xref: /linux/arch/x86/kernel/apic/io_apic.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  *	Intel IO-APIC support for multi-Pentium hosts.
3  *
4  *	Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5  *
6  *	Many thanks to Stig Venaas for trying out countless experimental
7  *	patches and reporting/debugging problems patiently!
8  *
9  *	(c) 1999, Multiple IO-APIC support, developed by
10  *	Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11  *      Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12  *	further tested and cleaned up by Zach Brown <zab@redhat.com>
13  *	and Ingo Molnar <mingo@redhat.com>
14  *
15  *	Fixes
16  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
17  *					thanks to Eric Gilmore
18  *					and Rolf G. Tews
19  *					for testing these extensively
20  *	Paul Diefenbaugh	:	Added full ACPI support
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h>	/* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45 
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63 #include <asm/uv/uv_hub.h>
64 #include <asm/uv/uv_irq.h>
65 
66 #include <asm/apic.h>
67 
68 #define __apicdebuginit(type) static type __init
69 
70 /*
71  *      Is the SiS APIC rmw bug present ?
72  *      -1 = don't know, 0 = no, 1 = yes
73  */
74 int sis_apic_bug = -1;
75 
76 static DEFINE_SPINLOCK(ioapic_lock);
77 static DEFINE_SPINLOCK(vector_lock);
78 
79 /*
80  * # of IRQ routing registers
81  */
82 int nr_ioapic_registers[MAX_IO_APICS];
83 
84 /* I/O APIC entries */
85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87 
88 /* MP IRQ source entries */
89 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
90 
91 /* # of MP IRQ source entries */
92 int mp_irq_entries;
93 
94 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
95 int mp_bus_id_to_type[MAX_MP_BUSSES];
96 #endif
97 
98 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
99 
100 int skip_ioapic_setup;
101 
102 void arch_disable_smp_support(void)
103 {
104 #ifdef CONFIG_PCI
105 	noioapicquirk = 1;
106 	noioapicreroute = -1;
107 #endif
108 	skip_ioapic_setup = 1;
109 }
110 
111 static int __init parse_noapic(char *str)
112 {
113 	/* disable IO-APIC */
114 	arch_disable_smp_support();
115 	return 0;
116 }
117 early_param("noapic", parse_noapic);
118 
119 struct irq_pin_list;
120 
121 /*
122  * This is performance-critical, we want to do it O(1)
123  *
124  * the indexing order of this array favors 1:1 mappings
125  * between pins and IRQs.
126  */
127 
128 struct irq_pin_list {
129 	int apic, pin;
130 	struct irq_pin_list *next;
131 };
132 
133 static struct irq_pin_list *get_one_free_irq_2_pin(int node)
134 {
135 	struct irq_pin_list *pin;
136 
137 	pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
138 
139 	return pin;
140 }
141 
142 struct irq_cfg {
143 	struct irq_pin_list *irq_2_pin;
144 	cpumask_var_t domain;
145 	cpumask_var_t old_domain;
146 	unsigned move_cleanup_count;
147 	u8 vector;
148 	u8 move_in_progress : 1;
149 };
150 
151 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
152 #ifdef CONFIG_SPARSE_IRQ
153 static struct irq_cfg irq_cfgx[] = {
154 #else
155 static struct irq_cfg irq_cfgx[NR_IRQS] = {
156 #endif
157 	[0]  = { .vector = IRQ0_VECTOR,  },
158 	[1]  = { .vector = IRQ1_VECTOR,  },
159 	[2]  = { .vector = IRQ2_VECTOR,  },
160 	[3]  = { .vector = IRQ3_VECTOR,  },
161 	[4]  = { .vector = IRQ4_VECTOR,  },
162 	[5]  = { .vector = IRQ5_VECTOR,  },
163 	[6]  = { .vector = IRQ6_VECTOR,  },
164 	[7]  = { .vector = IRQ7_VECTOR,  },
165 	[8]  = { .vector = IRQ8_VECTOR,  },
166 	[9]  = { .vector = IRQ9_VECTOR,  },
167 	[10] = { .vector = IRQ10_VECTOR, },
168 	[11] = { .vector = IRQ11_VECTOR, },
169 	[12] = { .vector = IRQ12_VECTOR, },
170 	[13] = { .vector = IRQ13_VECTOR, },
171 	[14] = { .vector = IRQ14_VECTOR, },
172 	[15] = { .vector = IRQ15_VECTOR, },
173 };
174 
175 int __init arch_early_irq_init(void)
176 {
177 	struct irq_cfg *cfg;
178 	struct irq_desc *desc;
179 	int count;
180 	int node;
181 	int i;
182 
183 	cfg = irq_cfgx;
184 	count = ARRAY_SIZE(irq_cfgx);
185 	node= cpu_to_node(boot_cpu_id);
186 
187 	for (i = 0; i < count; i++) {
188 		desc = irq_to_desc(i);
189 		desc->chip_data = &cfg[i];
190 		zalloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node);
191 		zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node);
192 		if (i < NR_IRQS_LEGACY)
193 			cpumask_setall(cfg[i].domain);
194 	}
195 
196 	return 0;
197 }
198 
199 #ifdef CONFIG_SPARSE_IRQ
200 static struct irq_cfg *irq_cfg(unsigned int irq)
201 {
202 	struct irq_cfg *cfg = NULL;
203 	struct irq_desc *desc;
204 
205 	desc = irq_to_desc(irq);
206 	if (desc)
207 		cfg = desc->chip_data;
208 
209 	return cfg;
210 }
211 
212 static struct irq_cfg *get_one_free_irq_cfg(int node)
213 {
214 	struct irq_cfg *cfg;
215 
216 	cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
217 	if (cfg) {
218 		if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
219 			kfree(cfg);
220 			cfg = NULL;
221 		} else if (!alloc_cpumask_var_node(&cfg->old_domain,
222 							  GFP_ATOMIC, node)) {
223 			free_cpumask_var(cfg->domain);
224 			kfree(cfg);
225 			cfg = NULL;
226 		} else {
227 			cpumask_clear(cfg->domain);
228 			cpumask_clear(cfg->old_domain);
229 		}
230 	}
231 
232 	return cfg;
233 }
234 
235 int arch_init_chip_data(struct irq_desc *desc, int node)
236 {
237 	struct irq_cfg *cfg;
238 
239 	cfg = desc->chip_data;
240 	if (!cfg) {
241 		desc->chip_data = get_one_free_irq_cfg(node);
242 		if (!desc->chip_data) {
243 			printk(KERN_ERR "can not alloc irq_cfg\n");
244 			BUG_ON(1);
245 		}
246 	}
247 
248 	return 0;
249 }
250 
251 /* for move_irq_desc */
252 static void
253 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int node)
254 {
255 	struct irq_pin_list *old_entry, *head, *tail, *entry;
256 
257 	cfg->irq_2_pin = NULL;
258 	old_entry = old_cfg->irq_2_pin;
259 	if (!old_entry)
260 		return;
261 
262 	entry = get_one_free_irq_2_pin(node);
263 	if (!entry)
264 		return;
265 
266 	entry->apic	= old_entry->apic;
267 	entry->pin	= old_entry->pin;
268 	head		= entry;
269 	tail		= entry;
270 	old_entry	= old_entry->next;
271 	while (old_entry) {
272 		entry = get_one_free_irq_2_pin(node);
273 		if (!entry) {
274 			entry = head;
275 			while (entry) {
276 				head = entry->next;
277 				kfree(entry);
278 				entry = head;
279 			}
280 			/* still use the old one */
281 			return;
282 		}
283 		entry->apic	= old_entry->apic;
284 		entry->pin	= old_entry->pin;
285 		tail->next	= entry;
286 		tail		= entry;
287 		old_entry	= old_entry->next;
288 	}
289 
290 	tail->next = NULL;
291 	cfg->irq_2_pin = head;
292 }
293 
294 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
295 {
296 	struct irq_pin_list *entry, *next;
297 
298 	if (old_cfg->irq_2_pin == cfg->irq_2_pin)
299 		return;
300 
301 	entry = old_cfg->irq_2_pin;
302 
303 	while (entry) {
304 		next = entry->next;
305 		kfree(entry);
306 		entry = next;
307 	}
308 	old_cfg->irq_2_pin = NULL;
309 }
310 
311 void arch_init_copy_chip_data(struct irq_desc *old_desc,
312 				 struct irq_desc *desc, int node)
313 {
314 	struct irq_cfg *cfg;
315 	struct irq_cfg *old_cfg;
316 
317 	cfg = get_one_free_irq_cfg(node);
318 
319 	if (!cfg)
320 		return;
321 
322 	desc->chip_data = cfg;
323 
324 	old_cfg = old_desc->chip_data;
325 
326 	memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
327 
328 	init_copy_irq_2_pin(old_cfg, cfg, node);
329 }
330 
331 static void free_irq_cfg(struct irq_cfg *old_cfg)
332 {
333 	kfree(old_cfg);
334 }
335 
336 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
337 {
338 	struct irq_cfg *old_cfg, *cfg;
339 
340 	old_cfg = old_desc->chip_data;
341 	cfg = desc->chip_data;
342 
343 	if (old_cfg == cfg)
344 		return;
345 
346 	if (old_cfg) {
347 		free_irq_2_pin(old_cfg, cfg);
348 		free_irq_cfg(old_cfg);
349 		old_desc->chip_data = NULL;
350 	}
351 }
352 /* end for move_irq_desc */
353 
354 #else
355 static struct irq_cfg *irq_cfg(unsigned int irq)
356 {
357 	return irq < nr_irqs ? irq_cfgx + irq : NULL;
358 }
359 
360 #endif
361 
362 struct io_apic {
363 	unsigned int index;
364 	unsigned int unused[3];
365 	unsigned int data;
366 	unsigned int unused2[11];
367 	unsigned int eoi;
368 };
369 
370 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
371 {
372 	return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
373 		+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
374 }
375 
376 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
377 {
378 	struct io_apic __iomem *io_apic = io_apic_base(apic);
379 	writel(vector, &io_apic->eoi);
380 }
381 
382 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
383 {
384 	struct io_apic __iomem *io_apic = io_apic_base(apic);
385 	writel(reg, &io_apic->index);
386 	return readl(&io_apic->data);
387 }
388 
389 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
390 {
391 	struct io_apic __iomem *io_apic = io_apic_base(apic);
392 	writel(reg, &io_apic->index);
393 	writel(value, &io_apic->data);
394 }
395 
396 /*
397  * Re-write a value: to be used for read-modify-write
398  * cycles where the read already set up the index register.
399  *
400  * Older SiS APIC requires we rewrite the index register
401  */
402 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
403 {
404 	struct io_apic __iomem *io_apic = io_apic_base(apic);
405 
406 	if (sis_apic_bug)
407 		writel(reg, &io_apic->index);
408 	writel(value, &io_apic->data);
409 }
410 
411 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
412 {
413 	struct irq_pin_list *entry;
414 	unsigned long flags;
415 
416 	spin_lock_irqsave(&ioapic_lock, flags);
417 	entry = cfg->irq_2_pin;
418 	for (;;) {
419 		unsigned int reg;
420 		int pin;
421 
422 		if (!entry)
423 			break;
424 		pin = entry->pin;
425 		reg = io_apic_read(entry->apic, 0x10 + pin*2);
426 		/* Is the remote IRR bit set? */
427 		if (reg & IO_APIC_REDIR_REMOTE_IRR) {
428 			spin_unlock_irqrestore(&ioapic_lock, flags);
429 			return true;
430 		}
431 		if (!entry->next)
432 			break;
433 		entry = entry->next;
434 	}
435 	spin_unlock_irqrestore(&ioapic_lock, flags);
436 
437 	return false;
438 }
439 
440 union entry_union {
441 	struct { u32 w1, w2; };
442 	struct IO_APIC_route_entry entry;
443 };
444 
445 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
446 {
447 	union entry_union eu;
448 	unsigned long flags;
449 	spin_lock_irqsave(&ioapic_lock, flags);
450 	eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
451 	eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
452 	spin_unlock_irqrestore(&ioapic_lock, flags);
453 	return eu.entry;
454 }
455 
456 /*
457  * When we write a new IO APIC routing entry, we need to write the high
458  * word first! If the mask bit in the low word is clear, we will enable
459  * the interrupt, and we need to make sure the entry is fully populated
460  * before that happens.
461  */
462 static void
463 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
464 {
465 	union entry_union eu = {{0, 0}};
466 
467 	eu.entry = e;
468 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
469 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
470 }
471 
472 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
473 {
474 	unsigned long flags;
475 	spin_lock_irqsave(&ioapic_lock, flags);
476 	__ioapic_write_entry(apic, pin, e);
477 	spin_unlock_irqrestore(&ioapic_lock, flags);
478 }
479 
480 /*
481  * When we mask an IO APIC routing entry, we need to write the low
482  * word first, in order to set the mask bit before we change the
483  * high bits!
484  */
485 static void ioapic_mask_entry(int apic, int pin)
486 {
487 	unsigned long flags;
488 	union entry_union eu = { .entry.mask = 1 };
489 
490 	spin_lock_irqsave(&ioapic_lock, flags);
491 	io_apic_write(apic, 0x10 + 2*pin, eu.w1);
492 	io_apic_write(apic, 0x11 + 2*pin, eu.w2);
493 	spin_unlock_irqrestore(&ioapic_lock, flags);
494 }
495 
496 /*
497  * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
498  * shared ISA-space IRQs, so we have to support them. We are super
499  * fast in the common case, and fast for shared ISA-space IRQs.
500  */
501 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
502 {
503 	struct irq_pin_list *entry;
504 
505 	entry = cfg->irq_2_pin;
506 	if (!entry) {
507 		entry = get_one_free_irq_2_pin(node);
508 		if (!entry) {
509 			printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
510 					apic, pin);
511 			return;
512 		}
513 		cfg->irq_2_pin = entry;
514 		entry->apic = apic;
515 		entry->pin = pin;
516 		return;
517 	}
518 
519 	while (entry->next) {
520 		/* not again, please */
521 		if (entry->apic == apic && entry->pin == pin)
522 			return;
523 
524 		entry = entry->next;
525 	}
526 
527 	entry->next = get_one_free_irq_2_pin(node);
528 	entry = entry->next;
529 	entry->apic = apic;
530 	entry->pin = pin;
531 }
532 
533 /*
534  * Reroute an IRQ to a different pin.
535  */
536 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
537 				      int oldapic, int oldpin,
538 				      int newapic, int newpin)
539 {
540 	struct irq_pin_list *entry = cfg->irq_2_pin;
541 	int replaced = 0;
542 
543 	while (entry) {
544 		if (entry->apic == oldapic && entry->pin == oldpin) {
545 			entry->apic = newapic;
546 			entry->pin = newpin;
547 			replaced = 1;
548 			/* every one is different, right? */
549 			break;
550 		}
551 		entry = entry->next;
552 	}
553 
554 	/* why? call replace before add? */
555 	if (!replaced)
556 		add_pin_to_irq_node(cfg, node, newapic, newpin);
557 }
558 
559 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
560 				int mask_and, int mask_or,
561 				void (*final)(struct irq_pin_list *entry))
562 {
563 	int pin;
564 	struct irq_pin_list *entry;
565 
566 	for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
567 		unsigned int reg;
568 		pin = entry->pin;
569 		reg = io_apic_read(entry->apic, 0x10 + pin * 2);
570 		reg &= mask_and;
571 		reg |= mask_or;
572 		io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
573 		if (final)
574 			final(entry);
575 	}
576 }
577 
578 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
579 {
580 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
581 }
582 
583 #ifdef CONFIG_X86_64
584 static void io_apic_sync(struct irq_pin_list *entry)
585 {
586 	/*
587 	 * Synchronize the IO-APIC and the CPU by doing
588 	 * a dummy read from the IO-APIC
589 	 */
590 	struct io_apic __iomem *io_apic;
591 	io_apic = io_apic_base(entry->apic);
592 	readl(&io_apic->data);
593 }
594 
595 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
596 {
597 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
598 }
599 #else /* CONFIG_X86_32 */
600 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
601 {
602 	io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
603 }
604 
605 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
606 {
607 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
608 			IO_APIC_REDIR_MASKED, NULL);
609 }
610 
611 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
612 {
613 	io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
614 			IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
615 }
616 #endif /* CONFIG_X86_32 */
617 
618 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
619 {
620 	struct irq_cfg *cfg = desc->chip_data;
621 	unsigned long flags;
622 
623 	BUG_ON(!cfg);
624 
625 	spin_lock_irqsave(&ioapic_lock, flags);
626 	__mask_IO_APIC_irq(cfg);
627 	spin_unlock_irqrestore(&ioapic_lock, flags);
628 }
629 
630 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
631 {
632 	struct irq_cfg *cfg = desc->chip_data;
633 	unsigned long flags;
634 
635 	spin_lock_irqsave(&ioapic_lock, flags);
636 	__unmask_IO_APIC_irq(cfg);
637 	spin_unlock_irqrestore(&ioapic_lock, flags);
638 }
639 
640 static void mask_IO_APIC_irq(unsigned int irq)
641 {
642 	struct irq_desc *desc = irq_to_desc(irq);
643 
644 	mask_IO_APIC_irq_desc(desc);
645 }
646 static void unmask_IO_APIC_irq(unsigned int irq)
647 {
648 	struct irq_desc *desc = irq_to_desc(irq);
649 
650 	unmask_IO_APIC_irq_desc(desc);
651 }
652 
653 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
654 {
655 	struct IO_APIC_route_entry entry;
656 
657 	/* Check delivery_mode to be sure we're not clearing an SMI pin */
658 	entry = ioapic_read_entry(apic, pin);
659 	if (entry.delivery_mode == dest_SMI)
660 		return;
661 	/*
662 	 * Disable it in the IO-APIC irq-routing table:
663 	 */
664 	ioapic_mask_entry(apic, pin);
665 }
666 
667 static void clear_IO_APIC (void)
668 {
669 	int apic, pin;
670 
671 	for (apic = 0; apic < nr_ioapics; apic++)
672 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
673 			clear_IO_APIC_pin(apic, pin);
674 }
675 
676 #ifdef CONFIG_X86_32
677 /*
678  * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
679  * specific CPU-side IRQs.
680  */
681 
682 #define MAX_PIRQS 8
683 static int pirq_entries[MAX_PIRQS] = {
684 	[0 ... MAX_PIRQS - 1] = -1
685 };
686 
687 static int __init ioapic_pirq_setup(char *str)
688 {
689 	int i, max;
690 	int ints[MAX_PIRQS+1];
691 
692 	get_options(str, ARRAY_SIZE(ints), ints);
693 
694 	apic_printk(APIC_VERBOSE, KERN_INFO
695 			"PIRQ redirection, working around broken MP-BIOS.\n");
696 	max = MAX_PIRQS;
697 	if (ints[0] < MAX_PIRQS)
698 		max = ints[0];
699 
700 	for (i = 0; i < max; i++) {
701 		apic_printk(APIC_VERBOSE, KERN_DEBUG
702 				"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
703 		/*
704 		 * PIRQs are mapped upside down, usually.
705 		 */
706 		pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
707 	}
708 	return 1;
709 }
710 
711 __setup("pirq=", ioapic_pirq_setup);
712 #endif /* CONFIG_X86_32 */
713 
714 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
715 {
716 	int apic;
717 	struct IO_APIC_route_entry **ioapic_entries;
718 
719 	ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
720 				GFP_ATOMIC);
721 	if (!ioapic_entries)
722 		return 0;
723 
724 	for (apic = 0; apic < nr_ioapics; apic++) {
725 		ioapic_entries[apic] =
726 			kzalloc(sizeof(struct IO_APIC_route_entry) *
727 				nr_ioapic_registers[apic], GFP_ATOMIC);
728 		if (!ioapic_entries[apic])
729 			goto nomem;
730 	}
731 
732 	return ioapic_entries;
733 
734 nomem:
735 	while (--apic >= 0)
736 		kfree(ioapic_entries[apic]);
737 	kfree(ioapic_entries);
738 
739 	return 0;
740 }
741 
742 /*
743  * Saves all the IO-APIC RTE's
744  */
745 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
746 {
747 	int apic, pin;
748 
749 	if (!ioapic_entries)
750 		return -ENOMEM;
751 
752 	for (apic = 0; apic < nr_ioapics; apic++) {
753 		if (!ioapic_entries[apic])
754 			return -ENOMEM;
755 
756 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
757 			ioapic_entries[apic][pin] =
758 				ioapic_read_entry(apic, pin);
759 	}
760 
761 	return 0;
762 }
763 
764 /*
765  * Mask all IO APIC entries.
766  */
767 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
768 {
769 	int apic, pin;
770 
771 	if (!ioapic_entries)
772 		return;
773 
774 	for (apic = 0; apic < nr_ioapics; apic++) {
775 		if (!ioapic_entries[apic])
776 			break;
777 
778 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
779 			struct IO_APIC_route_entry entry;
780 
781 			entry = ioapic_entries[apic][pin];
782 			if (!entry.mask) {
783 				entry.mask = 1;
784 				ioapic_write_entry(apic, pin, entry);
785 			}
786 		}
787 	}
788 }
789 
790 /*
791  * Restore IO APIC entries which was saved in ioapic_entries.
792  */
793 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
794 {
795 	int apic, pin;
796 
797 	if (!ioapic_entries)
798 		return -ENOMEM;
799 
800 	for (apic = 0; apic < nr_ioapics; apic++) {
801 		if (!ioapic_entries[apic])
802 			return -ENOMEM;
803 
804 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
805 			ioapic_write_entry(apic, pin,
806 					ioapic_entries[apic][pin]);
807 	}
808 	return 0;
809 }
810 
811 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
812 {
813 	int apic;
814 
815 	for (apic = 0; apic < nr_ioapics; apic++)
816 		kfree(ioapic_entries[apic]);
817 
818 	kfree(ioapic_entries);
819 }
820 
821 /*
822  * Find the IRQ entry number of a certain pin.
823  */
824 static int find_irq_entry(int apic, int pin, int type)
825 {
826 	int i;
827 
828 	for (i = 0; i < mp_irq_entries; i++)
829 		if (mp_irqs[i].irqtype == type &&
830 		    (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
831 		     mp_irqs[i].dstapic == MP_APIC_ALL) &&
832 		    mp_irqs[i].dstirq == pin)
833 			return i;
834 
835 	return -1;
836 }
837 
838 /*
839  * Find the pin to which IRQ[irq] (ISA) is connected
840  */
841 static int __init find_isa_irq_pin(int irq, int type)
842 {
843 	int i;
844 
845 	for (i = 0; i < mp_irq_entries; i++) {
846 		int lbus = mp_irqs[i].srcbus;
847 
848 		if (test_bit(lbus, mp_bus_not_pci) &&
849 		    (mp_irqs[i].irqtype == type) &&
850 		    (mp_irqs[i].srcbusirq == irq))
851 
852 			return mp_irqs[i].dstirq;
853 	}
854 	return -1;
855 }
856 
857 static int __init find_isa_irq_apic(int irq, int type)
858 {
859 	int i;
860 
861 	for (i = 0; i < mp_irq_entries; i++) {
862 		int lbus = mp_irqs[i].srcbus;
863 
864 		if (test_bit(lbus, mp_bus_not_pci) &&
865 		    (mp_irqs[i].irqtype == type) &&
866 		    (mp_irqs[i].srcbusirq == irq))
867 			break;
868 	}
869 	if (i < mp_irq_entries) {
870 		int apic;
871 		for(apic = 0; apic < nr_ioapics; apic++) {
872 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
873 				return apic;
874 		}
875 	}
876 
877 	return -1;
878 }
879 
880 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
881 /*
882  * EISA Edge/Level control register, ELCR
883  */
884 static int EISA_ELCR(unsigned int irq)
885 {
886 	if (irq < NR_IRQS_LEGACY) {
887 		unsigned int port = 0x4d0 + (irq >> 3);
888 		return (inb(port) >> (irq & 7)) & 1;
889 	}
890 	apic_printk(APIC_VERBOSE, KERN_INFO
891 			"Broken MPtable reports ISA irq %d\n", irq);
892 	return 0;
893 }
894 
895 #endif
896 
897 /* ISA interrupts are always polarity zero edge triggered,
898  * when listed as conforming in the MP table. */
899 
900 #define default_ISA_trigger(idx)	(0)
901 #define default_ISA_polarity(idx)	(0)
902 
903 /* EISA interrupts are always polarity zero and can be edge or level
904  * trigger depending on the ELCR value.  If an interrupt is listed as
905  * EISA conforming in the MP table, that means its trigger type must
906  * be read in from the ELCR */
907 
908 #define default_EISA_trigger(idx)	(EISA_ELCR(mp_irqs[idx].srcbusirq))
909 #define default_EISA_polarity(idx)	default_ISA_polarity(idx)
910 
911 /* PCI interrupts are always polarity one level triggered,
912  * when listed as conforming in the MP table. */
913 
914 #define default_PCI_trigger(idx)	(1)
915 #define default_PCI_polarity(idx)	(1)
916 
917 /* MCA interrupts are always polarity zero level triggered,
918  * when listed as conforming in the MP table. */
919 
920 #define default_MCA_trigger(idx)	(1)
921 #define default_MCA_polarity(idx)	default_ISA_polarity(idx)
922 
923 static int MPBIOS_polarity(int idx)
924 {
925 	int bus = mp_irqs[idx].srcbus;
926 	int polarity;
927 
928 	/*
929 	 * Determine IRQ line polarity (high active or low active):
930 	 */
931 	switch (mp_irqs[idx].irqflag & 3)
932 	{
933 		case 0: /* conforms, ie. bus-type dependent polarity */
934 			if (test_bit(bus, mp_bus_not_pci))
935 				polarity = default_ISA_polarity(idx);
936 			else
937 				polarity = default_PCI_polarity(idx);
938 			break;
939 		case 1: /* high active */
940 		{
941 			polarity = 0;
942 			break;
943 		}
944 		case 2: /* reserved */
945 		{
946 			printk(KERN_WARNING "broken BIOS!!\n");
947 			polarity = 1;
948 			break;
949 		}
950 		case 3: /* low active */
951 		{
952 			polarity = 1;
953 			break;
954 		}
955 		default: /* invalid */
956 		{
957 			printk(KERN_WARNING "broken BIOS!!\n");
958 			polarity = 1;
959 			break;
960 		}
961 	}
962 	return polarity;
963 }
964 
965 static int MPBIOS_trigger(int idx)
966 {
967 	int bus = mp_irqs[idx].srcbus;
968 	int trigger;
969 
970 	/*
971 	 * Determine IRQ trigger mode (edge or level sensitive):
972 	 */
973 	switch ((mp_irqs[idx].irqflag>>2) & 3)
974 	{
975 		case 0: /* conforms, ie. bus-type dependent */
976 			if (test_bit(bus, mp_bus_not_pci))
977 				trigger = default_ISA_trigger(idx);
978 			else
979 				trigger = default_PCI_trigger(idx);
980 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
981 			switch (mp_bus_id_to_type[bus]) {
982 				case MP_BUS_ISA: /* ISA pin */
983 				{
984 					/* set before the switch */
985 					break;
986 				}
987 				case MP_BUS_EISA: /* EISA pin */
988 				{
989 					trigger = default_EISA_trigger(idx);
990 					break;
991 				}
992 				case MP_BUS_PCI: /* PCI pin */
993 				{
994 					/* set before the switch */
995 					break;
996 				}
997 				case MP_BUS_MCA: /* MCA pin */
998 				{
999 					trigger = default_MCA_trigger(idx);
1000 					break;
1001 				}
1002 				default:
1003 				{
1004 					printk(KERN_WARNING "broken BIOS!!\n");
1005 					trigger = 1;
1006 					break;
1007 				}
1008 			}
1009 #endif
1010 			break;
1011 		case 1: /* edge */
1012 		{
1013 			trigger = 0;
1014 			break;
1015 		}
1016 		case 2: /* reserved */
1017 		{
1018 			printk(KERN_WARNING "broken BIOS!!\n");
1019 			trigger = 1;
1020 			break;
1021 		}
1022 		case 3: /* level */
1023 		{
1024 			trigger = 1;
1025 			break;
1026 		}
1027 		default: /* invalid */
1028 		{
1029 			printk(KERN_WARNING "broken BIOS!!\n");
1030 			trigger = 0;
1031 			break;
1032 		}
1033 	}
1034 	return trigger;
1035 }
1036 
1037 static inline int irq_polarity(int idx)
1038 {
1039 	return MPBIOS_polarity(idx);
1040 }
1041 
1042 static inline int irq_trigger(int idx)
1043 {
1044 	return MPBIOS_trigger(idx);
1045 }
1046 
1047 int (*ioapic_renumber_irq)(int ioapic, int irq);
1048 static int pin_2_irq(int idx, int apic, int pin)
1049 {
1050 	int irq, i;
1051 	int bus = mp_irqs[idx].srcbus;
1052 
1053 	/*
1054 	 * Debugging check, we are in big trouble if this message pops up!
1055 	 */
1056 	if (mp_irqs[idx].dstirq != pin)
1057 		printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1058 
1059 	if (test_bit(bus, mp_bus_not_pci)) {
1060 		irq = mp_irqs[idx].srcbusirq;
1061 	} else {
1062 		/*
1063 		 * PCI IRQs are mapped in order
1064 		 */
1065 		i = irq = 0;
1066 		while (i < apic)
1067 			irq += nr_ioapic_registers[i++];
1068 		irq += pin;
1069 		/*
1070                  * For MPS mode, so far only needed by ES7000 platform
1071                  */
1072 		if (ioapic_renumber_irq)
1073 			irq = ioapic_renumber_irq(apic, irq);
1074 	}
1075 
1076 #ifdef CONFIG_X86_32
1077 	/*
1078 	 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1079 	 */
1080 	if ((pin >= 16) && (pin <= 23)) {
1081 		if (pirq_entries[pin-16] != -1) {
1082 			if (!pirq_entries[pin-16]) {
1083 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1084 						"disabling PIRQ%d\n", pin-16);
1085 			} else {
1086 				irq = pirq_entries[pin-16];
1087 				apic_printk(APIC_VERBOSE, KERN_DEBUG
1088 						"using PIRQ%d -> IRQ %d\n",
1089 						pin-16, irq);
1090 			}
1091 		}
1092 	}
1093 #endif
1094 
1095 	return irq;
1096 }
1097 
1098 /*
1099  * Find a specific PCI IRQ entry.
1100  * Not an __init, possibly needed by modules
1101  */
1102 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
1103 				struct io_apic_irq_attr *irq_attr)
1104 {
1105 	int apic, i, best_guess = -1;
1106 
1107 	apic_printk(APIC_DEBUG,
1108 		    "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1109 		    bus, slot, pin);
1110 	if (test_bit(bus, mp_bus_not_pci)) {
1111 		apic_printk(APIC_VERBOSE,
1112 			    "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1113 		return -1;
1114 	}
1115 	for (i = 0; i < mp_irq_entries; i++) {
1116 		int lbus = mp_irqs[i].srcbus;
1117 
1118 		for (apic = 0; apic < nr_ioapics; apic++)
1119 			if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1120 			    mp_irqs[i].dstapic == MP_APIC_ALL)
1121 				break;
1122 
1123 		if (!test_bit(lbus, mp_bus_not_pci) &&
1124 		    !mp_irqs[i].irqtype &&
1125 		    (bus == lbus) &&
1126 		    (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1127 			int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1128 
1129 			if (!(apic || IO_APIC_IRQ(irq)))
1130 				continue;
1131 
1132 			if (pin == (mp_irqs[i].srcbusirq & 3)) {
1133 				set_io_apic_irq_attr(irq_attr, apic,
1134 						     mp_irqs[i].dstirq,
1135 						     irq_trigger(i),
1136 						     irq_polarity(i));
1137 				return irq;
1138 			}
1139 			/*
1140 			 * Use the first all-but-pin matching entry as a
1141 			 * best-guess fuzzy result for broken mptables.
1142 			 */
1143 			if (best_guess < 0) {
1144 				set_io_apic_irq_attr(irq_attr, apic,
1145 						     mp_irqs[i].dstirq,
1146 						     irq_trigger(i),
1147 						     irq_polarity(i));
1148 				best_guess = irq;
1149 			}
1150 		}
1151 	}
1152 	return best_guess;
1153 }
1154 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1155 
1156 void lock_vector_lock(void)
1157 {
1158 	/* Used to the online set of cpus does not change
1159 	 * during assign_irq_vector.
1160 	 */
1161 	spin_lock(&vector_lock);
1162 }
1163 
1164 void unlock_vector_lock(void)
1165 {
1166 	spin_unlock(&vector_lock);
1167 }
1168 
1169 static int
1170 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1171 {
1172 	/*
1173 	 * NOTE! The local APIC isn't very good at handling
1174 	 * multiple interrupts at the same interrupt level.
1175 	 * As the interrupt level is determined by taking the
1176 	 * vector number and shifting that right by 4, we
1177 	 * want to spread these out a bit so that they don't
1178 	 * all fall in the same interrupt level.
1179 	 *
1180 	 * Also, we've got to be careful not to trash gate
1181 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1182 	 */
1183 	static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1184 	unsigned int old_vector;
1185 	int cpu, err;
1186 	cpumask_var_t tmp_mask;
1187 
1188 	if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1189 		return -EBUSY;
1190 
1191 	if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1192 		return -ENOMEM;
1193 
1194 	old_vector = cfg->vector;
1195 	if (old_vector) {
1196 		cpumask_and(tmp_mask, mask, cpu_online_mask);
1197 		cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1198 		if (!cpumask_empty(tmp_mask)) {
1199 			free_cpumask_var(tmp_mask);
1200 			return 0;
1201 		}
1202 	}
1203 
1204 	/* Only try and allocate irqs on cpus that are present */
1205 	err = -ENOSPC;
1206 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
1207 		int new_cpu;
1208 		int vector, offset;
1209 
1210 		apic->vector_allocation_domain(cpu, tmp_mask);
1211 
1212 		vector = current_vector;
1213 		offset = current_offset;
1214 next:
1215 		vector += 8;
1216 		if (vector >= first_system_vector) {
1217 			/* If out of vectors on large boxen, must share them. */
1218 			offset = (offset + 1) % 8;
1219 			vector = FIRST_DEVICE_VECTOR + offset;
1220 		}
1221 		if (unlikely(current_vector == vector))
1222 			continue;
1223 
1224 		if (test_bit(vector, used_vectors))
1225 			goto next;
1226 
1227 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1228 			if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1229 				goto next;
1230 		/* Found one! */
1231 		current_vector = vector;
1232 		current_offset = offset;
1233 		if (old_vector) {
1234 			cfg->move_in_progress = 1;
1235 			cpumask_copy(cfg->old_domain, cfg->domain);
1236 		}
1237 		for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1238 			per_cpu(vector_irq, new_cpu)[vector] = irq;
1239 		cfg->vector = vector;
1240 		cpumask_copy(cfg->domain, tmp_mask);
1241 		err = 0;
1242 		break;
1243 	}
1244 	free_cpumask_var(tmp_mask);
1245 	return err;
1246 }
1247 
1248 static int
1249 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1250 {
1251 	int err;
1252 	unsigned long flags;
1253 
1254 	spin_lock_irqsave(&vector_lock, flags);
1255 	err = __assign_irq_vector(irq, cfg, mask);
1256 	spin_unlock_irqrestore(&vector_lock, flags);
1257 	return err;
1258 }
1259 
1260 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1261 {
1262 	int cpu, vector;
1263 
1264 	BUG_ON(!cfg->vector);
1265 
1266 	vector = cfg->vector;
1267 	for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1268 		per_cpu(vector_irq, cpu)[vector] = -1;
1269 
1270 	cfg->vector = 0;
1271 	cpumask_clear(cfg->domain);
1272 
1273 	if (likely(!cfg->move_in_progress))
1274 		return;
1275 	for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1276 		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1277 								vector++) {
1278 			if (per_cpu(vector_irq, cpu)[vector] != irq)
1279 				continue;
1280 			per_cpu(vector_irq, cpu)[vector] = -1;
1281 			break;
1282 		}
1283 	}
1284 	cfg->move_in_progress = 0;
1285 }
1286 
1287 void __setup_vector_irq(int cpu)
1288 {
1289 	/* Initialize vector_irq on a new cpu */
1290 	/* This function must be called with vector_lock held */
1291 	int irq, vector;
1292 	struct irq_cfg *cfg;
1293 	struct irq_desc *desc;
1294 
1295 	/* Mark the inuse vectors */
1296 	for_each_irq_desc(irq, desc) {
1297 		cfg = desc->chip_data;
1298 		if (!cpumask_test_cpu(cpu, cfg->domain))
1299 			continue;
1300 		vector = cfg->vector;
1301 		per_cpu(vector_irq, cpu)[vector] = irq;
1302 	}
1303 	/* Mark the free vectors */
1304 	for (vector = 0; vector < NR_VECTORS; ++vector) {
1305 		irq = per_cpu(vector_irq, cpu)[vector];
1306 		if (irq < 0)
1307 			continue;
1308 
1309 		cfg = irq_cfg(irq);
1310 		if (!cpumask_test_cpu(cpu, cfg->domain))
1311 			per_cpu(vector_irq, cpu)[vector] = -1;
1312 	}
1313 }
1314 
1315 static struct irq_chip ioapic_chip;
1316 static struct irq_chip ir_ioapic_chip;
1317 
1318 #define IOAPIC_AUTO     -1
1319 #define IOAPIC_EDGE     0
1320 #define IOAPIC_LEVEL    1
1321 
1322 #ifdef CONFIG_X86_32
1323 static inline int IO_APIC_irq_trigger(int irq)
1324 {
1325 	int apic, idx, pin;
1326 
1327 	for (apic = 0; apic < nr_ioapics; apic++) {
1328 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1329 			idx = find_irq_entry(apic, pin, mp_INT);
1330 			if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1331 				return irq_trigger(idx);
1332 		}
1333 	}
1334 	/*
1335          * nonexistent IRQs are edge default
1336          */
1337 	return 0;
1338 }
1339 #else
1340 static inline int IO_APIC_irq_trigger(int irq)
1341 {
1342 	return 1;
1343 }
1344 #endif
1345 
1346 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1347 {
1348 
1349 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1350 	    trigger == IOAPIC_LEVEL)
1351 		desc->status |= IRQ_LEVEL;
1352 	else
1353 		desc->status &= ~IRQ_LEVEL;
1354 
1355 	if (irq_remapped(irq)) {
1356 		desc->status |= IRQ_MOVE_PCNTXT;
1357 		if (trigger)
1358 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1359 						      handle_fasteoi_irq,
1360 						     "fasteoi");
1361 		else
1362 			set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1363 						      handle_edge_irq, "edge");
1364 		return;
1365 	}
1366 
1367 	if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1368 	    trigger == IOAPIC_LEVEL)
1369 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1370 					      handle_fasteoi_irq,
1371 					      "fasteoi");
1372 	else
1373 		set_irq_chip_and_handler_name(irq, &ioapic_chip,
1374 					      handle_edge_irq, "edge");
1375 }
1376 
1377 int setup_ioapic_entry(int apic_id, int irq,
1378 		       struct IO_APIC_route_entry *entry,
1379 		       unsigned int destination, int trigger,
1380 		       int polarity, int vector, int pin)
1381 {
1382 	/*
1383 	 * add it to the IO-APIC irq-routing table:
1384 	 */
1385 	memset(entry,0,sizeof(*entry));
1386 
1387 	if (intr_remapping_enabled) {
1388 		struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1389 		struct irte irte;
1390 		struct IR_IO_APIC_route_entry *ir_entry =
1391 			(struct IR_IO_APIC_route_entry *) entry;
1392 		int index;
1393 
1394 		if (!iommu)
1395 			panic("No mapping iommu for ioapic %d\n", apic_id);
1396 
1397 		index = alloc_irte(iommu, irq, 1);
1398 		if (index < 0)
1399 			panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1400 
1401 		memset(&irte, 0, sizeof(irte));
1402 
1403 		irte.present = 1;
1404 		irte.dst_mode = apic->irq_dest_mode;
1405 		/*
1406 		 * Trigger mode in the IRTE will always be edge, and the
1407 		 * actual level or edge trigger will be setup in the IO-APIC
1408 		 * RTE. This will help simplify level triggered irq migration.
1409 		 * For more details, see the comments above explainig IO-APIC
1410 		 * irq migration in the presence of interrupt-remapping.
1411 		 */
1412 		irte.trigger_mode = 0;
1413 		irte.dlvry_mode = apic->irq_delivery_mode;
1414 		irte.vector = vector;
1415 		irte.dest_id = IRTE_DEST(destination);
1416 
1417 		/* Set source-id of interrupt request */
1418 		set_ioapic_sid(&irte, apic_id);
1419 
1420 		modify_irte(irq, &irte);
1421 
1422 		ir_entry->index2 = (index >> 15) & 0x1;
1423 		ir_entry->zero = 0;
1424 		ir_entry->format = 1;
1425 		ir_entry->index = (index & 0x7fff);
1426 		/*
1427 		 * IO-APIC RTE will be configured with virtual vector.
1428 		 * irq handler will do the explicit EOI to the io-apic.
1429 		 */
1430 		ir_entry->vector = pin;
1431 	} else {
1432 		entry->delivery_mode = apic->irq_delivery_mode;
1433 		entry->dest_mode = apic->irq_dest_mode;
1434 		entry->dest = destination;
1435 		entry->vector = vector;
1436 	}
1437 
1438 	entry->mask = 0;				/* enable IRQ */
1439 	entry->trigger = trigger;
1440 	entry->polarity = polarity;
1441 
1442 	/* Mask level triggered irqs.
1443 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1444 	 */
1445 	if (trigger)
1446 		entry->mask = 1;
1447 	return 0;
1448 }
1449 
1450 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1451 			      int trigger, int polarity)
1452 {
1453 	struct irq_cfg *cfg;
1454 	struct IO_APIC_route_entry entry;
1455 	unsigned int dest;
1456 
1457 	if (!IO_APIC_IRQ(irq))
1458 		return;
1459 
1460 	cfg = desc->chip_data;
1461 
1462 	if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1463 		return;
1464 
1465 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1466 
1467 	apic_printk(APIC_VERBOSE,KERN_DEBUG
1468 		    "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1469 		    "IRQ %d Mode:%i Active:%i)\n",
1470 		    apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1471 		    irq, trigger, polarity);
1472 
1473 
1474 	if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1475 			       dest, trigger, polarity, cfg->vector, pin)) {
1476 		printk("Failed to setup ioapic entry for ioapic  %d, pin %d\n",
1477 		       mp_ioapics[apic_id].apicid, pin);
1478 		__clear_irq_vector(irq, cfg);
1479 		return;
1480 	}
1481 
1482 	ioapic_register_intr(irq, desc, trigger);
1483 	if (irq < NR_IRQS_LEGACY)
1484 		disable_8259A_irq(irq);
1485 
1486 	ioapic_write_entry(apic_id, pin, entry);
1487 }
1488 
1489 static struct {
1490 	DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1491 } mp_ioapic_routing[MAX_IO_APICS];
1492 
1493 static void __init setup_IO_APIC_irqs(void)
1494 {
1495 	int apic_id = 0, pin, idx, irq;
1496 	int notcon = 0;
1497 	struct irq_desc *desc;
1498 	struct irq_cfg *cfg;
1499 	int node = cpu_to_node(boot_cpu_id);
1500 
1501 	apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1502 
1503 #ifdef CONFIG_ACPI
1504 	if (!acpi_disabled && acpi_ioapic) {
1505 		apic_id = mp_find_ioapic(0);
1506 		if (apic_id < 0)
1507 			apic_id = 0;
1508 	}
1509 #endif
1510 
1511 	for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1512 		idx = find_irq_entry(apic_id, pin, mp_INT);
1513 		if (idx == -1) {
1514 			if (!notcon) {
1515 				notcon = 1;
1516 				apic_printk(APIC_VERBOSE,
1517 					KERN_DEBUG " %d-%d",
1518 					mp_ioapics[apic_id].apicid, pin);
1519 			} else
1520 				apic_printk(APIC_VERBOSE, " %d-%d",
1521 					mp_ioapics[apic_id].apicid, pin);
1522 			continue;
1523 		}
1524 		if (notcon) {
1525 			apic_printk(APIC_VERBOSE,
1526 				" (apicid-pin) not connected\n");
1527 			notcon = 0;
1528 		}
1529 
1530 		irq = pin_2_irq(idx, apic_id, pin);
1531 
1532 		/*
1533 		 * Skip the timer IRQ if there's a quirk handler
1534 		 * installed and if it returns 1:
1535 		 */
1536 		if (apic->multi_timer_check &&
1537 				apic->multi_timer_check(apic_id, irq))
1538 			continue;
1539 
1540 		desc = irq_to_desc_alloc_node(irq, node);
1541 		if (!desc) {
1542 			printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1543 			continue;
1544 		}
1545 		cfg = desc->chip_data;
1546 		add_pin_to_irq_node(cfg, node, apic_id, pin);
1547 		/*
1548 		 * don't mark it in pin_programmed, so later acpi could
1549 		 * set it correctly when irq < 16
1550 		 */
1551 		setup_IO_APIC_irq(apic_id, pin, irq, desc,
1552 				irq_trigger(idx), irq_polarity(idx));
1553 	}
1554 
1555 	if (notcon)
1556 		apic_printk(APIC_VERBOSE,
1557 			" (apicid-pin) not connected\n");
1558 }
1559 
1560 /*
1561  * Set up the timer pin, possibly with the 8259A-master behind.
1562  */
1563 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1564 					int vector)
1565 {
1566 	struct IO_APIC_route_entry entry;
1567 
1568 	if (intr_remapping_enabled)
1569 		return;
1570 
1571 	memset(&entry, 0, sizeof(entry));
1572 
1573 	/*
1574 	 * We use logical delivery to get the timer IRQ
1575 	 * to the first CPU.
1576 	 */
1577 	entry.dest_mode = apic->irq_dest_mode;
1578 	entry.mask = 0;			/* don't mask IRQ for edge */
1579 	entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1580 	entry.delivery_mode = apic->irq_delivery_mode;
1581 	entry.polarity = 0;
1582 	entry.trigger = 0;
1583 	entry.vector = vector;
1584 
1585 	/*
1586 	 * The timer IRQ doesn't have to know that behind the
1587 	 * scene we may have a 8259A-master in AEOI mode ...
1588 	 */
1589 	set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1590 
1591 	/*
1592 	 * Add it to the IO-APIC irq-routing table:
1593 	 */
1594 	ioapic_write_entry(apic_id, pin, entry);
1595 }
1596 
1597 
1598 __apicdebuginit(void) print_IO_APIC(void)
1599 {
1600 	int apic, i;
1601 	union IO_APIC_reg_00 reg_00;
1602 	union IO_APIC_reg_01 reg_01;
1603 	union IO_APIC_reg_02 reg_02;
1604 	union IO_APIC_reg_03 reg_03;
1605 	unsigned long flags;
1606 	struct irq_cfg *cfg;
1607 	struct irq_desc *desc;
1608 	unsigned int irq;
1609 
1610 	if (apic_verbosity == APIC_QUIET)
1611 		return;
1612 
1613 	printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1614 	for (i = 0; i < nr_ioapics; i++)
1615 		printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1616 		       mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1617 
1618 	/*
1619 	 * We are a bit conservative about what we expect.  We have to
1620 	 * know about every hardware change ASAP.
1621 	 */
1622 	printk(KERN_INFO "testing the IO APIC.......................\n");
1623 
1624 	for (apic = 0; apic < nr_ioapics; apic++) {
1625 
1626 	spin_lock_irqsave(&ioapic_lock, flags);
1627 	reg_00.raw = io_apic_read(apic, 0);
1628 	reg_01.raw = io_apic_read(apic, 1);
1629 	if (reg_01.bits.version >= 0x10)
1630 		reg_02.raw = io_apic_read(apic, 2);
1631 	if (reg_01.bits.version >= 0x20)
1632 		reg_03.raw = io_apic_read(apic, 3);
1633 	spin_unlock_irqrestore(&ioapic_lock, flags);
1634 
1635 	printk("\n");
1636 	printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1637 	printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1638 	printk(KERN_DEBUG ".......    : physical APIC id: %02X\n", reg_00.bits.ID);
1639 	printk(KERN_DEBUG ".......    : Delivery Type: %X\n", reg_00.bits.delivery_type);
1640 	printk(KERN_DEBUG ".......    : LTS          : %X\n", reg_00.bits.LTS);
1641 
1642 	printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1643 	printk(KERN_DEBUG ".......     : max redirection entries: %04X\n", reg_01.bits.entries);
1644 
1645 	printk(KERN_DEBUG ".......     : PRQ implemented: %X\n", reg_01.bits.PRQ);
1646 	printk(KERN_DEBUG ".......     : IO APIC version: %04X\n", reg_01.bits.version);
1647 
1648 	/*
1649 	 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1650 	 * but the value of reg_02 is read as the previous read register
1651 	 * value, so ignore it if reg_02 == reg_01.
1652 	 */
1653 	if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1654 		printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1655 		printk(KERN_DEBUG ".......     : arbitration: %02X\n", reg_02.bits.arbitration);
1656 	}
1657 
1658 	/*
1659 	 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1660 	 * or reg_03, but the value of reg_0[23] is read as the previous read
1661 	 * register value, so ignore it if reg_03 == reg_0[12].
1662 	 */
1663 	if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1664 	    reg_03.raw != reg_01.raw) {
1665 		printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1666 		printk(KERN_DEBUG ".......     : Boot DT    : %X\n", reg_03.bits.boot_DT);
1667 	}
1668 
1669 	printk(KERN_DEBUG ".... IRQ redirection table:\n");
1670 
1671 	printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1672 			  " Stat Dmod Deli Vect:   \n");
1673 
1674 	for (i = 0; i <= reg_01.bits.entries; i++) {
1675 		struct IO_APIC_route_entry entry;
1676 
1677 		entry = ioapic_read_entry(apic, i);
1678 
1679 		printk(KERN_DEBUG " %02x %03X ",
1680 			i,
1681 			entry.dest
1682 		);
1683 
1684 		printk("%1d    %1d    %1d   %1d   %1d    %1d    %1d    %02X\n",
1685 			entry.mask,
1686 			entry.trigger,
1687 			entry.irr,
1688 			entry.polarity,
1689 			entry.delivery_status,
1690 			entry.dest_mode,
1691 			entry.delivery_mode,
1692 			entry.vector
1693 		);
1694 	}
1695 	}
1696 	printk(KERN_DEBUG "IRQ to pin mappings:\n");
1697 	for_each_irq_desc(irq, desc) {
1698 		struct irq_pin_list *entry;
1699 
1700 		cfg = desc->chip_data;
1701 		entry = cfg->irq_2_pin;
1702 		if (!entry)
1703 			continue;
1704 		printk(KERN_DEBUG "IRQ%d ", irq);
1705 		for (;;) {
1706 			printk("-> %d:%d", entry->apic, entry->pin);
1707 			if (!entry->next)
1708 				break;
1709 			entry = entry->next;
1710 		}
1711 		printk("\n");
1712 	}
1713 
1714 	printk(KERN_INFO ".................................... done.\n");
1715 
1716 	return;
1717 }
1718 
1719 __apicdebuginit(void) print_APIC_field(int base)
1720 {
1721 	int i;
1722 
1723 	if (apic_verbosity == APIC_QUIET)
1724 		return;
1725 
1726 	printk(KERN_DEBUG);
1727 
1728 	for (i = 0; i < 8; i++)
1729 		printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1730 
1731 	printk(KERN_CONT "\n");
1732 }
1733 
1734 __apicdebuginit(void) print_local_APIC(void *dummy)
1735 {
1736 	unsigned int i, v, ver, maxlvt;
1737 	u64 icr;
1738 
1739 	if (apic_verbosity == APIC_QUIET)
1740 		return;
1741 
1742 	printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1743 		smp_processor_id(), hard_smp_processor_id());
1744 	v = apic_read(APIC_ID);
1745 	printk(KERN_INFO "... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1746 	v = apic_read(APIC_LVR);
1747 	printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1748 	ver = GET_APIC_VERSION(v);
1749 	maxlvt = lapic_get_maxlvt();
1750 
1751 	v = apic_read(APIC_TASKPRI);
1752 	printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1753 
1754 	if (APIC_INTEGRATED(ver)) {                     /* !82489DX */
1755 		if (!APIC_XAPIC(ver)) {
1756 			v = apic_read(APIC_ARBPRI);
1757 			printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1758 			       v & APIC_ARBPRI_MASK);
1759 		}
1760 		v = apic_read(APIC_PROCPRI);
1761 		printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1762 	}
1763 
1764 	/*
1765 	 * Remote read supported only in the 82489DX and local APIC for
1766 	 * Pentium processors.
1767 	 */
1768 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1769 		v = apic_read(APIC_RRR);
1770 		printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1771 	}
1772 
1773 	v = apic_read(APIC_LDR);
1774 	printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1775 	if (!x2apic_enabled()) {
1776 		v = apic_read(APIC_DFR);
1777 		printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1778 	}
1779 	v = apic_read(APIC_SPIV);
1780 	printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1781 
1782 	printk(KERN_DEBUG "... APIC ISR field:\n");
1783 	print_APIC_field(APIC_ISR);
1784 	printk(KERN_DEBUG "... APIC TMR field:\n");
1785 	print_APIC_field(APIC_TMR);
1786 	printk(KERN_DEBUG "... APIC IRR field:\n");
1787 	print_APIC_field(APIC_IRR);
1788 
1789 	if (APIC_INTEGRATED(ver)) {             /* !82489DX */
1790 		if (maxlvt > 3)         /* Due to the Pentium erratum 3AP. */
1791 			apic_write(APIC_ESR, 0);
1792 
1793 		v = apic_read(APIC_ESR);
1794 		printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1795 	}
1796 
1797 	icr = apic_icr_read();
1798 	printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1799 	printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1800 
1801 	v = apic_read(APIC_LVTT);
1802 	printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1803 
1804 	if (maxlvt > 3) {                       /* PC is LVT#4. */
1805 		v = apic_read(APIC_LVTPC);
1806 		printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1807 	}
1808 	v = apic_read(APIC_LVT0);
1809 	printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1810 	v = apic_read(APIC_LVT1);
1811 	printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1812 
1813 	if (maxlvt > 2) {			/* ERR is LVT#3. */
1814 		v = apic_read(APIC_LVTERR);
1815 		printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1816 	}
1817 
1818 	v = apic_read(APIC_TMICT);
1819 	printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1820 	v = apic_read(APIC_TMCCT);
1821 	printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1822 	v = apic_read(APIC_TDCR);
1823 	printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1824 
1825 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1826 		v = apic_read(APIC_EFEAT);
1827 		maxlvt = (v >> 16) & 0xff;
1828 		printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1829 		v = apic_read(APIC_ECTRL);
1830 		printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1831 		for (i = 0; i < maxlvt; i++) {
1832 			v = apic_read(APIC_EILVTn(i));
1833 			printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1834 		}
1835 	}
1836 	printk("\n");
1837 }
1838 
1839 __apicdebuginit(void) print_all_local_APICs(void)
1840 {
1841 	int cpu;
1842 
1843 	preempt_disable();
1844 	for_each_online_cpu(cpu)
1845 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1846 	preempt_enable();
1847 }
1848 
1849 __apicdebuginit(void) print_PIC(void)
1850 {
1851 	unsigned int v;
1852 	unsigned long flags;
1853 
1854 	if (apic_verbosity == APIC_QUIET)
1855 		return;
1856 
1857 	printk(KERN_DEBUG "\nprinting PIC contents\n");
1858 
1859 	spin_lock_irqsave(&i8259A_lock, flags);
1860 
1861 	v = inb(0xa1) << 8 | inb(0x21);
1862 	printk(KERN_DEBUG "... PIC  IMR: %04x\n", v);
1863 
1864 	v = inb(0xa0) << 8 | inb(0x20);
1865 	printk(KERN_DEBUG "... PIC  IRR: %04x\n", v);
1866 
1867 	outb(0x0b,0xa0);
1868 	outb(0x0b,0x20);
1869 	v = inb(0xa0) << 8 | inb(0x20);
1870 	outb(0x0a,0xa0);
1871 	outb(0x0a,0x20);
1872 
1873 	spin_unlock_irqrestore(&i8259A_lock, flags);
1874 
1875 	printk(KERN_DEBUG "... PIC  ISR: %04x\n", v);
1876 
1877 	v = inb(0x4d1) << 8 | inb(0x4d0);
1878 	printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1879 }
1880 
1881 __apicdebuginit(int) print_all_ICs(void)
1882 {
1883 	print_PIC();
1884 
1885 	/* don't print out if apic is not there */
1886 	if (!cpu_has_apic || disable_apic)
1887 		return 0;
1888 
1889 	print_all_local_APICs();
1890 	print_IO_APIC();
1891 
1892 	return 0;
1893 }
1894 
1895 fs_initcall(print_all_ICs);
1896 
1897 
1898 /* Where if anywhere is the i8259 connect in external int mode */
1899 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1900 
1901 void __init enable_IO_APIC(void)
1902 {
1903 	union IO_APIC_reg_01 reg_01;
1904 	int i8259_apic, i8259_pin;
1905 	int apic;
1906 	unsigned long flags;
1907 
1908 	/*
1909 	 * The number of IO-APIC IRQ registers (== #pins):
1910 	 */
1911 	for (apic = 0; apic < nr_ioapics; apic++) {
1912 		spin_lock_irqsave(&ioapic_lock, flags);
1913 		reg_01.raw = io_apic_read(apic, 1);
1914 		spin_unlock_irqrestore(&ioapic_lock, flags);
1915 		nr_ioapic_registers[apic] = reg_01.bits.entries+1;
1916 	}
1917 	for(apic = 0; apic < nr_ioapics; apic++) {
1918 		int pin;
1919 		/* See if any of the pins is in ExtINT mode */
1920 		for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1921 			struct IO_APIC_route_entry entry;
1922 			entry = ioapic_read_entry(apic, pin);
1923 
1924 			/* If the interrupt line is enabled and in ExtInt mode
1925 			 * I have found the pin where the i8259 is connected.
1926 			 */
1927 			if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1928 				ioapic_i8259.apic = apic;
1929 				ioapic_i8259.pin  = pin;
1930 				goto found_i8259;
1931 			}
1932 		}
1933 	}
1934  found_i8259:
1935 	/* Look to see what if the MP table has reported the ExtINT */
1936 	/* If we could not find the appropriate pin by looking at the ioapic
1937 	 * the i8259 probably is not connected the ioapic but give the
1938 	 * mptable a chance anyway.
1939 	 */
1940 	i8259_pin  = find_isa_irq_pin(0, mp_ExtINT);
1941 	i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1942 	/* Trust the MP table if nothing is setup in the hardware */
1943 	if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1944 		printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1945 		ioapic_i8259.pin  = i8259_pin;
1946 		ioapic_i8259.apic = i8259_apic;
1947 	}
1948 	/* Complain if the MP table and the hardware disagree */
1949 	if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1950 		(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1951 	{
1952 		printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1953 	}
1954 
1955 	/*
1956 	 * Do not trust the IO-APIC being empty at bootup
1957 	 */
1958 	clear_IO_APIC();
1959 }
1960 
1961 /*
1962  * Not an __init, needed by the reboot code
1963  */
1964 void disable_IO_APIC(void)
1965 {
1966 	/*
1967 	 * Clear the IO-APIC before rebooting:
1968 	 */
1969 	clear_IO_APIC();
1970 
1971 	/*
1972 	 * If the i8259 is routed through an IOAPIC
1973 	 * Put that IOAPIC in virtual wire mode
1974 	 * so legacy interrupts can be delivered.
1975 	 *
1976 	 * With interrupt-remapping, for now we will use virtual wire A mode,
1977 	 * as virtual wire B is little complex (need to configure both
1978 	 * IOAPIC RTE aswell as interrupt-remapping table entry).
1979 	 * As this gets called during crash dump, keep this simple for now.
1980 	 */
1981 	if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1982 		struct IO_APIC_route_entry entry;
1983 
1984 		memset(&entry, 0, sizeof(entry));
1985 		entry.mask            = 0; /* Enabled */
1986 		entry.trigger         = 0; /* Edge */
1987 		entry.irr             = 0;
1988 		entry.polarity        = 0; /* High */
1989 		entry.delivery_status = 0;
1990 		entry.dest_mode       = 0; /* Physical */
1991 		entry.delivery_mode   = dest_ExtINT; /* ExtInt */
1992 		entry.vector          = 0;
1993 		entry.dest            = read_apic_id();
1994 
1995 		/*
1996 		 * Add it to the IO-APIC irq-routing table:
1997 		 */
1998 		ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1999 	}
2000 
2001 	/*
2002 	 * Use virtual wire A mode when interrupt remapping is enabled.
2003 	 */
2004 	if (cpu_has_apic)
2005 		disconnect_bsp_APIC(!intr_remapping_enabled &&
2006 				ioapic_i8259.pin != -1);
2007 }
2008 
2009 #ifdef CONFIG_X86_32
2010 /*
2011  * function to set the IO-APIC physical IDs based on the
2012  * values stored in the MPC table.
2013  *
2014  * by Matt Domsch <Matt_Domsch@dell.com>  Tue Dec 21 12:25:05 CST 1999
2015  */
2016 
2017 static void __init setup_ioapic_ids_from_mpc(void)
2018 {
2019 	union IO_APIC_reg_00 reg_00;
2020 	physid_mask_t phys_id_present_map;
2021 	int apic_id;
2022 	int i;
2023 	unsigned char old_id;
2024 	unsigned long flags;
2025 
2026 	if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2027 		return;
2028 
2029 	/*
2030 	 * Don't check I/O APIC IDs for xAPIC systems.  They have
2031 	 * no meaning without the serial APIC bus.
2032 	 */
2033 	if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2034 		|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2035 		return;
2036 	/*
2037 	 * This is broken; anything with a real cpu count has to
2038 	 * circumvent this idiocy regardless.
2039 	 */
2040 	phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2041 
2042 	/*
2043 	 * Set the IOAPIC ID to the value stored in the MPC table.
2044 	 */
2045 	for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2046 
2047 		/* Read the register 0 value */
2048 		spin_lock_irqsave(&ioapic_lock, flags);
2049 		reg_00.raw = io_apic_read(apic_id, 0);
2050 		spin_unlock_irqrestore(&ioapic_lock, flags);
2051 
2052 		old_id = mp_ioapics[apic_id].apicid;
2053 
2054 		if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2055 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2056 				apic_id, mp_ioapics[apic_id].apicid);
2057 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2058 				reg_00.bits.ID);
2059 			mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2060 		}
2061 
2062 		/*
2063 		 * Sanity check, is the ID really free? Every APIC in a
2064 		 * system must have a unique ID or we get lots of nice
2065 		 * 'stuck on smp_invalidate_needed IPI wait' messages.
2066 		 */
2067 		if (apic->check_apicid_used(phys_id_present_map,
2068 					mp_ioapics[apic_id].apicid)) {
2069 			printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2070 				apic_id, mp_ioapics[apic_id].apicid);
2071 			for (i = 0; i < get_physical_broadcast(); i++)
2072 				if (!physid_isset(i, phys_id_present_map))
2073 					break;
2074 			if (i >= get_physical_broadcast())
2075 				panic("Max APIC ID exceeded!\n");
2076 			printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2077 				i);
2078 			physid_set(i, phys_id_present_map);
2079 			mp_ioapics[apic_id].apicid = i;
2080 		} else {
2081 			physid_mask_t tmp;
2082 			tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2083 			apic_printk(APIC_VERBOSE, "Setting %d in the "
2084 					"phys_id_present_map\n",
2085 					mp_ioapics[apic_id].apicid);
2086 			physids_or(phys_id_present_map, phys_id_present_map, tmp);
2087 		}
2088 
2089 
2090 		/*
2091 		 * We need to adjust the IRQ routing table
2092 		 * if the ID changed.
2093 		 */
2094 		if (old_id != mp_ioapics[apic_id].apicid)
2095 			for (i = 0; i < mp_irq_entries; i++)
2096 				if (mp_irqs[i].dstapic == old_id)
2097 					mp_irqs[i].dstapic
2098 						= mp_ioapics[apic_id].apicid;
2099 
2100 		/*
2101 		 * Read the right value from the MPC table and
2102 		 * write it into the ID register.
2103 		 */
2104 		apic_printk(APIC_VERBOSE, KERN_INFO
2105 			"...changing IO-APIC physical APIC ID to %d ...",
2106 			mp_ioapics[apic_id].apicid);
2107 
2108 		reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2109 		spin_lock_irqsave(&ioapic_lock, flags);
2110 		io_apic_write(apic_id, 0, reg_00.raw);
2111 		spin_unlock_irqrestore(&ioapic_lock, flags);
2112 
2113 		/*
2114 		 * Sanity check
2115 		 */
2116 		spin_lock_irqsave(&ioapic_lock, flags);
2117 		reg_00.raw = io_apic_read(apic_id, 0);
2118 		spin_unlock_irqrestore(&ioapic_lock, flags);
2119 		if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2120 			printk("could not set ID!\n");
2121 		else
2122 			apic_printk(APIC_VERBOSE, " ok.\n");
2123 	}
2124 }
2125 #endif
2126 
2127 int no_timer_check __initdata;
2128 
2129 static int __init notimercheck(char *s)
2130 {
2131 	no_timer_check = 1;
2132 	return 1;
2133 }
2134 __setup("no_timer_check", notimercheck);
2135 
2136 /*
2137  * There is a nasty bug in some older SMP boards, their mptable lies
2138  * about the timer IRQ. We do the following to work around the situation:
2139  *
2140  *	- timer IRQ defaults to IO-APIC IRQ
2141  *	- if this function detects that timer IRQs are defunct, then we fall
2142  *	  back to ISA timer IRQs
2143  */
2144 static int __init timer_irq_works(void)
2145 {
2146 	unsigned long t1 = jiffies;
2147 	unsigned long flags;
2148 
2149 	if (no_timer_check)
2150 		return 1;
2151 
2152 	local_save_flags(flags);
2153 	local_irq_enable();
2154 	/* Let ten ticks pass... */
2155 	mdelay((10 * 1000) / HZ);
2156 	local_irq_restore(flags);
2157 
2158 	/*
2159 	 * Expect a few ticks at least, to be sure some possible
2160 	 * glue logic does not lock up after one or two first
2161 	 * ticks in a non-ExtINT mode.  Also the local APIC
2162 	 * might have cached one ExtINT interrupt.  Finally, at
2163 	 * least one tick may be lost due to delays.
2164 	 */
2165 
2166 	/* jiffies wrap? */
2167 	if (time_after(jiffies, t1 + 4))
2168 		return 1;
2169 	return 0;
2170 }
2171 
2172 /*
2173  * In the SMP+IOAPIC case it might happen that there are an unspecified
2174  * number of pending IRQ events unhandled. These cases are very rare,
2175  * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2176  * better to do it this way as thus we do not have to be aware of
2177  * 'pending' interrupts in the IRQ path, except at this point.
2178  */
2179 /*
2180  * Edge triggered needs to resend any interrupt
2181  * that was delayed but this is now handled in the device
2182  * independent code.
2183  */
2184 
2185 /*
2186  * Starting up a edge-triggered IO-APIC interrupt is
2187  * nasty - we need to make sure that we get the edge.
2188  * If it is already asserted for some reason, we need
2189  * return 1 to indicate that is was pending.
2190  *
2191  * This is not complete - we should be able to fake
2192  * an edge even if it isn't on the 8259A...
2193  */
2194 
2195 static unsigned int startup_ioapic_irq(unsigned int irq)
2196 {
2197 	int was_pending = 0;
2198 	unsigned long flags;
2199 	struct irq_cfg *cfg;
2200 
2201 	spin_lock_irqsave(&ioapic_lock, flags);
2202 	if (irq < NR_IRQS_LEGACY) {
2203 		disable_8259A_irq(irq);
2204 		if (i8259A_irq_pending(irq))
2205 			was_pending = 1;
2206 	}
2207 	cfg = irq_cfg(irq);
2208 	__unmask_IO_APIC_irq(cfg);
2209 	spin_unlock_irqrestore(&ioapic_lock, flags);
2210 
2211 	return was_pending;
2212 }
2213 
2214 #ifdef CONFIG_X86_64
2215 static int ioapic_retrigger_irq(unsigned int irq)
2216 {
2217 
2218 	struct irq_cfg *cfg = irq_cfg(irq);
2219 	unsigned long flags;
2220 
2221 	spin_lock_irqsave(&vector_lock, flags);
2222 	apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2223 	spin_unlock_irqrestore(&vector_lock, flags);
2224 
2225 	return 1;
2226 }
2227 #else
2228 static int ioapic_retrigger_irq(unsigned int irq)
2229 {
2230 	apic->send_IPI_self(irq_cfg(irq)->vector);
2231 
2232 	return 1;
2233 }
2234 #endif
2235 
2236 /*
2237  * Level and edge triggered IO-APIC interrupts need different handling,
2238  * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2239  * handled with the level-triggered descriptor, but that one has slightly
2240  * more overhead. Level-triggered interrupts cannot be handled with the
2241  * edge-triggered handler, without risking IRQ storms and other ugly
2242  * races.
2243  */
2244 
2245 #ifdef CONFIG_SMP
2246 static void send_cleanup_vector(struct irq_cfg *cfg)
2247 {
2248 	cpumask_var_t cleanup_mask;
2249 
2250 	if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2251 		unsigned int i;
2252 		cfg->move_cleanup_count = 0;
2253 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2254 			cfg->move_cleanup_count++;
2255 		for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2256 			apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2257 	} else {
2258 		cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2259 		cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
2260 		apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2261 		free_cpumask_var(cleanup_mask);
2262 	}
2263 	cfg->move_in_progress = 0;
2264 }
2265 
2266 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2267 {
2268 	int apic, pin;
2269 	struct irq_pin_list *entry;
2270 	u8 vector = cfg->vector;
2271 
2272 	entry = cfg->irq_2_pin;
2273 	for (;;) {
2274 		unsigned int reg;
2275 
2276 		if (!entry)
2277 			break;
2278 
2279 		apic = entry->apic;
2280 		pin = entry->pin;
2281 		/*
2282 		 * With interrupt-remapping, destination information comes
2283 		 * from interrupt-remapping table entry.
2284 		 */
2285 		if (!irq_remapped(irq))
2286 			io_apic_write(apic, 0x11 + pin*2, dest);
2287 		reg = io_apic_read(apic, 0x10 + pin*2);
2288 		reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2289 		reg |= vector;
2290 		io_apic_modify(apic, 0x10 + pin*2, reg);
2291 		if (!entry->next)
2292 			break;
2293 		entry = entry->next;
2294 	}
2295 }
2296 
2297 static int
2298 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
2299 
2300 /*
2301  * Either sets desc->affinity to a valid value, and returns
2302  * ->cpu_mask_to_apicid of that, or returns BAD_APICID and
2303  * leaves desc->affinity untouched.
2304  */
2305 static unsigned int
2306 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
2307 {
2308 	struct irq_cfg *cfg;
2309 	unsigned int irq;
2310 
2311 	if (!cpumask_intersects(mask, cpu_online_mask))
2312 		return BAD_APICID;
2313 
2314 	irq = desc->irq;
2315 	cfg = desc->chip_data;
2316 	if (assign_irq_vector(irq, cfg, mask))
2317 		return BAD_APICID;
2318 
2319 	cpumask_copy(desc->affinity, mask);
2320 
2321 	return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
2322 }
2323 
2324 static int
2325 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2326 {
2327 	struct irq_cfg *cfg;
2328 	unsigned long flags;
2329 	unsigned int dest;
2330 	unsigned int irq;
2331 	int ret = -1;
2332 
2333 	irq = desc->irq;
2334 	cfg = desc->chip_data;
2335 
2336 	spin_lock_irqsave(&ioapic_lock, flags);
2337 	dest = set_desc_affinity(desc, mask);
2338 	if (dest != BAD_APICID) {
2339 		/* Only the high 8 bits are valid. */
2340 		dest = SET_APIC_LOGICAL_ID(dest);
2341 		__target_IO_APIC_irq(irq, dest, cfg);
2342 		ret = 0;
2343 	}
2344 	spin_unlock_irqrestore(&ioapic_lock, flags);
2345 
2346 	return ret;
2347 }
2348 
2349 static int
2350 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
2351 {
2352 	struct irq_desc *desc;
2353 
2354 	desc = irq_to_desc(irq);
2355 
2356 	return set_ioapic_affinity_irq_desc(desc, mask);
2357 }
2358 
2359 #ifdef CONFIG_INTR_REMAP
2360 
2361 /*
2362  * Migrate the IO-APIC irq in the presence of intr-remapping.
2363  *
2364  * For both level and edge triggered, irq migration is a simple atomic
2365  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2366  *
2367  * For level triggered, we eliminate the io-apic RTE modification (with the
2368  * updated vector information), by using a virtual vector (io-apic pin number).
2369  * Real vector that is used for interrupting cpu will be coming from
2370  * the interrupt-remapping table entry.
2371  */
2372 static int
2373 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2374 {
2375 	struct irq_cfg *cfg;
2376 	struct irte irte;
2377 	unsigned int dest;
2378 	unsigned int irq;
2379 	int ret = -1;
2380 
2381 	if (!cpumask_intersects(mask, cpu_online_mask))
2382 		return ret;
2383 
2384 	irq = desc->irq;
2385 	if (get_irte(irq, &irte))
2386 		return ret;
2387 
2388 	cfg = desc->chip_data;
2389 	if (assign_irq_vector(irq, cfg, mask))
2390 		return ret;
2391 
2392 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2393 
2394 	irte.vector = cfg->vector;
2395 	irte.dest_id = IRTE_DEST(dest);
2396 
2397 	/*
2398 	 * Modified the IRTE and flushes the Interrupt entry cache.
2399 	 */
2400 	modify_irte(irq, &irte);
2401 
2402 	if (cfg->move_in_progress)
2403 		send_cleanup_vector(cfg);
2404 
2405 	cpumask_copy(desc->affinity, mask);
2406 
2407 	return 0;
2408 }
2409 
2410 /*
2411  * Migrates the IRQ destination in the process context.
2412  */
2413 static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2414 					    const struct cpumask *mask)
2415 {
2416 	return migrate_ioapic_irq_desc(desc, mask);
2417 }
2418 static int set_ir_ioapic_affinity_irq(unsigned int irq,
2419 				       const struct cpumask *mask)
2420 {
2421 	struct irq_desc *desc = irq_to_desc(irq);
2422 
2423 	return set_ir_ioapic_affinity_irq_desc(desc, mask);
2424 }
2425 #else
2426 static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2427 						   const struct cpumask *mask)
2428 {
2429 	return 0;
2430 }
2431 #endif
2432 
2433 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2434 {
2435 	unsigned vector, me;
2436 
2437 	ack_APIC_irq();
2438 	exit_idle();
2439 	irq_enter();
2440 
2441 	me = smp_processor_id();
2442 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2443 		unsigned int irq;
2444 		unsigned int irr;
2445 		struct irq_desc *desc;
2446 		struct irq_cfg *cfg;
2447 		irq = __get_cpu_var(vector_irq)[vector];
2448 
2449 		if (irq == -1)
2450 			continue;
2451 
2452 		desc = irq_to_desc(irq);
2453 		if (!desc)
2454 			continue;
2455 
2456 		cfg = irq_cfg(irq);
2457 		spin_lock(&desc->lock);
2458 		if (!cfg->move_cleanup_count)
2459 			goto unlock;
2460 
2461 		if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2462 			goto unlock;
2463 
2464 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2465 		/*
2466 		 * Check if the vector that needs to be cleanedup is
2467 		 * registered at the cpu's IRR. If so, then this is not
2468 		 * the best time to clean it up. Lets clean it up in the
2469 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2470 		 * to myself.
2471 		 */
2472 		if (irr  & (1 << (vector % 32))) {
2473 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2474 			goto unlock;
2475 		}
2476 		__get_cpu_var(vector_irq)[vector] = -1;
2477 		cfg->move_cleanup_count--;
2478 unlock:
2479 		spin_unlock(&desc->lock);
2480 	}
2481 
2482 	irq_exit();
2483 }
2484 
2485 static void irq_complete_move(struct irq_desc **descp)
2486 {
2487 	struct irq_desc *desc = *descp;
2488 	struct irq_cfg *cfg = desc->chip_data;
2489 	unsigned vector, me;
2490 
2491 	if (likely(!cfg->move_in_progress))
2492 		return;
2493 
2494 	vector = ~get_irq_regs()->orig_ax;
2495 	me = smp_processor_id();
2496 
2497 	if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2498 		send_cleanup_vector(cfg);
2499 }
2500 #else
2501 static inline void irq_complete_move(struct irq_desc **descp) {}
2502 #endif
2503 
2504 static void ack_apic_edge(unsigned int irq)
2505 {
2506 	struct irq_desc *desc = irq_to_desc(irq);
2507 
2508 	irq_complete_move(&desc);
2509 	move_native_irq(irq);
2510 	ack_APIC_irq();
2511 }
2512 
2513 atomic_t irq_mis_count;
2514 
2515 static void ack_apic_level(unsigned int irq)
2516 {
2517 	struct irq_desc *desc = irq_to_desc(irq);
2518 
2519 #ifdef CONFIG_X86_32
2520 	unsigned long v;
2521 	int i;
2522 #endif
2523 	struct irq_cfg *cfg;
2524 	int do_unmask_irq = 0;
2525 
2526 	irq_complete_move(&desc);
2527 #ifdef CONFIG_GENERIC_PENDING_IRQ
2528 	/* If we are moving the irq we need to mask it */
2529 	if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2530 		do_unmask_irq = 1;
2531 		mask_IO_APIC_irq_desc(desc);
2532 	}
2533 #endif
2534 
2535 #ifdef CONFIG_X86_32
2536 	/*
2537 	* It appears there is an erratum which affects at least version 0x11
2538 	* of I/O APIC (that's the 82093AA and cores integrated into various
2539 	* chipsets).  Under certain conditions a level-triggered interrupt is
2540 	* erroneously delivered as edge-triggered one but the respective IRR
2541 	* bit gets set nevertheless.  As a result the I/O unit expects an EOI
2542 	* message but it will never arrive and further interrupts are blocked
2543 	* from the source.  The exact reason is so far unknown, but the
2544 	* phenomenon was observed when two consecutive interrupt requests
2545 	* from a given source get delivered to the same CPU and the source is
2546 	* temporarily disabled in between.
2547 	*
2548 	* A workaround is to simulate an EOI message manually.  We achieve it
2549 	* by setting the trigger mode to edge and then to level when the edge
2550 	* trigger mode gets detected in the TMR of a local APIC for a
2551 	* level-triggered interrupt.  We mask the source for the time of the
2552 	* operation to prevent an edge-triggered interrupt escaping meanwhile.
2553 	* The idea is from Manfred Spraul.  --macro
2554 	*/
2555 	cfg = desc->chip_data;
2556 	i = cfg->vector;
2557 
2558 	v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2559 #endif
2560 
2561 	/*
2562 	 * We must acknowledge the irq before we move it or the acknowledge will
2563 	 * not propagate properly.
2564 	 */
2565 	ack_APIC_irq();
2566 
2567 	/* Now we can move and renable the irq */
2568 	if (unlikely(do_unmask_irq)) {
2569 		/* Only migrate the irq if the ack has been received.
2570 		 *
2571 		 * On rare occasions the broadcast level triggered ack gets
2572 		 * delayed going to ioapics, and if we reprogram the
2573 		 * vector while Remote IRR is still set the irq will never
2574 		 * fire again.
2575 		 *
2576 		 * To prevent this scenario we read the Remote IRR bit
2577 		 * of the ioapic.  This has two effects.
2578 		 * - On any sane system the read of the ioapic will
2579 		 *   flush writes (and acks) going to the ioapic from
2580 		 *   this cpu.
2581 		 * - We get to see if the ACK has actually been delivered.
2582 		 *
2583 		 * Based on failed experiments of reprogramming the
2584 		 * ioapic entry from outside of irq context starting
2585 		 * with masking the ioapic entry and then polling until
2586 		 * Remote IRR was clear before reprogramming the
2587 		 * ioapic I don't trust the Remote IRR bit to be
2588 		 * completey accurate.
2589 		 *
2590 		 * However there appears to be no other way to plug
2591 		 * this race, so if the Remote IRR bit is not
2592 		 * accurate and is causing problems then it is a hardware bug
2593 		 * and you can go talk to the chipset vendor about it.
2594 		 */
2595 		cfg = desc->chip_data;
2596 		if (!io_apic_level_ack_pending(cfg))
2597 			move_masked_irq(irq);
2598 		unmask_IO_APIC_irq_desc(desc);
2599 	}
2600 
2601 #ifdef CONFIG_X86_32
2602 	if (!(v & (1 << (i & 0x1f)))) {
2603 		atomic_inc(&irq_mis_count);
2604 		spin_lock(&ioapic_lock);
2605 		__mask_and_edge_IO_APIC_irq(cfg);
2606 		__unmask_and_level_IO_APIC_irq(cfg);
2607 		spin_unlock(&ioapic_lock);
2608 	}
2609 #endif
2610 }
2611 
2612 #ifdef CONFIG_INTR_REMAP
2613 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2614 {
2615 	int apic, pin;
2616 	struct irq_pin_list *entry;
2617 
2618 	entry = cfg->irq_2_pin;
2619 	for (;;) {
2620 
2621 		if (!entry)
2622 			break;
2623 
2624 		apic = entry->apic;
2625 		pin = entry->pin;
2626 		io_apic_eoi(apic, pin);
2627 		entry = entry->next;
2628 	}
2629 }
2630 
2631 static void
2632 eoi_ioapic_irq(struct irq_desc *desc)
2633 {
2634 	struct irq_cfg *cfg;
2635 	unsigned long flags;
2636 	unsigned int irq;
2637 
2638 	irq = desc->irq;
2639 	cfg = desc->chip_data;
2640 
2641 	spin_lock_irqsave(&ioapic_lock, flags);
2642 	__eoi_ioapic_irq(irq, cfg);
2643 	spin_unlock_irqrestore(&ioapic_lock, flags);
2644 }
2645 
2646 static void ir_ack_apic_edge(unsigned int irq)
2647 {
2648 	ack_APIC_irq();
2649 }
2650 
2651 static void ir_ack_apic_level(unsigned int irq)
2652 {
2653 	struct irq_desc *desc = irq_to_desc(irq);
2654 
2655 	ack_APIC_irq();
2656 	eoi_ioapic_irq(desc);
2657 }
2658 #endif /* CONFIG_INTR_REMAP */
2659 
2660 static struct irq_chip ioapic_chip __read_mostly = {
2661 	.name		= "IO-APIC",
2662 	.startup	= startup_ioapic_irq,
2663 	.mask		= mask_IO_APIC_irq,
2664 	.unmask		= unmask_IO_APIC_irq,
2665 	.ack		= ack_apic_edge,
2666 	.eoi		= ack_apic_level,
2667 #ifdef CONFIG_SMP
2668 	.set_affinity	= set_ioapic_affinity_irq,
2669 #endif
2670 	.retrigger	= ioapic_retrigger_irq,
2671 };
2672 
2673 static struct irq_chip ir_ioapic_chip __read_mostly = {
2674 	.name		= "IR-IO-APIC",
2675 	.startup	= startup_ioapic_irq,
2676 	.mask		= mask_IO_APIC_irq,
2677 	.unmask		= unmask_IO_APIC_irq,
2678 #ifdef CONFIG_INTR_REMAP
2679 	.ack		= ir_ack_apic_edge,
2680 	.eoi		= ir_ack_apic_level,
2681 #ifdef CONFIG_SMP
2682 	.set_affinity	= set_ir_ioapic_affinity_irq,
2683 #endif
2684 #endif
2685 	.retrigger	= ioapic_retrigger_irq,
2686 };
2687 
2688 static inline void init_IO_APIC_traps(void)
2689 {
2690 	int irq;
2691 	struct irq_desc *desc;
2692 	struct irq_cfg *cfg;
2693 
2694 	/*
2695 	 * NOTE! The local APIC isn't very good at handling
2696 	 * multiple interrupts at the same interrupt level.
2697 	 * As the interrupt level is determined by taking the
2698 	 * vector number and shifting that right by 4, we
2699 	 * want to spread these out a bit so that they don't
2700 	 * all fall in the same interrupt level.
2701 	 *
2702 	 * Also, we've got to be careful not to trash gate
2703 	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2704 	 */
2705 	for_each_irq_desc(irq, desc) {
2706 		cfg = desc->chip_data;
2707 		if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2708 			/*
2709 			 * Hmm.. We don't have an entry for this,
2710 			 * so default to an old-fashioned 8259
2711 			 * interrupt if we can..
2712 			 */
2713 			if (irq < NR_IRQS_LEGACY)
2714 				make_8259A_irq(irq);
2715 			else
2716 				/* Strange. Oh, well.. */
2717 				desc->chip = &no_irq_chip;
2718 		}
2719 	}
2720 }
2721 
2722 /*
2723  * The local APIC irq-chip implementation:
2724  */
2725 
2726 static void mask_lapic_irq(unsigned int irq)
2727 {
2728 	unsigned long v;
2729 
2730 	v = apic_read(APIC_LVT0);
2731 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2732 }
2733 
2734 static void unmask_lapic_irq(unsigned int irq)
2735 {
2736 	unsigned long v;
2737 
2738 	v = apic_read(APIC_LVT0);
2739 	apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2740 }
2741 
2742 static void ack_lapic_irq(unsigned int irq)
2743 {
2744 	ack_APIC_irq();
2745 }
2746 
2747 static struct irq_chip lapic_chip __read_mostly = {
2748 	.name		= "local-APIC",
2749 	.mask		= mask_lapic_irq,
2750 	.unmask		= unmask_lapic_irq,
2751 	.ack		= ack_lapic_irq,
2752 };
2753 
2754 static void lapic_register_intr(int irq, struct irq_desc *desc)
2755 {
2756 	desc->status &= ~IRQ_LEVEL;
2757 	set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2758 				      "edge");
2759 }
2760 
2761 static void __init setup_nmi(void)
2762 {
2763 	/*
2764 	 * Dirty trick to enable the NMI watchdog ...
2765 	 * We put the 8259A master into AEOI mode and
2766 	 * unmask on all local APICs LVT0 as NMI.
2767 	 *
2768 	 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2769 	 * is from Maciej W. Rozycki - so we do not have to EOI from
2770 	 * the NMI handler or the timer interrupt.
2771 	 */
2772 	apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2773 
2774 	enable_NMI_through_LVT0();
2775 
2776 	apic_printk(APIC_VERBOSE, " done.\n");
2777 }
2778 
2779 /*
2780  * This looks a bit hackish but it's about the only one way of sending
2781  * a few INTA cycles to 8259As and any associated glue logic.  ICR does
2782  * not support the ExtINT mode, unfortunately.  We need to send these
2783  * cycles as some i82489DX-based boards have glue logic that keeps the
2784  * 8259A interrupt line asserted until INTA.  --macro
2785  */
2786 static inline void __init unlock_ExtINT_logic(void)
2787 {
2788 	int apic, pin, i;
2789 	struct IO_APIC_route_entry entry0, entry1;
2790 	unsigned char save_control, save_freq_select;
2791 
2792 	pin  = find_isa_irq_pin(8, mp_INT);
2793 	if (pin == -1) {
2794 		WARN_ON_ONCE(1);
2795 		return;
2796 	}
2797 	apic = find_isa_irq_apic(8, mp_INT);
2798 	if (apic == -1) {
2799 		WARN_ON_ONCE(1);
2800 		return;
2801 	}
2802 
2803 	entry0 = ioapic_read_entry(apic, pin);
2804 	clear_IO_APIC_pin(apic, pin);
2805 
2806 	memset(&entry1, 0, sizeof(entry1));
2807 
2808 	entry1.dest_mode = 0;			/* physical delivery */
2809 	entry1.mask = 0;			/* unmask IRQ now */
2810 	entry1.dest = hard_smp_processor_id();
2811 	entry1.delivery_mode = dest_ExtINT;
2812 	entry1.polarity = entry0.polarity;
2813 	entry1.trigger = 0;
2814 	entry1.vector = 0;
2815 
2816 	ioapic_write_entry(apic, pin, entry1);
2817 
2818 	save_control = CMOS_READ(RTC_CONTROL);
2819 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2820 	CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2821 		   RTC_FREQ_SELECT);
2822 	CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2823 
2824 	i = 100;
2825 	while (i-- > 0) {
2826 		mdelay(10);
2827 		if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2828 			i -= 10;
2829 	}
2830 
2831 	CMOS_WRITE(save_control, RTC_CONTROL);
2832 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2833 	clear_IO_APIC_pin(apic, pin);
2834 
2835 	ioapic_write_entry(apic, pin, entry0);
2836 }
2837 
2838 static int disable_timer_pin_1 __initdata;
2839 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2840 static int __init disable_timer_pin_setup(char *arg)
2841 {
2842 	disable_timer_pin_1 = 1;
2843 	return 0;
2844 }
2845 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2846 
2847 int timer_through_8259 __initdata;
2848 
2849 /*
2850  * This code may look a bit paranoid, but it's supposed to cooperate with
2851  * a wide range of boards and BIOS bugs.  Fortunately only the timer IRQ
2852  * is so screwy.  Thanks to Brian Perkins for testing/hacking this beast
2853  * fanatically on his truly buggy board.
2854  *
2855  * FIXME: really need to revamp this for all platforms.
2856  */
2857 static inline void __init check_timer(void)
2858 {
2859 	struct irq_desc *desc = irq_to_desc(0);
2860 	struct irq_cfg *cfg = desc->chip_data;
2861 	int node = cpu_to_node(boot_cpu_id);
2862 	int apic1, pin1, apic2, pin2;
2863 	unsigned long flags;
2864 	int no_pin1 = 0;
2865 
2866 	local_irq_save(flags);
2867 
2868 	/*
2869 	 * get/set the timer IRQ vector:
2870 	 */
2871 	disable_8259A_irq(0);
2872 	assign_irq_vector(0, cfg, apic->target_cpus());
2873 
2874 	/*
2875 	 * As IRQ0 is to be enabled in the 8259A, the virtual
2876 	 * wire has to be disabled in the local APIC.  Also
2877 	 * timer interrupts need to be acknowledged manually in
2878 	 * the 8259A for the i82489DX when using the NMI
2879 	 * watchdog as that APIC treats NMIs as level-triggered.
2880 	 * The AEOI mode will finish them in the 8259A
2881 	 * automatically.
2882 	 */
2883 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2884 	init_8259A(1);
2885 #ifdef CONFIG_X86_32
2886 	{
2887 		unsigned int ver;
2888 
2889 		ver = apic_read(APIC_LVR);
2890 		ver = GET_APIC_VERSION(ver);
2891 		timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2892 	}
2893 #endif
2894 
2895 	pin1  = find_isa_irq_pin(0, mp_INT);
2896 	apic1 = find_isa_irq_apic(0, mp_INT);
2897 	pin2  = ioapic_i8259.pin;
2898 	apic2 = ioapic_i8259.apic;
2899 
2900 	apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2901 		    "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2902 		    cfg->vector, apic1, pin1, apic2, pin2);
2903 
2904 	/*
2905 	 * Some BIOS writers are clueless and report the ExtINTA
2906 	 * I/O APIC input from the cascaded 8259A as the timer
2907 	 * interrupt input.  So just in case, if only one pin
2908 	 * was found above, try it both directly and through the
2909 	 * 8259A.
2910 	 */
2911 	if (pin1 == -1) {
2912 		if (intr_remapping_enabled)
2913 			panic("BIOS bug: timer not connected to IO-APIC");
2914 		pin1 = pin2;
2915 		apic1 = apic2;
2916 		no_pin1 = 1;
2917 	} else if (pin2 == -1) {
2918 		pin2 = pin1;
2919 		apic2 = apic1;
2920 	}
2921 
2922 	if (pin1 != -1) {
2923 		/*
2924 		 * Ok, does IRQ0 through the IOAPIC work?
2925 		 */
2926 		if (no_pin1) {
2927 			add_pin_to_irq_node(cfg, node, apic1, pin1);
2928 			setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2929 		} else {
2930 			/* for edge trigger, setup_IO_APIC_irq already
2931 			 * leave it unmasked.
2932 			 * so only need to unmask if it is level-trigger
2933 			 * do we really have level trigger timer?
2934 			 */
2935 			int idx;
2936 			idx = find_irq_entry(apic1, pin1, mp_INT);
2937 			if (idx != -1 && irq_trigger(idx))
2938 				unmask_IO_APIC_irq_desc(desc);
2939 		}
2940 		if (timer_irq_works()) {
2941 			if (nmi_watchdog == NMI_IO_APIC) {
2942 				setup_nmi();
2943 				enable_8259A_irq(0);
2944 			}
2945 			if (disable_timer_pin_1 > 0)
2946 				clear_IO_APIC_pin(0, pin1);
2947 			goto out;
2948 		}
2949 		if (intr_remapping_enabled)
2950 			panic("timer doesn't work through Interrupt-remapped IO-APIC");
2951 		local_irq_disable();
2952 		clear_IO_APIC_pin(apic1, pin1);
2953 		if (!no_pin1)
2954 			apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2955 				    "8254 timer not connected to IO-APIC\n");
2956 
2957 		apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2958 			    "(IRQ0) through the 8259A ...\n");
2959 		apic_printk(APIC_QUIET, KERN_INFO
2960 			    "..... (found apic %d pin %d) ...\n", apic2, pin2);
2961 		/*
2962 		 * legacy devices should be connected to IO APIC #0
2963 		 */
2964 		replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2965 		setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2966 		enable_8259A_irq(0);
2967 		if (timer_irq_works()) {
2968 			apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2969 			timer_through_8259 = 1;
2970 			if (nmi_watchdog == NMI_IO_APIC) {
2971 				disable_8259A_irq(0);
2972 				setup_nmi();
2973 				enable_8259A_irq(0);
2974 			}
2975 			goto out;
2976 		}
2977 		/*
2978 		 * Cleanup, just in case ...
2979 		 */
2980 		local_irq_disable();
2981 		disable_8259A_irq(0);
2982 		clear_IO_APIC_pin(apic2, pin2);
2983 		apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2984 	}
2985 
2986 	if (nmi_watchdog == NMI_IO_APIC) {
2987 		apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2988 			    "through the IO-APIC - disabling NMI Watchdog!\n");
2989 		nmi_watchdog = NMI_NONE;
2990 	}
2991 #ifdef CONFIG_X86_32
2992 	timer_ack = 0;
2993 #endif
2994 
2995 	apic_printk(APIC_QUIET, KERN_INFO
2996 		    "...trying to set up timer as Virtual Wire IRQ...\n");
2997 
2998 	lapic_register_intr(0, desc);
2999 	apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector);	/* Fixed mode */
3000 	enable_8259A_irq(0);
3001 
3002 	if (timer_irq_works()) {
3003 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3004 		goto out;
3005 	}
3006 	local_irq_disable();
3007 	disable_8259A_irq(0);
3008 	apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3009 	apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3010 
3011 	apic_printk(APIC_QUIET, KERN_INFO
3012 		    "...trying to set up timer as ExtINT IRQ...\n");
3013 
3014 	init_8259A(0);
3015 	make_8259A_irq(0);
3016 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
3017 
3018 	unlock_ExtINT_logic();
3019 
3020 	if (timer_irq_works()) {
3021 		apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3022 		goto out;
3023 	}
3024 	local_irq_disable();
3025 	apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3026 	panic("IO-APIC + timer doesn't work!  Boot with apic=debug and send a "
3027 		"report.  Then try booting with the 'noapic' option.\n");
3028 out:
3029 	local_irq_restore(flags);
3030 }
3031 
3032 /*
3033  * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3034  * to devices.  However there may be an I/O APIC pin available for
3035  * this interrupt regardless.  The pin may be left unconnected, but
3036  * typically it will be reused as an ExtINT cascade interrupt for
3037  * the master 8259A.  In the MPS case such a pin will normally be
3038  * reported as an ExtINT interrupt in the MP table.  With ACPI
3039  * there is no provision for ExtINT interrupts, and in the absence
3040  * of an override it would be treated as an ordinary ISA I/O APIC
3041  * interrupt, that is edge-triggered and unmasked by default.  We
3042  * used to do this, but it caused problems on some systems because
3043  * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3044  * the same ExtINT cascade interrupt to drive the local APIC of the
3045  * bootstrap processor.  Therefore we refrain from routing IRQ2 to
3046  * the I/O APIC in all cases now.  No actual device should request
3047  * it anyway.  --macro
3048  */
3049 #define PIC_IRQS	(1 << PIC_CASCADE_IR)
3050 
3051 void __init setup_IO_APIC(void)
3052 {
3053 
3054 	/*
3055 	 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3056 	 */
3057 
3058 	io_apic_irqs = ~PIC_IRQS;
3059 
3060 	apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3061 	/*
3062          * Set up IO-APIC IRQ routing.
3063          */
3064 #ifdef CONFIG_X86_32
3065 	if (!acpi_ioapic)
3066 		setup_ioapic_ids_from_mpc();
3067 #endif
3068 	sync_Arb_IDs();
3069 	setup_IO_APIC_irqs();
3070 	init_IO_APIC_traps();
3071 	check_timer();
3072 }
3073 
3074 /*
3075  *      Called after all the initialization is done. If we didnt find any
3076  *      APIC bugs then we can allow the modify fast path
3077  */
3078 
3079 static int __init io_apic_bug_finalize(void)
3080 {
3081 	if (sis_apic_bug == -1)
3082 		sis_apic_bug = 0;
3083 	return 0;
3084 }
3085 
3086 late_initcall(io_apic_bug_finalize);
3087 
3088 struct sysfs_ioapic_data {
3089 	struct sys_device dev;
3090 	struct IO_APIC_route_entry entry[0];
3091 };
3092 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3093 
3094 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3095 {
3096 	struct IO_APIC_route_entry *entry;
3097 	struct sysfs_ioapic_data *data;
3098 	int i;
3099 
3100 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3101 	entry = data->entry;
3102 	for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3103 		*entry = ioapic_read_entry(dev->id, i);
3104 
3105 	return 0;
3106 }
3107 
3108 static int ioapic_resume(struct sys_device *dev)
3109 {
3110 	struct IO_APIC_route_entry *entry;
3111 	struct sysfs_ioapic_data *data;
3112 	unsigned long flags;
3113 	union IO_APIC_reg_00 reg_00;
3114 	int i;
3115 
3116 	data = container_of(dev, struct sysfs_ioapic_data, dev);
3117 	entry = data->entry;
3118 
3119 	spin_lock_irqsave(&ioapic_lock, flags);
3120 	reg_00.raw = io_apic_read(dev->id, 0);
3121 	if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3122 		reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3123 		io_apic_write(dev->id, 0, reg_00.raw);
3124 	}
3125 	spin_unlock_irqrestore(&ioapic_lock, flags);
3126 	for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3127 		ioapic_write_entry(dev->id, i, entry[i]);
3128 
3129 	return 0;
3130 }
3131 
3132 static struct sysdev_class ioapic_sysdev_class = {
3133 	.name = "ioapic",
3134 	.suspend = ioapic_suspend,
3135 	.resume = ioapic_resume,
3136 };
3137 
3138 static int __init ioapic_init_sysfs(void)
3139 {
3140 	struct sys_device * dev;
3141 	int i, size, error;
3142 
3143 	error = sysdev_class_register(&ioapic_sysdev_class);
3144 	if (error)
3145 		return error;
3146 
3147 	for (i = 0; i < nr_ioapics; i++ ) {
3148 		size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3149 			* sizeof(struct IO_APIC_route_entry);
3150 		mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3151 		if (!mp_ioapic_data[i]) {
3152 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3153 			continue;
3154 		}
3155 		dev = &mp_ioapic_data[i]->dev;
3156 		dev->id = i;
3157 		dev->cls = &ioapic_sysdev_class;
3158 		error = sysdev_register(dev);
3159 		if (error) {
3160 			kfree(mp_ioapic_data[i]);
3161 			mp_ioapic_data[i] = NULL;
3162 			printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3163 			continue;
3164 		}
3165 	}
3166 
3167 	return 0;
3168 }
3169 
3170 device_initcall(ioapic_init_sysfs);
3171 
3172 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3173 /*
3174  * Dynamic irq allocate and deallocation
3175  */
3176 unsigned int create_irq_nr(unsigned int irq_want, int node)
3177 {
3178 	/* Allocate an unused irq */
3179 	unsigned int irq;
3180 	unsigned int new;
3181 	unsigned long flags;
3182 	struct irq_cfg *cfg_new = NULL;
3183 	struct irq_desc *desc_new = NULL;
3184 
3185 	irq = 0;
3186 	if (irq_want < nr_irqs_gsi)
3187 		irq_want = nr_irqs_gsi;
3188 
3189 	spin_lock_irqsave(&vector_lock, flags);
3190 	for (new = irq_want; new < nr_irqs; new++) {
3191 		desc_new = irq_to_desc_alloc_node(new, node);
3192 		if (!desc_new) {
3193 			printk(KERN_INFO "can not get irq_desc for %d\n", new);
3194 			continue;
3195 		}
3196 		cfg_new = desc_new->chip_data;
3197 
3198 		if (cfg_new->vector != 0)
3199 			continue;
3200 
3201 		desc_new = move_irq_desc(desc_new, node);
3202 
3203 		if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3204 			irq = new;
3205 		break;
3206 	}
3207 	spin_unlock_irqrestore(&vector_lock, flags);
3208 
3209 	if (irq > 0) {
3210 		dynamic_irq_init(irq);
3211 		/* restore it, in case dynamic_irq_init clear it */
3212 		if (desc_new)
3213 			desc_new->chip_data = cfg_new;
3214 	}
3215 	return irq;
3216 }
3217 
3218 int create_irq(void)
3219 {
3220 	int node = cpu_to_node(boot_cpu_id);
3221 	unsigned int irq_want;
3222 	int irq;
3223 
3224 	irq_want = nr_irqs_gsi;
3225 	irq = create_irq_nr(irq_want, node);
3226 
3227 	if (irq == 0)
3228 		irq = -1;
3229 
3230 	return irq;
3231 }
3232 
3233 void destroy_irq(unsigned int irq)
3234 {
3235 	unsigned long flags;
3236 	struct irq_cfg *cfg;
3237 	struct irq_desc *desc;
3238 
3239 	/* store it, in case dynamic_irq_cleanup clear it */
3240 	desc = irq_to_desc(irq);
3241 	cfg = desc->chip_data;
3242 	dynamic_irq_cleanup(irq);
3243 	/* connect back irq_cfg */
3244 	if (desc)
3245 		desc->chip_data = cfg;
3246 
3247 	free_irte(irq);
3248 	spin_lock_irqsave(&vector_lock, flags);
3249 	__clear_irq_vector(irq, cfg);
3250 	spin_unlock_irqrestore(&vector_lock, flags);
3251 }
3252 
3253 /*
3254  * MSI message composition
3255  */
3256 #ifdef CONFIG_PCI_MSI
3257 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3258 {
3259 	struct irq_cfg *cfg;
3260 	int err;
3261 	unsigned dest;
3262 
3263 	if (disable_apic)
3264 		return -ENXIO;
3265 
3266 	cfg = irq_cfg(irq);
3267 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3268 	if (err)
3269 		return err;
3270 
3271 	dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3272 
3273 	if (irq_remapped(irq)) {
3274 		struct irte irte;
3275 		int ir_index;
3276 		u16 sub_handle;
3277 
3278 		ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3279 		BUG_ON(ir_index == -1);
3280 
3281 		memset (&irte, 0, sizeof(irte));
3282 
3283 		irte.present = 1;
3284 		irte.dst_mode = apic->irq_dest_mode;
3285 		irte.trigger_mode = 0; /* edge */
3286 		irte.dlvry_mode = apic->irq_delivery_mode;
3287 		irte.vector = cfg->vector;
3288 		irte.dest_id = IRTE_DEST(dest);
3289 
3290 		/* Set source-id of interrupt request */
3291 		set_msi_sid(&irte, pdev);
3292 
3293 		modify_irte(irq, &irte);
3294 
3295 		msg->address_hi = MSI_ADDR_BASE_HI;
3296 		msg->data = sub_handle;
3297 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3298 				  MSI_ADDR_IR_SHV |
3299 				  MSI_ADDR_IR_INDEX1(ir_index) |
3300 				  MSI_ADDR_IR_INDEX2(ir_index);
3301 	} else {
3302 		if (x2apic_enabled())
3303 			msg->address_hi = MSI_ADDR_BASE_HI |
3304 					  MSI_ADDR_EXT_DEST_ID(dest);
3305 		else
3306 			msg->address_hi = MSI_ADDR_BASE_HI;
3307 
3308 		msg->address_lo =
3309 			MSI_ADDR_BASE_LO |
3310 			((apic->irq_dest_mode == 0) ?
3311 				MSI_ADDR_DEST_MODE_PHYSICAL:
3312 				MSI_ADDR_DEST_MODE_LOGICAL) |
3313 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3314 				MSI_ADDR_REDIRECTION_CPU:
3315 				MSI_ADDR_REDIRECTION_LOWPRI) |
3316 			MSI_ADDR_DEST_ID(dest);
3317 
3318 		msg->data =
3319 			MSI_DATA_TRIGGER_EDGE |
3320 			MSI_DATA_LEVEL_ASSERT |
3321 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3322 				MSI_DATA_DELIVERY_FIXED:
3323 				MSI_DATA_DELIVERY_LOWPRI) |
3324 			MSI_DATA_VECTOR(cfg->vector);
3325 	}
3326 	return err;
3327 }
3328 
3329 #ifdef CONFIG_SMP
3330 static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3331 {
3332 	struct irq_desc *desc = irq_to_desc(irq);
3333 	struct irq_cfg *cfg;
3334 	struct msi_msg msg;
3335 	unsigned int dest;
3336 
3337 	dest = set_desc_affinity(desc, mask);
3338 	if (dest == BAD_APICID)
3339 		return -1;
3340 
3341 	cfg = desc->chip_data;
3342 
3343 	read_msi_msg_desc(desc, &msg);
3344 
3345 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3346 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3347 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3348 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3349 
3350 	write_msi_msg_desc(desc, &msg);
3351 
3352 	return 0;
3353 }
3354 #ifdef CONFIG_INTR_REMAP
3355 /*
3356  * Migrate the MSI irq to another cpumask. This migration is
3357  * done in the process context using interrupt-remapping hardware.
3358  */
3359 static int
3360 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3361 {
3362 	struct irq_desc *desc = irq_to_desc(irq);
3363 	struct irq_cfg *cfg = desc->chip_data;
3364 	unsigned int dest;
3365 	struct irte irte;
3366 
3367 	if (get_irte(irq, &irte))
3368 		return -1;
3369 
3370 	dest = set_desc_affinity(desc, mask);
3371 	if (dest == BAD_APICID)
3372 		return -1;
3373 
3374 	irte.vector = cfg->vector;
3375 	irte.dest_id = IRTE_DEST(dest);
3376 
3377 	/*
3378 	 * atomically update the IRTE with the new destination and vector.
3379 	 */
3380 	modify_irte(irq, &irte);
3381 
3382 	/*
3383 	 * After this point, all the interrupts will start arriving
3384 	 * at the new destination. So, time to cleanup the previous
3385 	 * vector allocation.
3386 	 */
3387 	if (cfg->move_in_progress)
3388 		send_cleanup_vector(cfg);
3389 
3390 	return 0;
3391 }
3392 
3393 #endif
3394 #endif /* CONFIG_SMP */
3395 
3396 /*
3397  * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3398  * which implement the MSI or MSI-X Capability Structure.
3399  */
3400 static struct irq_chip msi_chip = {
3401 	.name		= "PCI-MSI",
3402 	.unmask		= unmask_msi_irq,
3403 	.mask		= mask_msi_irq,
3404 	.ack		= ack_apic_edge,
3405 #ifdef CONFIG_SMP
3406 	.set_affinity	= set_msi_irq_affinity,
3407 #endif
3408 	.retrigger	= ioapic_retrigger_irq,
3409 };
3410 
3411 static struct irq_chip msi_ir_chip = {
3412 	.name		= "IR-PCI-MSI",
3413 	.unmask		= unmask_msi_irq,
3414 	.mask		= mask_msi_irq,
3415 #ifdef CONFIG_INTR_REMAP
3416 	.ack		= ir_ack_apic_edge,
3417 #ifdef CONFIG_SMP
3418 	.set_affinity	= ir_set_msi_irq_affinity,
3419 #endif
3420 #endif
3421 	.retrigger	= ioapic_retrigger_irq,
3422 };
3423 
3424 /*
3425  * Map the PCI dev to the corresponding remapping hardware unit
3426  * and allocate 'nvec' consecutive interrupt-remapping table entries
3427  * in it.
3428  */
3429 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3430 {
3431 	struct intel_iommu *iommu;
3432 	int index;
3433 
3434 	iommu = map_dev_to_ir(dev);
3435 	if (!iommu) {
3436 		printk(KERN_ERR
3437 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
3438 		return -ENOENT;
3439 	}
3440 
3441 	index = alloc_irte(iommu, irq, nvec);
3442 	if (index < 0) {
3443 		printk(KERN_ERR
3444 		       "Unable to allocate %d IRTE for PCI %s\n", nvec,
3445 		       pci_name(dev));
3446 		return -ENOSPC;
3447 	}
3448 	return index;
3449 }
3450 
3451 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3452 {
3453 	int ret;
3454 	struct msi_msg msg;
3455 
3456 	ret = msi_compose_msg(dev, irq, &msg);
3457 	if (ret < 0)
3458 		return ret;
3459 
3460 	set_irq_msi(irq, msidesc);
3461 	write_msi_msg(irq, &msg);
3462 
3463 	if (irq_remapped(irq)) {
3464 		struct irq_desc *desc = irq_to_desc(irq);
3465 		/*
3466 		 * irq migration in process context
3467 		 */
3468 		desc->status |= IRQ_MOVE_PCNTXT;
3469 		set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3470 	} else
3471 		set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3472 
3473 	dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3474 
3475 	return 0;
3476 }
3477 
3478 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3479 {
3480 	unsigned int irq;
3481 	int ret, sub_handle;
3482 	struct msi_desc *msidesc;
3483 	unsigned int irq_want;
3484 	struct intel_iommu *iommu = NULL;
3485 	int index = 0;
3486 	int node;
3487 
3488 	/* x86 doesn't support multiple MSI yet */
3489 	if (type == PCI_CAP_ID_MSI && nvec > 1)
3490 		return 1;
3491 
3492 	node = dev_to_node(&dev->dev);
3493 	irq_want = nr_irqs_gsi;
3494 	sub_handle = 0;
3495 	list_for_each_entry(msidesc, &dev->msi_list, list) {
3496 		irq = create_irq_nr(irq_want, node);
3497 		if (irq == 0)
3498 			return -1;
3499 		irq_want = irq + 1;
3500 		if (!intr_remapping_enabled)
3501 			goto no_ir;
3502 
3503 		if (!sub_handle) {
3504 			/*
3505 			 * allocate the consecutive block of IRTE's
3506 			 * for 'nvec'
3507 			 */
3508 			index = msi_alloc_irte(dev, irq, nvec);
3509 			if (index < 0) {
3510 				ret = index;
3511 				goto error;
3512 			}
3513 		} else {
3514 			iommu = map_dev_to_ir(dev);
3515 			if (!iommu) {
3516 				ret = -ENOENT;
3517 				goto error;
3518 			}
3519 			/*
3520 			 * setup the mapping between the irq and the IRTE
3521 			 * base index, the sub_handle pointing to the
3522 			 * appropriate interrupt remap table entry.
3523 			 */
3524 			set_irte_irq(irq, iommu, index, sub_handle);
3525 		}
3526 no_ir:
3527 		ret = setup_msi_irq(dev, msidesc, irq);
3528 		if (ret < 0)
3529 			goto error;
3530 		sub_handle++;
3531 	}
3532 	return 0;
3533 
3534 error:
3535 	destroy_irq(irq);
3536 	return ret;
3537 }
3538 
3539 void arch_teardown_msi_irq(unsigned int irq)
3540 {
3541 	destroy_irq(irq);
3542 }
3543 
3544 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3545 #ifdef CONFIG_SMP
3546 static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3547 {
3548 	struct irq_desc *desc = irq_to_desc(irq);
3549 	struct irq_cfg *cfg;
3550 	struct msi_msg msg;
3551 	unsigned int dest;
3552 
3553 	dest = set_desc_affinity(desc, mask);
3554 	if (dest == BAD_APICID)
3555 		return -1;
3556 
3557 	cfg = desc->chip_data;
3558 
3559 	dmar_msi_read(irq, &msg);
3560 
3561 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3562 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3563 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3564 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3565 
3566 	dmar_msi_write(irq, &msg);
3567 
3568 	return 0;
3569 }
3570 
3571 #endif /* CONFIG_SMP */
3572 
3573 static struct irq_chip dmar_msi_type = {
3574 	.name = "DMAR_MSI",
3575 	.unmask = dmar_msi_unmask,
3576 	.mask = dmar_msi_mask,
3577 	.ack = ack_apic_edge,
3578 #ifdef CONFIG_SMP
3579 	.set_affinity = dmar_msi_set_affinity,
3580 #endif
3581 	.retrigger = ioapic_retrigger_irq,
3582 };
3583 
3584 int arch_setup_dmar_msi(unsigned int irq)
3585 {
3586 	int ret;
3587 	struct msi_msg msg;
3588 
3589 	ret = msi_compose_msg(NULL, irq, &msg);
3590 	if (ret < 0)
3591 		return ret;
3592 	dmar_msi_write(irq, &msg);
3593 	set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3594 		"edge");
3595 	return 0;
3596 }
3597 #endif
3598 
3599 #ifdef CONFIG_HPET_TIMER
3600 
3601 #ifdef CONFIG_SMP
3602 static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3603 {
3604 	struct irq_desc *desc = irq_to_desc(irq);
3605 	struct irq_cfg *cfg;
3606 	struct msi_msg msg;
3607 	unsigned int dest;
3608 
3609 	dest = set_desc_affinity(desc, mask);
3610 	if (dest == BAD_APICID)
3611 		return -1;
3612 
3613 	cfg = desc->chip_data;
3614 
3615 	hpet_msi_read(irq, &msg);
3616 
3617 	msg.data &= ~MSI_DATA_VECTOR_MASK;
3618 	msg.data |= MSI_DATA_VECTOR(cfg->vector);
3619 	msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3620 	msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3621 
3622 	hpet_msi_write(irq, &msg);
3623 
3624 	return 0;
3625 }
3626 
3627 #endif /* CONFIG_SMP */
3628 
3629 static struct irq_chip hpet_msi_type = {
3630 	.name = "HPET_MSI",
3631 	.unmask = hpet_msi_unmask,
3632 	.mask = hpet_msi_mask,
3633 	.ack = ack_apic_edge,
3634 #ifdef CONFIG_SMP
3635 	.set_affinity = hpet_msi_set_affinity,
3636 #endif
3637 	.retrigger = ioapic_retrigger_irq,
3638 };
3639 
3640 int arch_setup_hpet_msi(unsigned int irq)
3641 {
3642 	int ret;
3643 	struct msi_msg msg;
3644 	struct irq_desc *desc = irq_to_desc(irq);
3645 
3646 	ret = msi_compose_msg(NULL, irq, &msg);
3647 	if (ret < 0)
3648 		return ret;
3649 
3650 	hpet_msi_write(irq, &msg);
3651 	desc->status |= IRQ_MOVE_PCNTXT;
3652 	set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3653 		"edge");
3654 
3655 	return 0;
3656 }
3657 #endif
3658 
3659 #endif /* CONFIG_PCI_MSI */
3660 /*
3661  * Hypertransport interrupt support
3662  */
3663 #ifdef CONFIG_HT_IRQ
3664 
3665 #ifdef CONFIG_SMP
3666 
3667 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3668 {
3669 	struct ht_irq_msg msg;
3670 	fetch_ht_irq_msg(irq, &msg);
3671 
3672 	msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3673 	msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3674 
3675 	msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3676 	msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3677 
3678 	write_ht_irq_msg(irq, &msg);
3679 }
3680 
3681 static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3682 {
3683 	struct irq_desc *desc = irq_to_desc(irq);
3684 	struct irq_cfg *cfg;
3685 	unsigned int dest;
3686 
3687 	dest = set_desc_affinity(desc, mask);
3688 	if (dest == BAD_APICID)
3689 		return -1;
3690 
3691 	cfg = desc->chip_data;
3692 
3693 	target_ht_irq(irq, dest, cfg->vector);
3694 
3695 	return 0;
3696 }
3697 
3698 #endif
3699 
3700 static struct irq_chip ht_irq_chip = {
3701 	.name		= "PCI-HT",
3702 	.mask		= mask_ht_irq,
3703 	.unmask		= unmask_ht_irq,
3704 	.ack		= ack_apic_edge,
3705 #ifdef CONFIG_SMP
3706 	.set_affinity	= set_ht_irq_affinity,
3707 #endif
3708 	.retrigger	= ioapic_retrigger_irq,
3709 };
3710 
3711 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3712 {
3713 	struct irq_cfg *cfg;
3714 	int err;
3715 
3716 	if (disable_apic)
3717 		return -ENXIO;
3718 
3719 	cfg = irq_cfg(irq);
3720 	err = assign_irq_vector(irq, cfg, apic->target_cpus());
3721 	if (!err) {
3722 		struct ht_irq_msg msg;
3723 		unsigned dest;
3724 
3725 		dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3726 						    apic->target_cpus());
3727 
3728 		msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3729 
3730 		msg.address_lo =
3731 			HT_IRQ_LOW_BASE |
3732 			HT_IRQ_LOW_DEST_ID(dest) |
3733 			HT_IRQ_LOW_VECTOR(cfg->vector) |
3734 			((apic->irq_dest_mode == 0) ?
3735 				HT_IRQ_LOW_DM_PHYSICAL :
3736 				HT_IRQ_LOW_DM_LOGICAL) |
3737 			HT_IRQ_LOW_RQEOI_EDGE |
3738 			((apic->irq_delivery_mode != dest_LowestPrio) ?
3739 				HT_IRQ_LOW_MT_FIXED :
3740 				HT_IRQ_LOW_MT_ARBITRATED) |
3741 			HT_IRQ_LOW_IRQ_MASKED;
3742 
3743 		write_ht_irq_msg(irq, &msg);
3744 
3745 		set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3746 					      handle_edge_irq, "edge");
3747 
3748 		dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3749 	}
3750 	return err;
3751 }
3752 #endif /* CONFIG_HT_IRQ */
3753 
3754 #ifdef CONFIG_X86_UV
3755 /*
3756  * Re-target the irq to the specified CPU and enable the specified MMR located
3757  * on the specified blade to allow the sending of MSIs to the specified CPU.
3758  */
3759 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3760 		       unsigned long mmr_offset)
3761 {
3762 	const struct cpumask *eligible_cpu = cpumask_of(cpu);
3763 	struct irq_cfg *cfg;
3764 	int mmr_pnode;
3765 	unsigned long mmr_value;
3766 	struct uv_IO_APIC_route_entry *entry;
3767 	unsigned long flags;
3768 	int err;
3769 
3770 	BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3771 
3772 	cfg = irq_cfg(irq);
3773 
3774 	err = assign_irq_vector(irq, cfg, eligible_cpu);
3775 	if (err != 0)
3776 		return err;
3777 
3778 	spin_lock_irqsave(&vector_lock, flags);
3779 	set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3780 				      irq_name);
3781 	spin_unlock_irqrestore(&vector_lock, flags);
3782 
3783 	mmr_value = 0;
3784 	entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3785 	entry->vector		= cfg->vector;
3786 	entry->delivery_mode	= apic->irq_delivery_mode;
3787 	entry->dest_mode	= apic->irq_dest_mode;
3788 	entry->polarity		= 0;
3789 	entry->trigger		= 0;
3790 	entry->mask		= 0;
3791 	entry->dest		= apic->cpu_mask_to_apicid(eligible_cpu);
3792 
3793 	mmr_pnode = uv_blade_to_pnode(mmr_blade);
3794 	uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3795 
3796 	return irq;
3797 }
3798 
3799 /*
3800  * Disable the specified MMR located on the specified blade so that MSIs are
3801  * longer allowed to be sent.
3802  */
3803 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3804 {
3805 	unsigned long mmr_value;
3806 	struct uv_IO_APIC_route_entry *entry;
3807 	int mmr_pnode;
3808 
3809 	BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3810 
3811 	mmr_value = 0;
3812 	entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3813 	entry->mask = 1;
3814 
3815 	mmr_pnode = uv_blade_to_pnode(mmr_blade);
3816 	uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3817 }
3818 #endif /* CONFIG_X86_64 */
3819 
3820 int __init io_apic_get_redir_entries (int ioapic)
3821 {
3822 	union IO_APIC_reg_01	reg_01;
3823 	unsigned long flags;
3824 
3825 	spin_lock_irqsave(&ioapic_lock, flags);
3826 	reg_01.raw = io_apic_read(ioapic, 1);
3827 	spin_unlock_irqrestore(&ioapic_lock, flags);
3828 
3829 	return reg_01.bits.entries;
3830 }
3831 
3832 void __init probe_nr_irqs_gsi(void)
3833 {
3834 	int nr = 0;
3835 
3836 	nr = acpi_probe_gsi();
3837 	if (nr > nr_irqs_gsi) {
3838 		nr_irqs_gsi = nr;
3839 	} else {
3840 		/* for acpi=off or acpi is not compiled in */
3841 		int idx;
3842 
3843 		nr = 0;
3844 		for (idx = 0; idx < nr_ioapics; idx++)
3845 			nr += io_apic_get_redir_entries(idx) + 1;
3846 
3847 		if (nr > nr_irqs_gsi)
3848 			nr_irqs_gsi = nr;
3849 	}
3850 
3851 	printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3852 }
3853 
3854 #ifdef CONFIG_SPARSE_IRQ
3855 int __init arch_probe_nr_irqs(void)
3856 {
3857 	int nr;
3858 
3859 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3860 		nr_irqs = NR_VECTORS * nr_cpu_ids;
3861 
3862 	nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3863 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3864 	/*
3865 	 * for MSI and HT dyn irq
3866 	 */
3867 	nr += nr_irqs_gsi * 16;
3868 #endif
3869 	if (nr < nr_irqs)
3870 		nr_irqs = nr;
3871 
3872 	return 0;
3873 }
3874 #endif
3875 
3876 static int __io_apic_set_pci_routing(struct device *dev, int irq,
3877 				struct io_apic_irq_attr *irq_attr)
3878 {
3879 	struct irq_desc *desc;
3880 	struct irq_cfg *cfg;
3881 	int node;
3882 	int ioapic, pin;
3883 	int trigger, polarity;
3884 
3885 	ioapic = irq_attr->ioapic;
3886 	if (!IO_APIC_IRQ(irq)) {
3887 		apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3888 			ioapic);
3889 		return -EINVAL;
3890 	}
3891 
3892 	if (dev)
3893 		node = dev_to_node(dev);
3894 	else
3895 		node = cpu_to_node(boot_cpu_id);
3896 
3897 	desc = irq_to_desc_alloc_node(irq, node);
3898 	if (!desc) {
3899 		printk(KERN_INFO "can not get irq_desc %d\n", irq);
3900 		return 0;
3901 	}
3902 
3903 	pin = irq_attr->ioapic_pin;
3904 	trigger = irq_attr->trigger;
3905 	polarity = irq_attr->polarity;
3906 
3907 	/*
3908 	 * IRQs < 16 are already in the irq_2_pin[] map
3909 	 */
3910 	if (irq >= NR_IRQS_LEGACY) {
3911 		cfg = desc->chip_data;
3912 		add_pin_to_irq_node(cfg, node, ioapic, pin);
3913 	}
3914 
3915 	setup_IO_APIC_irq(ioapic, pin, irq, desc, trigger, polarity);
3916 
3917 	return 0;
3918 }
3919 
3920 int io_apic_set_pci_routing(struct device *dev, int irq,
3921 				struct io_apic_irq_attr *irq_attr)
3922 {
3923 	int ioapic, pin;
3924 	/*
3925 	 * Avoid pin reprogramming.  PRTs typically include entries
3926 	 * with redundant pin->gsi mappings (but unique PCI devices);
3927 	 * we only program the IOAPIC on the first.
3928 	 */
3929 	ioapic = irq_attr->ioapic;
3930 	pin = irq_attr->ioapic_pin;
3931 	if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3932 		pr_debug("Pin %d-%d already programmed\n",
3933 			 mp_ioapics[ioapic].apicid, pin);
3934 		return 0;
3935 	}
3936 	set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3937 
3938 	return __io_apic_set_pci_routing(dev, irq, irq_attr);
3939 }
3940 
3941 /* --------------------------------------------------------------------------
3942                           ACPI-based IOAPIC Configuration
3943    -------------------------------------------------------------------------- */
3944 
3945 #ifdef CONFIG_ACPI
3946 
3947 #ifdef CONFIG_X86_32
3948 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3949 {
3950 	union IO_APIC_reg_00 reg_00;
3951 	static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3952 	physid_mask_t tmp;
3953 	unsigned long flags;
3954 	int i = 0;
3955 
3956 	/*
3957 	 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3958 	 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3959 	 * supports up to 16 on one shared APIC bus.
3960 	 *
3961 	 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3962 	 *      advantage of new APIC bus architecture.
3963 	 */
3964 
3965 	if (physids_empty(apic_id_map))
3966 		apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3967 
3968 	spin_lock_irqsave(&ioapic_lock, flags);
3969 	reg_00.raw = io_apic_read(ioapic, 0);
3970 	spin_unlock_irqrestore(&ioapic_lock, flags);
3971 
3972 	if (apic_id >= get_physical_broadcast()) {
3973 		printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3974 			"%d\n", ioapic, apic_id, reg_00.bits.ID);
3975 		apic_id = reg_00.bits.ID;
3976 	}
3977 
3978 	/*
3979 	 * Every APIC in a system must have a unique ID or we get lots of nice
3980 	 * 'stuck on smp_invalidate_needed IPI wait' messages.
3981 	 */
3982 	if (apic->check_apicid_used(apic_id_map, apic_id)) {
3983 
3984 		for (i = 0; i < get_physical_broadcast(); i++) {
3985 			if (!apic->check_apicid_used(apic_id_map, i))
3986 				break;
3987 		}
3988 
3989 		if (i == get_physical_broadcast())
3990 			panic("Max apic_id exceeded!\n");
3991 
3992 		printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3993 			"trying %d\n", ioapic, apic_id, i);
3994 
3995 		apic_id = i;
3996 	}
3997 
3998 	tmp = apic->apicid_to_cpu_present(apic_id);
3999 	physids_or(apic_id_map, apic_id_map, tmp);
4000 
4001 	if (reg_00.bits.ID != apic_id) {
4002 		reg_00.bits.ID = apic_id;
4003 
4004 		spin_lock_irqsave(&ioapic_lock, flags);
4005 		io_apic_write(ioapic, 0, reg_00.raw);
4006 		reg_00.raw = io_apic_read(ioapic, 0);
4007 		spin_unlock_irqrestore(&ioapic_lock, flags);
4008 
4009 		/* Sanity check */
4010 		if (reg_00.bits.ID != apic_id) {
4011 			printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
4012 			return -1;
4013 		}
4014 	}
4015 
4016 	apic_printk(APIC_VERBOSE, KERN_INFO
4017 			"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
4018 
4019 	return apic_id;
4020 }
4021 #endif
4022 
4023 int __init io_apic_get_version(int ioapic)
4024 {
4025 	union IO_APIC_reg_01	reg_01;
4026 	unsigned long flags;
4027 
4028 	spin_lock_irqsave(&ioapic_lock, flags);
4029 	reg_01.raw = io_apic_read(ioapic, 1);
4030 	spin_unlock_irqrestore(&ioapic_lock, flags);
4031 
4032 	return reg_01.bits.version;
4033 }
4034 
4035 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
4036 {
4037 	int i;
4038 
4039 	if (skip_ioapic_setup)
4040 		return -1;
4041 
4042 	for (i = 0; i < mp_irq_entries; i++)
4043 		if (mp_irqs[i].irqtype == mp_INT &&
4044 		    mp_irqs[i].srcbusirq == bus_irq)
4045 			break;
4046 	if (i >= mp_irq_entries)
4047 		return -1;
4048 
4049 	*trigger = irq_trigger(i);
4050 	*polarity = irq_polarity(i);
4051 	return 0;
4052 }
4053 
4054 #endif /* CONFIG_ACPI */
4055 
4056 /*
4057  * This function currently is only a helper for the i386 smp boot process where
4058  * we need to reprogram the ioredtbls to cater for the cpus which have come online
4059  * so mask in all cases should simply be apic->target_cpus()
4060  */
4061 #ifdef CONFIG_SMP
4062 void __init setup_ioapic_dest(void)
4063 {
4064 	int pin, ioapic = 0, irq, irq_entry;
4065 	struct irq_desc *desc;
4066 	const struct cpumask *mask;
4067 
4068 	if (skip_ioapic_setup == 1)
4069 		return;
4070 
4071 #ifdef CONFIG_ACPI
4072 	if (!acpi_disabled && acpi_ioapic) {
4073 		ioapic = mp_find_ioapic(0);
4074 		if (ioapic < 0)
4075 			ioapic = 0;
4076 	}
4077 #endif
4078 
4079 	for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4080 		irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4081 		if (irq_entry == -1)
4082 			continue;
4083 		irq = pin_2_irq(irq_entry, ioapic, pin);
4084 
4085 		desc = irq_to_desc(irq);
4086 
4087 		/*
4088 		 * Honour affinities which have been set in early boot
4089 		 */
4090 		if (desc->status &
4091 		    (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4092 			mask = desc->affinity;
4093 		else
4094 			mask = apic->target_cpus();
4095 
4096 		if (intr_remapping_enabled)
4097 			set_ir_ioapic_affinity_irq_desc(desc, mask);
4098 		else
4099 			set_ioapic_affinity_irq_desc(desc, mask);
4100 	}
4101 
4102 }
4103 #endif
4104 
4105 #define IOAPIC_RESOURCE_NAME_SIZE 11
4106 
4107 static struct resource *ioapic_resources;
4108 
4109 static struct resource * __init ioapic_setup_resources(void)
4110 {
4111 	unsigned long n;
4112 	struct resource *res;
4113 	char *mem;
4114 	int i;
4115 
4116 	if (nr_ioapics <= 0)
4117 		return NULL;
4118 
4119 	n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4120 	n *= nr_ioapics;
4121 
4122 	mem = alloc_bootmem(n);
4123 	res = (void *)mem;
4124 
4125 	if (mem != NULL) {
4126 		mem += sizeof(struct resource) * nr_ioapics;
4127 
4128 		for (i = 0; i < nr_ioapics; i++) {
4129 			res[i].name = mem;
4130 			res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4131 			sprintf(mem,  "IOAPIC %u", i);
4132 			mem += IOAPIC_RESOURCE_NAME_SIZE;
4133 		}
4134 	}
4135 
4136 	ioapic_resources = res;
4137 
4138 	return res;
4139 }
4140 
4141 void __init ioapic_init_mappings(void)
4142 {
4143 	unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4144 	struct resource *ioapic_res;
4145 	int i;
4146 
4147 	ioapic_res = ioapic_setup_resources();
4148 	for (i = 0; i < nr_ioapics; i++) {
4149 		if (smp_found_config) {
4150 			ioapic_phys = mp_ioapics[i].apicaddr;
4151 #ifdef CONFIG_X86_32
4152 			if (!ioapic_phys) {
4153 				printk(KERN_ERR
4154 				       "WARNING: bogus zero IO-APIC "
4155 				       "address found in MPTABLE, "
4156 				       "disabling IO/APIC support!\n");
4157 				smp_found_config = 0;
4158 				skip_ioapic_setup = 1;
4159 				goto fake_ioapic_page;
4160 			}
4161 #endif
4162 		} else {
4163 #ifdef CONFIG_X86_32
4164 fake_ioapic_page:
4165 #endif
4166 			ioapic_phys = (unsigned long)
4167 				alloc_bootmem_pages(PAGE_SIZE);
4168 			ioapic_phys = __pa(ioapic_phys);
4169 		}
4170 		set_fixmap_nocache(idx, ioapic_phys);
4171 		apic_printk(APIC_VERBOSE,
4172 			    "mapped IOAPIC to %08lx (%08lx)\n",
4173 			    __fix_to_virt(idx), ioapic_phys);
4174 		idx++;
4175 
4176 		if (ioapic_res != NULL) {
4177 			ioapic_res->start = ioapic_phys;
4178 			ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4179 			ioapic_res++;
4180 		}
4181 	}
4182 }
4183 
4184 void __init ioapic_insert_resources(void)
4185 {
4186 	int i;
4187 	struct resource *r = ioapic_resources;
4188 
4189 	if (!r) {
4190 		if (nr_ioapics > 0)
4191 			printk(KERN_ERR
4192 				"IO APIC resources couldn't be allocated.\n");
4193 		return;
4194 	}
4195 
4196 	for (i = 0; i < nr_ioapics; i++) {
4197 		insert_resource(&iomem_resource, r);
4198 		r++;
4199 	}
4200 }
4201