_bus_not_pci) && 837 (mp_irqs[i].irqtype == type) && 838 (mp_irqs[i].srcbusirq == irq)) 839 break; 840 } 841 if (i < mp_irq_entries) { 842 int apic; 843 for(apic = 0; apic < nr_ioapics; apic++) { 844 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic) 845 return apic; 846 } 847 } 848 849 return -1; 850 } 851 852 #if defined(CONFIG_EISA) || defined(CONFIG_MCA) 853 /* 854 * EISA Edge/Level control register, ELCR 855 */ 856 static int EISA_ELCR(unsigned int irq) 857 { 858 if (irq < legacy_pic->nr_legacy_irqs) { 859 unsigned int port = 0x4d0 + (irq >> 3); 860 return (inb(port) >> (irq & 7)) & 1; 861 } 862 apic_printk(APIC_VERBOSE, KERN_INFO 863 "Broken MPtable reports ISA irq %d\n", irq); 864 return 0; 865 } 866 867 #endif 868 869 /* ISA interrupts are always polarity zero edge triggered, 870 * when listed as conforming in the MP table. */ 871 872 #define default_ISA_trigger(idx) (0) 873 #define default_ISA_polarity(idx) (0) 874 875 /* EISA interrupts are always polarity zero and can be edge or level 876 * trigger depending on the ELCR value. If an interrupt is listed as 877 * EISA conforming in the MP table, that means its trigger type must 878 * be read in from the ELCR */ 879 880 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq)) 881 #define default_EISA_polarity(idx) default_ISA_polarity(idx) 882 883 /* PCI interrupts are always polarity one level triggered, 884 * when listed as conforming in the MP table. */ 885 886 #define default_PCI_trigger(idx) (1) 887 #define default_PCI_polarity(idx) (1) 888 889 /* MCA interrupts are always polarity zero level triggered, 890 * when listed as conforming in the MP table. */ 891 892 #define default_MCA_trigger(idx) (1) 893 #define default_MCA_polarity(idx) default_ISA_polarity(idx) 894 895 static int MPBIOS_polarity(int idx) 896 { 897 int bus = mp_irqs[idx].srcbus; 898 int polarity; 899 900 /* 901 * Determine IRQ line polarity (high active or low active): 902 */ 903 switch (mp_irqs[idx].irqflag & 3) 904 { 905 case 0: /* conforms, ie. bus-type dependent polarity */ 906 if (test_bit(bus, mp_bus_not_pci)) 907 polarity = default_ISA_polarity(idx); 908 else 909 polarity = default_PCI_polarity(idx); 910 break; 911 case 1: /* high active */ 912 { 913 polarity = 0; 914 break; 915 } 916 case 2: /* reserved */ 917 { 918 printk(KERN_WARNING "broken BIOS!!\n"); 919 polarity = 1; 920 break; 921 } 922 case 3: /* low active */ 923 { 924 polarity = 1; 925 break; 926 } 927 default: /* invalid */ 928 { 929 printk(KERN_WARNING "broken BIOS!!\n"); 930 polarity = 1; 931 break; 932 } 933 } 934 return polarity; 935 } 936 937 static int MPBIOS_trigger(int idx) 938 { 939 int bus = mp_irqs[idx].srcbus; 940 int trigger; 941 942 /* 943 * Determine IRQ trigger mode (edge or level sensitive): 944 */ 945 switch ((mp_irqs[idx].irqflag>>2) & 3) 946 { 947 case 0: /* conforms, ie. bus-type dependent */ 948 if (test_bit(bus, mp_bus_not_pci)) 949 trigger = default_ISA_trigger(idx); 950 else 951 trigger = default_PCI_trigger(idx); 952 #if defined(CONFIG_EISA) || defined(CONFIG_MCA) 953 switch (mp_bus_id_to_type[bus]) { 954 case MP_BUS_ISA: /* ISA pin */ 955 { 956 /* set before the switch */ 957 break; 958 } 959 case MP_BUS_EISA: /* EISA pin */ 960 { 961 trigger = default_EISA_trigger(idx); 962 break; 963 } 964 case MP_BUS_PCI: /* PCI pin */ 965 { 966 /* set before the switch */ 967 break; 968 } 969 case MP_BUS_MCA: /* MCA pin */ 970 { 971 trigger = default_MCA_trigger(idx); 972 break; 973 } 974 default: 975 { 976 printk(KERN_WARNING "broken BIOS!!\n"); 977 trigger = 1; 978 break; 979 } 980 } 981 #endif 982 break; 983 case 1: /* edge */ 984 { 985 trigger = 0; 986 break; 987 } 988 case 2: /* reserved */ 989 { 990 printk(KERN_WARNING "broken BIOS!!\n"); 991 trigger = 1; 992 break; 993 } 994 case 3: /* level */ 995 { 996 trigger = 1; 997 break; 998 } 999 default: /* invalid */ 1000 { 1001 printk(KERN_WARNING "broken BIOS!!\n"); 1002 trigger = 0; 1003 break; 1004 } 1005 } 1006 return trigger; 1007 } 1008 1009 static inline int irq_polarity(int idx) 1010 { 1011 return MPBIOS_polarity(idx); 1012 } 1013 1014 static inline int irq_trigger(int idx) 1015 { 1016 return MPBIOS_trigger(idx); 1017 } 1018 1019 static int pin_2_irq(int idx, int apic, int pin) 1020 { 1021 int irq; 1022 int bus = mp_irqs[idx].srcbus; 1023 1024 /* 1025 * Debugging check, we are in big trouble if this message pops up! 1026 */ 1027 if (mp_irqs[idx].dstirq != pin) 1028 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n"); 1029 1030 if (test_bit(bus, mp_bus_not_pci)) { 1031 irq = mp_irqs[idx].srcbusirq; 1032 } else { 1033 u32 gsi = mp_gsi_routing[apic].gsi_base + pin; 1034 1035 if (gsi >= NR_IRQS_LEGACY) 1036 irq = gsi; 1037 else 1038 irq = gsi_top + gsi; 1039 } 1040 1041 #ifdef CONFIG_X86_32 1042 /* 1043 * PCI IRQ command line redirection. Yes, limits are hardcoded. 1044 */ 1045 if ((pin >= 16) && (pin <= 23)) { 1046 if (pirq_entries[pin-16] != -1) { 1047 if (!pirq_entries[pin-16]) { 1048 apic_printk(APIC_VERBOSE, KERN_DEBUG 1049 "disabling PIRQ%d\n", pin-16); 1050 } else { 1051 irq = pirq_entries[pin-16]; 1052 apic_printk(APIC_VERBOSE, KERN_DEBUG 1053 "using PIRQ%d -> IRQ %d\n", 1054 pin-16, irq); 1055 } 1056 } 1057 } 1058 #endif 1059 1060 return irq; 1061 } 1062 1063 /* 1064 * Find a specific PCI IRQ entry. 1065 * Not an __init, possibly needed by modules 1066 */ 1067 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin, 1068 struct io_apic_irq_attr *irq_attr) 1069 { 1070 int apic, i, best_guess = -1; 1071 1072 apic_printk(APIC_DEBUG, 1073 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", 1074 bus, slot, pin); 1075 if (test_bit(bus, mp_bus_not_pci)) { 1076 apic_printk(APIC_VERBOSE, 1077 "PCI BIOS passed nonexistent PCI bus %d!\n", bus); 1078 return -1; 1079 } 1080 for (i = 0; i < mp_irq_entries; i++) { 1081 int lbus = mp_irqs[i].srcbus; 1082 1083 for (apic = 0; apic < nr_ioapics; apic++) 1084 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic || 1085 mp_irqs[i].dstapic == MP_APIC_ALL) 1086 break; 1087 1088 if (!test_bit(lbus, mp_bus_not_pci) && 1089 !mp_irqs[i].irqtype && 1090 (bus == lbus) && 1091 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) { 1092 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq); 1093 1094 if (!(apic || IO_APIC_IRQ(irq))) 1095 continue; 1096 1097 if (pin == (mp_irqs[i].srcbusirq & 3)) { 1098 set_io_apic_irq_attr(irq_attr, apic, 1099 mp_irqs[i].dstirq, 1100 irq_trigger(i), 1101 irq_polarity(i)); 1102 return irq; 1103 } 1104 /* 1105 * Use the first all-but-pin matching entry as a 1106 * best-guess fuzzy result for broken mptables. 1107 */ 1108 if (best_guess < 0) { 1109 set_io_apic_irq_attr(irq_attr, apic, 1110 mp_irqs[i].dstirq, 1111 irq_trigger(i), 1112 irq_polarity(i)); 1113 best_guess = irq; 1114 } 1115 } 1116 } 1117 return best_guess; 1118 } 1119 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); 1120 1121 void lock_vector_lock(void) 1122 { 1123 /* Used to the online set of cpus does not change 1124 * during assign_irq_vector. 1125 */ 1126 raw_spin_lock(&vector_lock); 1127 } 1128 1129 void unlock_vector_lock(void) 1130 { 1131 raw_spin_unlock(&vector_lock); 1132 } 1133 1134 static int 1135 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) 1136 { 1137 /* 1138 * NOTE! The local APIC isn't very good at handling 1139 * multiple interrupts at the same interrupt level. 1140 * As the interrupt level is determined by taking the 1141 * vector number and shifting that right by 4, we 1142 * want to spread these out a bit so that they don't 1143 * all fall in the same interrupt level. 1144 * 1145 * Also, we've got to be careful not to trash gate 1146 * 0x80, because int 0x80 is hm, kind of importantish. ;) 1147 */ 1148 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START; 1149 static int current_offset = VECTOR_OFFSET_START % 8; 1150 unsigned int old_vector; 1151 int cpu, err; 1152 cpumask_var_t tmp_mask; 1153 1154 if (cfg->move_in_progress) 1155 return -EBUSY; 1156 1157 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC)) 1158 return -ENOMEM; 1159 1160 old_vector = cfg->vector; 1161 if (old_vector) { 1162 cpumask_and(tmp_mask, mask, cpu_online_mask); 1163 cpumask_and(tmp_mask, cfg->domain, tmp_mask); 1164 if (!cpumask_empty(tmp_mask)) { 1165 free_cpumask_var(tmp_mask); 1166 return 0; 1167 } 1168 } 1169 1170 /* Only try and allocate irqs on cpus that are present */ 1171 err = -ENOSPC; 1172 for_each_cpu_and(cpu, mask, cpu_online_mask) { 1173 int new_cpu; 1174 int vector, offset; 1175 1176 apic->vector_allocation_domain(cpu, tmp_mask); 1177 1178 vector = current_vector; 1179 offset = current_offset; 1180 next: 1181 vector += 8; 1182 if (vector >= first_system_vector) { 1183 /* If out of vectors on large boxen, must share them. */ 1184 offset = (offset + 1) % 8; 1185 vector = FIRST_EXTERNAL_VECTOR + offset; 1186 } 1187 if (unlikely(current_vector == vector)) 1188 continue; 1189 1190 if (test_bit(vector, used_vectors)) 1191 goto next; 1192 1193 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) 1194 if (per_cpu(vector_irq, new_cpu)[vector] != -1) 1195 goto next; 1196 /* Found one! */ 1197 current_vector = vector; 1198 current_offset = offset; 1199 if (old_vector) { 1200 cfg->move_in_progress = 1; 1201 cpumask_copy(cfg->old_domain, cfg->domain); 1202 } 1203 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) 1204 per_cpu(vector_irq, new_cpu)[vector] = irq; 1205 cfg->vector = vector; 1206 cpumask_copy(cfg->domain, tmp_mask); 1207 err = 0; 1208 break; 1209 } 1210 free_cpumask_var(tmp_mask); 1211 return err; 1212 } 1213 1214 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) 1215 { 1216 int err; 1217 unsigned long flags; 1218 1219 raw_spin_lock_irqsave(&vector_lock, flags); 1220 err = __assign_irq_vector(irq, cfg, mask); 1221 raw_spin_unlock_irqrestore(&vector_lock, flags); 1222 return err; 1223 } 1224 1225 static void __clear_irq_vector(int irq, struct irq_cfg *cfg) 1226 { 1227 int cpu, vector; 1228 1229 BUG_ON(!cfg->vector); 1230 1231 vector = cfg->vector; 1232 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask) 1233 per_cpu(vector_irq, cpu)[vector] = -1; 1234 1235 cfg->vector = 0; 1236 cpumask_clear(cfg->domain); 1237 1238 if (likely(!cfg->move_in_progress)) 1239 return; 1240 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) { 1241 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; 1242 vector++) { 1243 if (per_cpu(vector_irq, cpu)[vector] != irq) 1244 continue; 1245 per_cpu(vector_irq, cpu)[vector] = -1; 1246 break; 1247 } 1248 } 1249 cfg->move_in_progress = 0; 1250 } 1251 1252 void __setup_vector_irq(int cpu) 1253 { 1254 /* Initialize vector_irq on a new cpu */ 1255 int irq, vector; 1256 struct irq_cfg *cfg; 1257 struct irq_desc *desc; 1258 1259 /* 1260 * vector_lock will make sure that we don't run into irq vector 1261 * assignments that might be happening on another cpu in parallel, 1262 * while we setup our initial vector to irq mappings. 1263 */ 1264 raw_spin_lock(&vector_lock); 1265 /* Mark the inuse vectors */ 1266 for_each_irq_desc(irq, desc) { 1267 cfg = desc->chip_data; 1268 1269 /* 1270 * If it is a legacy IRQ handled by the legacy PIC, this cpu 1271 * will be part of the irq_cfg's domain. 1272 */ 1273 if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq)) 1274 cpumask_set_cpu(cpu, cfg->domain); 1275 1276 if (!cpumask_test_cpu(cpu, cfg->domain)) 1277 continue; 1278 vector = cfg->vector; 1279 per_cpu(vector_irq, cpu)[vector] = irq; 1280 } 1281 /* Mark the free vectors */ 1282 for (vector = 0; vector < NR_VECTORS; ++vector) { 1283 irq = per_cpu(vector_irq, cpu)[vector]; 1284 if (irq < 0) 1285 continue; 1286 1287 cfg = irq_cfg(irq); 1288 if (!cpumask_test_cpu(cpu, cfg->domain)) 1289 per_cpu(vector_irq, cpu)[vector] = -1; 1290 } 1291 raw_spin_unlock(&vector_lock); 1292 } 1293 1294 static struct irq_chip ioapic_chip; 1295 static struct irq_chip ir_ioapic_chip; 1296 1297 #define IOAPIC_AUTO -1 1298 #define IOAPIC_EDGE 0 1299 #define IOAPIC_LEVEL 1 1300 1301 #ifdef CONFIG_X86_32 1302 static inline int IO_APIC_irq_trigger(int irq) 1303 { 1304 int apic, idx, pin; 1305 1306 for (apic = 0; apic < nr_ioapics; apic++) { 1307 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 1308 idx = find_irq_entry(apic, pin, mp_INT); 1309 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin))) 1310 return irq_trigger(idx); 1311 } 1312 } 1313 /* 1314 * nonexistent IRQs are edge default 1315 */ 1316 return 0; 1317 } 1318 #else 1319 static inline int IO_APIC_irq_trigger(int irq) 1320 { 1321 return 1; 1322 } 1323 #endif 1324 1325 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger) 1326 { 1327 1328 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || 1329 trigger == IOAPIC_LEVEL) 1330 desc->status |= IRQ_LEVEL; 1331 else 1332 desc->status &= ~IRQ_LEVEL; 1333 1334 if (irq_remapped(irq)) { 1335 desc->status |= IRQ_MOVE_PCNTXT; 1336 if (trigger) 1337 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, 1338 handle_fasteoi_irq, 1339 "fasteoi"); 1340 else 1341 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip, 1342 handle_edge_irq, "edge"); 1343 return; 1344 } 1345 1346 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || 1347 trigger == IOAPIC_LEVEL) 1348 set_irq_chip_and_handler_name(irq, &ioapic_chip, 1349 handle_fasteoi_irq, 1350 "fasteoi"); 1351 else 1352 set_irq_chip_and_handler_name(irq, &ioapic_chip, 1353 handle_edge_irq, "edge"); 1354 } 1355 1356 int setup_ioapic_entry(int apic_id, int irq, 1357 struct IO_APIC_route_entry *entry, 1358 unsigned int destination, int trigger, 1359 int polarity, int vector, int pin) 1360 { 1361 /* 1362 * add it to the IO-APIC irq-routing table: 1363 */ 1364 memset(entry,0,sizeof(*entry)); 1365 1366 if (intr_remapping_enabled) { 1367 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id); 1368 struct irte irte; 1369 struct IR_IO_APIC_route_entry *ir_entry = 1370 (struct IR_IO_APIC_route_entry *) entry; 1371 int index; 1372 1373 if (!iommu) 1374 panic("No mapping iommu for ioapic %d\n", apic_id); 1375 1376 index = alloc_irte(iommu, irq, 1); 1377 if (index < 0) 1378 panic("Failed to allocate IRTE for ioapic %d\n", apic_id); 1379 1380 memset(&irte, 0, sizeof(irte)); 1381 1382 irte.present = 1; 1383 irte.dst_mode = apic->irq_dest_mode; 1384 /* 1385 * Trigger mode in the IRTE will always be edge, and the 1386 * actual level or edge trigger will be setup in the IO-APIC 1387 * RTE. This will help simplify level triggered irq migration. 1388 * For more details, see the comments above explainig IO-APIC 1389 * irq migration in the presence of interrupt-remapping. 1390 */ 1391 irte.trigger_mode = 0; 1392 irte.dlvry_mode = apic->irq_delivery_mode; 1393 irte.vector = vector; 1394 irte.dest_id = IRTE_DEST(destination); 1395 1396 /* Set source-id of interrupt request */ 1397 set_ioapic_sid(&irte, apic_id); 1398 1399 modify_irte(irq, &irte); 1400 1401 ir_entry->index2 = (index >> 15) & 0x1; 1402 ir_entry->zero = 0; 1403 ir_entry->format = 1; 1404 ir_entry->index = (index & 0x7fff); 1405 /* 1406 * IO-APIC RTE will be configured with virtual vector. 1407 * irq handler will do the explicit EOI to the io-apic. 1408 */ 1409 ir_entry->vector = pin; 1410 } else { 1411 entry->delivery_mode = apic->irq_delivery_mode; 1412 entry->dest_mode = apic->irq_dest_mode; 1413 entry->dest = destination; 1414 entry->vector = vector; 1415 } 1416 1417 entry->mask = 0; /* enable IRQ */ 1418 entry->trigger = trigger; 1419 entry->polarity = polarity; 1420 1421 /* Mask level triggered irqs. 1422 * Use IRQ_DELAYED_DISABLE for edge triggered irqs. 1423 */ 1424 if (trigger) 1425 entry->mask = 1; 1426 return 0; 1427 } 1428 1429 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc, 1430 int trigger, int polarity) 1431 { 1432 struct irq_cfg *cfg; 1433 struct IO_APIC_route_entry entry; 1434 unsigned int dest; 1435 1436 if (!IO_APIC_IRQ(irq)) 1437 return; 1438 1439 cfg = desc->chip_data; 1440 1441 /* 1442 * For legacy irqs, cfg->domain starts with cpu 0 for legacy 1443 * controllers like 8259. Now that IO-APIC can handle this irq, update 1444 * the cfg->domain. 1445 */ 1446 if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain)) 1447 apic->vector_allocation_domain(0, cfg->domain); 1448 1449 if (assign_irq_vector(irq, cfg, apic->target_cpus())) 1450 return; 1451 1452 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); 1453 1454 apic_printk(APIC_VERBOSE,KERN_DEBUG 1455 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> " 1456 "IRQ %d Mode:%i Active:%i)\n", 1457 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector, 1458 irq, trigger, polarity); 1459 1460 1461 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry, 1462 dest, trigger, polarity, cfg->vector, pin)) { 1463 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n", 1464 mp_ioapics[apic_id].apicid, pin); 1465 __clear_irq_vector(irq, cfg); 1466 return; 1467 } 1468 1469 ioapic_register_intr(irq, desc, trigger); 1470 if (irq < legacy_pic->nr_legacy_irqs) 1471 legacy_pic->chip->mask(irq); 1472 1473 ioapic_write_entry(apic_id, pin, entry); 1474 } 1475 1476 static struct { 1477 DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1); 1478 } mp_ioapic_routing[MAX_IO_APICS]; 1479 1480 static void __init setup_IO_APIC_irqs(void) 1481 { 1482 int apic_id, pin, idx, irq; 1483 int notcon = 0; 1484 struct irq_desc *desc; 1485 struct irq_cfg *cfg; 1486 int node = cpu_to_node(boot_cpu_id); 1487 1488 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); 1489 1490 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) 1491 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) { 1492 idx = find_irq_entry(apic_id, pin, mp_INT); 1493 if (idx == -1) { 1494 if (!notcon) { 1495 notcon = 1; 1496 apic_printk(APIC_VERBOSE, 1497 KERN_DEBUG " %d-%d", 1498 mp_ioapics[apic_id].apicid, pin); 1499 } else 1500 apic_printk(APIC_VERBOSE, " %d-%d", 1501 mp_ioapics[apic_id].apicid, pin); 1502 continue; 1503 } 1504 if (notcon) { 1505 apic_printk(APIC_VERBOSE, 1506 " (apicid-pin) not connected\n"); 1507 notcon = 0; 1508 } 1509 1510 irq = pin_2_irq(idx, apic_id, pin); 1511 1512 if ((apic_id > 0) && (irq > 16)) 1513 continue; 1514 1515 /* 1516 * Skip the timer IRQ if there's a quirk handler 1517 * installed and if it returns 1: 1518 */ 1519 if (apic->multi_timer_check && 1520 apic->multi_timer_check(apic_id, irq)) 1521 continue; 1522 1523 desc = irq_to_desc_alloc_node(irq, node); 1524 if (!desc) { 1525 printk(KERN_INFO "can not get irq_desc for %d\n", irq); 1526 continue; 1527 } 1528 cfg = desc->chip_data; 1529 add_pin_to_irq_node(cfg, node, apic_id, pin); 1530 /* 1531 * don't mark it in pin_programmed, so later acpi could 1532 * set it correctly when irq < 16 1533 */ 1534 setup_IO_APIC_irq(apic_id, pin, irq, desc, 1535 irq_trigger(idx), irq_polarity(idx)); 1536 } 1537 1538 if (notcon) 1539 apic_printk(APIC_VERBOSE, 1540 " (apicid-pin) not connected\n"); 1541 } 1542 1543 /* 1544 * for the gsit that is not in first ioapic 1545 * but could not use acpi_register_gsi() 1546 * like some special sci in IBM x3330 1547 */ 1548 void setup_IO_APIC_irq_extra(u32 gsi) 1549 { 1550 int apic_id = 0, pin, idx, irq; 1551 int node = cpu_to_node(boot_cpu_id); 1552 struct irq_desc *desc; 1553 struct irq_cfg *cfg; 1554 1555 /* 1556 * Convert 'gsi' to 'ioapic.pin'. 1557 */ 1558 apic_id = mp_find_ioapic(gsi); 1559 if (apic_id < 0) 1560 return; 1561 1562 pin = mp_find_ioapic_pin(apic_id, gsi); 1563 idx = find_irq_entry(apic_id, pin, mp_INT); 1564 if (idx == -1) 1565 return; 1566 1567 irq = pin_2_irq(idx, apic_id, pin); 1568 #ifdef CONFIG_SPARSE_IRQ 1569 desc = irq_to_desc(irq); 1570 if (desc) 1571 return; 1572 #endif 1573 desc = irq_to_desc_alloc_node(irq, node); 1574 if (!desc) { 1575 printk(KERN_INFO "can not get irq_desc for %d\n", irq); 1576 return; 1577 } 1578 1579 cfg = desc->chip_data; 1580 add_pin_to_irq_node(cfg, node, apic_id, pin); 1581 1582 if (test_bit(pin, mp_ioapic_routing[apic_id].pin_programmed)) { 1583 pr_debug("Pin %d-%d already programmed\n", 1584 mp_ioapics[apic_id].apicid, pin); 1585 return; 1586 } 1587 set_bit(pin, mp_ioapic_routing[apic_id].pin_programmed); 1588 1589 setup_IO_APIC_irq(apic_id, pin, irq, desc, 1590 irq_trigger(idx), irq_polarity(idx)); 1591 } 1592 1593 /* 1594 * Set up the timer pin, possibly with the 8259A-master behind. 1595 */ 1596 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin, 1597 int vector) 1598 { 1599 struct IO_APIC_route_entry entry; 1600 1601 if (intr_remapping_enabled) 1602 return; 1603 1604 memset(&entry, 0, sizeof(entry)); 1605 1606 /* 1607 * We use logical delivery to get the timer IRQ 1608 * to the first CPU. 1609 */ 1610 entry.dest_mode = apic->irq_dest_mode; 1611 entry.mask = 0; /* don't mask IRQ for edge */ 1612 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus()); 1613 entry.delivery_mode = apic->irq_delivery_mode; 1614 entry.polarity = 0; 1615 entry.trigger = 0; 1616 entry.vector = vector; 1617 1618 /* 1619 * The timer IRQ doesn't have to know that behind the 1620 * scene we may have a 8259A-master in AEOI mode ... 1621 */ 1622 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge"); 1623 1624 /* 1625 * Add it to the IO-APIC irq-routing table: 1626 */ 1627 ioapic_write_entry(apic_id, pin, entry); 1628 } 1629 1630 1631 __apicdebuginit(void) print_IO_APIC(void) 1632 { 1633 int apic, i; 1634 union IO_APIC_reg_00 reg_00; 1635 union IO_APIC_reg_01 reg_01; 1636 union IO_APIC_reg_02 reg_02; 1637 union IO_APIC_reg_03 reg_03; 1638 unsigned long flags; 1639 struct irq_cfg *cfg; 1640 struct irq_desc *desc; 1641 unsigned int irq; 1642 1643 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); 1644 for (i = 0; i < nr_ioapics; i++) 1645 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", 1646 mp_ioapics[i].apicid, nr_ioapic_registers[i]); 1647 1648 /* 1649 * We are a bit conservative about what we expect. We have to 1650 * know about every hardware change ASAP. 1651 */ 1652 printk(KERN_INFO "testing the IO APIC.......................\n"); 1653 1654 for (apic = 0; apic < nr_ioapics; apic++) { 1655 1656 raw_spin_lock_irqsave(&ioapic_lock, flags); 1657 reg_00.raw = io_apic_read(apic, 0); 1658 reg_01.raw = io_apic_read(apic, 1); 1659 if (reg_01.bits.version >= 0x10) 1660 reg_02.raw = io_apic_read(apic, 2); 1661 if (reg_01.bits.version >= 0x20) 1662 reg_03.raw = io_apic_read(apic, 3); 1663 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 1664 1665 printk("\n"); 1666 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid); 1667 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); 1668 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); 1669 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); 1670 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); 1671 1672 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); 1673 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries); 1674 1675 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); 1676 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version); 1677 1678 /* 1679 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, 1680 * but the value of reg_02 is read as the previous read register 1681 * value, so ignore it if reg_02 == reg_01. 1682 */ 1683 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { 1684 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); 1685 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); 1686 } 1687 1688 /* 1689 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 1690 * or reg_03, but the value of reg_0[23] is read as the previous read 1691 * register value, so ignore it if reg_03 == reg_0[12]. 1692 */ 1693 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && 1694 reg_03.raw != reg_01.raw) { 1695 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw); 1696 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT); 1697 } 1698 1699 printk(KERN_DEBUG ".... IRQ redirection table:\n"); 1700 1701 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol" 1702 " Stat Dmod Deli Vect:\n"); 1703 1704 for (i = 0; i <= reg_01.bits.entries; i++) { 1705 struct IO_APIC_route_entry entry; 1706 1707 entry = ioapic_read_entry(apic, i); 1708 1709 printk(KERN_DEBUG " %02x %03X ", 1710 i, 1711 entry.dest 1712 ); 1713 1714 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n", 1715 entry.mask, 1716 entry.trigger, 1717 entry.irr, 1718 entry.polarity, 1719 entry.delivery_status, 1720 entry.dest_mode, 1721 entry.delivery_mode, 1722 entry.vector 1723 ); 1724 } 1725 } 1726 printk(KERN_DEBUG "IRQ to pin mappings:\n"); 1727 for_each_irq_desc(irq, desc) { 1728 struct irq_pin_list *entry; 1729 1730 cfg = desc->chip_data; 1731 entry = cfg->irq_2_pin; 1732 if (!entry) 1733 continue; 1734 printk(KERN_DEBUG "IRQ%d ", irq); 1735 for_each_irq_pin(entry, cfg->irq_2_pin) 1736 printk("-> %d:%d", entry->apic, entry->pin); 1737 printk("\n"); 1738 } 1739 1740 printk(KERN_INFO ".................................... done.\n"); 1741 1742 return; 1743 } 1744 1745 __apicdebuginit(void) print_APIC_field(int base) 1746 { 1747 int i; 1748 1749 printk(KERN_DEBUG); 1750 1751 for (i = 0; i < 8; i++) 1752 printk(KERN_CONT "%08x", apic_read(base + i*0x10)); 1753 1754 printk(KERN_CONT "\n"); 1755 } 1756 1757 __apicdebuginit(void) print_local_APIC(void *dummy) 1758 { 1759 unsigned int i, v, ver, maxlvt; 1760 u64 icr; 1761 1762 printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n", 1763 smp_processor_id(), hard_smp_processor_id()); 1764 v = apic_read(APIC_ID); 1765 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id()); 1766 v = apic_read(APIC_LVR); 1767 printk(KERN_INFO "... APIC VERSION: %08x\n", v); 1768 ver = GET_APIC_VERSION(v); 1769 maxlvt = lapic_get_maxlvt(); 1770 1771 v = apic_read(APIC_TASKPRI); 1772 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); 1773 1774 if (APIC_INTEGRATED(ver)) { /* !82489DX */ 1775 if (!APIC_XAPIC(ver)) { 1776 v = apic_read(APIC_ARBPRI); 1777 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v, 1778 v & APIC_ARBPRI_MASK); 1779 } 1780 v = apic_read(APIC_PROCPRI); 1781 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v); 1782 } 1783 1784 /* 1785 * Remote read supported only in the 82489DX and local APIC for 1786 * Pentium processors. 1787 */ 1788 if (!APIC_INTEGRATED(ver) || maxlvt == 3) { 1789 v = apic_read(APIC_RRR); 1790 printk(KERN_DEBUG "... APIC RRR: %08x\n", v); 1791 } 1792 1793 v = apic_read(APIC_LDR); 1794 printk(KERN_DEBUG "... APIC LDR: %08x\n", v); 1795 if (!x2apic_enabled()) { 1796 v = apic_read(APIC_DFR); 1797 printk(KERN_DEBUG "... APIC DFR: %08x\n", v); 1798 } 1799 v = apic_read(APIC_SPIV); 1800 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v); 1801 1802 printk(KERN_DEBUG "... APIC ISR field:\n"); 1803 print_APIC_field(APIC_ISR); 1804 printk(KERN_DEBUG "... APIC TMR field:\n"); 1805 print_APIC_field(APIC_TMR); 1806 printk(KERN_DEBUG "... APIC IRR field:\n"); 1807 print_APIC_field(APIC_IRR); 1808 1809 if (APIC_INTEGRATED(ver)) { /* !82489DX */ 1810 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1811 apic_write(APIC_ESR, 0); 1812 1813 v = apic_read(APIC_ESR); 1814 printk(KERN_DEBUG "... APIC ESR: %08x\n", v); 1815 } 1816 1817 icr = apic_icr_read(); 1818 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr); 1819 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32)); 1820 1821 v = apic_read(APIC_LVTT); 1822 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v); 1823 1824 if (maxlvt > 3) { /* PC is LVT#4. */ 1825 v = apic_read(APIC_LVTPC); 1826 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v); 1827 } 1828 v = apic_read(APIC_LVT0); 1829 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v); 1830 v = apic_read(APIC_LVT1); 1831 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v); 1832 1833 if (maxlvt > 2) { /* ERR is LVT#3. */ 1834 v = apic_read(APIC_LVTERR); 1835 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v); 1836 } 1837 1838 v = apic_read(APIC_TMICT); 1839 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v); 1840 v = apic_read(APIC_TMCCT); 1841 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v); 1842 v = apic_read(APIC_TDCR); 1843 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v); 1844 1845 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { 1846 v = apic_read(APIC_EFEAT); 1847 maxlvt = (v >> 16) & 0xff; 1848 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v); 1849 v = apic_read(APIC_ECTRL); 1850 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v); 1851 for (i = 0; i < maxlvt; i++) { 1852 v = apic_read(APIC_EILVTn(i)); 1853 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v); 1854 } 1855 } 1856 printk("\n"); 1857 } 1858 1859 __apicdebuginit(void) print_local_APICs(int maxcpu) 1860 { 1861 int cpu; 1862 1863 if (!maxcpu) 1864 return; 1865 1866 preempt_disable(); 1867 for_each_online_cpu(cpu) { 1868 if (cpu >= maxcpu) 1869 break; 1870 smp_call_function_single(cpu, print_local_APIC, NULL, 1); 1871 } 1872 preempt_enable(); 1873 } 1874 1875 __apicdebuginit(void) print_PIC(void) 1876 { 1877 unsigned int v; 1878 unsigned long flags; 1879 1880 if (!legacy_pic->nr_legacy_irqs) 1881 return; 1882 1883 printk(KERN_DEBUG "\nprinting PIC contents\n"); 1884 1885 raw_spin_lock_irqsave(&i8259A_lock, flags); 1886 1887 v = inb(0xa1) << 8 | inb(0x21); 1888 printk(KERN_DEBUG "... PIC IMR: %04x\n", v); 1889 1890 v = inb(0xa0) << 8 | inb(0x20); 1891 printk(KERN_DEBUG "... PIC IRR: %04x\n", v); 1892 1893 outb(0x0b,0xa0); 1894 outb(0x0b,0x20); 1895 v = inb(0xa0) << 8 | inb(0x20); 1896 outb(0x0a,0xa0); 1897 outb(0x0a,0x20); 1898 1899 raw_spin_unlock_irqrestore(&i8259A_lock, flags); 1900 1901 printk(KERN_DEBUG "... PIC ISR: %04x\n", v); 1902 1903 v = inb(0x4d1) << 8 | inb(0x4d0); 1904 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v); 1905 } 1906 1907 static int __initdata show_lapic = 1; 1908 static __init int setup_show_lapic(char *arg) 1909 { 1910 int num = -1; 1911 1912 if (strcmp(arg, "all") == 0) { 1913 show_lapic = CONFIG_NR_CPUS; 1914 } else { 1915 get_option(&arg, &num); 1916 if (num >= 0) 1917 show_lapic = num; 1918 } 1919 1920 return 1; 1921 } 1922 __setup("show_lapic=", setup_show_lapic); 1923 1924 __apicdebuginit(int) print_ICs(void) 1925 { 1926 if (apic_verbosity == APIC_QUIET) 1927 return 0; 1928 1929 print_PIC(); 1930 1931 /* don't print out if apic is not there */ 1932 if (!cpu_has_apic && !apic_from_smp_config()) 1933 return 0; 1934 1935 print_local_APICs(show_lapic); 1936 print_IO_APIC(); 1937 1938 return 0; 1939 } 1940 1941 fs_initcall(print_ICs); 1942 1943 1944 /* Where if anywhere is the i8259 connect in external int mode */ 1945 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; 1946 1947 void __init enable_IO_APIC(void) 1948 { 1949 int i8259_apic, i8259_pin; 1950 int apic; 1951 1952 if (!legacy_pic->nr_legacy_irqs) 1953 return; 1954 1955 for(apic = 0; apic < nr_ioapics; apic++) { 1956 int pin; 1957 /* See if any of the pins is in ExtINT mode */ 1958 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { 1959 struct IO_APIC_route_entry entry; 1960 entry = ioapic_read_entry(apic, pin); 1961 1962 /* If the interrupt line is enabled and in ExtInt mode 1963 * I have found the pin where the i8259 is connected. 1964 */ 1965 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) { 1966 ioapic_i8259.apic = apic; 1967 ioapic_i8259.pin = pin; 1968 goto found_i8259; 1969 } 1970 } 1971 } 1972 found_i8259: 1973 /* Look to see what if the MP table has reported the ExtINT */ 1974 /* If we could not find the appropriate pin by looking at the ioapic 1975 * the i8259 probably is not connected the ioapic but give the 1976 * mptable a chance anyway. 1977 */ 1978 i8259_pin = find_isa_irq_pin(0, mp_ExtINT); 1979 i8259_apic = find_isa_irq_apic(0, mp_ExtINT); 1980 /* Trust the MP table if nothing is setup in the hardware */ 1981 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { 1982 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); 1983 ioapic_i8259.pin = i8259_pin; 1984 ioapic_i8259.apic = i8259_apic; 1985 } 1986 /* Complain if the MP table and the hardware disagree */ 1987 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && 1988 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) 1989 { 1990 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); 1991 } 1992 1993 /* 1994 * Do not trust the IO-APIC being empty at bootup 1995 */ 1996 clear_IO_APIC(); 1997 } 1998 1999 /* 2000 * Not an __init, needed by the reboot code 2001 */ 2002 void disable_IO_APIC(void) 2003 { 2004 /* 2005 * Clear the IO-APIC before rebooting: 2006 */ 2007 clear_IO_APIC(); 2008 2009 if (!legacy_pic->nr_legacy_irqs) 2010 return; 2011 2012 /* 2013 * If the i8259 is routed through an IOAPIC 2014 * Put that IOAPIC in virtual wire mode 2015 * so legacy interrupts can be delivered. 2016 * 2017 * With interrupt-remapping, for now we will use virtual wire A mode, 2018 * as virtual wire B is little complex (need to configure both 2019 * IOAPIC RTE aswell as interrupt-remapping table entry). 2020 * As this gets called during crash dump, keep this simple for now. 2021 */ 2022 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) { 2023 struct IO_APIC_route_entry entry; 2024 2025 memset(&entry, 0, sizeof(entry)); 2026 entry.mask = 0; /* Enabled */ 2027 entry.trigger = 0; /* Edge */ 2028 entry.irr = 0; 2029 entry.polarity = 0; /* High */ 2030 entry.delivery_status = 0; 2031 entry.dest_mode = 0; /* Physical */ 2032 entry.delivery_mode = dest_ExtINT; /* ExtInt */ 2033 entry.vector = 0; 2034 entry.dest = read_apic_id(); 2035 2036 /* 2037 * Add it to the IO-APIC irq-routing table: 2038 */ 2039 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); 2040 } 2041 2042 /* 2043 * Use virtual wire A mode when interrupt remapping is enabled. 2044 */ 2045 if (cpu_has_apic || apic_from_smp_config()) 2046 disconnect_bsp_APIC(!intr_remapping_enabled && 2047 ioapic_i8259.pin != -1); 2048 } 2049 2050 #ifdef CONFIG_X86_32 2051 /* 2052 * function to set the IO-APIC physical IDs based on the 2053 * values stored in the MPC table. 2054 * 2055 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999 2056 */ 2057 2058 void __init setup_ioapic_ids_from_mpc(void) 2059 { 2060 union IO_APIC_reg_00 reg_00; 2061 physid_mask_t phys_id_present_map; 2062 int apic_id; 2063 int i; 2064 unsigned char old_id; 2065 unsigned long flags; 2066 2067 if (acpi_ioapic) 2068 return; 2069 /* 2070 * Don't check I/O APIC IDs for xAPIC systems. They have 2071 * no meaning without the serial APIC bus. 2072 */ 2073 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2074 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) 2075 return; 2076 /* 2077 * This is broken; anything with a real cpu count has to 2078 * circumvent this idiocy regardless. 2079 */ 2080 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map); 2081 2082 /* 2083 * Set the IOAPIC ID to the value stored in the MPC table. 2084 */ 2085 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) { 2086 2087 /* Read the register 0 value */ 2088 raw_spin_lock_irqsave(&ioapic_lock, flags); 2089 reg_00.raw = io_apic_read(apic_id, 0); 2090 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2091 2092 old_id = mp_ioapics[apic_id].apicid; 2093 2094 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) { 2095 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", 2096 apic_id, mp_ioapics[apic_id].apicid); 2097 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 2098 reg_00.bits.ID); 2099 mp_ioapics[apic_id].apicid = reg_00.bits.ID; 2100 } 2101 2102 /* 2103 * Sanity check, is the ID really free? Every APIC in a 2104 * system must have a unique ID or we get lots of nice 2105 * 'stuck on smp_invalidate_needed IPI wait' messages. 2106 */ 2107 if (apic->check_apicid_used(&phys_id_present_map, 2108 mp_ioapics[apic_id].apicid)) { 2109 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", 2110 apic_id, mp_ioapics[apic_id].apicid); 2111 for (i = 0; i < get_physical_broadcast(); i++) 2112 if (!physid_isset(i, phys_id_present_map)) 2113 break; 2114 if (i >= get_physical_broadcast()) 2115 panic("Max APIC ID exceeded!\n"); 2116 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", 2117 i); 2118 physid_set(i, phys_id_present_map); 2119 mp_ioapics[apic_id].apicid = i; 2120 } else { 2121 physid_mask_t tmp; 2122 apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp); 2123 apic_printk(APIC_VERBOSE, "Setting %d in the " 2124 "phys_id_present_map\n", 2125 mp_ioapics[apic_id].apicid); 2126 physids_or(phys_id_present_map, phys_id_present_map, tmp); 2127 } 2128 2129 2130 /* 2131 * We need to adjust the IRQ routing table 2132 * if the ID changed. 2133 */ 2134 if (old_id != mp_ioapics[apic_id].apicid) 2135 for (i = 0; i < mp_irq_entries; i++) 2136 if (mp_irqs[i].dstapic == old_id) 2137 mp_irqs[i].dstapic 2138 = mp_ioapics[apic_id].apicid; 2139 2140 /* 2141 * Read the right value from the MPC table and 2142 * write it into the ID register. 2143 */ 2144 apic_printk(APIC_VERBOSE, KERN_INFO 2145 "...changing IO-APIC physical APIC ID to %d ...", 2146 mp_ioapics[apic_id].apicid); 2147 2148 reg_00.bits.ID = mp_ioapics[apic_id].apicid; 2149 raw_spin_lock_irqsave(&ioapic_lock, flags); 2150 io_apic_write(apic_id, 0, reg_00.raw); 2151 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2152 2153 /* 2154 * Sanity check 2155 */ 2156 raw_spin_lock_irqsave(&ioapic_lock, flags); 2157 reg_00.raw = io_apic_read(apic_id, 0); 2158 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2159 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid) 2160 printk("could not set ID!\n"); 2161 else 2162 apic_printk(APIC_VERBOSE, " ok.\n"); 2163 } 2164 } 2165 #endif 2166 2167 int no_timer_check __initdata; 2168 2169 static int __init notimercheck(char *s) 2170 { 2171 no_timer_check = 1; 2172 return 1; 2173 } 2174 __setup("no_timer_check", notimercheck); 2175 2176 /* 2177 * There is a nasty bug in some older SMP boards, their mptable lies 2178 * about the timer IRQ. We do the following to work around the situation: 2179 * 2180 * - timer IRQ defaults to IO-APIC IRQ 2181 * - if this function detects that timer IRQs are defunct, then we fall 2182 * back to ISA timer IRQs 2183 */ 2184 static int __init timer_irq_works(void) 2185 { 2186 unsigned long t1 = jiffies; 2187 unsigned long flags; 2188 2189 if (no_timer_check) 2190 return 1; 2191 2192 local_save_flags(flags); 2193 local_irq_enable(); 2194 /* Let ten ticks pass... */ 2195 mdelay((10 * 1000) / HZ); 2196 local_irq_restore(flags); 2197 2198 /* 2199 * Expect a few ticks at least, to be sure some possible 2200 * glue logic does not lock up after one or two first 2201 * ticks in a non-ExtINT mode. Also the local APIC 2202 * might have cached one ExtINT interrupt. Finally, at 2203 * least one tick may be lost due to delays. 2204 */ 2205 2206 /* jiffies wrap? */ 2207 if (time_after(jiffies, t1 + 4)) 2208 return 1; 2209 return 0; 2210 } 2211 2212 /* 2213 * In the SMP+IOAPIC case it might happen that there are an unspecified 2214 * number of pending IRQ events unhandled. These cases are very rare, 2215 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much 2216 * better to do it this way as thus we do not have to be aware of 2217 * 'pending' interrupts in the IRQ path, except at this point. 2218 */ 2219 /* 2220 * Edge triggered needs to resend any interrupt 2221 * that was delayed but this is now handled in the device 2222 * independent code. 2223 */ 2224 2225 /* 2226 * Starting up a edge-triggered IO-APIC interrupt is 2227 * nasty - we need to make sure that we get the edge. 2228 * If it is already asserted for some reason, we need 2229 * return 1 to indicate that is was pending. 2230 * 2231 * This is not complete - we should be able to fake 2232 * an edge even if it isn't on the 8259A... 2233 */ 2234 2235 static unsigned int startup_ioapic_irq(unsigned int irq) 2236 { 2237 int was_pending = 0; 2238 unsigned long flags; 2239 struct irq_cfg *cfg; 2240 2241 raw_spin_lock_irqsave(&ioapic_lock, flags); 2242 if (irq < legacy_pic->nr_legacy_irqs) { 2243 legacy_pic->chip->mask(irq); 2244 if (legacy_pic->irq_pending(irq)) 2245 was_pending = 1; 2246 } 2247 cfg = irq_cfg(irq); 2248 __unmask_IO_APIC_irq(cfg); 2249 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2250 2251 return was_pending; 2252 } 2253 2254 static int ioapic_retrigger_irq(unsigned int irq) 2255 { 2256 2257 struct irq_cfg *cfg = irq_cfg(irq); 2258 unsigned long flags; 2259 2260 raw_spin_lock_irqsave(&vector_lock, flags); 2261 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector); 2262 raw_spin_unlock_irqrestore(&vector_lock, flags); 2263 2264 return 1; 2265 } 2266 2267 /* 2268 * Level and edge triggered IO-APIC interrupts need different handling, 2269 * so we use two separate IRQ descriptors. Edge triggered IRQs can be 2270 * handled with the level-triggered descriptor, but that one has slightly 2271 * more overhead. Level-triggered interrupts cannot be handled with the 2272 * edge-triggered handler, without risking IRQ storms and other ugly 2273 * races. 2274 */ 2275 2276 #ifdef CONFIG_SMP 2277 void send_cleanup_vector(struct irq_cfg *cfg) 2278 { 2279 cpumask_var_t cleanup_mask; 2280 2281 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) { 2282 unsigned int i; 2283 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask) 2284 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR); 2285 } else { 2286 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask); 2287 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); 2288 free_cpumask_var(cleanup_mask); 2289 } 2290 cfg->move_in_progress = 0; 2291 } 2292 2293 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg) 2294 { 2295 int apic, pin; 2296 struct irq_pin_list *entry; 2297 u8 vector = cfg->vector; 2298 2299 for_each_irq_pin(entry, cfg->irq_2_pin) { 2300 unsigned int reg; 2301 2302 apic = entry->apic; 2303 pin = entry->pin; 2304 /* 2305 * With interrupt-remapping, destination information comes 2306 * from interrupt-remapping table entry. 2307 */ 2308 if (!irq_remapped(irq)) 2309 io_apic_write(apic, 0x11 + pin*2, dest); 2310 reg = io_apic_read(apic, 0x10 + pin*2); 2311 reg &= ~IO_APIC_REDIR_VECTOR_MASK; 2312 reg |= vector; 2313 io_apic_modify(apic, 0x10 + pin*2, reg); 2314 } 2315 } 2316 2317 /* 2318 * Either sets desc->affinity to a valid value, and returns 2319 * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and 2320 * leaves desc->affinity untouched. 2321 */ 2322 unsigned int 2323 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask, 2324 unsigned int *dest_id) 2325 { 2326 struct irq_cfg *cfg; 2327 unsigned int irq; 2328 2329 if (!cpumask_intersects(mask, cpu_online_mask)) 2330 return -1; 2331 2332 irq = desc->irq; 2333 cfg = desc->chip_data; 2334 if (assign_irq_vector(irq, cfg, mask)) 2335 return -1; 2336 2337 cpumask_copy(desc->affinity, mask); 2338 2339 *dest_id = apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain); 2340 return 0; 2341 } 2342 2343 static int 2344 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask) 2345 { 2346 struct irq_cfg *cfg; 2347 unsigned long flags; 2348 unsigned int dest; 2349 unsigned int irq; 2350 int ret = -1; 2351 2352 irq = desc->irq; 2353 cfg = desc->chip_data; 2354 2355 raw_spin_lock_irqsave(&ioapic_lock, flags); 2356 ret = set_desc_affinity(desc, mask, &dest); 2357 if (!ret) { 2358 /* Only the high 8 bits are valid. */ 2359 dest = SET_APIC_LOGICAL_ID(dest); 2360 __target_IO_APIC_irq(irq, dest, cfg); 2361 } 2362 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2363 2364 return ret; 2365 } 2366 2367 static int 2368 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask) 2369 { 2370 struct irq_desc *desc; 2371 2372 desc = irq_to_desc(irq); 2373 2374 return set_ioapic_affinity_irq_desc(desc, mask); 2375 } 2376 2377 #ifdef CONFIG_INTR_REMAP 2378 2379 /* 2380 * Migrate the IO-APIC irq in the presence of intr-remapping. 2381 * 2382 * For both level and edge triggered, irq migration is a simple atomic 2383 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 2384 * 2385 * For level triggered, we eliminate the io-apic RTE modification (with the 2386 * updated vector information), by using a virtual vector (io-apic pin number). 2387 * Real vector that is used for interrupting cpu will be coming from 2388 * the interrupt-remapping table entry. 2389 */ 2390 static int 2391 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask) 2392 { 2393 struct irq_cfg *cfg; 2394 struct irte irte; 2395 unsigned int dest; 2396 unsigned int irq; 2397 int ret = -1; 2398 2399 if (!cpumask_intersects(mask, cpu_online_mask)) 2400 return ret; 2401 2402 irq = desc->irq; 2403 if (get_irte(irq, &irte)) 2404 return ret; 2405 2406 cfg = desc->chip_data; 2407 if (assign_irq_vector(irq, cfg, mask)) 2408 return ret; 2409 2410 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask); 2411 2412 irte.vector = cfg->vector; 2413 irte.dest_id = IRTE_DEST(dest); 2414 2415 /* 2416 * Modified the IRTE and flushes the Interrupt entry cache. 2417 */ 2418 modify_irte(irq, &irte); 2419 2420 if (cfg->move_in_progress) 2421 send_cleanup_vector(cfg); 2422 2423 cpumask_copy(desc->affinity, mask); 2424 2425 return 0; 2426 } 2427 2428 /* 2429 * Migrates the IRQ destination in the process context. 2430 */ 2431 static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, 2432 const struct cpumask *mask) 2433 { 2434 return migrate_ioapic_irq_desc(desc, mask); 2435 } 2436 static int set_ir_ioapic_affinity_irq(unsigned int irq, 2437 const struct cpumask *mask) 2438 { 2439 struct irq_desc *desc = irq_to_desc(irq); 2440 2441 return set_ir_ioapic_affinity_irq_desc(desc, mask); 2442 } 2443 #else 2444 static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc, 2445 const struct cpumask *mask) 2446 { 2447 return 0; 2448 } 2449 #endif 2450 2451 asmlinkage void smp_irq_move_cleanup_interrupt(void) 2452 { 2453 unsigned vector, me; 2454 2455 ack_APIC_irq(); 2456 exit_idle(); 2457 irq_enter(); 2458 2459 me = smp_processor_id(); 2460 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 2461 unsigned int irq; 2462 unsigned int irr; 2463 struct irq_desc *desc; 2464 struct irq_cfg *cfg; 2465 irq = __get_cpu_var(vector_irq)[vector]; 2466 2467 if (irq == -1) 2468 continue; 2469 2470 desc = irq_to_desc(irq); 2471 if (!desc) 2472 continue; 2473 2474 cfg = irq_cfg(irq); 2475 raw_spin_lock(&desc->lock); 2476 2477 /* 2478 * Check if the irq migration is in progress. If so, we 2479 * haven't received the cleanup request yet for this irq. 2480 */ 2481 if (cfg->move_in_progress) 2482 goto unlock; 2483 2484 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) 2485 goto unlock; 2486 2487 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 2488 /* 2489 * Check if the vector that needs to be cleanedup is 2490 * registered at the cpu's IRR. If so, then this is not 2491 * the best time to clean it up. Lets clean it up in the 2492 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR 2493 * to myself. 2494 */ 2495 if (irr & (1 << (vector % 32))) { 2496 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); 2497 goto unlock; 2498 } 2499 __get_cpu_var(vector_irq)[vector] = -1; 2500 unlock: 2501 raw_spin_unlock(&desc->lock); 2502 } 2503 2504 irq_exit(); 2505 } 2506 2507 static void __irq_complete_move(struct irq_desc **descp, unsigned vector) 2508 { 2509 struct irq_desc *desc = *descp; 2510 struct irq_cfg *cfg = desc->chip_data; 2511 unsigned me; 2512 2513 if (likely(!cfg->move_in_progress)) 2514 return; 2515 2516 me = smp_processor_id(); 2517 2518 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) 2519 send_cleanup_vector(cfg); 2520 } 2521 2522 static void irq_complete_move(struct irq_desc **descp) 2523 { 2524 __irq_complete_move(descp, ~get_irq_regs()->orig_ax); 2525 } 2526 2527 void irq_force_complete_move(int irq) 2528 { 2529 struct irq_desc *desc = irq_to_desc(irq); 2530 struct irq_cfg *cfg = desc->chip_data; 2531 2532 if (!cfg) 2533 return; 2534 2535 __irq_complete_move(&desc, cfg->vector); 2536 } 2537 #else 2538 static inline void irq_complete_move(struct irq_desc **descp) {} 2539 #endif 2540 2541 static void ack_apic_edge(unsigned int irq) 2542 { 2543 struct irq_desc *desc = irq_to_desc(irq); 2544 2545 irq_complete_move(&desc); 2546 move_native_irq(irq); 2547 ack_APIC_irq(); 2548 } 2549 2550 atomic_t irq_mis_count; 2551 2552 /* 2553 * IO-APIC versions below 0x20 don't support EOI register. 2554 * For the record, here is the information about various versions: 2555 * 0Xh 82489DX 2556 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant 2557 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant 2558 * 30h-FFh Reserved 2559 * 2560 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic 2561 * version as 0x2. This is an error with documentation and these ICH chips 2562 * use io-apic's of version 0x20. 2563 * 2564 * For IO-APIC's with EOI register, we use that to do an explicit EOI. 2565 * Otherwise, we simulate the EOI message manually by changing the trigger 2566 * mode to edge and then back to level, with RTE being masked during this. 2567 */ 2568 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg) 2569 { 2570 struct irq_pin_list *entry; 2571 2572 for_each_irq_pin(entry, cfg->irq_2_pin) { 2573 if (mp_ioapics[entry->apic].apicver >= 0x20) { 2574 /* 2575 * Intr-remapping uses pin number as the virtual vector 2576 * in the RTE. Actual vector is programmed in 2577 * intr-remapping table entry. Hence for the io-apic 2578 * EOI we use the pin number. 2579 */ 2580 if (irq_remapped(irq)) 2581 io_apic_eoi(entry->apic, entry->pin); 2582 else 2583 io_apic_eoi(entry->apic, cfg->vector); 2584 } else { 2585 __mask_and_edge_IO_APIC_irq(entry); 2586 __unmask_and_level_IO_APIC_irq(entry); 2587 } 2588 } 2589 } 2590 2591 static void eoi_ioapic_irq(struct irq_desc *desc) 2592 { 2593 struct irq_cfg *cfg; 2594 unsigned long flags; 2595 unsigned int irq; 2596 2597 irq = desc->irq; 2598 cfg = desc->chip_data; 2599 2600 raw_spin_lock_irqsave(&ioapic_lock, flags); 2601 __eoi_ioapic_irq(irq, cfg); 2602 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 2603 } 2604 2605 static void ack_apic_level(unsigned int irq) 2606 { 2607 struct irq_desc *desc = irq_to_desc(irq); 2608 unsigned long v; 2609 int i; 2610 struct irq_cfg *cfg; 2611 int do_unmask_irq = 0; 2612 2613 irq_complete_move(&desc); 2614 #ifdef CONFIG_GENERIC_PENDING_IRQ 2615 /* If we are moving the irq we need to mask it */ 2616 if (unlikely(desc->status & IRQ_MOVE_PENDING)) { 2617 do_unmask_irq = 1; 2618 mask_IO_APIC_irq_desc(desc); 2619 } 2620 #endif 2621 2622 /* 2623 * It appears there is an erratum which affects at least version 0x11 2624 * of I/O APIC (that's the 82093AA and cores integrated into various 2625 * chipsets). Under certain conditions a level-triggered interrupt is 2626 * erroneously delivered as edge-triggered one but the respective IRR 2627 * bit gets set nevertheless. As a result the I/O unit expects an EOI 2628 * message but it will never arrive and further interrupts are blocked 2629 * from the source. The exact reason is so far unknown, but the 2630 * phenomenon was observed when two consecutive interrupt requests 2631 * from a given source get delivered to the same CPU and the source is 2632 * temporarily disabled in between. 2633 * 2634 * A workaround is to simulate an EOI message manually. We achieve it 2635 * by setting the trigger mode to edge and then to level when the edge 2636 * trigger mode gets detected in the TMR of a local APIC for a 2637 * level-triggered interrupt. We mask the source for the time of the 2638 * operation to prevent an edge-triggered interrupt escaping meanwhile. 2639 * The idea is from Manfred Spraul. --macro 2640 * 2641 * Also in the case when cpu goes offline, fixup_irqs() will forward 2642 * any unhandled interrupt on the offlined cpu to the new cpu 2643 * destination that is handling the corresponding interrupt. This 2644 * interrupt forwarding is done via IPI's. Hence, in this case also 2645 * level-triggered io-apic interrupt will be seen as an edge 2646 * interrupt in the IRR. And we can't rely on the cpu's EOI 2647 * to be broadcasted to the IO-APIC's which will clear the remoteIRR 2648 * corresponding to the level-triggered interrupt. Hence on IO-APIC's 2649 * supporting EOI register, we do an explicit EOI to clear the 2650 * remote IRR and on IO-APIC's which don't have an EOI register, 2651 * we use the above logic (mask+edge followed by unmask+level) from 2652 * Manfred Spraul to clear the remote IRR. 2653 */ 2654 cfg = desc->chip_data; 2655 i = cfg->vector; 2656 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); 2657 2658 /* 2659 * We must acknowledge the irq before we move it or the acknowledge will 2660 * not propagate properly. 2661 */ 2662 ack_APIC_irq(); 2663 2664 /* 2665 * Tail end of clearing remote IRR bit (either by delivering the EOI 2666 * message via io-apic EOI register write or simulating it using 2667 * mask+edge followed by unnask+level logic) manually when the 2668 * level triggered interrupt is seen as the edge triggered interrupt 2669 * at the cpu. 2670 */ 2671 if (!(v & (1 << (i & 0x1f)))) { 2672 atomic_inc(&irq_mis_count); 2673 2674 eoi_ioapic_irq(desc); 2675 } 2676 2677 /* Now we can move and renable the irq */ 2678 if (unlikely(do_unmask_irq)) { 2679 /* Only migrate the irq if the ack has been received. 2680 * 2681 * On rare occasions the broadcast level triggered ack gets 2682 * delayed going to ioapics, and if we reprogram the 2683 * vector while Remote IRR is still set the irq will never 2684 * fire again. 2685 * 2686 * To prevent this scenario we read the Remote IRR bit 2687 * of the ioapic. This has two effects. 2688 * - On any sane system the read of the ioapic will 2689 * flush writes (and acks) going to the ioapic from 2690 * this cpu. 2691 * - We get to see if the ACK has actually been delivered. 2692 * 2693 * Based on failed experiments of reprogramming the 2694 * ioapic entry from outside of irq context starting 2695 * with masking the ioapic entry and then polling until 2696 * Remote IRR was clear before reprogramming the 2697 * ioapic I don't trust the Remote IRR bit to be 2698 * completey accurate. 2699 * 2700 * However there appears to be no other way to plug 2701 * this race, so if the Remote IRR bit is not 2702 * accurate and is causing problems then it is a hardware bug 2703 * and you can go talk to the chipset vendor about it. 2704 */ 2705 cfg = desc->chip_data; 2706 if (!io_apic_level_ack_pending(cfg)) 2707 move_masked_irq(irq); 2708 unmask_IO_APIC_irq_desc(desc); 2709 } 2710 } 2711 2712 #ifdef CONFIG_INTR_REMAP 2713 static void ir_ack_apic_edge(unsigned int irq) 2714 { 2715 ack_APIC_irq(); 2716 } 2717 2718 static void ir_ack_apic_level(unsigned int irq) 2719 { 2720 struct irq_desc *desc = irq_to_desc(irq); 2721 2722 ack_APIC_irq(); 2723 eoi_ioapic_irq(desc); 2724 } 2725 #endif /* CONFIG_INTR_REMAP */ 2726 2727 static struct irq_chip ioapic_chip __read_mostly = { 2728 .name = "IO-APIC", 2729 .startup = startup_ioapic_irq, 2730 .mask = mask_IO_APIC_irq, 2731 .unmask = unmask_IO_APIC_irq, 2732 .ack = ack_apic_edge, 2733 .eoi = ack_apic_level, 2734 #ifdef CONFIG_SMP 2735 .set_affinity = set_ioapic_affinity_irq, 2736 #endif 2737 .retrigger = ioapic_retrigger_irq, 2738 }; 2739 2740 static struct irq_chip ir_ioapic_chip __read_mostly = { 2741 .name = "IR-IO-APIC", 2742 .startup = startup_ioapic_irq, 2743 .mask = mask_IO_APIC_irq, 2744 .unmask = unmask_IO_APIC_irq, 2745 #ifdef CONFIG_INTR_REMAP 2746 .ack = ir_ack_apic_edge, 2747 .eoi = ir_ack_apic_level, 2748 #ifdef CONFIG_SMP 2749 .set_affinity = set_ir_ioapic_affinity_irq, 2750 #endif 2751 #endif 2752 .retrigger = ioapic_retrigger_irq, 2753 }; 2754 2755 static inline void init_IO_APIC_traps(void) 2756 { 2757 int irq; 2758 struct irq_desc *desc; 2759 struct irq_cfg *cfg; 2760 2761 /* 2762 * NOTE! The local APIC isn't very good at handling 2763 * multiple interrupts at the same interrupt level. 2764 * As the interrupt level is determined by taking the 2765 * vector number and shifting that right by 4, we 2766 * want to spread these out a bit so that they don't 2767 * all fall in the same interrupt level. 2768 * 2769 * Also, we've got to be careful not to trash gate 2770 * 0x80, because int 0x80 is hm, kind of importantish. ;) 2771 */ 2772 for_each_irq_desc(irq, desc) { 2773 cfg = desc->chip_data; 2774 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { 2775 /* 2776 * Hmm.. We don't have an entry for this, 2777 * so default to an old-fashioned 8259 2778 * interrupt if we can.. 2779 */ 2780 if (irq < legacy_pic->nr_legacy_irqs) 2781 legacy_pic->make_irq(irq); 2782 else 2783 /* Strange. Oh, well.. */ 2784 desc->chip = &no_irq_chip; 2785 } 2786 } 2787 } 2788 2789 /* 2790 * The local APIC irq-chip implementation: 2791 */ 2792 2793 static void mask_lapic_irq(unsigned int irq) 2794 { 2795 unsigned long v; 2796 2797 v = apic_read(APIC_LVT0); 2798 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 2799 } 2800 2801 static void unmask_lapic_irq(unsigned int irq) 2802 { 2803 unsigned long v; 2804 2805 v = apic_read(APIC_LVT0); 2806 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); 2807 } 2808 2809 static void ack_lapic_irq(unsigned int irq) 2810 { 2811 ack_APIC_irq(); 2812 } 2813 2814 static struct irq_chip lapic_chip __read_mostly = { 2815 .name = "local-APIC", 2816 .mask = mask_lapic_irq, 2817 .unmask = unmask_lapic_irq, 2818 .ack = ack_lapic_irq, 2819 }; 2820 2821 static void lapic_register_intr(int irq, struct irq_desc *desc) 2822 { 2823 desc->status &= ~IRQ_LEVEL; 2824 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, 2825 "edge"); 2826 } 2827 2828 static void __init setup_nmi(void) 2829 { 2830 /* 2831 * Dirty trick to enable the NMI watchdog ... 2832 * We put the 8259A master into AEOI mode and 2833 * unmask on all local APICs LVT0 as NMI. 2834 * 2835 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire') 2836 * is from Maciej W. Rozycki - so we do not have to EOI from 2837 * the NMI handler or the timer interrupt. 2838 */ 2839 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ..."); 2840 2841 enable_NMI_through_LVT0(); 2842 2843 apic_printk(APIC_VERBOSE, " done.\n"); 2844 } 2845 2846 /* 2847 * This looks a bit hackish but it's about the only one way of sending 2848 * a few INTA cycles to 8259As and any associated glue logic. ICR does 2849 * not support the ExtINT mode, unfortunately. We need to send these 2850 * cycles as some i82489DX-based boards have glue logic that keeps the 2851 * 8259A interrupt line asserted until INTA. --macro 2852 */ 2853 static inline void __init unlock_ExtINT_logic(void) 2854 { 2855 int apic, pin, i; 2856 struct IO_APIC_route_entry entry0, entry1; 2857 unsigned char save_control, save_freq_select; 2858 2859 pin = find_isa_irq_pin(8, mp_INT); 2860 if (pin == -1) { 2861 WARN_ON_ONCE(1); 2862 return; 2863 } 2864 apic = find_isa_irq_apic(8, mp_INT); 2865 if (apic == -1) { 2866 WARN_ON_ONCE(1); 2867 return; 2868 } 2869 2870 entry0 = ioapic_read_entry(apic, pin); 2871 clear_IO_APIC_pin(apic, pin); 2872 2873 memset(&entry1, 0, sizeof(entry1)); 2874 2875 entry1.dest_mode = 0; /* physical delivery */ 2876 entry1.mask = 0; /* unmask IRQ now */ 2877 entry1.dest = hard_smp_processor_id(); 2878 entry1.delivery_mode = dest_ExtINT; 2879 entry1.polarity = entry0.polarity; 2880 entry1.trigger = 0; 2881 entry1.vector = 0; 2882 2883 ioapic_write_entry(apic, pin, entry1); 2884 2885 save_control = CMOS_READ(RTC_CONTROL); 2886 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 2887 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, 2888 RTC_FREQ_SELECT); 2889 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); 2890 2891 i = 100; 2892 while (i-- > 0) { 2893 mdelay(10); 2894 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) 2895 i -= 10; 2896 } 2897 2898 CMOS_WRITE(save_control, RTC_CONTROL); 2899 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 2900 clear_IO_APIC_pin(apic, pin); 2901 2902 ioapic_write_entry(apic, pin, entry0); 2903 } 2904 2905 static int disable_timer_pin_1 __initdata; 2906 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ 2907 static int __init disable_timer_pin_setup(char *arg) 2908 { 2909 disable_timer_pin_1 = 1; 2910 return 0; 2911 } 2912 early_param("disable_timer_pin_1", disable_timer_pin_setup); 2913 2914 int timer_through_8259 __initdata; 2915 2916 /* 2917 * This code may look a bit paranoid, but it's supposed to cooperate with 2918 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ 2919 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast 2920 * fanatically on his truly buggy board. 2921 * 2922 * FIXME: really need to revamp this for all platforms. 2923 */ 2924 static inline void __init check_timer(void) 2925 { 2926 struct irq_desc *desc = irq_to_desc(0); 2927 struct irq_cfg *cfg = desc->chip_data; 2928 int node = cpu_to_node(boot_cpu_id); 2929 int apic1, pin1, apic2, pin2; 2930 unsigned long flags; 2931 int no_pin1 = 0; 2932 2933 local_irq_save(flags); 2934 2935 /* 2936 * get/set the timer IRQ vector: 2937 */ 2938 legacy_pic->chip->mask(0); 2939 assign_irq_vector(0, cfg, apic->target_cpus()); 2940 2941 /* 2942 * As IRQ0 is to be enabled in the 8259A, the virtual 2943 * wire has to be disabled in the local APIC. Also 2944 * timer interrupts need to be acknowledged manually in 2945 * the 8259A for the i82489DX when using the NMI 2946 * watchdog as that APIC treats NMIs as level-triggered. 2947 * The AEOI mode will finish them in the 8259A 2948 * automatically. 2949 */ 2950 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); 2951 legacy_pic->init(1); 2952 #ifdef CONFIG_X86_32 2953 { 2954 unsigned int ver; 2955 2956 ver = apic_read(APIC_LVR); 2957 ver = GET_APIC_VERSION(ver); 2958 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver)); 2959 } 2960 #endif 2961 2962 pin1 = find_isa_irq_pin(0, mp_INT); 2963 apic1 = find_isa_irq_apic(0, mp_INT); 2964 pin2 = ioapic_i8259.pin; 2965 apic2 = ioapic_i8259.apic; 2966 2967 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " 2968 "apic1=%d pin1=%d apic2=%d pin2=%d\n", 2969 cfg->vector, apic1, pin1, apic2, pin2); 2970 2971 /* 2972 * Some BIOS writers are clueless and report the ExtINTA 2973 * I/O APIC input from the cascaded 8259A as the timer 2974 * interrupt input. So just in case, if only one pin 2975 * was found above, try it both directly and through the 2976 * 8259A. 2977 */ 2978 if (pin1 == -1) { 2979 if (intr_remapping_enabled) 2980 panic("BIOS bug: timer not connected to IO-APIC"); 2981 pin1 = pin2; 2982 apic1 = apic2; 2983 no_pin1 = 1; 2984 } else if (pin2 == -1) { 2985 pin2 = pin1; 2986 apic2 = apic1; 2987 } 2988 2989 if (pin1 != -1) { 2990 /* 2991 * Ok, does IRQ0 through the IOAPIC work? 2992 */ 2993 if (no_pin1) { 2994 add_pin_to_irq_node(cfg, node, apic1, pin1); 2995 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector); 2996 } else { 2997 /* for edge trigger, setup_IO_APIC_irq already 2998 * leave it unmasked. 2999 * so only need to unmask if it is level-trigger 3000 * do we really have level trigger timer? 3001 */ 3002 int idx; 3003 idx = find_irq_entry(apic1, pin1, mp_INT); 3004 if (idx != -1 && irq_trigger(idx)) 3005 unmask_IO_APIC_irq_desc(desc); 3006 } 3007 if (timer_irq_works()) { 3008 if (nmi_watchdog == NMI_IO_APIC) { 3009 setup_nmi(); 3010 legacy_pic->chip->unmask(0); 3011 } 3012 if (disable_timer_pin_1 > 0) 3013 clear_IO_APIC_pin(0, pin1); 3014 goto out; 3015 } 3016 if (intr_remapping_enabled) 3017 panic("timer doesn't work through Interrupt-remapped IO-APIC"); 3018 local_irq_disable(); 3019 clear_IO_APIC_pin(apic1, pin1); 3020 if (!no_pin1) 3021 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " 3022 "8254 timer not connected to IO-APIC\n"); 3023 3024 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " 3025 "(IRQ0) through the 8259A ...\n"); 3026 apic_printk(APIC_QUIET, KERN_INFO 3027 "..... (found apic %d pin %d) ...\n", apic2, pin2); 3028 /* 3029 * legacy devices should be connected to IO APIC #0 3030 */ 3031 replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2); 3032 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector); 3033 legacy_pic->chip->unmask(0); 3034 if (timer_irq_works()) { 3035 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); 3036 timer_through_8259 = 1; 3037 if (nmi_watchdog == NMI_IO_APIC) { 3038 legacy_pic->chip->mask(0); 3039 setup_nmi(); 3040 legacy_pic->chip->unmask(0); 3041 } 3042 goto out; 3043 } 3044 /* 3045 * Cleanup, just in case ... 3046 */ 3047 local_irq_disable(); 3048 legacy_pic->chip->mask(0); 3049 clear_IO_APIC_pin(apic2, pin2); 3050 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); 3051 } 3052 3053 if (nmi_watchdog == NMI_IO_APIC) { 3054 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work " 3055 "through the IO-APIC - disabling NMI Watchdog!\n"); 3056 nmi_watchdog = NMI_NONE; 3057 } 3058 #ifdef CONFIG_X86_32 3059 timer_ack = 0; 3060 #endif 3061 3062 apic_printk(APIC_QUIET, KERN_INFO 3063 "...trying to set up timer as Virtual Wire IRQ...\n"); 3064 3065 lapic_register_intr(0, desc); 3066 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ 3067 legacy_pic->chip->unmask(0); 3068 3069 if (timer_irq_works()) { 3070 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 3071 goto out; 3072 } 3073 local_irq_disable(); 3074 legacy_pic->chip->mask(0); 3075 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); 3076 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); 3077 3078 apic_printk(APIC_QUIET, KERN_INFO 3079 "...trying to set up timer as ExtINT IRQ...\n"); 3080 3081 legacy_pic->init(0); 3082 legacy_pic->make_irq(0); 3083 apic_write(APIC_LVT0, APIC_DM_EXTINT); 3084 3085 unlock_ExtINT_logic(); 3086 3087 if (timer_irq_works()) { 3088 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); 3089 goto out; 3090 } 3091 local_irq_disable(); 3092 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); 3093 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " 3094 "report. Then try booting with the 'noapic' option.\n"); 3095 out: 3096 local_irq_restore(flags); 3097 } 3098 3099 /* 3100 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available 3101 * to devices. However there may be an I/O APIC pin available for 3102 * this interrupt regardless. The pin may be left unconnected, but 3103 * typically it will be reused as an ExtINT cascade interrupt for 3104 * the master 8259A. In the MPS case such a pin will normally be 3105 * reported as an ExtINT interrupt in the MP table. With ACPI 3106 * there is no provision for ExtINT interrupts, and in the absence 3107 * of an override it would be treated as an ordinary ISA I/O APIC 3108 * interrupt, that is edge-triggered and unmasked by default. We 3109 * used to do this, but it caused problems on some systems because 3110 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using 3111 * the same ExtINT cascade interrupt to drive the local APIC of the 3112 * bootstrap processor. Therefore we refrain from routing IRQ2 to 3113 * the I/O APIC in all cases now. No actual device should request 3114 * it anyway. --macro 3115 */ 3116 #define PIC_IRQS (1UL << PIC_CASCADE_IR) 3117 3118 void __init setup_IO_APIC(void) 3119 { 3120 3121 /* 3122 * calling enable_IO_APIC() is moved to setup_local_APIC for BP 3123 */ 3124 io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL; 3125 3126 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); 3127 /* 3128 * Set up IO-APIC IRQ routing. 3129 */ 3130 x86_init.mpparse.setup_ioapic_ids(); 3131 3132 sync_Arb_IDs(); 3133 setup_IO_APIC_irqs(); 3134 init_IO_APIC_traps(); 3135 if (legacy_pic->nr_legacy_irqs) 3136 check_timer(); 3137 } 3138 3139 /* 3140 * Called after all the initialization is done. If we didnt find any 3141 * APIC bugs then we can allow the modify fast path 3142 */ 3143 3144 static int __init io_apic_bug_finalize(void) 3145 { 3146 if (sis_apic_bug == -1) 3147 sis_apic_bug = 0; 3148 return 0; 3149 } 3150 3151 late_initcall(io_apic_bug_finalize); 3152 3153 struct sysfs_ioapic_data { 3154 struct sys_device dev; 3155 struct IO_APIC_route_entry entry[0]; 3156 }; 3157 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS]; 3158 3159 static int ioapic_suspend(struct sys_device *dev, pm_message_t state) 3160 { 3161 struct IO_APIC_route_entry *entry; 3162 struct sysfs_ioapic_data *data; 3163 int i; 3164 3165 data = container_of(dev, struct sysfs_ioapic_data, dev); 3166 entry = data->entry; 3167 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ ) 3168 *entry = ioapic_read_entry(dev->id, i); 3169 3170 return 0; 3171 } 3172 3173 static int ioapic_resume(struct sys_device *dev) 3174 { 3175 struct IO_APIC_route_entry *entry; 3176 struct sysfs_ioapic_data *data; 3177 unsigned long flags; 3178 union IO_APIC_reg_00 reg_00; 3179 int i; 3180 3181 data = container_of(dev, struct sysfs_ioapic_data, dev); 3182 entry = data->entry; 3183 3184 raw_spin_lock_irqsave(&ioapic_lock, flags); 3185 reg_00.raw = io_apic_read(dev->id, 0); 3186 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) { 3187 reg_00.bits.ID = mp_ioapics[dev->id].apicid; 3188 io_apic_write(dev->id, 0, reg_00.raw); 3189 } 3190 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 3191 for (i = 0; i < nr_ioapic_registers[dev->id]; i++) 3192 ioapic_write_entry(dev->id, i, entry[i]); 3193 3194 return 0; 3195 } 3196 3197 static struct sysdev_class ioapic_sysdev_class = { 3198 .name = "ioapic", 3199 .suspend = ioapic_suspend, 3200 .resume = ioapic_resume, 3201 }; 3202 3203 static int __init ioapic_init_sysfs(void) 3204 { 3205 struct sys_device * dev; 3206 int i, size, error; 3207 3208 error = sysdev_class_register(&ioapic_sysdev_class); 3209 if (error) 3210 return error; 3211 3212 for (i = 0; i < nr_ioapics; i++ ) { 3213 size = sizeof(struct sys_device) + nr_ioapic_registers[i] 3214 * sizeof(struct IO_APIC_route_entry); 3215 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL); 3216 if (!mp_ioapic_data[i]) { 3217 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); 3218 continue; 3219 } 3220 dev = &mp_ioapic_data[i]->dev; 3221 dev->id = i; 3222 dev->cls = &ioapic_sysdev_class; 3223 error = sysdev_register(dev); 3224 if (error) { 3225 kfree(mp_ioapic_data[i]); 3226 mp_ioapic_data[i] = NULL; 3227 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i); 3228 continue; 3229 } 3230 } 3231 3232 return 0; 3233 } 3234 3235 device_initcall(ioapic_init_sysfs); 3236 3237 /* 3238 * Dynamic irq allocate and deallocation 3239 */ 3240 unsigned int create_irq_nr(unsigned int irq_want, int node) 3241 { 3242 /* Allocate an unused irq */ 3243 unsigned int irq; 3244 unsigned int new; 3245 unsigned long flags; 3246 struct irq_cfg *cfg_new = NULL; 3247 struct irq_desc *desc_new = NULL; 3248 3249 irq = 0; 3250 if (irq_want < nr_irqs_gsi) 3251 irq_want = nr_irqs_gsi; 3252 3253 raw_spin_lock_irqsave(&vector_lock, flags); 3254 for (new = irq_want; new < nr_irqs; new++) { 3255 desc_new = irq_to_desc_alloc_node(new, node); 3256 if (!desc_new) { 3257 printk(KERN_INFO "can not get irq_desc for %d\n", new); 3258 continue; 3259 } 3260 cfg_new = desc_new->chip_data; 3261 3262 if (cfg_new->vector != 0) 3263 continue; 3264 3265 desc_new = move_irq_desc(desc_new, node); 3266 cfg_new = desc_new->chip_data; 3267 3268 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0) 3269 irq = new; 3270 break; 3271 } 3272 raw_spin_unlock_irqrestore(&vector_lock, flags); 3273 3274 if (irq > 0) 3275 dynamic_irq_init_keep_chip_data(irq); 3276 3277 return irq; 3278 } 3279 3280 int create_irq(void) 3281 { 3282 int node = cpu_to_node(boot_cpu_id); 3283 unsigned int irq_want; 3284 int irq; 3285 3286 irq_want = nr_irqs_gsi; 3287 irq = create_irq_nr(irq_want, node); 3288 3289 if (irq == 0) 3290 irq = -1; 3291 3292 return irq; 3293 } 3294 3295 void destroy_irq(unsigned int irq) 3296 { 3297 unsigned long flags; 3298 3299 dynamic_irq_cleanup_keep_chip_data(irq); 3300 3301 free_irte(irq); 3302 raw_spin_lock_irqsave(&vector_lock, flags); 3303 __clear_irq_vector(irq, get_irq_chip_data(irq)); 3304 raw_spin_unlock_irqrestore(&vector_lock, flags); 3305 } 3306 3307 /* 3308 * MSI message composition 3309 */ 3310 #ifdef CONFIG_PCI_MSI 3311 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, 3312 struct msi_msg *msg, u8 hpet_id) 3313 { 3314 struct irq_cfg *cfg; 3315 int err; 3316 unsigned dest; 3317 3318 if (disable_apic) 3319 return -ENXIO; 3320 3321 cfg = irq_cfg(irq); 3322 err = assign_irq_vector(irq, cfg, apic->target_cpus()); 3323 if (err) 3324 return err; 3325 3326 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); 3327 3328 if (irq_remapped(irq)) { 3329 struct irte irte; 3330 int ir_index; 3331 u16 sub_handle; 3332 3333 ir_index = map_irq_to_irte_handle(irq, &sub_handle); 3334 BUG_ON(ir_index == -1); 3335 3336 memset (&irte, 0, sizeof(irte)); 3337 3338 irte.present = 1; 3339 irte.dst_mode = apic->irq_dest_mode; 3340 irte.trigger_mode = 0; /* edge */ 3341 irte.dlvry_mode = apic->irq_delivery_mode; 3342 irte.vector = cfg->vector; 3343 irte.dest_id = IRTE_DEST(dest); 3344 3345 /* Set source-id of interrupt request */ 3346 if (pdev) 3347 set_msi_sid(&irte, pdev); 3348 else 3349 set_hpet_sid(&irte, hpet_id); 3350 3351 modify_irte(irq, &irte); 3352 3353 msg->address_hi = MSI_ADDR_BASE_HI; 3354 msg->data = sub_handle; 3355 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | 3356 MSI_ADDR_IR_SHV | 3357 MSI_ADDR_IR_INDEX1(ir_index) | 3358 MSI_ADDR_IR_INDEX2(ir_index); 3359 } else { 3360 if (x2apic_enabled()) 3361 msg->address_hi = MSI_ADDR_BASE_HI | 3362 MSI_ADDR_EXT_DEST_ID(dest); 3363 else 3364 msg->address_hi = MSI_ADDR_BASE_HI; 3365 3366 msg->address_lo = 3367 MSI_ADDR_BASE_LO | 3368 ((apic->irq_dest_mode == 0) ? 3369 MSI_ADDR_DEST_MODE_PHYSICAL: 3370 MSI_ADDR_DEST_MODE_LOGICAL) | 3371 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3372 MSI_ADDR_REDIRECTION_CPU: 3373 MSI_ADDR_REDIRECTION_LOWPRI) | 3374 MSI_ADDR_DEST_ID(dest); 3375 3376 msg->data = 3377 MSI_DATA_TRIGGER_EDGE | 3378 MSI_DATA_LEVEL_ASSERT | 3379 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3380 MSI_DATA_DELIVERY_FIXED: 3381 MSI_DATA_DELIVERY_LOWPRI) | 3382 MSI_DATA_VECTOR(cfg->vector); 3383 } 3384 return err; 3385 } 3386 3387 #ifdef CONFIG_SMP 3388 static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) 3389 { 3390 struct irq_desc *desc = irq_to_desc(irq); 3391 struct irq_cfg *cfg; 3392 struct msi_msg msg; 3393 unsigned int dest; 3394 3395 if (set_desc_affinity(desc, mask, &dest)) 3396 return -1; 3397 3398 cfg = desc->chip_data; 3399 3400 get_cached_msi_msg_desc(desc, &msg); 3401 3402 msg.data &= ~MSI_DATA_VECTOR_MASK; 3403 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3404 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3405 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3406 3407 write_msi_msg_desc(desc, &msg); 3408 3409 return 0; 3410 } 3411 #ifdef CONFIG_INTR_REMAP 3412 /* 3413 * Migrate the MSI irq to another cpumask. This migration is 3414 * done in the process context using interrupt-remapping hardware. 3415 */ 3416 static int 3417 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask) 3418 { 3419 struct irq_desc *desc = irq_to_desc(irq); 3420 struct irq_cfg *cfg = desc->chip_data; 3421 unsigned int dest; 3422 struct irte irte; 3423 3424 if (get_irte(irq, &irte)) 3425 return -1; 3426 3427 if (set_desc_affinity(desc, mask, &dest)) 3428 return -1; 3429 3430 irte.vector = cfg->vector; 3431 irte.dest_id = IRTE_DEST(dest); 3432 3433 /* 3434 * atomically update the IRTE with the new destination and vector. 3435 */ 3436 modify_irte(irq, &irte); 3437 3438 /* 3439 * After this point, all the interrupts will start arriving 3440 * at the new destination. So, time to cleanup the previous 3441 * vector allocation. 3442 */ 3443 if (cfg->move_in_progress) 3444 send_cleanup_vector(cfg); 3445 3446 return 0; 3447 } 3448 3449 #endif 3450 #endif /* CONFIG_SMP */ 3451 3452 /* 3453 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, 3454 * which implement the MSI or MSI-X Capability Structure. 3455 */ 3456 static struct irq_chip msi_chip = { 3457 .name = "PCI-MSI", 3458 .unmask = unmask_msi_irq, 3459 .mask = mask_msi_irq, 3460 .ack = ack_apic_edge, 3461 #ifdef CONFIG_SMP 3462 .set_affinity = set_msi_irq_affinity, 3463 #endif 3464 .retrigger = ioapic_retrigger_irq, 3465 }; 3466 3467 static struct irq_chip msi_ir_chip = { 3468 .name = "IR-PCI-MSI", 3469 .unmask = unmask_msi_irq, 3470 .mask = mask_msi_irq, 3471 #ifdef CONFIG_INTR_REMAP 3472 .ack = ir_ack_apic_edge, 3473 #ifdef CONFIG_SMP 3474 .set_affinity = ir_set_msi_irq_affinity, 3475 #endif 3476 #endif 3477 .retrigger = ioapic_retrigger_irq, 3478 }; 3479 3480 /* 3481 * Map the PCI dev to the corresponding remapping hardware unit 3482 * and allocate 'nvec' consecutive interrupt-remapping table entries 3483 * in it. 3484 */ 3485 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec) 3486 { 3487 struct intel_iommu *iommu; 3488 int index; 3489 3490 iommu = map_dev_to_ir(dev); 3491 if (!iommu) { 3492 printk(KERN_ERR 3493 "Unable to map PCI %s to iommu\n", pci_name(dev)); 3494 return -ENOENT; 3495 } 3496 3497 index = alloc_irte(iommu, irq, nvec); 3498 if (index < 0) { 3499 printk(KERN_ERR 3500 "Unable to allocate %d IRTE for PCI %s\n", nvec, 3501 pci_name(dev)); 3502 return -ENOSPC; 3503 } 3504 return index; 3505 } 3506 3507 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq) 3508 { 3509 int ret; 3510 struct msi_msg msg; 3511 3512 ret = msi_compose_msg(dev, irq, &msg, -1); 3513 if (ret < 0) 3514 return ret; 3515 3516 set_irq_msi(irq, msidesc); 3517 write_msi_msg(irq, &msg); 3518 3519 if (irq_remapped(irq)) { 3520 struct irq_desc *desc = irq_to_desc(irq); 3521 /* 3522 * irq migration in process context 3523 */ 3524 desc->status |= IRQ_MOVE_PCNTXT; 3525 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge"); 3526 } else 3527 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge"); 3528 3529 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq); 3530 3531 return 0; 3532 } 3533 3534 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) 3535 { 3536 unsigned int irq; 3537 int ret, sub_handle; 3538 struct msi_desc *msidesc; 3539 unsigned int irq_want; 3540 struct intel_iommu *iommu = NULL; 3541 int index = 0; 3542 int node; 3543 3544 /* x86 doesn't support multiple MSI yet */ 3545 if (type == PCI_CAP_ID_MSI && nvec > 1) 3546 return 1; 3547 3548 node = dev_to_node(&dev->dev); 3549 irq_want = nr_irqs_gsi; 3550 sub_handle = 0; 3551 list_for_each_entry(msidesc, &dev->msi_list, list) { 3552 irq = create_irq_nr(irq_want, node); 3553 if (irq == 0) 3554 return -1; 3555 irq_want = irq + 1; 3556 if (!intr_remapping_enabled) 3557 goto no_ir; 3558 3559 if (!sub_handle) { 3560 /* 3561 * allocate the consecutive block of IRTE's 3562 * for 'nvec' 3563 */ 3564 index = msi_alloc_irte(dev, irq, nvec); 3565 if (index < 0) { 3566 ret = index; 3567 goto error; 3568 } 3569 } else { 3570 iommu = map_dev_to_ir(dev); 3571 if (!iommu) { 3572 ret = -ENOENT; 3573 goto error; 3574 } 3575 /* 3576 * setup the mapping between the irq and the IRTE 3577 * base index, the sub_handle pointing to the 3578 * appropriate interrupt remap table entry. 3579 */ 3580 set_irte_irq(irq, iommu, index, sub_handle); 3581 } 3582 no_ir: 3583 ret = setup_msi_irq(dev, msidesc, irq); 3584 if (ret < 0) 3585 goto error; 3586 sub_handle++; 3587 } 3588 return 0; 3589 3590 error: 3591 destroy_irq(irq); 3592 return ret; 3593 } 3594 3595 void arch_teardown_msi_irq(unsigned int irq) 3596 { 3597 destroy_irq(irq); 3598 } 3599 3600 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP) 3601 #ifdef CONFIG_SMP 3602 static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask) 3603 { 3604 struct irq_desc *desc = irq_to_desc(irq); 3605 struct irq_cfg *cfg; 3606 struct msi_msg msg; 3607 unsigned int dest; 3608 3609 if (set_desc_affinity(desc, mask, &dest)) 3610 return -1; 3611 3612 cfg = desc->chip_data; 3613 3614 dmar_msi_read(irq, &msg); 3615 3616 msg.data &= ~MSI_DATA_VECTOR_MASK; 3617 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3618 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3619 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3620 3621 dmar_msi_write(irq, &msg); 3622 3623 return 0; 3624 } 3625 3626 #endif /* CONFIG_SMP */ 3627 3628 static struct irq_chip dmar_msi_type = { 3629 .name = "DMAR_MSI", 3630 .unmask = dmar_msi_unmask, 3631 .mask = dmar_msi_mask, 3632 .ack = ack_apic_edge, 3633 #ifdef CONFIG_SMP 3634 .set_affinity = dmar_msi_set_affinity, 3635 #endif 3636 .retrigger = ioapic_retrigger_irq, 3637 }; 3638 3639 int arch_setup_dmar_msi(unsigned int irq) 3640 { 3641 int ret; 3642 struct msi_msg msg; 3643 3644 ret = msi_compose_msg(NULL, irq, &msg, -1); 3645 if (ret < 0) 3646 return ret; 3647 dmar_msi_write(irq, &msg); 3648 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq, 3649 "edge"); 3650 return 0; 3651 } 3652 #endif 3653 3654 #ifdef CONFIG_HPET_TIMER 3655 3656 #ifdef CONFIG_SMP 3657 static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask) 3658 { 3659 struct irq_desc *desc = irq_to_desc(irq); 3660 struct irq_cfg *cfg; 3661 struct msi_msg msg; 3662 unsigned int dest; 3663 3664 if (set_desc_affinity(desc, mask, &dest)) 3665 return -1; 3666 3667 cfg = desc->chip_data; 3668 3669 hpet_msi_read(irq, &msg); 3670 3671 msg.data &= ~MSI_DATA_VECTOR_MASK; 3672 msg.data |= MSI_DATA_VECTOR(cfg->vector); 3673 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; 3674 msg.address_lo |= MSI_ADDR_DEST_ID(dest); 3675 3676 hpet_msi_write(irq, &msg); 3677 3678 return 0; 3679 } 3680 3681 #endif /* CONFIG_SMP */ 3682 3683 static struct irq_chip ir_hpet_msi_type = { 3684 .name = "IR-HPET_MSI", 3685 .unmask = hpet_msi_unmask, 3686 .mask = hpet_msi_mask, 3687 #ifdef CONFIG_INTR_REMAP 3688 .ack = ir_ack_apic_edge, 3689 #ifdef CONFIG_SMP 3690 .set_affinity = ir_set_msi_irq_affinity, 3691 #endif 3692 #endif 3693 .retrigger = ioapic_retrigger_irq, 3694 }; 3695 3696 static struct irq_chip hpet_msi_type = { 3697 .name = "HPET_MSI", 3698 .unmask = hpet_msi_unmask, 3699 .mask = hpet_msi_mask, 3700 .ack = ack_apic_edge, 3701 #ifdef CONFIG_SMP 3702 .set_affinity = hpet_msi_set_affinity, 3703 #endif 3704 .retrigger = ioapic_retrigger_irq, 3705 }; 3706 3707 int arch_setup_hpet_msi(unsigned int irq, unsigned int id) 3708 { 3709 int ret; 3710 struct msi_msg msg; 3711 struct irq_desc *desc = irq_to_desc(irq); 3712 3713 if (intr_remapping_enabled) { 3714 struct intel_iommu *iommu = map_hpet_to_ir(id); 3715 int index; 3716 3717 if (!iommu) 3718 return -1; 3719 3720 index = alloc_irte(iommu, irq, 1); 3721 if (index < 0) 3722 return -1; 3723 } 3724 3725 ret = msi_compose_msg(NULL, irq, &msg, id); 3726 if (ret < 0) 3727 return ret; 3728 3729 hpet_msi_write(irq, &msg); 3730 desc->status |= IRQ_MOVE_PCNTXT; 3731 if (irq_remapped(irq)) 3732 set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type, 3733 handle_edge_irq, "edge"); 3734 else 3735 set_irq_chip_and_handler_name(irq, &hpet_msi_type, 3736 handle_edge_irq, "edge"); 3737 3738 return 0; 3739 } 3740 #endif 3741 3742 #endif /* CONFIG_PCI_MSI */ 3743 /* 3744 * Hypertransport interrupt support 3745 */ 3746 #ifdef CONFIG_HT_IRQ 3747 3748 #ifdef CONFIG_SMP 3749 3750 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector) 3751 { 3752 struct ht_irq_msg msg; 3753 fetch_ht_irq_msg(irq, &msg); 3754 3755 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK); 3756 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK); 3757 3758 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest); 3759 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest); 3760 3761 write_ht_irq_msg(irq, &msg); 3762 } 3763 3764 static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask) 3765 { 3766 struct irq_desc *desc = irq_to_desc(irq); 3767 struct irq_cfg *cfg; 3768 unsigned int dest; 3769 3770 if (set_desc_affinity(desc, mask, &dest)) 3771 return -1; 3772 3773 cfg = desc->chip_data; 3774 3775 target_ht_irq(irq, dest, cfg->vector); 3776 3777 return 0; 3778 } 3779 3780 #endif 3781 3782 static struct irq_chip ht_irq_chip = { 3783 .name = "PCI-HT", 3784 .mask = mask_ht_irq, 3785 .unmask = unmask_ht_irq, 3786 .ack = ack_apic_edge, 3787 #ifdef CONFIG_SMP 3788 .set_affinity = set_ht_irq_affinity, 3789 #endif 3790 .retrigger = ioapic_retrigger_irq, 3791 }; 3792 3793 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev) 3794 { 3795 struct irq_cfg *cfg; 3796 int err; 3797 3798 if (disable_apic) 3799 return -ENXIO; 3800 3801 cfg = irq_cfg(irq); 3802 err = assign_irq_vector(irq, cfg, apic->target_cpus()); 3803 if (!err) { 3804 struct ht_irq_msg msg; 3805 unsigned dest; 3806 3807 dest = apic->cpu_mask_to_apicid_and(cfg->domain, 3808 apic->target_cpus()); 3809 3810 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest); 3811 3812 msg.address_lo = 3813 HT_IRQ_LOW_BASE | 3814 HT_IRQ_LOW_DEST_ID(dest) | 3815 HT_IRQ_LOW_VECTOR(cfg->vector) | 3816 ((apic->irq_dest_mode == 0) ? 3817 HT_IRQ_LOW_DM_PHYSICAL : 3818 HT_IRQ_LOW_DM_LOGICAL) | 3819 HT_IRQ_LOW_RQEOI_EDGE | 3820 ((apic->irq_delivery_mode != dest_LowestPrio) ? 3821 HT_IRQ_LOW_MT_FIXED : 3822 HT_IRQ_LOW_MT_ARBITRATED) | 3823 HT_IRQ_LOW_IRQ_MASKED; 3824 3825 write_ht_irq_msg(irq, &msg); 3826 3827 set_irq_chip_and_handler_name(irq, &ht_irq_chip, 3828 handle_edge_irq, "edge"); 3829 3830 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq); 3831 } 3832 return err; 3833 } 3834 #endif /* CONFIG_HT_IRQ */ 3835 3836 int __init io_apic_get_redir_entries (int ioapic) 3837 { 3838 union IO_APIC_reg_01 reg_01; 3839 unsigned long flags; 3840 3841 raw_spin_lock_irqsave(&ioapic_lock, flags); 3842 reg_01.raw = io_apic_read(ioapic, 1); 3843 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 3844 3845 /* The register returns the maximum index redir index 3846 * supported, which is one less than the total number of redir 3847 * entries. 3848 */ 3849 return reg_01.bits.entries + 1; 3850 } 3851 3852 void __init probe_nr_irqs_gsi(void) 3853 { 3854 int nr; 3855 3856 nr = gsi_top + NR_IRQS_LEGACY; 3857 if (nr > nr_irqs_gsi) 3858 nr_irqs_gsi = nr; 3859 3860 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi); 3861 } 3862 3863 #ifdef CONFIG_SPARSE_IRQ 3864 int __init arch_probe_nr_irqs(void) 3865 { 3866 int nr; 3867 3868 if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) 3869 nr_irqs = NR_VECTORS * nr_cpu_ids; 3870 3871 nr = nr_irqs_gsi + 8 * nr_cpu_ids; 3872 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) 3873 /* 3874 * for MSI and HT dyn irq 3875 */ 3876 nr += nr_irqs_gsi * 16; 3877 #endif 3878 if (nr < nr_irqs) 3879 nr_irqs = nr; 3880 3881 return 0; 3882 } 3883 #endif 3884 3885 static int __io_apic_set_pci_routing(struct device *dev, int irq, 3886 struct io_apic_irq_attr *irq_attr) 3887 { 3888 struct irq_desc *desc; 3889 struct irq_cfg *cfg; 3890 int node; 3891 int ioapic, pin; 3892 int trigger, polarity; 3893 3894 ioapic = irq_attr->ioapic; 3895 if (!IO_APIC_IRQ(irq)) { 3896 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n", 3897 ioapic); 3898 return -EINVAL; 3899 } 3900 3901 if (dev) 3902 node = dev_to_node(dev); 3903 else 3904 node = cpu_to_node(boot_cpu_id); 3905 3906 desc = irq_to_desc_alloc_node(irq, node); 3907 if (!desc) { 3908 printk(KERN_INFO "can not get irq_desc %d\n", irq); 3909 return 0; 3910 } 3911 3912 pin = irq_attr->ioapic_pin; 3913 trigger = irq_attr->trigger; 3914 polarity = irq_attr->polarity; 3915 3916 /* 3917 * IRQs < 16 are already in the irq_2_pin[] map 3918 */ 3919 if (irq >= legacy_pic->nr_legacy_irqs) { 3920 cfg = desc->chip_data; 3921 if (add_pin_to_irq_node_nopanic(cfg, node, ioapic, pin)) { 3922 printk(KERN_INFO "can not add pin %d for irq %d\n", 3923 pin, irq); 3924 return 0; 3925 } 3926 } 3927 3928 setup_IO_APIC_irq(ioapic, pin, irq, desc, trigger, polarity); 3929 3930 return 0; 3931 } 3932 3933 int io_apic_set_pci_routing(struct device *dev, int irq, 3934 struct io_apic_irq_attr *irq_attr) 3935 { 3936 int ioapic, pin; 3937 /* 3938 * Avoid pin reprogramming. PRTs typically include entries 3939 * with redundant pin->gsi mappings (but unique PCI devices); 3940 * we only program the IOAPIC on the first. 3941 */ 3942 ioapic = irq_attr->ioapic; 3943 pin = irq_attr->ioapic_pin; 3944 if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) { 3945 pr_debug("Pin %d-%d already programmed\n", 3946 mp_ioapics[ioapic].apicid, pin); 3947 return 0; 3948 } 3949 set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed); 3950 3951 return __io_apic_set_pci_routing(dev, irq, irq_attr); 3952 } 3953 3954 u8 __init io_apic_unique_id(u8 id) 3955 { 3956 #ifdef CONFIG_X86_32 3957 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 3958 !APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) 3959 return io_apic_get_unique_id(nr_ioapics, id); 3960 else 3961 return id; 3962 #else 3963 int i; 3964 DECLARE_BITMAP(used, 256); 3965 3966 bitmap_zero(used, 256); 3967 for (i = 0; i < nr_ioapics; i++) { 3968 struct mpc_ioapic *ia = &mp_ioapics[i]; 3969 __set_bit(ia->apicid, used); 3970 } 3971 if (!test_bit(id, used)) 3972 return id; 3973 return find_first_zero_bit(used, 256); 3974 #endif 3975 } 3976 3977 #ifdef CONFIG_X86_32 3978 int __init io_apic_get_unique_id(int ioapic, int apic_id) 3979 { 3980 union IO_APIC_reg_00 reg_00; 3981 static physid_mask_t apic_id_map = PHYSID_MASK_NONE; 3982 physid_mask_t tmp; 3983 unsigned long flags; 3984 int i = 0; 3985 3986 /* 3987 * The P4 platform supports up to 256 APIC IDs on two separate APIC 3988 * buses (one for LAPICs, one for IOAPICs), where predecessors only 3989 * supports up to 16 on one shared APIC bus. 3990 * 3991 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full 3992 * advantage of new APIC bus architecture. 3993 */ 3994 3995 if (physids_empty(apic_id_map)) 3996 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map); 3997 3998 raw_spin_lock_irqsave(&ioapic_lock, flags); 3999 reg_00.raw = io_apic_read(ioapic, 0); 4000 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 4001 4002 if (apic_id >= get_physical_broadcast()) { 4003 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " 4004 "%d\n", ioapic, apic_id, reg_00.bits.ID); 4005 apic_id = reg_00.bits.ID; 4006 } 4007 4008 /* 4009 * Every APIC in a system must have a unique ID or we get lots of nice 4010 * 'stuck on smp_invalidate_needed IPI wait' messages. 4011 */ 4012 if (apic->check_apicid_used(&apic_id_map, apic_id)) { 4013 4014 for (i = 0; i < get_physical_broadcast(); i++) { 4015 if (!apic->check_apicid_used(&apic_id_map, i)) 4016 break; 4017 } 4018 4019 if (i == get_physical_broadcast()) 4020 panic("Max apic_id exceeded!\n"); 4021 4022 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " 4023 "trying %d\n", ioapic, apic_id, i); 4024 4025 apic_id = i; 4026 } 4027 4028 apic->apicid_to_cpu_present(apic_id, &tmp); 4029 physids_or(apic_id_map, apic_id_map, tmp); 4030 4031 if (reg_00.bits.ID != apic_id) { 4032 reg_00.bits.ID = apic_id; 4033 4034 raw_spin_lock_irqsave(&ioapic_lock, flags); 4035 io_apic_write(ioapic, 0, reg_00.raw); 4036 reg_00.raw = io_apic_read(ioapic, 0); 4037 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 4038 4039 /* Sanity check */ 4040 if (reg_00.bits.ID != apic_id) { 4041 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic); 4042 return -1; 4043 } 4044 } 4045 4046 apic_printk(APIC_VERBOSE, KERN_INFO 4047 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); 4048 4049 return apic_id; 4050 } 4051 #endif 4052 4053 int __init io_apic_get_version(int ioapic) 4054 { 4055 union IO_APIC_reg_01 reg_01; 4056 unsigned long flags; 4057 4058 raw_spin_lock_irqsave(&ioapic_lock, flags); 4059 reg_01.raw = io_apic_read(ioapic, 1); 4060 raw_spin_unlock_irqrestore(&ioapic_lock, flags); 4061 4062 return reg_01.bits.version; 4063 } 4064 4065 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity) 4066 { 4067 int ioapic, pin, idx; 4068 4069 if (skip_ioapic_setup) 4070 return -1; 4071 4072 ioapic = mp_find_ioapic(gsi); 4073 if (ioapic < 0) 4074 return -1; 4075 4076 pin = mp_find_ioapic_pin(ioapic, gsi); 4077 if (pin < 0) 4078 return -1; 4079 4080 idx = find_irq_entry(ioapic, pin, mp_INT); 4081 if (idx < 0) 4082 return -1; 4083 4084 *trigger = irq_trigger(idx); 4085 *polarity = irq_polarity(idx); 4086 return 0; 4087 } 4088 4089 /* 4090 * This function currently is only a helper for the i386 smp boot process where 4091 * we need to reprogram the ioredtbls to cater for the cpus which have come online 4092 * so mask in all cases should simply be apic->target_cpus() 4093 */ 4094 #ifdef CONFIG_SMP 4095 void __init setup_ioapic_dest(void) 4096 { 4097 int pin, ioapic, irq, irq_entry; 4098 struct irq_desc *desc; 4099 const struct cpumask *mask; 4100 4101 if (skip_ioapic_setup == 1) 4102 return; 4103 4104 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) 4105 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) { 4106 irq_entry = find_irq_entry(ioapic, pin, mp_INT); 4107 if (irq_entry == -1) 4108 continue; 4109 irq = pin_2_irq(irq_entry, ioapic, pin); 4110 4111 if ((ioapic > 0) && (irq > 16)) 4112 continue; 4113 4114 desc = irq_to_desc(irq); 4115 4116 /* 4117 * Honour affinities which have been set in early boot 4118 */ 4119 if (desc->status & 4120 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET)) 4121 mask = desc->affinity; 4122 else 4123 mask = apic->target_cpus(); 4124 4125 if (intr_remapping_enabled) 4126 set_ir_ioapic_affinity_irq_desc(desc, mask); 4127 else 4128 set_ioapic_affinity_irq_desc(desc, mask); 4129 } 4130 4131 } 4132 #endif 4133 4134 #define IOAPIC_RESOURCE_NAME_SIZE 11 4135 4136 static struct resource *ioapic_resources; 4137 4138 static struct resource * __init ioapic_setup_resources(int nr_ioapics) 4139 { 4140 unsigned long n; 4141 struct resource *res; 4142 char *mem; 4143 int i; 4144 4145 if (nr_ioapics <= 0) 4146 return NULL; 4147 4148 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); 4149 n *= nr_ioapics; 4150 4151 mem = alloc_bootmem(n); 4152 res = (void *)mem; 4153 4154 mem += sizeof(struct resource) * nr_ioapics; 4155 4156 for (i = 0; i < nr_ioapics; i++) { 4157 res[i].name = mem; 4158 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; 4159 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i); 4160 mem += IOAPIC_RESOURCE_NAME_SIZE; 4161 } 4162 4163 ioapic_resources = res; 4164 4165 return res; 4166 } 4167 4168 void __init ioapic_init_mappings(void) 4169 { 4170 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; 4171 struct resource *ioapic_res; 4172 int i; 4173 4174 ioapic_res = ioapic_setup_resources(nr_ioapics); 4175 for (i = 0; i < nr_ioapics; i++) { 4176 if (smp_found_config) { 4177 ioapic_phys = mp_ioapics[i].apicaddr; 4178 #ifdef CONFIG_X86_32 4179 if (!ioapic_phys) { 4180 printk(KERN_ERR 4181 "WARNING: bogus zero IO-APIC " 4182 "address found in MPTABLE, " 4183 "disabling IO/APIC support!\n"); 4184 smp_found_config = 0; 4185 skip_ioapic_setup = 1; 4186 goto fake_ioapic_page; 4187 } 4188 #endif 4189 } else { 4190 #ifdef CONFIG_X86_32 4191 fake_ioapic_page: 4192 #endif 4193 ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); 4194 ioapic_phys = __pa(ioapic_phys); 4195 } 4196 set_fixmap_nocache(idx, ioapic_phys); 4197 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n", 4198 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK), 4199 ioapic_phys); 4200 idx++; 4201 4202 ioapic_res->start = ioapic_phys; 4203 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1; 4204 ioapic_res++; 4205 } 4206 } 4207 4208 void __init ioapic_insert_resources(void) 4209 { 4210 int i; 4211 struct resource *r = ioapic_resources; 4212 4213 if (!r) { 4214 if (nr_ioapics > 0) 4215 printk(KERN_ERR 4216 "IO APIC resources couldn't be allocated.\n"); 4217 return; 4218 } 4219 4220 for (i = 0; i < nr_ioapics; i++) { 4221 insert_resource(&iomem_resource, r); 4222 r++; 4223 } 4224 } 4225 4226 int mp_find_ioapic(u32 gsi) 4227 { 4228 int i = 0; 4229 4230 /* Find the IOAPIC that manages this GSI. */ 4231 for (i = 0; i < nr_ioapics; i++) { 4232 if ((gsi >= mp_gsi_routing[i].gsi_base) 4233 && (gsi <= mp_gsi_routing[i].gsi_end)) 4234 return i; 4235 } 4236 4237 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi); 4238 return -1; 4239 } 4240 4241 int mp_find_ioapic_pin(int ioapic, u32 gsi) 4242 { 4243 if (WARN_ON(ioapic == -1)) 4244 return -1; 4245 if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end)) 4246 return -1; 4247 4248 return gsi - mp_gsi_routing[ioapic].gsi_base; 4249 } 4250 4251 static int bad_ioapic(unsigned long address) 4252 { 4253 if (nr_ioapics >= MAX_IO_APICS) { 4254 printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded " 4255 "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics); 4256 return 1; 4257 } 4258 if (!address) { 4259 printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address" 4260 " found in table, skipping!\n"); 4261 return 1; 4262 } 4263 return 0; 4264 } 4265 4266 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base) 4267 { 4268 int idx = 0; 4269 int entries; 4270 4271 if (bad_ioapic(address)) 4272 return; 4273 4274 idx = nr_ioapics; 4275 4276 mp_ioapics[idx].type = MP_IOAPIC; 4277 mp_ioapics[idx].flags = MPC_APIC_USABLE; 4278 mp_ioapics[idx].apicaddr = address; 4279 4280 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address); 4281 mp_ioapics[idx].apicid = io_apic_unique_id(id); 4282 mp_ioapics[idx].apicver = io_apic_get_version(idx); 4283 4284 /* 4285 * Build basic GSI lookup table to facilitate gsi->io_apic lookups 4286 * and to prevent reprogramming of IOAPIC pins (PCI GSIs). 4287 */ 4288 entries = io_apic_get_redir_entries(idx); 4289 mp_gsi_routing[idx].gsi_base = gsi_base; 4290 mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1; 4291 4292 /* 4293 * The number of IO-APIC IRQ registers (== #pins): 4294 */ 4295 nr_ioapic_registers[idx] = entries; 4296 4297 if (mp_gsi_routing[idx].gsi_end >= gsi_top) 4298 gsi_top = mp_gsi_routing[idx].gsi_end + 1; 4299 4300 printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, " 4301 "GSI %d-%d\n", idx, mp_ioapics[idx].apicid, 4302 mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr, 4303 mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end); 4304 4305 nr_ioapics++; 4306 } 4307 4308 /* Enable IOAPIC early just for system timer */ 4309 void __init pre_init_apic_IRQ0(void) 4310 { 4311 struct irq_cfg *cfg; 4312 struct irq_desc *desc; 4313 4314 printk(KERN_INFO "Early APIC setup for system timer0\n"); 4315 #ifndef CONFIG_SMP 4316 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_physical_apicid); 4317 #endif 4318 desc = irq_to_desc_alloc_node(0, 0); 4319 4320 setup_local_APIC(); 4321 4322 cfg = irq_cfg(0); 4323 add_pin_to_irq_node(cfg, 0, 0, 0); 4324 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge"); 4325 4326 setup_IO_APIC_irq(0, 0, 0, desc, 0, 0); 4327 } 4328