1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Intel IO-APIC support for multi-Pentium hosts. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * 7 * Many thanks to Stig Venaas for trying out countless experimental 8 * patches and reporting/debugging problems patiently! 9 * 10 * (c) 1999, Multiple IO-APIC support, developed by 11 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and 12 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>, 13 * further tested and cleaned up by Zach Brown <zab@redhat.com> 14 * and Ingo Molnar <mingo@redhat.com> 15 * 16 * Fixes 17 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 18 * thanks to Eric Gilmore 19 * and Rolf G. Tews 20 * for testing these extensively 21 * Paul Diefenbaugh : Added full ACPI support 22 * 23 * Historical information which is worth to be preserved: 24 * 25 * - SiS APIC rmw bug: 26 * 27 * We used to have a workaround for a bug in SiS chips which 28 * required to rewrite the index register for a read-modify-write 29 * operation as the chip lost the index information which was 30 * setup for the read already. We cache the data now, so that 31 * workaround has been removed. 32 */ 33 34 #include <linux/mm.h> 35 #include <linux/interrupt.h> 36 #include <linux/irq.h> 37 #include <linux/init.h> 38 #include <linux/delay.h> 39 #include <linux/sched.h> 40 #include <linux/pci.h> 41 #include <linux/mc146818rtc.h> 42 #include <linux/compiler.h> 43 #include <linux/acpi.h> 44 #include <linux/export.h> 45 #include <linux/syscore_ops.h> 46 #include <linux/freezer.h> 47 #include <linux/kthread.h> 48 #include <linux/jiffies.h> /* time_after() */ 49 #include <linux/slab.h> 50 #include <linux/memblock.h> 51 #include <linux/msi.h> 52 53 #include <asm/irqdomain.h> 54 #include <asm/io.h> 55 #include <asm/smp.h> 56 #include <asm/cpu.h> 57 #include <asm/desc.h> 58 #include <asm/proto.h> 59 #include <asm/acpi.h> 60 #include <asm/dma.h> 61 #include <asm/timer.h> 62 #include <asm/time.h> 63 #include <asm/i8259.h> 64 #include <asm/setup.h> 65 #include <asm/irq_remapping.h> 66 #include <asm/hw_irq.h> 67 #include <asm/apic.h> 68 #include <asm/pgtable.h> 69 #include <asm/x86_init.h> 70 71 #define for_each_ioapic(idx) \ 72 for ((idx) = 0; (idx) < nr_ioapics; (idx)++) 73 #define for_each_ioapic_reverse(idx) \ 74 for ((idx) = nr_ioapics - 1; (idx) >= 0; (idx)--) 75 #define for_each_pin(idx, pin) \ 76 for ((pin) = 0; (pin) < ioapics[(idx)].nr_registers; (pin)++) 77 #define for_each_ioapic_pin(idx, pin) \ 78 for_each_ioapic((idx)) \ 79 for_each_pin((idx), (pin)) 80 #define for_each_irq_pin(entry, head) \ 81 list_for_each_entry(entry, &head, list) 82 83 static DEFINE_RAW_SPINLOCK(ioapic_lock); 84 static DEFINE_MUTEX(ioapic_mutex); 85 static unsigned int ioapic_dynirq_base; 86 static int ioapic_initialized; 87 88 struct irq_pin_list { 89 struct list_head list; 90 int apic, pin; 91 }; 92 93 struct mp_chip_data { 94 struct list_head irq_2_pin; 95 struct IO_APIC_route_entry entry; 96 bool is_level; 97 bool active_low; 98 bool isa_irq; 99 u32 count; 100 }; 101 102 struct mp_ioapic_gsi { 103 u32 gsi_base; 104 u32 gsi_end; 105 }; 106 107 static struct ioapic { 108 /* # of IRQ routing registers */ 109 int nr_registers; 110 /* Saved state during suspend/resume, or while enabling intr-remap. */ 111 struct IO_APIC_route_entry *saved_registers; 112 /* I/O APIC config */ 113 struct mpc_ioapic mp_config; 114 /* IO APIC gsi routing info */ 115 struct mp_ioapic_gsi gsi_config; 116 struct ioapic_domain_cfg irqdomain_cfg; 117 struct irq_domain *irqdomain; 118 struct resource *iomem_res; 119 } ioapics[MAX_IO_APICS]; 120 121 #define mpc_ioapic_ver(ioapic_idx) ioapics[ioapic_idx].mp_config.apicver 122 123 int mpc_ioapic_id(int ioapic_idx) 124 { 125 return ioapics[ioapic_idx].mp_config.apicid; 126 } 127 128 unsigned int mpc_ioapic_addr(int ioapic_idx) 129 { 130 return ioapics[ioapic_idx].mp_config.apicaddr; 131 } 132 133 static inline struct mp_ioapic_gsi *mp_ioapic_gsi_routing(int ioapic_idx) 134 { 135 return &ioapics[ioapic_idx].gsi_config; 136 } 137 138 static inline int mp_ioapic_pin_count(int ioapic) 139 { 140 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic); 141 142 return gsi_cfg->gsi_end - gsi_cfg->gsi_base + 1; 143 } 144 145 static inline u32 mp_pin_to_gsi(int ioapic, int pin) 146 { 147 return mp_ioapic_gsi_routing(ioapic)->gsi_base + pin; 148 } 149 150 static inline bool mp_is_legacy_irq(int irq) 151 { 152 return irq >= 0 && irq < nr_legacy_irqs(); 153 } 154 155 static inline struct irq_domain *mp_ioapic_irqdomain(int ioapic) 156 { 157 return ioapics[ioapic].irqdomain; 158 } 159 160 int nr_ioapics; 161 162 /* The one past the highest gsi number used */ 163 u32 gsi_top; 164 165 /* MP IRQ source entries */ 166 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; 167 168 /* # of MP IRQ source entries */ 169 int mp_irq_entries; 170 171 #ifdef CONFIG_EISA 172 int mp_bus_id_to_type[MAX_MP_BUSSES]; 173 #endif 174 175 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); 176 177 bool ioapic_is_disabled __ro_after_init; 178 179 /** 180 * disable_ioapic_support() - disables ioapic support at runtime 181 */ 182 void disable_ioapic_support(void) 183 { 184 #ifdef CONFIG_PCI 185 noioapicquirk = 1; 186 noioapicreroute = -1; 187 #endif 188 ioapic_is_disabled = true; 189 } 190 191 static int __init parse_noapic(char *str) 192 { 193 /* disable IO-APIC */ 194 disable_ioapic_support(); 195 return 0; 196 } 197 early_param("noapic", parse_noapic); 198 199 /* Will be called in mpparse/ACPI codes for saving IRQ info */ 200 void mp_save_irq(struct mpc_intsrc *m) 201 { 202 int i; 203 204 apic_pr_verbose("Int: type %d, pol %d, trig %d, bus %02x, IRQ %02x, APIC ID %x, APIC INT %02x\n", 205 m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus, 206 m->srcbusirq, m->dstapic, m->dstirq); 207 208 for (i = 0; i < mp_irq_entries; i++) { 209 if (!memcmp(&mp_irqs[i], m, sizeof(*m))) 210 return; 211 } 212 213 memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m)); 214 if (++mp_irq_entries == MAX_IRQ_SOURCES) 215 panic("Max # of irq sources exceeded!!\n"); 216 } 217 218 static void alloc_ioapic_saved_registers(int idx) 219 { 220 size_t size; 221 222 if (ioapics[idx].saved_registers) 223 return; 224 225 size = sizeof(struct IO_APIC_route_entry) * ioapics[idx].nr_registers; 226 ioapics[idx].saved_registers = kzalloc(size, GFP_KERNEL); 227 if (!ioapics[idx].saved_registers) 228 pr_err("IOAPIC %d: suspend/resume impossible!\n", idx); 229 } 230 231 static void free_ioapic_saved_registers(int idx) 232 { 233 kfree(ioapics[idx].saved_registers); 234 ioapics[idx].saved_registers = NULL; 235 } 236 237 int __init arch_early_ioapic_init(void) 238 { 239 int i; 240 241 if (!nr_legacy_irqs()) 242 io_apic_irqs = ~0UL; 243 244 for_each_ioapic(i) 245 alloc_ioapic_saved_registers(i); 246 247 return 0; 248 } 249 250 struct io_apic { 251 unsigned int index; 252 unsigned int unused[3]; 253 unsigned int data; 254 unsigned int unused2[11]; 255 unsigned int eoi; 256 }; 257 258 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) 259 { 260 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) 261 + (mpc_ioapic_addr(idx) & ~PAGE_MASK); 262 } 263 264 static inline void io_apic_eoi(unsigned int apic, unsigned int vector) 265 { 266 struct io_apic __iomem *io_apic = io_apic_base(apic); 267 268 writel(vector, &io_apic->eoi); 269 } 270 271 unsigned int native_io_apic_read(unsigned int apic, unsigned int reg) 272 { 273 struct io_apic __iomem *io_apic = io_apic_base(apic); 274 275 writel(reg, &io_apic->index); 276 return readl(&io_apic->data); 277 } 278 279 static void io_apic_write(unsigned int apic, unsigned int reg, 280 unsigned int value) 281 { 282 struct io_apic __iomem *io_apic = io_apic_base(apic); 283 284 writel(reg, &io_apic->index); 285 writel(value, &io_apic->data); 286 } 287 288 static struct IO_APIC_route_entry __ioapic_read_entry(int apic, int pin) 289 { 290 struct IO_APIC_route_entry entry; 291 292 entry.w1 = io_apic_read(apic, 0x10 + 2 * pin); 293 entry.w2 = io_apic_read(apic, 0x11 + 2 * pin); 294 295 return entry; 296 } 297 298 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) 299 { 300 guard(raw_spinlock_irqsave)(&ioapic_lock); 301 return __ioapic_read_entry(apic, pin); 302 } 303 304 /* 305 * When we write a new IO APIC routing entry, we need to write the high 306 * word first! If the mask bit in the low word is clear, we will enable 307 * the interrupt, and we need to make sure the entry is fully populated 308 * before that happens. 309 */ 310 static void __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 311 { 312 io_apic_write(apic, 0x11 + 2*pin, e.w2); 313 io_apic_write(apic, 0x10 + 2*pin, e.w1); 314 } 315 316 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) 317 { 318 guard(raw_spinlock_irqsave)(&ioapic_lock); 319 __ioapic_write_entry(apic, pin, e); 320 } 321 322 /* 323 * When we mask an IO APIC routing entry, we need to write the low 324 * word first, in order to set the mask bit before we change the 325 * high bits! 326 */ 327 static void ioapic_mask_entry(int apic, int pin) 328 { 329 struct IO_APIC_route_entry e = { .masked = true }; 330 331 guard(raw_spinlock_irqsave)(&ioapic_lock); 332 io_apic_write(apic, 0x10 + 2*pin, e.w1); 333 io_apic_write(apic, 0x11 + 2*pin, e.w2); 334 } 335 336 /* 337 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are 338 * shared ISA-space IRQs, so we have to support them. We are super 339 * fast in the common case, and fast for shared ISA-space IRQs. 340 */ 341 static bool add_pin_to_irq_node(struct mp_chip_data *data, int node, int apic, int pin) 342 { 343 struct irq_pin_list *entry; 344 345 /* Don't allow duplicates */ 346 for_each_irq_pin(entry, data->irq_2_pin) { 347 if (entry->apic == apic && entry->pin == pin) 348 return true; 349 } 350 351 entry = kzalloc_node(sizeof(struct irq_pin_list), GFP_ATOMIC, node); 352 if (!entry) { 353 pr_err("Cannot allocate irq_pin_list (%d,%d,%d)\n", node, apic, pin); 354 return false; 355 } 356 357 entry->apic = apic; 358 entry->pin = pin; 359 list_add_tail(&entry->list, &data->irq_2_pin); 360 return true; 361 } 362 363 static void __remove_pin_from_irq(struct mp_chip_data *data, int apic, int pin) 364 { 365 struct irq_pin_list *tmp, *entry; 366 367 list_for_each_entry_safe(entry, tmp, &data->irq_2_pin, list) { 368 if (entry->apic == apic && entry->pin == pin) { 369 list_del(&entry->list); 370 kfree(entry); 371 return; 372 } 373 } 374 } 375 376 static void io_apic_modify_irq(struct mp_chip_data *data, bool masked, 377 void (*final)(struct irq_pin_list *entry)) 378 { 379 struct irq_pin_list *entry; 380 381 data->entry.masked = masked; 382 383 for_each_irq_pin(entry, data->irq_2_pin) { 384 io_apic_write(entry->apic, 0x10 + 2 * entry->pin, data->entry.w1); 385 if (final) 386 final(entry); 387 } 388 } 389 390 /* 391 * Synchronize the IO-APIC and the CPU by doing a dummy read from the 392 * IO-APIC 393 */ 394 static void io_apic_sync(struct irq_pin_list *entry) 395 { 396 struct io_apic __iomem *io_apic; 397 398 io_apic = io_apic_base(entry->apic); 399 readl(&io_apic->data); 400 } 401 402 static void mask_ioapic_irq(struct irq_data *irq_data) 403 { 404 struct mp_chip_data *data = irq_data->chip_data; 405 406 guard(raw_spinlock_irqsave)(&ioapic_lock); 407 io_apic_modify_irq(data, true, &io_apic_sync); 408 } 409 410 static void __unmask_ioapic(struct mp_chip_data *data) 411 { 412 io_apic_modify_irq(data, false, NULL); 413 } 414 415 static void unmask_ioapic_irq(struct irq_data *irq_data) 416 { 417 struct mp_chip_data *data = irq_data->chip_data; 418 419 guard(raw_spinlock_irqsave)(&ioapic_lock); 420 __unmask_ioapic(data); 421 } 422 423 /* 424 * IO-APIC versions below 0x20 don't support EOI register. 425 * For the record, here is the information about various versions: 426 * 0Xh 82489DX 427 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant 428 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant 429 * 30h-FFh Reserved 430 * 431 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic 432 * version as 0x2. This is an error with documentation and these ICH chips 433 * use io-apic's of version 0x20. 434 * 435 * For IO-APIC's with EOI register, we use that to do an explicit EOI. 436 * Otherwise, we simulate the EOI message manually by changing the trigger 437 * mode to edge and then back to level, with RTE being masked during this. 438 */ 439 static void __eoi_ioapic_pin(int apic, int pin, int vector) 440 { 441 if (mpc_ioapic_ver(apic) >= 0x20) { 442 io_apic_eoi(apic, vector); 443 } else { 444 struct IO_APIC_route_entry entry, entry1; 445 446 entry = entry1 = __ioapic_read_entry(apic, pin); 447 448 /* Mask the entry and change the trigger mode to edge. */ 449 entry1.masked = true; 450 entry1.is_level = false; 451 452 __ioapic_write_entry(apic, pin, entry1); 453 454 /* Restore the previous level triggered entry. */ 455 __ioapic_write_entry(apic, pin, entry); 456 } 457 } 458 459 static void eoi_ioapic_pin(int vector, struct mp_chip_data *data) 460 { 461 struct irq_pin_list *entry; 462 463 guard(raw_spinlock_irqsave)(&ioapic_lock); 464 for_each_irq_pin(entry, data->irq_2_pin) 465 __eoi_ioapic_pin(entry->apic, entry->pin, vector); 466 } 467 468 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) 469 { 470 struct IO_APIC_route_entry entry; 471 472 /* Check delivery_mode to be sure we're not clearing an SMI pin */ 473 entry = ioapic_read_entry(apic, pin); 474 if (entry.delivery_mode == APIC_DELIVERY_MODE_SMI) 475 return; 476 477 /* 478 * Make sure the entry is masked and re-read the contents to check 479 * if it is a level triggered pin and if the remote-IRR is set. 480 */ 481 if (!entry.masked) { 482 entry.masked = true; 483 ioapic_write_entry(apic, pin, entry); 484 entry = ioapic_read_entry(apic, pin); 485 } 486 487 if (entry.irr) { 488 /* 489 * Make sure the trigger mode is set to level. Explicit EOI 490 * doesn't clear the remote-IRR if the trigger mode is not 491 * set to level. 492 */ 493 if (!entry.is_level) { 494 entry.is_level = true; 495 ioapic_write_entry(apic, pin, entry); 496 } 497 guard(raw_spinlock_irqsave)(&ioapic_lock); 498 __eoi_ioapic_pin(apic, pin, entry.vector); 499 } 500 501 /* 502 * Clear the rest of the bits in the IO-APIC RTE except for the mask 503 * bit. 504 */ 505 ioapic_mask_entry(apic, pin); 506 entry = ioapic_read_entry(apic, pin); 507 if (entry.irr) 508 pr_err("Unable to reset IRR for apic: %d, pin :%d\n", 509 mpc_ioapic_id(apic), pin); 510 } 511 512 void clear_IO_APIC (void) 513 { 514 int apic, pin; 515 516 for_each_ioapic_pin(apic, pin) 517 clear_IO_APIC_pin(apic, pin); 518 } 519 520 #ifdef CONFIG_X86_32 521 /* 522 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to 523 * specific CPU-side IRQs. 524 */ 525 526 #define MAX_PIRQS 8 527 static int pirq_entries[MAX_PIRQS] = { 528 [0 ... MAX_PIRQS - 1] = -1 529 }; 530 531 static int __init ioapic_pirq_setup(char *str) 532 { 533 int i, max, ints[MAX_PIRQS+1]; 534 535 get_options(str, ARRAY_SIZE(ints), ints); 536 537 apic_pr_verbose("PIRQ redirection, working around broken MP-BIOS.\n"); 538 539 max = MAX_PIRQS; 540 if (ints[0] < MAX_PIRQS) 541 max = ints[0]; 542 543 for (i = 0; i < max; i++) { 544 apic_pr_verbose("... PIRQ%d -> IRQ %d\n", i, ints[i + 1]); 545 /* PIRQs are mapped upside down, usually */ 546 pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; 547 } 548 return 1; 549 } 550 __setup("pirq=", ioapic_pirq_setup); 551 #endif /* CONFIG_X86_32 */ 552 553 /* 554 * Saves all the IO-APIC RTE's 555 */ 556 int save_ioapic_entries(void) 557 { 558 int apic, pin; 559 int err = 0; 560 561 for_each_ioapic(apic) { 562 if (!ioapics[apic].saved_registers) { 563 err = -ENOMEM; 564 continue; 565 } 566 567 for_each_pin(apic, pin) 568 ioapics[apic].saved_registers[pin] = ioapic_read_entry(apic, pin); 569 } 570 571 return err; 572 } 573 574 /* 575 * Mask all IO APIC entries. 576 */ 577 void mask_ioapic_entries(void) 578 { 579 int apic, pin; 580 581 for_each_ioapic(apic) { 582 if (!ioapics[apic].saved_registers) 583 continue; 584 585 for_each_pin(apic, pin) { 586 struct IO_APIC_route_entry entry; 587 588 entry = ioapics[apic].saved_registers[pin]; 589 if (!entry.masked) { 590 entry.masked = true; 591 ioapic_write_entry(apic, pin, entry); 592 } 593 } 594 } 595 } 596 597 /* 598 * Restore IO APIC entries which was saved in the ioapic structure. 599 */ 600 int restore_ioapic_entries(void) 601 { 602 int apic, pin; 603 604 for_each_ioapic(apic) { 605 if (!ioapics[apic].saved_registers) 606 continue; 607 608 for_each_pin(apic, pin) 609 ioapic_write_entry(apic, pin, ioapics[apic].saved_registers[pin]); 610 } 611 return 0; 612 } 613 614 /* 615 * Find the IRQ entry number of a certain pin. 616 */ 617 static int find_irq_entry(int ioapic_idx, int pin, int type) 618 { 619 int i; 620 621 for (i = 0; i < mp_irq_entries; i++) { 622 if (mp_irqs[i].irqtype == type && 623 (mp_irqs[i].dstapic == mpc_ioapic_id(ioapic_idx) || 624 mp_irqs[i].dstapic == MP_APIC_ALL) && 625 mp_irqs[i].dstirq == pin) 626 return i; 627 } 628 629 return -1; 630 } 631 632 /* 633 * Find the pin to which IRQ[irq] (ISA) is connected 634 */ 635 static int __init find_isa_irq_pin(int irq, int type) 636 { 637 int i; 638 639 for (i = 0; i < mp_irq_entries; i++) { 640 int lbus = mp_irqs[i].srcbus; 641 642 if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].irqtype == type) && 643 (mp_irqs[i].srcbusirq == irq)) 644 return mp_irqs[i].dstirq; 645 } 646 return -1; 647 } 648 649 static int __init find_isa_irq_apic(int irq, int type) 650 { 651 int i; 652 653 for (i = 0; i < mp_irq_entries; i++) { 654 int lbus = mp_irqs[i].srcbus; 655 656 if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].irqtype == type) && 657 (mp_irqs[i].srcbusirq == irq)) 658 break; 659 } 660 661 if (i < mp_irq_entries) { 662 int ioapic_idx; 663 664 for_each_ioapic(ioapic_idx) { 665 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic) 666 return ioapic_idx; 667 } 668 } 669 670 return -1; 671 } 672 673 static bool irq_active_low(int idx) 674 { 675 int bus = mp_irqs[idx].srcbus; 676 677 /* 678 * Determine IRQ line polarity (high active or low active): 679 */ 680 switch (mp_irqs[idx].irqflag & MP_IRQPOL_MASK) { 681 case MP_IRQPOL_DEFAULT: 682 /* 683 * Conforms to spec, ie. bus-type dependent polarity. PCI 684 * defaults to low active. [E]ISA defaults to high active. 685 */ 686 return !test_bit(bus, mp_bus_not_pci); 687 case MP_IRQPOL_ACTIVE_HIGH: 688 return false; 689 case MP_IRQPOL_RESERVED: 690 pr_warn("IOAPIC: Invalid polarity: 2, defaulting to low\n"); 691 fallthrough; 692 case MP_IRQPOL_ACTIVE_LOW: 693 default: /* Pointless default required due to do gcc stupidity */ 694 return true; 695 } 696 } 697 698 #ifdef CONFIG_EISA 699 /* 700 * EISA Edge/Level control register, ELCR 701 */ 702 static bool EISA_ELCR(unsigned int irq) 703 { 704 if (irq < nr_legacy_irqs()) { 705 unsigned int port = PIC_ELCR1 + (irq >> 3); 706 return (inb(port) >> (irq & 7)) & 1; 707 } 708 apic_pr_verbose("Broken MPtable reports ISA irq %d\n", irq); 709 return false; 710 } 711 712 /* 713 * EISA interrupts are always active high and can be edge or level 714 * triggered depending on the ELCR value. If an interrupt is listed as 715 * EISA conforming in the MP table, that means its trigger type must be 716 * read in from the ELCR. 717 */ 718 static bool eisa_irq_is_level(int idx, int bus, bool level) 719 { 720 switch (mp_bus_id_to_type[bus]) { 721 case MP_BUS_PCI: 722 case MP_BUS_ISA: 723 return level; 724 case MP_BUS_EISA: 725 return EISA_ELCR(mp_irqs[idx].srcbusirq); 726 } 727 pr_warn("IOAPIC: Invalid srcbus: %d defaulting to level\n", bus); 728 return true; 729 } 730 #else 731 static inline int eisa_irq_is_level(int idx, int bus, bool level) 732 { 733 return level; 734 } 735 #endif 736 737 static bool irq_is_level(int idx) 738 { 739 int bus = mp_irqs[idx].srcbus; 740 bool level; 741 742 /* 743 * Determine IRQ trigger mode (edge or level sensitive): 744 */ 745 switch (mp_irqs[idx].irqflag & MP_IRQTRIG_MASK) { 746 case MP_IRQTRIG_DEFAULT: 747 /* 748 * Conforms to spec, ie. bus-type dependent trigger 749 * mode. PCI defaults to level, ISA to edge. 750 */ 751 level = !test_bit(bus, mp_bus_not_pci); 752 /* Take EISA into account */ 753 return eisa_irq_is_level(idx, bus, level); 754 case MP_IRQTRIG_EDGE: 755 return false; 756 case MP_IRQTRIG_RESERVED: 757 pr_warn("IOAPIC: Invalid trigger mode 2 defaulting to level\n"); 758 fallthrough; 759 case MP_IRQTRIG_LEVEL: 760 default: /* Pointless default required due to do gcc stupidity */ 761 return true; 762 } 763 } 764 765 static int __acpi_get_override_irq(u32 gsi, bool *trigger, bool *polarity) 766 { 767 int ioapic, pin, idx; 768 769 if (ioapic_is_disabled) 770 return -1; 771 772 ioapic = mp_find_ioapic(gsi); 773 if (ioapic < 0) 774 return -1; 775 776 pin = mp_find_ioapic_pin(ioapic, gsi); 777 if (pin < 0) 778 return -1; 779 780 idx = find_irq_entry(ioapic, pin, mp_INT); 781 if (idx < 0) 782 return -1; 783 784 *trigger = irq_is_level(idx); 785 *polarity = irq_active_low(idx); 786 return 0; 787 } 788 789 #ifdef CONFIG_ACPI 790 int acpi_get_override_irq(u32 gsi, int *is_level, int *active_low) 791 { 792 *is_level = *active_low = 0; 793 return __acpi_get_override_irq(gsi, (bool *)is_level, 794 (bool *)active_low); 795 } 796 #endif 797 798 void ioapic_set_alloc_attr(struct irq_alloc_info *info, int node, 799 int trigger, int polarity) 800 { 801 init_irq_alloc_info(info, NULL); 802 info->type = X86_IRQ_ALLOC_TYPE_IOAPIC; 803 info->ioapic.node = node; 804 info->ioapic.is_level = trigger; 805 info->ioapic.active_low = polarity; 806 info->ioapic.valid = 1; 807 } 808 809 static void ioapic_copy_alloc_attr(struct irq_alloc_info *dst, 810 struct irq_alloc_info *src, 811 u32 gsi, int ioapic_idx, int pin) 812 { 813 bool level, pol_low; 814 815 copy_irq_alloc_info(dst, src); 816 dst->type = X86_IRQ_ALLOC_TYPE_IOAPIC; 817 dst->devid = mpc_ioapic_id(ioapic_idx); 818 dst->ioapic.pin = pin; 819 dst->ioapic.valid = 1; 820 if (src && src->ioapic.valid) { 821 dst->ioapic.node = src->ioapic.node; 822 dst->ioapic.is_level = src->ioapic.is_level; 823 dst->ioapic.active_low = src->ioapic.active_low; 824 } else { 825 dst->ioapic.node = NUMA_NO_NODE; 826 if (__acpi_get_override_irq(gsi, &level, &pol_low) >= 0) { 827 dst->ioapic.is_level = level; 828 dst->ioapic.active_low = pol_low; 829 } else { 830 /* 831 * PCI interrupts are always active low level 832 * triggered. 833 */ 834 dst->ioapic.is_level = true; 835 dst->ioapic.active_low = true; 836 } 837 } 838 } 839 840 static int ioapic_alloc_attr_node(struct irq_alloc_info *info) 841 { 842 return (info && info->ioapic.valid) ? info->ioapic.node : NUMA_NO_NODE; 843 } 844 845 static void mp_register_handler(unsigned int irq, bool level) 846 { 847 irq_flow_handler_t hdl; 848 bool fasteoi; 849 850 if (level) { 851 irq_set_status_flags(irq, IRQ_LEVEL); 852 fasteoi = true; 853 } else { 854 irq_clear_status_flags(irq, IRQ_LEVEL); 855 fasteoi = false; 856 } 857 858 hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq; 859 __irq_set_handler(irq, hdl, 0, fasteoi ? "fasteoi" : "edge"); 860 } 861 862 static bool mp_check_pin_attr(int irq, struct irq_alloc_info *info) 863 { 864 struct mp_chip_data *data = irq_get_chip_data(irq); 865 866 /* 867 * setup_IO_APIC_irqs() programs all legacy IRQs with default trigger 868 * and polarity attributes. So allow the first user to reprogram the 869 * pin with real trigger and polarity attributes. 870 */ 871 if (irq < nr_legacy_irqs() && data->count == 1) { 872 if (info->ioapic.is_level != data->is_level) 873 mp_register_handler(irq, info->ioapic.is_level); 874 data->entry.is_level = data->is_level = info->ioapic.is_level; 875 data->entry.active_low = data->active_low = info->ioapic.active_low; 876 } 877 878 return data->is_level == info->ioapic.is_level && 879 data->active_low == info->ioapic.active_low; 880 } 881 882 static int alloc_irq_from_domain(struct irq_domain *domain, int ioapic, u32 gsi, 883 struct irq_alloc_info *info) 884 { 885 int type = ioapics[ioapic].irqdomain_cfg.type; 886 bool legacy = false; 887 int irq = -1; 888 889 switch (type) { 890 case IOAPIC_DOMAIN_LEGACY: 891 /* 892 * Dynamically allocate IRQ number for non-ISA IRQs in the first 893 * 16 GSIs on some weird platforms. 894 */ 895 if (!ioapic_initialized || gsi >= nr_legacy_irqs()) 896 irq = gsi; 897 legacy = mp_is_legacy_irq(irq); 898 break; 899 case IOAPIC_DOMAIN_STRICT: 900 irq = gsi; 901 break; 902 case IOAPIC_DOMAIN_DYNAMIC: 903 break; 904 default: 905 WARN(1, "ioapic: unknown irqdomain type %d\n", type); 906 return -1; 907 } 908 909 return __irq_domain_alloc_irqs(domain, irq, 1, ioapic_alloc_attr_node(info), 910 info, legacy, NULL); 911 } 912 913 /* 914 * Need special handling for ISA IRQs because there may be multiple IOAPIC pins 915 * sharing the same ISA IRQ number and irqdomain only supports 1:1 mapping 916 * between IOAPIC pin and IRQ number. A typical IOAPIC has 24 pins, pin 0-15 are 917 * used for legacy IRQs and pin 16-23 are used for PCI IRQs (PIRQ A-H). 918 * When ACPI is disabled, only legacy IRQ numbers (IRQ0-15) are available, and 919 * some BIOSes may use MP Interrupt Source records to override IRQ numbers for 920 * PIRQs instead of reprogramming the interrupt routing logic. Thus there may be 921 * multiple pins sharing the same legacy IRQ number when ACPI is disabled. 922 */ 923 static int alloc_isa_irq_from_domain(struct irq_domain *domain, int irq, int ioapic, int pin, 924 struct irq_alloc_info *info) 925 { 926 struct irq_data *irq_data = irq_get_irq_data(irq); 927 int node = ioapic_alloc_attr_node(info); 928 struct mp_chip_data *data; 929 930 /* 931 * Legacy ISA IRQ has already been allocated, just add pin to 932 * the pin list associated with this IRQ and program the IOAPIC 933 * entry. 934 */ 935 if (irq_data && irq_data->parent_data) { 936 if (!mp_check_pin_attr(irq, info)) 937 return -EBUSY; 938 if (!add_pin_to_irq_node(irq_data->chip_data, node, ioapic, info->ioapic.pin)) 939 return -ENOMEM; 940 } else { 941 info->flags |= X86_IRQ_ALLOC_LEGACY; 942 irq = __irq_domain_alloc_irqs(domain, irq, 1, node, info, true, NULL); 943 if (irq >= 0) { 944 irq_data = irq_domain_get_irq_data(domain, irq); 945 data = irq_data->chip_data; 946 data->isa_irq = true; 947 } 948 } 949 950 return irq; 951 } 952 953 static int mp_map_pin_to_irq(u32 gsi, int idx, int ioapic, int pin, 954 unsigned int flags, struct irq_alloc_info *info) 955 { 956 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic); 957 struct irq_alloc_info tmp; 958 struct mp_chip_data *data; 959 bool legacy = false; 960 int irq; 961 962 if (!domain) 963 return -ENOSYS; 964 965 if (idx >= 0 && test_bit(mp_irqs[idx].srcbus, mp_bus_not_pci)) { 966 irq = mp_irqs[idx].srcbusirq; 967 legacy = mp_is_legacy_irq(irq); 968 /* 969 * IRQ2 is unusable for historical reasons on systems which 970 * have a legacy PIC. See the comment vs. IRQ2 further down. 971 * 972 * If this gets removed at some point then the related code 973 * in lapic_assign_system_vectors() needs to be adjusted as 974 * well. 975 */ 976 if (legacy && irq == PIC_CASCADE_IR) 977 return -EINVAL; 978 } 979 980 guard(mutex)(&ioapic_mutex); 981 if (!(flags & IOAPIC_MAP_ALLOC)) { 982 if (!legacy) { 983 irq = irq_find_mapping(domain, pin); 984 if (irq == 0) 985 irq = -ENOENT; 986 } 987 } else { 988 ioapic_copy_alloc_attr(&tmp, info, gsi, ioapic, pin); 989 if (legacy) 990 irq = alloc_isa_irq_from_domain(domain, irq, 991 ioapic, pin, &tmp); 992 else if ((irq = irq_find_mapping(domain, pin)) == 0) 993 irq = alloc_irq_from_domain(domain, ioapic, gsi, &tmp); 994 else if (!mp_check_pin_attr(irq, &tmp)) 995 irq = -EBUSY; 996 if (irq >= 0) { 997 data = irq_get_chip_data(irq); 998 data->count++; 999 } 1000 } 1001 return irq; 1002 } 1003 1004 static int pin_2_irq(int idx, int ioapic, int pin, unsigned int flags) 1005 { 1006 u32 gsi = mp_pin_to_gsi(ioapic, pin); 1007 1008 /* Debugging check, we are in big trouble if this message pops up! */ 1009 if (mp_irqs[idx].dstirq != pin) 1010 pr_err("broken BIOS or MPTABLE parser, ayiee!!\n"); 1011 1012 #ifdef CONFIG_X86_32 1013 /* PCI IRQ command line redirection. Yes, limits are hardcoded. */ 1014 if ((pin >= 16) && (pin <= 23)) { 1015 if (pirq_entries[pin - 16] != -1) { 1016 if (!pirq_entries[pin - 16]) { 1017 apic_pr_verbose("Disabling PIRQ%d\n", pin - 16); 1018 } else { 1019 int irq = pirq_entries[pin-16]; 1020 1021 apic_pr_verbose("Using PIRQ%d -> IRQ %d\n", pin - 16, irq); 1022 return irq; 1023 } 1024 } 1025 } 1026 #endif 1027 1028 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, NULL); 1029 } 1030 1031 int mp_map_gsi_to_irq(u32 gsi, unsigned int flags, struct irq_alloc_info *info) 1032 { 1033 int ioapic, pin, idx; 1034 1035 ioapic = mp_find_ioapic(gsi); 1036 if (ioapic < 0) 1037 return -ENODEV; 1038 1039 pin = mp_find_ioapic_pin(ioapic, gsi); 1040 idx = find_irq_entry(ioapic, pin, mp_INT); 1041 if ((flags & IOAPIC_MAP_CHECK) && idx < 0) 1042 return -ENODEV; 1043 1044 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, info); 1045 } 1046 1047 void mp_unmap_irq(int irq) 1048 { 1049 struct irq_data *irq_data = irq_get_irq_data(irq); 1050 struct mp_chip_data *data; 1051 1052 if (!irq_data || !irq_data->domain) 1053 return; 1054 1055 data = irq_data->chip_data; 1056 if (!data || data->isa_irq) 1057 return; 1058 1059 guard(mutex)(&ioapic_mutex); 1060 if (--data->count == 0) 1061 irq_domain_free_irqs(irq, 1); 1062 } 1063 1064 /* 1065 * Find a specific PCI IRQ entry. 1066 * Not an __init, possibly needed by modules 1067 */ 1068 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin) 1069 { 1070 int irq, i, best_ioapic = -1, best_idx = -1; 1071 1072 apic_pr_debug("Querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", 1073 bus, slot, pin); 1074 if (test_bit(bus, mp_bus_not_pci)) { 1075 apic_pr_verbose("PCI BIOS passed nonexistent PCI bus %d!\n", bus); 1076 return -1; 1077 } 1078 1079 for (i = 0; i < mp_irq_entries; i++) { 1080 int lbus = mp_irqs[i].srcbus; 1081 int ioapic_idx, found = 0; 1082 1083 if (bus != lbus || mp_irqs[i].irqtype != mp_INT || 1084 slot != ((mp_irqs[i].srcbusirq >> 2) & 0x1f)) 1085 continue; 1086 1087 for_each_ioapic(ioapic_idx) 1088 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic || 1089 mp_irqs[i].dstapic == MP_APIC_ALL) { 1090 found = 1; 1091 break; 1092 } 1093 if (!found) 1094 continue; 1095 1096 /* Skip ISA IRQs */ 1097 irq = pin_2_irq(i, ioapic_idx, mp_irqs[i].dstirq, 0); 1098 if (irq > 0 && !IO_APIC_IRQ(irq)) 1099 continue; 1100 1101 if (pin == (mp_irqs[i].srcbusirq & 3)) { 1102 best_idx = i; 1103 best_ioapic = ioapic_idx; 1104 goto out; 1105 } 1106 1107 /* 1108 * Use the first all-but-pin matching entry as a 1109 * best-guess fuzzy result for broken mptables. 1110 */ 1111 if (best_idx < 0) { 1112 best_idx = i; 1113 best_ioapic = ioapic_idx; 1114 } 1115 } 1116 if (best_idx < 0) 1117 return -1; 1118 1119 out: 1120 return pin_2_irq(best_idx, best_ioapic, mp_irqs[best_idx].dstirq, IOAPIC_MAP_ALLOC); 1121 } 1122 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); 1123 1124 static struct irq_chip ioapic_chip, ioapic_ir_chip; 1125 1126 static void __init setup_IO_APIC_irqs(void) 1127 { 1128 unsigned int ioapic, pin; 1129 int idx; 1130 1131 apic_pr_verbose("Init IO_APIC IRQs\n"); 1132 1133 for_each_ioapic_pin(ioapic, pin) { 1134 idx = find_irq_entry(ioapic, pin, mp_INT); 1135 if (idx < 0) { 1136 apic_pr_verbose("apic %d pin %d not connected\n", 1137 mpc_ioapic_id(ioapic), pin); 1138 } else { 1139 pin_2_irq(idx, ioapic, pin, ioapic ? 0 : IOAPIC_MAP_ALLOC); 1140 } 1141 } 1142 } 1143 1144 void ioapic_zap_locks(void) 1145 { 1146 raw_spin_lock_init(&ioapic_lock); 1147 } 1148 1149 static void io_apic_print_entries(unsigned int apic, unsigned int nr_entries) 1150 { 1151 struct IO_APIC_route_entry entry; 1152 char buf[256]; 1153 int i; 1154 1155 apic_dbg("IOAPIC %d:\n", apic); 1156 for (i = 0; i <= nr_entries; i++) { 1157 entry = ioapic_read_entry(apic, i); 1158 snprintf(buf, sizeof(buf), " pin%02x, %s, %s, %s, V(%02X), IRR(%1d), S(%1d)", 1159 i, entry.masked ? "disabled" : "enabled ", 1160 entry.is_level ? "level" : "edge ", 1161 entry.active_low ? "low " : "high", 1162 entry.vector, entry.irr, entry.delivery_status); 1163 if (entry.ir_format) { 1164 apic_dbg("%s, remapped, I(%04X), Z(%X)\n", buf, 1165 (entry.ir_index_15 << 15) | entry.ir_index_0_14, entry.ir_zero); 1166 } else { 1167 apic_dbg("%s, %s, D(%02X%02X), M(%1d)\n", buf, 1168 entry.dest_mode_logical ? "logical " : "physic al", 1169 entry.virt_destid_8_14, entry.destid_0_7, entry.delivery_mode); 1170 } 1171 } 1172 } 1173 1174 static void __init print_IO_APIC(int ioapic_idx) 1175 { 1176 union IO_APIC_reg_00 reg_00; 1177 union IO_APIC_reg_01 reg_01; 1178 union IO_APIC_reg_02 reg_02; 1179 union IO_APIC_reg_03 reg_03; 1180 1181 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) { 1182 reg_00.raw = io_apic_read(ioapic_idx, 0); 1183 reg_01.raw = io_apic_read(ioapic_idx, 1); 1184 if (reg_01.bits.version >= 0x10) 1185 reg_02.raw = io_apic_read(ioapic_idx, 2); 1186 if (reg_01.bits.version >= 0x20) 1187 reg_03.raw = io_apic_read(ioapic_idx, 3); 1188 } 1189 1190 apic_dbg("IO APIC #%d......\n", mpc_ioapic_id(ioapic_idx)); 1191 apic_dbg(".... register #00: %08X\n", reg_00.raw); 1192 apic_dbg("....... : physical APIC id: %02X\n", reg_00.bits.ID); 1193 apic_dbg("....... : Delivery Type: %X\n", reg_00.bits.delivery_type); 1194 apic_dbg("....... : LTS : %X\n", reg_00.bits.LTS); 1195 apic_dbg(".... register #01: %08X\n", *(int *)®_01); 1196 apic_dbg("....... : max redirection entries: %02X\n", reg_01.bits.entries); 1197 apic_dbg("....... : PRQ implemented: %X\n", reg_01.bits.PRQ); 1198 apic_dbg("....... : IO APIC version: %02X\n", reg_01.bits.version); 1199 1200 /* 1201 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, 1202 * but the value of reg_02 is read as the previous read register 1203 * value, so ignore it if reg_02 == reg_01. 1204 */ 1205 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { 1206 apic_dbg(".... register #02: %08X\n", reg_02.raw); 1207 apic_dbg("....... : arbitration: %02X\n", reg_02.bits.arbitration); 1208 } 1209 1210 /* 1211 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 1212 * or reg_03, but the value of reg_0[23] is read as the previous read 1213 * register value, so ignore it if reg_03 == reg_0[12]. 1214 */ 1215 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && 1216 reg_03.raw != reg_01.raw) { 1217 apic_dbg(".... register #03: %08X\n", reg_03.raw); 1218 apic_dbg("....... : Boot DT : %X\n", reg_03.bits.boot_DT); 1219 } 1220 1221 apic_dbg(".... IRQ redirection table:\n"); 1222 io_apic_print_entries(ioapic_idx, reg_01.bits.entries); 1223 } 1224 1225 void __init print_IO_APICs(void) 1226 { 1227 int ioapic_idx; 1228 unsigned int irq; 1229 1230 apic_dbg("number of MP IRQ sources: %d.\n", mp_irq_entries); 1231 for_each_ioapic(ioapic_idx) { 1232 apic_dbg("number of IO-APIC #%d registers: %d.\n", 1233 mpc_ioapic_id(ioapic_idx), ioapics[ioapic_idx].nr_registers); 1234 } 1235 1236 /* 1237 * We are a bit conservative about what we expect. We have to 1238 * know about every hardware change ASAP. 1239 */ 1240 printk(KERN_INFO "testing the IO APIC.......................\n"); 1241 1242 for_each_ioapic(ioapic_idx) 1243 print_IO_APIC(ioapic_idx); 1244 1245 apic_dbg("IRQ to pin mappings:\n"); 1246 for_each_active_irq(irq) { 1247 struct irq_pin_list *entry; 1248 struct irq_chip *chip; 1249 struct mp_chip_data *data; 1250 1251 chip = irq_get_chip(irq); 1252 if (chip != &ioapic_chip && chip != &ioapic_ir_chip) 1253 continue; 1254 data = irq_get_chip_data(irq); 1255 if (!data) 1256 continue; 1257 if (list_empty(&data->irq_2_pin)) 1258 continue; 1259 1260 apic_dbg("IRQ%d ", irq); 1261 for_each_irq_pin(entry, data->irq_2_pin) 1262 pr_cont("-> %d:%d", entry->apic, entry->pin); 1263 pr_cont("\n"); 1264 } 1265 1266 printk(KERN_INFO ".................................... done.\n"); 1267 } 1268 1269 /* Where if anywhere is the i8259 connect in external int mode */ 1270 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; 1271 1272 void __init enable_IO_APIC(void) 1273 { 1274 int i8259_apic, i8259_pin, apic, pin; 1275 1276 if (ioapic_is_disabled) 1277 nr_ioapics = 0; 1278 1279 if (!nr_legacy_irqs() || !nr_ioapics) 1280 return; 1281 1282 for_each_ioapic_pin(apic, pin) { 1283 /* See if any of the pins is in ExtINT mode */ 1284 struct IO_APIC_route_entry entry = ioapic_read_entry(apic, pin); 1285 1286 /* 1287 * If the interrupt line is enabled and in ExtInt mode I 1288 * have found the pin where the i8259 is connected. 1289 */ 1290 if (!entry.masked && entry.delivery_mode == APIC_DELIVERY_MODE_EXTINT) { 1291 ioapic_i8259.apic = apic; 1292 ioapic_i8259.pin = pin; 1293 break; 1294 } 1295 } 1296 1297 /* 1298 * Look to see what if the MP table has reported the ExtINT 1299 * 1300 * If we could not find the appropriate pin by looking at the ioapic 1301 * the i8259 probably is not connected the ioapic but give the 1302 * mptable a chance anyway. 1303 */ 1304 i8259_pin = find_isa_irq_pin(0, mp_ExtINT); 1305 i8259_apic = find_isa_irq_apic(0, mp_ExtINT); 1306 /* Trust the MP table if nothing is setup in the hardware */ 1307 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { 1308 pr_warn("ExtINT not setup in hardware but reported by MP table\n"); 1309 ioapic_i8259.pin = i8259_pin; 1310 ioapic_i8259.apic = i8259_apic; 1311 } 1312 /* Complain if the MP table and the hardware disagree */ 1313 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && 1314 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) 1315 pr_warn("ExtINT in hardware and MP table differ\n"); 1316 1317 /* Do not trust the IO-APIC being empty at bootup */ 1318 clear_IO_APIC(); 1319 } 1320 1321 void native_restore_boot_irq_mode(void) 1322 { 1323 /* 1324 * If the i8259 is routed through an IOAPIC Put that IOAPIC in 1325 * virtual wire mode so legacy interrupts can be delivered. 1326 */ 1327 if (ioapic_i8259.pin != -1) { 1328 struct IO_APIC_route_entry entry; 1329 u32 apic_id = read_apic_id(); 1330 1331 memset(&entry, 0, sizeof(entry)); 1332 entry.masked = false; 1333 entry.is_level = false; 1334 entry.active_low = false; 1335 entry.dest_mode_logical = false; 1336 entry.delivery_mode = APIC_DELIVERY_MODE_EXTINT; 1337 entry.destid_0_7 = apic_id & 0xFF; 1338 entry.virt_destid_8_14 = apic_id >> 8; 1339 1340 /* Add it to the IO-APIC irq-routing table */ 1341 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); 1342 } 1343 1344 if (boot_cpu_has(X86_FEATURE_APIC) || apic_from_smp_config()) 1345 disconnect_bsp_APIC(ioapic_i8259.pin != -1); 1346 } 1347 1348 void restore_boot_irq_mode(void) 1349 { 1350 if (!nr_legacy_irqs()) 1351 return; 1352 1353 x86_apic_ops.restore(); 1354 } 1355 1356 #ifdef CONFIG_X86_32 1357 /* 1358 * function to set the IO-APIC physical IDs based on the 1359 * values stored in the MPC table. 1360 * 1361 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999 1362 */ 1363 static void __init setup_ioapic_ids_from_mpc_nocheck(void) 1364 { 1365 DECLARE_BITMAP(phys_id_present_map, MAX_LOCAL_APIC); 1366 const u32 broadcast_id = 0xF; 1367 union IO_APIC_reg_00 reg_00; 1368 unsigned char old_id; 1369 int ioapic_idx, i; 1370 1371 /* 1372 * This is broken; anything with a real cpu count has to 1373 * circumvent this idiocy regardless. 1374 */ 1375 copy_phys_cpu_present_map(phys_id_present_map); 1376 1377 /* 1378 * Set the IOAPIC ID to the value stored in the MPC table. 1379 */ 1380 for_each_ioapic(ioapic_idx) { 1381 /* Read the register 0 value */ 1382 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) 1383 reg_00.raw = io_apic_read(ioapic_idx, 0); 1384 1385 old_id = mpc_ioapic_id(ioapic_idx); 1386 1387 if (mpc_ioapic_id(ioapic_idx) >= broadcast_id) { 1388 pr_err(FW_BUG "IO-APIC#%d ID is %d in the MPC table!...\n", 1389 ioapic_idx, mpc_ioapic_id(ioapic_idx)); 1390 pr_err("... fixing up to %d. (tell your hw vendor)\n", reg_00.bits.ID); 1391 ioapics[ioapic_idx].mp_config.apicid = reg_00.bits.ID; 1392 } 1393 1394 /* 1395 * Sanity check, is the ID really free? Every APIC in a 1396 * system must have a unique ID or we get lots of nice 1397 * 'stuck on smp_invalidate_needed IPI wait' messages. 1398 */ 1399 if (test_bit(mpc_ioapic_id(ioapic_idx), phys_id_present_map)) { 1400 pr_err(FW_BUG "IO-APIC#%d ID %d is already used!...\n", 1401 ioapic_idx, mpc_ioapic_id(ioapic_idx)); 1402 for (i = 0; i < broadcast_id; i++) 1403 if (!test_bit(i, phys_id_present_map)) 1404 break; 1405 if (i >= broadcast_id) 1406 panic("Max APIC ID exceeded!\n"); 1407 pr_err("... fixing up to %d. (tell your hw vendor)\n", i); 1408 set_bit(i, phys_id_present_map); 1409 ioapics[ioapic_idx].mp_config.apicid = i; 1410 } else { 1411 apic_pr_verbose("Setting %d in the phys_id_present_map\n", 1412 mpc_ioapic_id(ioapic_idx)); 1413 set_bit(mpc_ioapic_id(ioapic_idx), phys_id_present_map); 1414 } 1415 1416 /* 1417 * We need to adjust the IRQ routing table if the ID 1418 * changed. 1419 */ 1420 if (old_id != mpc_ioapic_id(ioapic_idx)) { 1421 for (i = 0; i < mp_irq_entries; i++) { 1422 if (mp_irqs[i].dstapic == old_id) 1423 mp_irqs[i].dstapic = mpc_ioapic_id(ioapic_idx); 1424 } 1425 } 1426 1427 /* 1428 * Update the ID register according to the right value from 1429 * the MPC table if they are different. 1430 */ 1431 if (mpc_ioapic_id(ioapic_idx) == reg_00.bits.ID) 1432 continue; 1433 1434 apic_pr_verbose("...changing IO-APIC physical APIC ID to %d ...", 1435 mpc_ioapic_id(ioapic_idx)); 1436 1437 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx); 1438 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) { 1439 io_apic_write(ioapic_idx, 0, reg_00.raw); 1440 reg_00.raw = io_apic_read(ioapic_idx, 0); 1441 } 1442 /* Sanity check */ 1443 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) 1444 pr_cont("could not set ID!\n"); 1445 else 1446 apic_pr_verbose(" ok.\n"); 1447 } 1448 } 1449 1450 void __init setup_ioapic_ids_from_mpc(void) 1451 { 1452 1453 if (acpi_ioapic) 1454 return; 1455 /* 1456 * Don't check I/O APIC IDs for xAPIC systems. They have 1457 * no meaning without the serial APIC bus. 1458 */ 1459 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 1460 || APIC_XAPIC(boot_cpu_apic_version)) 1461 return; 1462 setup_ioapic_ids_from_mpc_nocheck(); 1463 } 1464 #endif 1465 1466 int no_timer_check __initdata; 1467 1468 static int __init notimercheck(char *s) 1469 { 1470 no_timer_check = 1; 1471 return 1; 1472 } 1473 __setup("no_timer_check", notimercheck); 1474 1475 static void __init delay_with_tsc(void) 1476 { 1477 unsigned long long start, now; 1478 unsigned long end = jiffies + 4; 1479 1480 start = rdtsc(); 1481 1482 /* 1483 * We don't know the TSC frequency yet, but waiting for 1484 * 40000000000/HZ TSC cycles is safe: 1485 * 4 GHz == 10 jiffies 1486 * 1 GHz == 40 jiffies 1487 */ 1488 do { 1489 rep_nop(); 1490 now = rdtsc(); 1491 } while ((now - start) < 40000000000ULL / HZ && time_before_eq(jiffies, end)); 1492 } 1493 1494 static void __init delay_without_tsc(void) 1495 { 1496 unsigned long end = jiffies + 4; 1497 int band = 1; 1498 1499 /* 1500 * We don't know any frequency yet, but waiting for 1501 * 40940000000/HZ cycles is safe: 1502 * 4 GHz == 10 jiffies 1503 * 1 GHz == 40 jiffies 1504 * 1 << 1 + 1 << 2 +...+ 1 << 11 = 4094 1505 */ 1506 do { 1507 __delay(((1U << band++) * 10000000UL) / HZ); 1508 } while (band < 12 && time_before_eq(jiffies, end)); 1509 } 1510 1511 /* 1512 * There is a nasty bug in some older SMP boards, their mptable lies 1513 * about the timer IRQ. We do the following to work around the situation: 1514 * 1515 * - timer IRQ defaults to IO-APIC IRQ 1516 * - if this function detects that timer IRQs are defunct, then we fall 1517 * back to ISA timer IRQs 1518 */ 1519 static int __init timer_irq_works(void) 1520 { 1521 unsigned long t1 = jiffies; 1522 1523 if (no_timer_check) 1524 return 1; 1525 1526 local_irq_enable(); 1527 if (boot_cpu_has(X86_FEATURE_TSC)) 1528 delay_with_tsc(); 1529 else 1530 delay_without_tsc(); 1531 1532 /* 1533 * Expect a few ticks at least, to be sure some possible 1534 * glue logic does not lock up after one or two first 1535 * ticks in a non-ExtINT mode. Also the local APIC 1536 * might have cached one ExtINT interrupt. Finally, at 1537 * least one tick may be lost due to delays. 1538 */ 1539 1540 local_irq_disable(); 1541 1542 /* Did jiffies advance? */ 1543 return time_after(jiffies, t1 + 4); 1544 } 1545 1546 /* 1547 * In the SMP+IOAPIC case it might happen that there are an unspecified 1548 * number of pending IRQ events unhandled. These cases are very rare, 1549 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much 1550 * better to do it this way as thus we do not have to be aware of 1551 * 'pending' interrupts in the IRQ path, except at this point. 1552 * 1553 * 1554 * Edge triggered needs to resend any interrupt that was delayed but this 1555 * is now handled in the device independent code. 1556 * 1557 * Starting up a edge-triggered IO-APIC interrupt is nasty - we need to 1558 * make sure that we get the edge. If it is already asserted for some 1559 * reason, we need return 1 to indicate that is was pending. 1560 * 1561 * This is not complete - we should be able to fake an edge even if it 1562 * isn't on the 8259A... 1563 */ 1564 static unsigned int startup_ioapic_irq(struct irq_data *data) 1565 { 1566 int was_pending = 0, irq = data->irq; 1567 1568 guard(raw_spinlock_irqsave)(&ioapic_lock); 1569 if (irq < nr_legacy_irqs()) { 1570 legacy_pic->mask(irq); 1571 if (legacy_pic->irq_pending(irq)) 1572 was_pending = 1; 1573 } 1574 __unmask_ioapic(data->chip_data); 1575 return was_pending; 1576 } 1577 1578 atomic_t irq_mis_count; 1579 1580 #ifdef CONFIG_GENERIC_PENDING_IRQ 1581 static bool io_apic_level_ack_pending(struct mp_chip_data *data) 1582 { 1583 struct irq_pin_list *entry; 1584 1585 guard(raw_spinlock_irqsave)(&ioapic_lock); 1586 for_each_irq_pin(entry, data->irq_2_pin) { 1587 struct IO_APIC_route_entry e; 1588 int pin; 1589 1590 pin = entry->pin; 1591 e.w1 = io_apic_read(entry->apic, 0x10 + pin*2); 1592 /* Is the remote IRR bit set? */ 1593 if (e.irr) 1594 return true; 1595 } 1596 return false; 1597 } 1598 1599 static inline bool ioapic_prepare_move(struct irq_data *data) 1600 { 1601 /* If we are moving the IRQ we need to mask it */ 1602 if (unlikely(irqd_is_setaffinity_pending(data))) { 1603 if (!irqd_irq_masked(data)) 1604 mask_ioapic_irq(data); 1605 return true; 1606 } 1607 return false; 1608 } 1609 1610 static inline void ioapic_finish_move(struct irq_data *data, bool moveit) 1611 { 1612 if (unlikely(moveit)) { 1613 /* 1614 * Only migrate the irq if the ack has been received. 1615 * 1616 * On rare occasions the broadcast level triggered ack gets 1617 * delayed going to ioapics, and if we reprogram the 1618 * vector while Remote IRR is still set the irq will never 1619 * fire again. 1620 * 1621 * To prevent this scenario we read the Remote IRR bit 1622 * of the ioapic. This has two effects. 1623 * - On any sane system the read of the ioapic will 1624 * flush writes (and acks) going to the ioapic from 1625 * this cpu. 1626 * - We get to see if the ACK has actually been delivered. 1627 * 1628 * Based on failed experiments of reprogramming the 1629 * ioapic entry from outside of irq context starting 1630 * with masking the ioapic entry and then polling until 1631 * Remote IRR was clear before reprogramming the 1632 * ioapic I don't trust the Remote IRR bit to be 1633 * completely accurate. 1634 * 1635 * However there appears to be no other way to plug 1636 * this race, so if the Remote IRR bit is not 1637 * accurate and is causing problems then it is a hardware bug 1638 * and you can go talk to the chipset vendor about it. 1639 */ 1640 if (!io_apic_level_ack_pending(data->chip_data)) 1641 irq_move_masked_irq(data); 1642 /* If the IRQ is masked in the core, leave it: */ 1643 if (!irqd_irq_masked(data)) 1644 unmask_ioapic_irq(data); 1645 } 1646 } 1647 #else 1648 static inline bool ioapic_prepare_move(struct irq_data *data) 1649 { 1650 return false; 1651 } 1652 static inline void ioapic_finish_move(struct irq_data *data, bool moveit) 1653 { 1654 } 1655 #endif 1656 1657 static void ioapic_ack_level(struct irq_data *irq_data) 1658 { 1659 struct irq_cfg *cfg = irqd_cfg(irq_data); 1660 unsigned long v; 1661 bool moveit; 1662 int i; 1663 1664 irq_complete_move(cfg); 1665 moveit = ioapic_prepare_move(irq_data); 1666 1667 /* 1668 * It appears there is an erratum which affects at least version 0x11 1669 * of I/O APIC (that's the 82093AA and cores integrated into various 1670 * chipsets). Under certain conditions a level-triggered interrupt is 1671 * erroneously delivered as edge-triggered one but the respective IRR 1672 * bit gets set nevertheless. As a result the I/O unit expects an EOI 1673 * message but it will never arrive and further interrupts are blocked 1674 * from the source. The exact reason is so far unknown, but the 1675 * phenomenon was observed when two consecutive interrupt requests 1676 * from a given source get delivered to the same CPU and the source is 1677 * temporarily disabled in between. 1678 * 1679 * A workaround is to simulate an EOI message manually. We achieve it 1680 * by setting the trigger mode to edge and then to level when the edge 1681 * trigger mode gets detected in the TMR of a local APIC for a 1682 * level-triggered interrupt. We mask the source for the time of the 1683 * operation to prevent an edge-triggered interrupt escaping meanwhile. 1684 * The idea is from Manfred Spraul. --macro 1685 * 1686 * Also in the case when cpu goes offline, fixup_irqs() will forward 1687 * any unhandled interrupt on the offlined cpu to the new cpu 1688 * destination that is handling the corresponding interrupt. This 1689 * interrupt forwarding is done via IPI's. Hence, in this case also 1690 * level-triggered io-apic interrupt will be seen as an edge 1691 * interrupt in the IRR. And we can't rely on the cpu's EOI 1692 * to be broadcasted to the IO-APIC's which will clear the remoteIRR 1693 * corresponding to the level-triggered interrupt. Hence on IO-APIC's 1694 * supporting EOI register, we do an explicit EOI to clear the 1695 * remote IRR and on IO-APIC's which don't have an EOI register, 1696 * we use the above logic (mask+edge followed by unmask+level) from 1697 * Manfred Spraul to clear the remote IRR. 1698 */ 1699 i = cfg->vector; 1700 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); 1701 1702 /* 1703 * We must acknowledge the irq before we move it or the acknowledge will 1704 * not propagate properly. 1705 */ 1706 apic_eoi(); 1707 1708 /* 1709 * Tail end of clearing remote IRR bit (either by delivering the EOI 1710 * message via io-apic EOI register write or simulating it using 1711 * mask+edge followed by unmask+level logic) manually when the 1712 * level triggered interrupt is seen as the edge triggered interrupt 1713 * at the cpu. 1714 */ 1715 if (!(v & (1 << (i & 0x1f)))) { 1716 atomic_inc(&irq_mis_count); 1717 eoi_ioapic_pin(cfg->vector, irq_data->chip_data); 1718 } 1719 1720 ioapic_finish_move(irq_data, moveit); 1721 } 1722 1723 static void ioapic_ir_ack_level(struct irq_data *irq_data) 1724 { 1725 struct mp_chip_data *data = irq_data->chip_data; 1726 1727 /* 1728 * Intr-remapping uses pin number as the virtual vector 1729 * in the RTE. Actual vector is programmed in 1730 * intr-remapping table entry. Hence for the io-apic 1731 * EOI we use the pin number. 1732 */ 1733 apic_ack_irq(irq_data); 1734 eoi_ioapic_pin(data->entry.vector, data); 1735 } 1736 1737 /* 1738 * The I/OAPIC is just a device for generating MSI messages from legacy 1739 * interrupt pins. Various fields of the RTE translate into bits of the 1740 * resulting MSI which had a historical meaning. 1741 * 1742 * With interrupt remapping, many of those bits have different meanings 1743 * in the underlying MSI, but the way that the I/OAPIC transforms them 1744 * from its RTE to the MSI message is the same. This function allows 1745 * the parent IRQ domain to compose the MSI message, then takes the 1746 * relevant bits to put them in the appropriate places in the RTE in 1747 * order to generate that message when the IRQ happens. 1748 * 1749 * The setup here relies on a preconfigured route entry (is_level, 1750 * active_low, masked) because the parent domain is merely composing the 1751 * generic message routing information which is used for the MSI. 1752 */ 1753 static void ioapic_setup_msg_from_msi(struct irq_data *irq_data, 1754 struct IO_APIC_route_entry *entry) 1755 { 1756 struct msi_msg msg; 1757 1758 /* Let the parent domain compose the MSI message */ 1759 irq_chip_compose_msi_msg(irq_data, &msg); 1760 1761 /* 1762 * - Real vector 1763 * - DMAR/IR: 8bit subhandle (ioapic.pin) 1764 * - AMD/IR: 8bit IRTE index 1765 */ 1766 entry->vector = msg.arch_data.vector; 1767 /* Delivery mode (for DMAR/IR all 0) */ 1768 entry->delivery_mode = msg.arch_data.delivery_mode; 1769 /* Destination mode or DMAR/IR index bit 15 */ 1770 entry->dest_mode_logical = msg.arch_addr_lo.dest_mode_logical; 1771 /* DMAR/IR: 1, 0 for all other modes */ 1772 entry->ir_format = msg.arch_addr_lo.dmar_format; 1773 /* 1774 * - DMAR/IR: index bit 0-14. 1775 * 1776 * - Virt: If the host supports x2apic without a virtualized IR 1777 * unit then bit 0-6 of dmar_index_0_14 are providing bit 1778 * 8-14 of the destination id. 1779 * 1780 * All other modes have bit 0-6 of dmar_index_0_14 cleared and the 1781 * topmost 8 bits are destination id bit 0-7 (entry::destid_0_7). 1782 */ 1783 entry->ir_index_0_14 = msg.arch_addr_lo.dmar_index_0_14; 1784 } 1785 1786 static void ioapic_configure_entry(struct irq_data *irqd) 1787 { 1788 struct mp_chip_data *mpd = irqd->chip_data; 1789 struct irq_pin_list *entry; 1790 1791 ioapic_setup_msg_from_msi(irqd, &mpd->entry); 1792 1793 for_each_irq_pin(entry, mpd->irq_2_pin) 1794 __ioapic_write_entry(entry->apic, entry->pin, mpd->entry); 1795 } 1796 1797 static int ioapic_set_affinity(struct irq_data *irq_data, const struct cpumask *mask, bool force) 1798 { 1799 struct irq_data *parent = irq_data->parent_data; 1800 int ret; 1801 1802 ret = parent->chip->irq_set_affinity(parent, mask, force); 1803 1804 guard(raw_spinlock_irqsave)(&ioapic_lock); 1805 if (ret >= 0 && ret != IRQ_SET_MASK_OK_DONE) 1806 ioapic_configure_entry(irq_data); 1807 1808 return ret; 1809 } 1810 1811 /* 1812 * Interrupt shutdown masks the ioapic pin, but the interrupt might already 1813 * be in flight, but not yet serviced by the target CPU. That means 1814 * __synchronize_hardirq() would return and claim that everything is calmed 1815 * down. So free_irq() would proceed and deactivate the interrupt and free 1816 * resources. 1817 * 1818 * Once the target CPU comes around to service it it will find a cleared 1819 * vector and complain. While the spurious interrupt is harmless, the full 1820 * release of resources might prevent the interrupt from being acknowledged 1821 * which keeps the hardware in a weird state. 1822 * 1823 * Verify that the corresponding Remote-IRR bits are clear. 1824 */ 1825 static int ioapic_irq_get_chip_state(struct irq_data *irqd, enum irqchip_irq_state which, 1826 bool *state) 1827 { 1828 struct mp_chip_data *mcd = irqd->chip_data; 1829 struct IO_APIC_route_entry rentry; 1830 struct irq_pin_list *p; 1831 1832 if (which != IRQCHIP_STATE_ACTIVE) 1833 return -EINVAL; 1834 1835 *state = false; 1836 1837 guard(raw_spinlock)(&ioapic_lock); 1838 for_each_irq_pin(p, mcd->irq_2_pin) { 1839 rentry = __ioapic_read_entry(p->apic, p->pin); 1840 /* 1841 * The remote IRR is only valid in level trigger mode. It's 1842 * meaning is undefined for edge triggered interrupts and 1843 * irrelevant because the IO-APIC treats them as fire and 1844 * forget. 1845 */ 1846 if (rentry.irr && rentry.is_level) { 1847 *state = true; 1848 break; 1849 } 1850 } 1851 return 0; 1852 } 1853 1854 static struct irq_chip ioapic_chip __read_mostly = { 1855 .name = "IO-APIC", 1856 .irq_startup = startup_ioapic_irq, 1857 .irq_mask = mask_ioapic_irq, 1858 .irq_unmask = unmask_ioapic_irq, 1859 .irq_ack = irq_chip_ack_parent, 1860 .irq_eoi = ioapic_ack_level, 1861 .irq_set_affinity = ioapic_set_affinity, 1862 .irq_retrigger = irq_chip_retrigger_hierarchy, 1863 .irq_get_irqchip_state = ioapic_irq_get_chip_state, 1864 .flags = IRQCHIP_SKIP_SET_WAKE | 1865 IRQCHIP_AFFINITY_PRE_STARTUP, 1866 }; 1867 1868 static struct irq_chip ioapic_ir_chip __read_mostly = { 1869 .name = "IR-IO-APIC", 1870 .irq_startup = startup_ioapic_irq, 1871 .irq_mask = mask_ioapic_irq, 1872 .irq_unmask = unmask_ioapic_irq, 1873 .irq_ack = irq_chip_ack_parent, 1874 .irq_eoi = ioapic_ir_ack_level, 1875 .irq_set_affinity = ioapic_set_affinity, 1876 .irq_retrigger = irq_chip_retrigger_hierarchy, 1877 .irq_get_irqchip_state = ioapic_irq_get_chip_state, 1878 .flags = IRQCHIP_SKIP_SET_WAKE | 1879 IRQCHIP_AFFINITY_PRE_STARTUP, 1880 }; 1881 1882 static inline void init_IO_APIC_traps(void) 1883 { 1884 struct irq_cfg *cfg; 1885 unsigned int irq; 1886 1887 for_each_active_irq(irq) { 1888 cfg = irq_cfg(irq); 1889 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { 1890 /* 1891 * Hmm.. We don't have an entry for this, so 1892 * default to an old-fashioned 8259 interrupt if we 1893 * can. Otherwise set the dummy interrupt chip. 1894 */ 1895 if (irq < nr_legacy_irqs()) 1896 legacy_pic->make_irq(irq); 1897 else 1898 irq_set_chip(irq, &no_irq_chip); 1899 } 1900 } 1901 } 1902 1903 /* 1904 * The local APIC irq-chip implementation: 1905 */ 1906 static void mask_lapic_irq(struct irq_data *data) 1907 { 1908 unsigned long v = apic_read(APIC_LVT0); 1909 1910 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 1911 } 1912 1913 static void unmask_lapic_irq(struct irq_data *data) 1914 { 1915 unsigned long v = apic_read(APIC_LVT0); 1916 1917 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); 1918 } 1919 1920 static void ack_lapic_irq(struct irq_data *data) 1921 { 1922 apic_eoi(); 1923 } 1924 1925 static struct irq_chip lapic_chip __read_mostly = { 1926 .name = "local-APIC", 1927 .irq_mask = mask_lapic_irq, 1928 .irq_unmask = unmask_lapic_irq, 1929 .irq_ack = ack_lapic_irq, 1930 }; 1931 1932 static void lapic_register_intr(int irq) 1933 { 1934 irq_clear_status_flags(irq, IRQ_LEVEL); 1935 irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, "edge"); 1936 } 1937 1938 /* 1939 * This looks a bit hackish but it's about the only one way of sending 1940 * a few INTA cycles to 8259As and any associated glue logic. ICR does 1941 * not support the ExtINT mode, unfortunately. We need to send these 1942 * cycles as some i82489DX-based boards have glue logic that keeps the 1943 * 8259A interrupt line asserted until INTA. --macro 1944 */ 1945 static inline void __init unlock_ExtINT_logic(void) 1946 { 1947 unsigned char save_control, save_freq_select; 1948 struct IO_APIC_route_entry entry0, entry1; 1949 int apic, pin, i; 1950 u32 apic_id; 1951 1952 pin = find_isa_irq_pin(8, mp_INT); 1953 if (pin == -1) { 1954 WARN_ON_ONCE(1); 1955 return; 1956 } 1957 apic = find_isa_irq_apic(8, mp_INT); 1958 if (apic == -1) { 1959 WARN_ON_ONCE(1); 1960 return; 1961 } 1962 1963 entry0 = ioapic_read_entry(apic, pin); 1964 clear_IO_APIC_pin(apic, pin); 1965 1966 apic_id = read_apic_id(); 1967 memset(&entry1, 0, sizeof(entry1)); 1968 1969 entry1.dest_mode_logical = true; 1970 entry1.masked = false; 1971 entry1.destid_0_7 = apic_id & 0xFF; 1972 entry1.virt_destid_8_14 = apic_id >> 8; 1973 entry1.delivery_mode = APIC_DELIVERY_MODE_EXTINT; 1974 entry1.active_low = entry0.active_low; 1975 entry1.is_level = false; 1976 entry1.vector = 0; 1977 1978 ioapic_write_entry(apic, pin, entry1); 1979 1980 save_control = CMOS_READ(RTC_CONTROL); 1981 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 1982 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, 1983 RTC_FREQ_SELECT); 1984 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); 1985 1986 i = 100; 1987 while (i-- > 0) { 1988 mdelay(10); 1989 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) 1990 i -= 10; 1991 } 1992 1993 CMOS_WRITE(save_control, RTC_CONTROL); 1994 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 1995 clear_IO_APIC_pin(apic, pin); 1996 1997 ioapic_write_entry(apic, pin, entry0); 1998 } 1999 2000 static int disable_timer_pin_1 __initdata; 2001 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ 2002 static int __init disable_timer_pin_setup(char *arg) 2003 { 2004 disable_timer_pin_1 = 1; 2005 return 0; 2006 } 2007 early_param("disable_timer_pin_1", disable_timer_pin_setup); 2008 2009 static int __init mp_alloc_timer_irq(int ioapic, int pin) 2010 { 2011 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic); 2012 int irq = -1; 2013 2014 if (domain) { 2015 struct irq_alloc_info info; 2016 2017 ioapic_set_alloc_attr(&info, NUMA_NO_NODE, 0, 0); 2018 info.devid = mpc_ioapic_id(ioapic); 2019 info.ioapic.pin = pin; 2020 guard(mutex)(&ioapic_mutex); 2021 irq = alloc_isa_irq_from_domain(domain, 0, ioapic, pin, &info); 2022 } 2023 2024 return irq; 2025 } 2026 2027 static void __init replace_pin_at_irq_node(struct mp_chip_data *data, int node, 2028 int oldapic, int oldpin, 2029 int newapic, int newpin) 2030 { 2031 struct irq_pin_list *entry; 2032 2033 for_each_irq_pin(entry, data->irq_2_pin) { 2034 if (entry->apic == oldapic && entry->pin == oldpin) { 2035 entry->apic = newapic; 2036 entry->pin = newpin; 2037 return; 2038 } 2039 } 2040 2041 /* Old apic/pin didn't exist, so just add a new one */ 2042 add_pin_to_irq_node(data, node, newapic, newpin); 2043 } 2044 2045 /* 2046 * This code may look a bit paranoid, but it's supposed to cooperate with 2047 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ 2048 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast 2049 * fanatically on his truly buggy board. 2050 */ 2051 static inline void __init check_timer(void) 2052 { 2053 struct irq_data *irq_data = irq_get_irq_data(0); 2054 struct mp_chip_data *data = irq_data->chip_data; 2055 struct irq_cfg *cfg = irqd_cfg(irq_data); 2056 int node = cpu_to_node(0); 2057 int apic1, pin1, apic2, pin2; 2058 int no_pin1 = 0; 2059 2060 if (!global_clock_event) 2061 return; 2062 2063 local_irq_disable(); 2064 2065 /* 2066 * get/set the timer IRQ vector: 2067 */ 2068 legacy_pic->mask(0); 2069 2070 /* 2071 * As IRQ0 is to be enabled in the 8259A, the virtual 2072 * wire has to be disabled in the local APIC. Also 2073 * timer interrupts need to be acknowledged manually in 2074 * the 8259A for the i82489DX when using the NMI 2075 * watchdog as that APIC treats NMIs as level-triggered. 2076 * The AEOI mode will finish them in the 8259A 2077 * automatically. 2078 */ 2079 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); 2080 legacy_pic->init(1); 2081 2082 pin1 = find_isa_irq_pin(0, mp_INT); 2083 apic1 = find_isa_irq_apic(0, mp_INT); 2084 pin2 = ioapic_i8259.pin; 2085 apic2 = ioapic_i8259.apic; 2086 2087 pr_info("..TIMER: vector=0x%02X apic1=%d pin1=%d apic2=%d pin2=%d\n", 2088 cfg->vector, apic1, pin1, apic2, pin2); 2089 2090 /* 2091 * Some BIOS writers are clueless and report the ExtINTA 2092 * I/O APIC input from the cascaded 8259A as the timer 2093 * interrupt input. So just in case, if only one pin 2094 * was found above, try it both directly and through the 2095 * 8259A. 2096 */ 2097 if (pin1 == -1) { 2098 panic_if_irq_remap(FW_BUG "Timer not connected to IO-APIC"); 2099 pin1 = pin2; 2100 apic1 = apic2; 2101 no_pin1 = 1; 2102 } else if (pin2 == -1) { 2103 pin2 = pin1; 2104 apic2 = apic1; 2105 } 2106 2107 if (pin1 != -1) { 2108 /* Ok, does IRQ0 through the IOAPIC work? */ 2109 if (no_pin1) { 2110 mp_alloc_timer_irq(apic1, pin1); 2111 } else { 2112 /* 2113 * for edge trigger, it's already unmasked, 2114 * so only need to unmask if it is level-trigger 2115 * do we really have level trigger timer? 2116 */ 2117 int idx = find_irq_entry(apic1, pin1, mp_INT); 2118 2119 if (idx != -1 && irq_is_level(idx)) 2120 unmask_ioapic_irq(irq_get_irq_data(0)); 2121 } 2122 irq_domain_deactivate_irq(irq_data); 2123 irq_domain_activate_irq(irq_data, false); 2124 if (timer_irq_works()) { 2125 if (disable_timer_pin_1 > 0) 2126 clear_IO_APIC_pin(0, pin1); 2127 goto out; 2128 } 2129 panic_if_irq_remap("timer doesn't work through Interrupt-remapped IO-APIC"); 2130 clear_IO_APIC_pin(apic1, pin1); 2131 if (!no_pin1) 2132 pr_err("..MP-BIOS bug: 8254 timer not connected to IO-APIC\n"); 2133 2134 pr_info("...trying to set up timer (IRQ0) through the 8259A ...\n"); 2135 pr_info("..... (found apic %d pin %d) ...\n", apic2, pin2); 2136 /* 2137 * legacy devices should be connected to IO APIC #0 2138 */ 2139 replace_pin_at_irq_node(data, node, apic1, pin1, apic2, pin2); 2140 irq_domain_deactivate_irq(irq_data); 2141 irq_domain_activate_irq(irq_data, false); 2142 legacy_pic->unmask(0); 2143 if (timer_irq_works()) { 2144 pr_info("....... works.\n"); 2145 goto out; 2146 } 2147 /* 2148 * Cleanup, just in case ... 2149 */ 2150 legacy_pic->mask(0); 2151 clear_IO_APIC_pin(apic2, pin2); 2152 pr_info("....... failed.\n"); 2153 } 2154 2155 pr_info("...trying to set up timer as Virtual Wire IRQ...\n"); 2156 2157 lapic_register_intr(0); 2158 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ 2159 legacy_pic->unmask(0); 2160 2161 if (timer_irq_works()) { 2162 pr_info("..... works.\n"); 2163 goto out; 2164 } 2165 legacy_pic->mask(0); 2166 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); 2167 pr_info("..... failed.\n"); 2168 2169 pr_info("...trying to set up timer as ExtINT IRQ...\n"); 2170 2171 legacy_pic->init(0); 2172 legacy_pic->make_irq(0); 2173 apic_write(APIC_LVT0, APIC_DM_EXTINT); 2174 legacy_pic->unmask(0); 2175 2176 unlock_ExtINT_logic(); 2177 2178 if (timer_irq_works()) { 2179 pr_info("..... works.\n"); 2180 goto out; 2181 } 2182 2183 pr_info("..... failed :\n"); 2184 if (apic_is_x2apic_enabled()) { 2185 pr_info("Perhaps problem with the pre-enabled x2apic mode\n" 2186 "Try booting with x2apic and interrupt-remapping disabled in the bios.\n"); 2187 } 2188 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " 2189 "report. Then try booting with the 'noapic' option.\n"); 2190 out: 2191 local_irq_enable(); 2192 } 2193 2194 /* 2195 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available 2196 * to devices. However there may be an I/O APIC pin available for 2197 * this interrupt regardless. The pin may be left unconnected, but 2198 * typically it will be reused as an ExtINT cascade interrupt for 2199 * the master 8259A. In the MPS case such a pin will normally be 2200 * reported as an ExtINT interrupt in the MP table. With ACPI 2201 * there is no provision for ExtINT interrupts, and in the absence 2202 * of an override it would be treated as an ordinary ISA I/O APIC 2203 * interrupt, that is edge-triggered and unmasked by default. We 2204 * used to do this, but it caused problems on some systems because 2205 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using 2206 * the same ExtINT cascade interrupt to drive the local APIC of the 2207 * bootstrap processor. Therefore we refrain from routing IRQ2 to 2208 * the I/O APIC in all cases now. No actual device should request 2209 * it anyway. --macro 2210 */ 2211 #define PIC_IRQS (1UL << PIC_CASCADE_IR) 2212 2213 static int mp_irqdomain_create(int ioapic) 2214 { 2215 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2216 int hwirqs = mp_ioapic_pin_count(ioapic); 2217 struct ioapic *ip = &ioapics[ioapic]; 2218 struct ioapic_domain_cfg *cfg = &ip->irqdomain_cfg; 2219 struct irq_domain *parent; 2220 struct fwnode_handle *fn; 2221 struct irq_fwspec fwspec; 2222 2223 if (cfg->type == IOAPIC_DOMAIN_INVALID) 2224 return 0; 2225 2226 /* Handle device tree enumerated APICs proper */ 2227 if (cfg->dev) { 2228 fn = of_node_to_fwnode(cfg->dev); 2229 } else { 2230 fn = irq_domain_alloc_named_id_fwnode("IO-APIC", mpc_ioapic_id(ioapic)); 2231 if (!fn) 2232 return -ENOMEM; 2233 } 2234 2235 fwspec.fwnode = fn; 2236 fwspec.param_count = 1; 2237 fwspec.param[0] = mpc_ioapic_id(ioapic); 2238 2239 parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_GENERIC_MSI); 2240 if (!parent) { 2241 if (!cfg->dev) 2242 irq_domain_free_fwnode(fn); 2243 return -ENODEV; 2244 } 2245 2246 ip->irqdomain = irq_domain_create_hierarchy(parent, 0, hwirqs, fn, cfg->ops, 2247 (void *)(long)ioapic); 2248 if (!ip->irqdomain) { 2249 /* Release fw handle if it was allocated above */ 2250 if (!cfg->dev) 2251 irq_domain_free_fwnode(fn); 2252 return -ENOMEM; 2253 } 2254 2255 if (cfg->type == IOAPIC_DOMAIN_LEGACY || cfg->type == IOAPIC_DOMAIN_STRICT) 2256 ioapic_dynirq_base = max(ioapic_dynirq_base, gsi_cfg->gsi_end + 1); 2257 2258 return 0; 2259 } 2260 2261 static void ioapic_destroy_irqdomain(int idx) 2262 { 2263 struct ioapic_domain_cfg *cfg = &ioapics[idx].irqdomain_cfg; 2264 struct fwnode_handle *fn = ioapics[idx].irqdomain->fwnode; 2265 2266 if (ioapics[idx].irqdomain) { 2267 irq_domain_remove(ioapics[idx].irqdomain); 2268 if (!cfg->dev) 2269 irq_domain_free_fwnode(fn); 2270 ioapics[idx].irqdomain = NULL; 2271 } 2272 } 2273 2274 void __init setup_IO_APIC(void) 2275 { 2276 int ioapic; 2277 2278 if (ioapic_is_disabled || !nr_ioapics) 2279 return; 2280 2281 io_apic_irqs = nr_legacy_irqs() ? ~PIC_IRQS : ~0UL; 2282 2283 apic_pr_verbose("ENABLING IO-APIC IRQs\n"); 2284 for_each_ioapic(ioapic) 2285 BUG_ON(mp_irqdomain_create(ioapic)); 2286 2287 /* Set up IO-APIC IRQ routing. */ 2288 x86_init.mpparse.setup_ioapic_ids(); 2289 2290 sync_Arb_IDs(); 2291 setup_IO_APIC_irqs(); 2292 init_IO_APIC_traps(); 2293 if (nr_legacy_irqs()) 2294 check_timer(); 2295 2296 ioapic_initialized = 1; 2297 } 2298 2299 static void resume_ioapic_id(int ioapic_idx) 2300 { 2301 union IO_APIC_reg_00 reg_00; 2302 2303 guard(raw_spinlock_irqsave)(&ioapic_lock); 2304 reg_00.raw = io_apic_read(ioapic_idx, 0); 2305 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) { 2306 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx); 2307 io_apic_write(ioapic_idx, 0, reg_00.raw); 2308 } 2309 } 2310 2311 static void ioapic_resume(void) 2312 { 2313 int ioapic_idx; 2314 2315 for_each_ioapic_reverse(ioapic_idx) 2316 resume_ioapic_id(ioapic_idx); 2317 2318 restore_ioapic_entries(); 2319 } 2320 2321 static struct syscore_ops ioapic_syscore_ops = { 2322 .suspend = save_ioapic_entries, 2323 .resume = ioapic_resume, 2324 }; 2325 2326 static int __init ioapic_init_ops(void) 2327 { 2328 register_syscore_ops(&ioapic_syscore_ops); 2329 2330 return 0; 2331 } 2332 2333 device_initcall(ioapic_init_ops); 2334 2335 static int io_apic_get_redir_entries(int ioapic) 2336 { 2337 union IO_APIC_reg_01 reg_01; 2338 2339 guard(raw_spinlock_irqsave)(&ioapic_lock); 2340 reg_01.raw = io_apic_read(ioapic, 1); 2341 2342 /* 2343 * The register returns the maximum index redir index supported, 2344 * which is one less than the total number of redir entries. 2345 */ 2346 return reg_01.bits.entries + 1; 2347 } 2348 2349 unsigned int arch_dynirq_lower_bound(unsigned int from) 2350 { 2351 unsigned int ret; 2352 2353 /* 2354 * dmar_alloc_hwirq() may be called before setup_IO_APIC(), so use 2355 * gsi_top if ioapic_dynirq_base hasn't been initialized yet. 2356 */ 2357 ret = ioapic_dynirq_base ? : gsi_top; 2358 2359 /* 2360 * For DT enabled machines ioapic_dynirq_base is irrelevant and 2361 * always 0. gsi_top can be 0 if there is no IO/APIC registered. 2362 * 0 is an invalid interrupt number for dynamic allocations. Return 2363 * @from instead. 2364 */ 2365 return ret ? : from; 2366 } 2367 2368 #ifdef CONFIG_X86_32 2369 static int io_apic_get_unique_id(int ioapic, int apic_id) 2370 { 2371 static DECLARE_BITMAP(apic_id_map, MAX_LOCAL_APIC); 2372 const u32 broadcast_id = 0xF; 2373 union IO_APIC_reg_00 reg_00; 2374 int i = 0; 2375 2376 /* Initialize the ID map */ 2377 if (bitmap_empty(apic_id_map, MAX_LOCAL_APIC)) 2378 copy_phys_cpu_present_map(apic_id_map); 2379 2380 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) 2381 reg_00.raw = io_apic_read(ioapic, 0); 2382 2383 if (apic_id >= broadcast_id) { 2384 pr_warn("IOAPIC[%d]: Invalid apic_id %d, trying %d\n", 2385 ioapic, apic_id, reg_00.bits.ID); 2386 apic_id = reg_00.bits.ID; 2387 } 2388 2389 /* Every APIC in a system must have a unique ID */ 2390 if (test_bit(apic_id, apic_id_map)) { 2391 for (i = 0; i < broadcast_id; i++) { 2392 if (!test_bit(i, apic_id_map)) 2393 break; 2394 } 2395 2396 if (i == broadcast_id) 2397 panic("Max apic_id exceeded!\n"); 2398 2399 pr_warn("IOAPIC[%d]: apic_id %d already used, trying %d\n", ioapic, apic_id, i); 2400 apic_id = i; 2401 } 2402 2403 set_bit(apic_id, apic_id_map); 2404 2405 if (reg_00.bits.ID != apic_id) { 2406 reg_00.bits.ID = apic_id; 2407 2408 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) { 2409 io_apic_write(ioapic, 0, reg_00.raw); 2410 reg_00.raw = io_apic_read(ioapic, 0); 2411 } 2412 2413 /* Sanity check */ 2414 if (reg_00.bits.ID != apic_id) { 2415 pr_err("IOAPIC[%d]: Unable to change apic_id!\n", ioapic); 2416 return -1; 2417 } 2418 } 2419 2420 apic_pr_verbose("IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); 2421 2422 return apic_id; 2423 } 2424 2425 static u8 io_apic_unique_id(int idx, u8 id) 2426 { 2427 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && !APIC_XAPIC(boot_cpu_apic_version)) 2428 return io_apic_get_unique_id(idx, id); 2429 return id; 2430 } 2431 #else 2432 static u8 io_apic_unique_id(int idx, u8 id) 2433 { 2434 union IO_APIC_reg_00 reg_00; 2435 DECLARE_BITMAP(used, 256); 2436 u8 new_id; 2437 int i; 2438 2439 bitmap_zero(used, 256); 2440 for_each_ioapic(i) 2441 __set_bit(mpc_ioapic_id(i), used); 2442 2443 /* Hand out the requested id if available */ 2444 if (!test_bit(id, used)) 2445 return id; 2446 2447 /* 2448 * Read the current id from the ioapic and keep it if 2449 * available. 2450 */ 2451 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) 2452 reg_00.raw = io_apic_read(idx, 0); 2453 2454 new_id = reg_00.bits.ID; 2455 if (!test_bit(new_id, used)) { 2456 apic_pr_verbose("IOAPIC[%d]: Using reg apic_id %d instead of %d\n", 2457 idx, new_id, id); 2458 return new_id; 2459 } 2460 2461 /* Get the next free id and write it to the ioapic. */ 2462 new_id = find_first_zero_bit(used, 256); 2463 reg_00.bits.ID = new_id; 2464 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) { 2465 io_apic_write(idx, 0, reg_00.raw); 2466 reg_00.raw = io_apic_read(idx, 0); 2467 } 2468 /* Sanity check */ 2469 BUG_ON(reg_00.bits.ID != new_id); 2470 2471 return new_id; 2472 } 2473 #endif 2474 2475 static int io_apic_get_version(int ioapic) 2476 { 2477 union IO_APIC_reg_01 reg_01; 2478 2479 guard(raw_spinlock_irqsave)(&ioapic_lock); 2480 reg_01.raw = io_apic_read(ioapic, 1); 2481 2482 return reg_01.bits.version; 2483 } 2484 2485 /* 2486 * This function updates target affinity of IOAPIC interrupts to include 2487 * the CPUs which came online during SMP bringup. 2488 */ 2489 #define IOAPIC_RESOURCE_NAME_SIZE 11 2490 2491 static struct resource *ioapic_resources; 2492 2493 static struct resource * __init ioapic_setup_resources(void) 2494 { 2495 struct resource *res; 2496 unsigned long n; 2497 char *mem; 2498 int i; 2499 2500 if (nr_ioapics == 0) 2501 return NULL; 2502 2503 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); 2504 n *= nr_ioapics; 2505 2506 mem = memblock_alloc(n, SMP_CACHE_BYTES); 2507 if (!mem) 2508 panic("%s: Failed to allocate %lu bytes\n", __func__, n); 2509 res = (void *)mem; 2510 2511 mem += sizeof(struct resource) * nr_ioapics; 2512 2513 for_each_ioapic(i) { 2514 res[i].name = mem; 2515 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; 2516 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i); 2517 mem += IOAPIC_RESOURCE_NAME_SIZE; 2518 ioapics[i].iomem_res = &res[i]; 2519 } 2520 2521 ioapic_resources = res; 2522 2523 return res; 2524 } 2525 2526 static void io_apic_set_fixmap(enum fixed_addresses idx, phys_addr_t phys) 2527 { 2528 pgprot_t flags = FIXMAP_PAGE_NOCACHE; 2529 2530 /* 2531 * Ensure fixmaps for IO-APIC MMIO respect memory encryption pgprot 2532 * bits, just like normal ioremap(): 2533 */ 2534 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 2535 if (x86_platform.hyper.is_private_mmio(phys)) 2536 flags = pgprot_encrypted(flags); 2537 else 2538 flags = pgprot_decrypted(flags); 2539 } 2540 2541 __set_fixmap(idx, phys, flags); 2542 } 2543 2544 void __init io_apic_init_mappings(void) 2545 { 2546 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; 2547 struct resource *ioapic_res; 2548 int i; 2549 2550 ioapic_res = ioapic_setup_resources(); 2551 for_each_ioapic(i) { 2552 if (smp_found_config) { 2553 ioapic_phys = mpc_ioapic_addr(i); 2554 #ifdef CONFIG_X86_32 2555 if (!ioapic_phys) { 2556 pr_err("WARNING: bogus zero IO-APIC address found in MPTABLE, " 2557 "disabling IO/APIC support!\n"); 2558 smp_found_config = 0; 2559 ioapic_is_disabled = true; 2560 goto fake_ioapic_page; 2561 } 2562 #endif 2563 } else { 2564 #ifdef CONFIG_X86_32 2565 fake_ioapic_page: 2566 #endif 2567 ioapic_phys = (unsigned long)memblock_alloc(PAGE_SIZE, 2568 PAGE_SIZE); 2569 if (!ioapic_phys) 2570 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 2571 __func__, PAGE_SIZE, PAGE_SIZE); 2572 ioapic_phys = __pa(ioapic_phys); 2573 } 2574 io_apic_set_fixmap(idx, ioapic_phys); 2575 apic_pr_verbose("mapped IOAPIC to %08lx (%08lx)\n", 2576 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK), ioapic_phys); 2577 idx++; 2578 2579 ioapic_res->start = ioapic_phys; 2580 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1; 2581 ioapic_res++; 2582 } 2583 } 2584 2585 void __init ioapic_insert_resources(void) 2586 { 2587 struct resource *r = ioapic_resources; 2588 int i; 2589 2590 if (!r) { 2591 if (nr_ioapics > 0) 2592 pr_err("IO APIC resources couldn't be allocated.\n"); 2593 return; 2594 } 2595 2596 for_each_ioapic(i) { 2597 insert_resource(&iomem_resource, r); 2598 r++; 2599 } 2600 } 2601 2602 int mp_find_ioapic(u32 gsi) 2603 { 2604 int i; 2605 2606 if (nr_ioapics == 0) 2607 return -1; 2608 2609 /* Find the IOAPIC that manages this GSI. */ 2610 for_each_ioapic(i) { 2611 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(i); 2612 2613 if (gsi >= gsi_cfg->gsi_base && gsi <= gsi_cfg->gsi_end) 2614 return i; 2615 } 2616 2617 pr_err("ERROR: Unable to locate IOAPIC for GSI %d\n", gsi); 2618 return -1; 2619 } 2620 2621 int mp_find_ioapic_pin(int ioapic, u32 gsi) 2622 { 2623 struct mp_ioapic_gsi *gsi_cfg; 2624 2625 if (WARN_ON(ioapic < 0)) 2626 return -1; 2627 2628 gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2629 if (WARN_ON(gsi > gsi_cfg->gsi_end)) 2630 return -1; 2631 2632 return gsi - gsi_cfg->gsi_base; 2633 } 2634 2635 static int bad_ioapic_register(int idx) 2636 { 2637 union IO_APIC_reg_00 reg_00; 2638 union IO_APIC_reg_01 reg_01; 2639 union IO_APIC_reg_02 reg_02; 2640 2641 reg_00.raw = io_apic_read(idx, 0); 2642 reg_01.raw = io_apic_read(idx, 1); 2643 reg_02.raw = io_apic_read(idx, 2); 2644 2645 if (reg_00.raw == -1 && reg_01.raw == -1 && reg_02.raw == -1) { 2646 pr_warn("I/O APIC 0x%x registers return all ones, skipping!\n", 2647 mpc_ioapic_addr(idx)); 2648 return 1; 2649 } 2650 2651 return 0; 2652 } 2653 2654 static int find_free_ioapic_entry(void) 2655 { 2656 for (int idx = 0; idx < MAX_IO_APICS; idx++) { 2657 if (ioapics[idx].nr_registers == 0) 2658 return idx; 2659 } 2660 return MAX_IO_APICS; 2661 } 2662 2663 /** 2664 * mp_register_ioapic - Register an IOAPIC device 2665 * @id: hardware IOAPIC ID 2666 * @address: physical address of IOAPIC register area 2667 * @gsi_base: base of GSI associated with the IOAPIC 2668 * @cfg: configuration information for the IOAPIC 2669 */ 2670 int mp_register_ioapic(int id, u32 address, u32 gsi_base, struct ioapic_domain_cfg *cfg) 2671 { 2672 bool hotplug = !!ioapic_initialized; 2673 struct mp_ioapic_gsi *gsi_cfg; 2674 int idx, ioapic, entries; 2675 u32 gsi_end; 2676 2677 if (!address) { 2678 pr_warn("Bogus (zero) I/O APIC address found, skipping!\n"); 2679 return -EINVAL; 2680 } 2681 2682 for_each_ioapic(ioapic) { 2683 if (ioapics[ioapic].mp_config.apicaddr == address) { 2684 pr_warn("address 0x%x conflicts with IOAPIC%d\n", address, ioapic); 2685 return -EEXIST; 2686 } 2687 } 2688 2689 idx = find_free_ioapic_entry(); 2690 if (idx >= MAX_IO_APICS) { 2691 pr_warn("Max # of I/O APICs (%d) exceeded (found %d), skipping\n", 2692 MAX_IO_APICS, idx); 2693 return -ENOSPC; 2694 } 2695 2696 ioapics[idx].mp_config.type = MP_IOAPIC; 2697 ioapics[idx].mp_config.flags = MPC_APIC_USABLE; 2698 ioapics[idx].mp_config.apicaddr = address; 2699 2700 io_apic_set_fixmap(FIX_IO_APIC_BASE_0 + idx, address); 2701 if (bad_ioapic_register(idx)) { 2702 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2703 return -ENODEV; 2704 } 2705 2706 ioapics[idx].mp_config.apicid = io_apic_unique_id(idx, id); 2707 ioapics[idx].mp_config.apicver = io_apic_get_version(idx); 2708 2709 /* 2710 * Build basic GSI lookup table to facilitate gsi->io_apic lookups 2711 * and to prevent reprogramming of IOAPIC pins (PCI GSIs). 2712 */ 2713 entries = io_apic_get_redir_entries(idx); 2714 gsi_end = gsi_base + entries - 1; 2715 for_each_ioapic(ioapic) { 2716 gsi_cfg = mp_ioapic_gsi_routing(ioapic); 2717 if ((gsi_base >= gsi_cfg->gsi_base && 2718 gsi_base <= gsi_cfg->gsi_end) || 2719 (gsi_end >= gsi_cfg->gsi_base && 2720 gsi_end <= gsi_cfg->gsi_end)) { 2721 pr_warn("GSI range [%u-%u] for new IOAPIC conflicts with GSI[%u-%u]\n", 2722 gsi_base, gsi_end, gsi_cfg->gsi_base, gsi_cfg->gsi_end); 2723 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2724 return -ENOSPC; 2725 } 2726 } 2727 gsi_cfg = mp_ioapic_gsi_routing(idx); 2728 gsi_cfg->gsi_base = gsi_base; 2729 gsi_cfg->gsi_end = gsi_end; 2730 2731 ioapics[idx].irqdomain = NULL; 2732 ioapics[idx].irqdomain_cfg = *cfg; 2733 2734 /* 2735 * If mp_register_ioapic() is called during early boot stage when 2736 * walking ACPI/DT tables, it's too early to create irqdomain, 2737 * we are still using bootmem allocator. So delay it to setup_IO_APIC(). 2738 */ 2739 if (hotplug) { 2740 if (mp_irqdomain_create(idx)) { 2741 clear_fixmap(FIX_IO_APIC_BASE_0 + idx); 2742 return -ENOMEM; 2743 } 2744 alloc_ioapic_saved_registers(idx); 2745 } 2746 2747 if (gsi_cfg->gsi_end >= gsi_top) 2748 gsi_top = gsi_cfg->gsi_end + 1; 2749 if (nr_ioapics <= idx) 2750 nr_ioapics = idx + 1; 2751 2752 /* Set nr_registers to mark entry present */ 2753 ioapics[idx].nr_registers = entries; 2754 2755 pr_info("IOAPIC[%d]: apic_id %d, version %d, address 0x%x, GSI %d-%d\n", 2756 idx, mpc_ioapic_id(idx), mpc_ioapic_ver(idx), mpc_ioapic_addr(idx), 2757 gsi_cfg->gsi_base, gsi_cfg->gsi_end); 2758 2759 return 0; 2760 } 2761 2762 int mp_unregister_ioapic(u32 gsi_base) 2763 { 2764 int ioapic, pin; 2765 int found = 0; 2766 2767 for_each_ioapic(ioapic) { 2768 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base) { 2769 found = 1; 2770 break; 2771 } 2772 } 2773 2774 if (!found) { 2775 pr_warn("can't find IOAPIC for GSI %d\n", gsi_base); 2776 return -ENODEV; 2777 } 2778 2779 for_each_pin(ioapic, pin) { 2780 u32 gsi = mp_pin_to_gsi(ioapic, pin); 2781 int irq = mp_map_gsi_to_irq(gsi, 0, NULL); 2782 struct mp_chip_data *data; 2783 2784 if (irq >= 0) { 2785 data = irq_get_chip_data(irq); 2786 if (data && data->count) { 2787 pr_warn("pin%d on IOAPIC%d is still in use.\n", pin, ioapic); 2788 return -EBUSY; 2789 } 2790 } 2791 } 2792 2793 /* Mark entry not present */ 2794 ioapics[ioapic].nr_registers = 0; 2795 ioapic_destroy_irqdomain(ioapic); 2796 free_ioapic_saved_registers(ioapic); 2797 if (ioapics[ioapic].iomem_res) 2798 release_resource(ioapics[ioapic].iomem_res); 2799 clear_fixmap(FIX_IO_APIC_BASE_0 + ioapic); 2800 memset(&ioapics[ioapic], 0, sizeof(ioapics[ioapic])); 2801 2802 return 0; 2803 } 2804 2805 int mp_ioapic_registered(u32 gsi_base) 2806 { 2807 int ioapic; 2808 2809 for_each_ioapic(ioapic) 2810 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base) 2811 return 1; 2812 2813 return 0; 2814 } 2815 2816 static void mp_irqdomain_get_attr(u32 gsi, struct mp_chip_data *data, 2817 struct irq_alloc_info *info) 2818 { 2819 if (info && info->ioapic.valid) { 2820 data->is_level = info->ioapic.is_level; 2821 data->active_low = info->ioapic.active_low; 2822 } else if (__acpi_get_override_irq(gsi, &data->is_level, &data->active_low) < 0) { 2823 /* PCI interrupts are always active low level triggered. */ 2824 data->is_level = true; 2825 data->active_low = true; 2826 } 2827 } 2828 2829 /* 2830 * Configure the I/O-APIC specific fields in the routing entry. 2831 * 2832 * This is important to setup the I/O-APIC specific bits (is_level, 2833 * active_low, masked) because the underlying parent domain will only 2834 * provide the routing information and is oblivious of the I/O-APIC 2835 * specific bits. 2836 * 2837 * The entry is just preconfigured at this point and not written into the 2838 * RTE. This happens later during activation which will fill in the actual 2839 * routing information. 2840 */ 2841 static void mp_preconfigure_entry(struct mp_chip_data *data) 2842 { 2843 struct IO_APIC_route_entry *entry = &data->entry; 2844 2845 memset(entry, 0, sizeof(*entry)); 2846 entry->is_level = data->is_level; 2847 entry->active_low = data->active_low; 2848 /* 2849 * Mask level triggered irqs. Edge triggered irqs are masked 2850 * by the irq core code in case they fire. 2851 */ 2852 entry->masked = data->is_level; 2853 } 2854 2855 int mp_irqdomain_alloc(struct irq_domain *domain, unsigned int virq, 2856 unsigned int nr_irqs, void *arg) 2857 { 2858 struct irq_alloc_info *info = arg; 2859 struct mp_chip_data *data; 2860 struct irq_data *irq_data; 2861 int ret, ioapic, pin; 2862 unsigned long flags; 2863 2864 if (!info || nr_irqs > 1) 2865 return -EINVAL; 2866 irq_data = irq_domain_get_irq_data(domain, virq); 2867 if (!irq_data) 2868 return -EINVAL; 2869 2870 ioapic = mp_irqdomain_ioapic_idx(domain); 2871 pin = info->ioapic.pin; 2872 if (irq_find_mapping(domain, (irq_hw_number_t)pin) > 0) 2873 return -EEXIST; 2874 2875 data = kzalloc(sizeof(*data), GFP_KERNEL); 2876 if (!data) 2877 return -ENOMEM; 2878 2879 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, info); 2880 if (ret < 0) 2881 goto free_data; 2882 2883 INIT_LIST_HEAD(&data->irq_2_pin); 2884 irq_data->hwirq = info->ioapic.pin; 2885 irq_data->chip = (domain->parent == x86_vector_domain) ? 2886 &ioapic_chip : &ioapic_ir_chip; 2887 irq_data->chip_data = data; 2888 mp_irqdomain_get_attr(mp_pin_to_gsi(ioapic, pin), data, info); 2889 2890 if (!add_pin_to_irq_node(data, ioapic_alloc_attr_node(info), ioapic, pin)) { 2891 ret = -ENOMEM; 2892 goto free_irqs; 2893 } 2894 2895 mp_preconfigure_entry(data); 2896 mp_register_handler(virq, data->is_level); 2897 2898 local_irq_save(flags); 2899 if (virq < nr_legacy_irqs()) 2900 legacy_pic->mask(virq); 2901 local_irq_restore(flags); 2902 2903 apic_pr_verbose("IOAPIC[%d]: Preconfigured routing entry (%d-%d -> IRQ %d Level:%i ActiveLow:%i)\n", 2904 ioapic, mpc_ioapic_id(ioapic), pin, virq, data->is_level, data->active_low); 2905 return 0; 2906 2907 free_irqs: 2908 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2909 free_data: 2910 kfree(data); 2911 return ret; 2912 } 2913 2914 void mp_irqdomain_free(struct irq_domain *domain, unsigned int virq, 2915 unsigned int nr_irqs) 2916 { 2917 struct irq_data *irq_data; 2918 struct mp_chip_data *data; 2919 2920 BUG_ON(nr_irqs != 1); 2921 irq_data = irq_domain_get_irq_data(domain, virq); 2922 if (irq_data && irq_data->chip_data) { 2923 data = irq_data->chip_data; 2924 __remove_pin_from_irq(data, mp_irqdomain_ioapic_idx(domain), (int)irq_data->hwirq); 2925 WARN_ON(!list_empty(&data->irq_2_pin)); 2926 kfree(irq_data->chip_data); 2927 } 2928 irq_domain_free_irqs_top(domain, virq, nr_irqs); 2929 } 2930 2931 int mp_irqdomain_activate(struct irq_domain *domain, struct irq_data *irq_data, bool reserve) 2932 { 2933 guard(raw_spinlock_irqsave)(&ioapic_lock); 2934 ioapic_configure_entry(irq_data); 2935 return 0; 2936 } 2937 2938 void mp_irqdomain_deactivate(struct irq_domain *domain, 2939 struct irq_data *irq_data) 2940 { 2941 /* It won't be called for IRQ with multiple IOAPIC pins associated */ 2942 ioapic_mask_entry(mp_irqdomain_ioapic_idx(domain), (int)irq_data->hwirq); 2943 } 2944 2945 int mp_irqdomain_ioapic_idx(struct irq_domain *domain) 2946 { 2947 return (int)(long)domain->host_data; 2948 } 2949 2950 const struct irq_domain_ops mp_ioapic_irqdomain_ops = { 2951 .alloc = mp_irqdomain_alloc, 2952 .free = mp_irqdomain_free, 2953 .activate = mp_irqdomain_activate, 2954 .deactivate = mp_irqdomain_deactivate, 2955 }; 2956