xref: /linux/arch/x86/kernel/apic/apic.c (revision 6015fb905d89063231ed33bc15be19ef0fc339b8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	Local APIC handling, local APIC timers
4  *
5  *	(c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *
7  *	Fixes
8  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs;
9  *					thanks to Eric Gilmore
10  *					and Rolf G. Tews
11  *					for testing these extensively.
12  *	Maciej W. Rozycki	:	Various updates and fixes.
13  *	Mikael Pettersson	:	Power Management for UP-APIC.
14  *	Pavel Machek and
15  *	Mikael Pettersson	:	PM converted to driver model.
16  */
17 
18 #include <linux/perf_event.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/acpi_pmtmr.h>
22 #include <linux/clockchips.h>
23 #include <linux/interrupt.h>
24 #include <linux/memblock.h>
25 #include <linux/ftrace.h>
26 #include <linux/ioport.h>
27 #include <linux/export.h>
28 #include <linux/syscore_ops.h>
29 #include <linux/delay.h>
30 #include <linux/timex.h>
31 #include <linux/i8253.h>
32 #include <linux/dmar.h>
33 #include <linux/init.h>
34 #include <linux/cpu.h>
35 #include <linux/dmi.h>
36 #include <linux/smp.h>
37 #include <linux/mm.h>
38 
39 #include <asm/trace/irq_vectors.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/pc-conf-reg.h>
42 #include <asm/perf_event.h>
43 #include <asm/x86_init.h>
44 #include <linux/atomic.h>
45 #include <asm/barrier.h>
46 #include <asm/mpspec.h>
47 #include <asm/i8259.h>
48 #include <asm/proto.h>
49 #include <asm/traps.h>
50 #include <asm/apic.h>
51 #include <asm/acpi.h>
52 #include <asm/io_apic.h>
53 #include <asm/desc.h>
54 #include <asm/hpet.h>
55 #include <asm/mtrr.h>
56 #include <asm/time.h>
57 #include <asm/smp.h>
58 #include <asm/mce.h>
59 #include <asm/tsc.h>
60 #include <asm/hypervisor.h>
61 #include <asm/cpu_device_id.h>
62 #include <asm/intel-family.h>
63 #include <asm/irq_regs.h>
64 
65 unsigned int num_processors;
66 
67 unsigned disabled_cpus;
68 
69 /* Processor that is doing the boot up */
70 unsigned int boot_cpu_physical_apicid __ro_after_init = -1U;
71 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
72 
73 u8 boot_cpu_apic_version __ro_after_init;
74 
75 /*
76  * The highest APIC ID seen during enumeration.
77  */
78 static unsigned int max_physical_apicid;
79 
80 /*
81  * Bitmask of physically existing CPUs:
82  */
83 physid_mask_t phys_cpu_present_map;
84 
85 /*
86  * Processor to be disabled specified by kernel parameter
87  * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
88  * avoid undefined behaviour caused by sending INIT from AP to BSP.
89  */
90 static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID;
91 
92 /*
93  * This variable controls which CPUs receive external NMIs.  By default,
94  * external NMIs are delivered only to the BSP.
95  */
96 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP;
97 
98 /*
99  * Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID
100  */
101 static bool virt_ext_dest_id __ro_after_init;
102 
103 /*
104  * Map cpu index to physical APIC ID
105  */
106 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
107 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
108 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
109 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
110 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
111 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
112 
113 #ifdef CONFIG_X86_32
114 
115 /*
116  * On x86_32, the mapping between cpu and logical apicid may vary
117  * depending on apic in use.  The following early percpu variable is
118  * used for the mapping.  This is where the behaviors of x86_64 and 32
119  * actually diverge.  Let's keep it ugly for now.
120  */
121 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
122 
123 /* Local APIC was disabled by the BIOS and enabled by the kernel */
124 static int enabled_via_apicbase __ro_after_init;
125 
126 /*
127  * Handle interrupt mode configuration register (IMCR).
128  * This register controls whether the interrupt signals
129  * that reach the BSP come from the master PIC or from the
130  * local APIC. Before entering Symmetric I/O Mode, either
131  * the BIOS or the operating system must switch out of
132  * PIC Mode by changing the IMCR.
133  */
134 static inline void imcr_pic_to_apic(void)
135 {
136 	/* NMI and 8259 INTR go through APIC */
137 	pc_conf_set(PC_CONF_MPS_IMCR, 0x01);
138 }
139 
140 static inline void imcr_apic_to_pic(void)
141 {
142 	/* NMI and 8259 INTR go directly to BSP */
143 	pc_conf_set(PC_CONF_MPS_IMCR, 0x00);
144 }
145 #endif
146 
147 /*
148  * Knob to control our willingness to enable the local APIC.
149  *
150  * +1=force-enable
151  */
152 static int force_enable_local_apic __initdata;
153 
154 /*
155  * APIC command line parameters
156  */
157 static int __init parse_lapic(char *arg)
158 {
159 	if (IS_ENABLED(CONFIG_X86_32) && !arg)
160 		force_enable_local_apic = 1;
161 	else if (arg && !strncmp(arg, "notscdeadline", 13))
162 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
163 	return 0;
164 }
165 early_param("lapic", parse_lapic);
166 
167 #ifdef CONFIG_X86_64
168 static int apic_calibrate_pmtmr __initdata;
169 static __init int setup_apicpmtimer(char *s)
170 {
171 	apic_calibrate_pmtmr = 1;
172 	notsc_setup(NULL);
173 	return 0;
174 }
175 __setup("apicpmtimer", setup_apicpmtimer);
176 #endif
177 
178 unsigned long mp_lapic_addr __ro_after_init;
179 int disable_apic __ro_after_init;
180 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
181 static int disable_apic_timer __initdata;
182 /* Local APIC timer works in C2 */
183 int local_apic_timer_c2_ok __ro_after_init;
184 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
185 
186 /*
187  * Debug level, exported for io_apic.c
188  */
189 int apic_verbosity __ro_after_init;
190 
191 int pic_mode __ro_after_init;
192 
193 /* Have we found an MP table */
194 int smp_found_config __ro_after_init;
195 
196 static struct resource lapic_resource = {
197 	.name = "Local APIC",
198 	.flags = IORESOURCE_MEM | IORESOURCE_BUSY,
199 };
200 
201 unsigned int lapic_timer_period = 0;
202 
203 static void apic_pm_activate(void);
204 
205 static unsigned long apic_phys __ro_after_init;
206 
207 /*
208  * Get the LAPIC version
209  */
210 static inline int lapic_get_version(void)
211 {
212 	return GET_APIC_VERSION(apic_read(APIC_LVR));
213 }
214 
215 /*
216  * Check, if the APIC is integrated or a separate chip
217  */
218 static inline int lapic_is_integrated(void)
219 {
220 	return APIC_INTEGRATED(lapic_get_version());
221 }
222 
223 /*
224  * Check, whether this is a modern or a first generation APIC
225  */
226 static int modern_apic(void)
227 {
228 	/* AMD systems use old APIC versions, so check the CPU */
229 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
230 	    boot_cpu_data.x86 >= 0xf)
231 		return 1;
232 
233 	/* Hygon systems use modern APIC */
234 	if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
235 		return 1;
236 
237 	return lapic_get_version() >= 0x14;
238 }
239 
240 /*
241  * right after this call apic become NOOP driven
242  * so apic->write/read doesn't do anything
243  */
244 static void __init apic_disable(void)
245 {
246 	pr_info("APIC: switched to apic NOOP\n");
247 	apic = &apic_noop;
248 }
249 
250 void native_apic_wait_icr_idle(void)
251 {
252 	while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
253 		cpu_relax();
254 }
255 
256 u32 native_safe_apic_wait_icr_idle(void)
257 {
258 	u32 send_status;
259 	int timeout;
260 
261 	timeout = 0;
262 	do {
263 		send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
264 		if (!send_status)
265 			break;
266 		inc_irq_stat(icr_read_retry_count);
267 		udelay(100);
268 	} while (timeout++ < 1000);
269 
270 	return send_status;
271 }
272 
273 void native_apic_icr_write(u32 low, u32 id)
274 {
275 	unsigned long flags;
276 
277 	local_irq_save(flags);
278 	apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id));
279 	apic_write(APIC_ICR, low);
280 	local_irq_restore(flags);
281 }
282 
283 u64 native_apic_icr_read(void)
284 {
285 	u32 icr1, icr2;
286 
287 	icr2 = apic_read(APIC_ICR2);
288 	icr1 = apic_read(APIC_ICR);
289 
290 	return icr1 | ((u64)icr2 << 32);
291 }
292 
293 #ifdef CONFIG_X86_32
294 /**
295  * get_physical_broadcast - Get number of physical broadcast IDs
296  */
297 int get_physical_broadcast(void)
298 {
299 	return modern_apic() ? 0xff : 0xf;
300 }
301 #endif
302 
303 /**
304  * lapic_get_maxlvt - get the maximum number of local vector table entries
305  */
306 int lapic_get_maxlvt(void)
307 {
308 	/*
309 	 * - we always have APIC integrated on 64bit mode
310 	 * - 82489DXs do not report # of LVT entries
311 	 */
312 	return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
313 }
314 
315 /*
316  * Local APIC timer
317  */
318 
319 /* Clock divisor */
320 #define APIC_DIVISOR 16
321 #define TSC_DIVISOR  8
322 
323 /*
324  * This function sets up the local APIC timer, with a timeout of
325  * 'clocks' APIC bus clock. During calibration we actually call
326  * this function twice on the boot CPU, once with a bogus timeout
327  * value, second time for real. The other (noncalibrating) CPUs
328  * call this function only once, with the real, calibrated value.
329  *
330  * We do reads before writes even if unnecessary, to get around the
331  * P5 APIC double write bug.
332  */
333 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
334 {
335 	unsigned int lvtt_value, tmp_value;
336 
337 	lvtt_value = LOCAL_TIMER_VECTOR;
338 	if (!oneshot)
339 		lvtt_value |= APIC_LVT_TIMER_PERIODIC;
340 	else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
341 		lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
342 
343 	if (!lapic_is_integrated())
344 		lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV);
345 
346 	if (!irqen)
347 		lvtt_value |= APIC_LVT_MASKED;
348 
349 	apic_write(APIC_LVTT, lvtt_value);
350 
351 	if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
352 		/*
353 		 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
354 		 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
355 		 * According to Intel, MFENCE can do the serialization here.
356 		 */
357 		asm volatile("mfence" : : : "memory");
358 		return;
359 	}
360 
361 	/*
362 	 * Divide PICLK by 16
363 	 */
364 	tmp_value = apic_read(APIC_TDCR);
365 	apic_write(APIC_TDCR,
366 		(tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
367 		APIC_TDR_DIV_16);
368 
369 	if (!oneshot)
370 		apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
371 }
372 
373 /*
374  * Setup extended LVT, AMD specific
375  *
376  * Software should use the LVT offsets the BIOS provides.  The offsets
377  * are determined by the subsystems using it like those for MCE
378  * threshold or IBS.  On K8 only offset 0 (APIC500) and MCE interrupts
379  * are supported. Beginning with family 10h at least 4 offsets are
380  * available.
381  *
382  * Since the offsets must be consistent for all cores, we keep track
383  * of the LVT offsets in software and reserve the offset for the same
384  * vector also to be used on other cores. An offset is freed by
385  * setting the entry to APIC_EILVT_MASKED.
386  *
387  * If the BIOS is right, there should be no conflicts. Otherwise a
388  * "[Firmware Bug]: ..." error message is generated. However, if
389  * software does not properly determines the offsets, it is not
390  * necessarily a BIOS bug.
391  */
392 
393 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
394 
395 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
396 {
397 	return (old & APIC_EILVT_MASKED)
398 		|| (new == APIC_EILVT_MASKED)
399 		|| ((new & ~APIC_EILVT_MASKED) == old);
400 }
401 
402 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
403 {
404 	unsigned int rsvd, vector;
405 
406 	if (offset >= APIC_EILVT_NR_MAX)
407 		return ~0;
408 
409 	rsvd = atomic_read(&eilvt_offsets[offset]);
410 	do {
411 		vector = rsvd & ~APIC_EILVT_MASKED;	/* 0: unassigned */
412 		if (vector && !eilvt_entry_is_changeable(vector, new))
413 			/* may not change if vectors are different */
414 			return rsvd;
415 		rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new);
416 	} while (rsvd != new);
417 
418 	rsvd &= ~APIC_EILVT_MASKED;
419 	if (rsvd && rsvd != vector)
420 		pr_info("LVT offset %d assigned for vector 0x%02x\n",
421 			offset, rsvd);
422 
423 	return new;
424 }
425 
426 /*
427  * If mask=1, the LVT entry does not generate interrupts while mask=0
428  * enables the vector. See also the BKDGs. Must be called with
429  * preemption disabled.
430  */
431 
432 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
433 {
434 	unsigned long reg = APIC_EILVTn(offset);
435 	unsigned int new, old, reserved;
436 
437 	new = (mask << 16) | (msg_type << 8) | vector;
438 	old = apic_read(reg);
439 	reserved = reserve_eilvt_offset(offset, new);
440 
441 	if (reserved != new) {
442 		pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
443 		       "vector 0x%x, but the register is already in use for "
444 		       "vector 0x%x on another cpu\n",
445 		       smp_processor_id(), reg, offset, new, reserved);
446 		return -EINVAL;
447 	}
448 
449 	if (!eilvt_entry_is_changeable(old, new)) {
450 		pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
451 		       "vector 0x%x, but the register is already in use for "
452 		       "vector 0x%x on this cpu\n",
453 		       smp_processor_id(), reg, offset, new, old);
454 		return -EBUSY;
455 	}
456 
457 	apic_write(reg, new);
458 
459 	return 0;
460 }
461 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
462 
463 /*
464  * Program the next event, relative to now
465  */
466 static int lapic_next_event(unsigned long delta,
467 			    struct clock_event_device *evt)
468 {
469 	apic_write(APIC_TMICT, delta);
470 	return 0;
471 }
472 
473 static int lapic_next_deadline(unsigned long delta,
474 			       struct clock_event_device *evt)
475 {
476 	u64 tsc;
477 
478 	/* This MSR is special and need a special fence: */
479 	weak_wrmsr_fence();
480 
481 	tsc = rdtsc();
482 	wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
483 	return 0;
484 }
485 
486 static int lapic_timer_shutdown(struct clock_event_device *evt)
487 {
488 	unsigned int v;
489 
490 	/* Lapic used as dummy for broadcast ? */
491 	if (evt->features & CLOCK_EVT_FEAT_DUMMY)
492 		return 0;
493 
494 	v = apic_read(APIC_LVTT);
495 	v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
496 	apic_write(APIC_LVTT, v);
497 	apic_write(APIC_TMICT, 0);
498 	return 0;
499 }
500 
501 static inline int
502 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
503 {
504 	/* Lapic used as dummy for broadcast ? */
505 	if (evt->features & CLOCK_EVT_FEAT_DUMMY)
506 		return 0;
507 
508 	__setup_APIC_LVTT(lapic_timer_period, oneshot, 1);
509 	return 0;
510 }
511 
512 static int lapic_timer_set_periodic(struct clock_event_device *evt)
513 {
514 	return lapic_timer_set_periodic_oneshot(evt, false);
515 }
516 
517 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
518 {
519 	return lapic_timer_set_periodic_oneshot(evt, true);
520 }
521 
522 /*
523  * Local APIC timer broadcast function
524  */
525 static void lapic_timer_broadcast(const struct cpumask *mask)
526 {
527 #ifdef CONFIG_SMP
528 	apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
529 #endif
530 }
531 
532 
533 /*
534  * The local apic timer can be used for any function which is CPU local.
535  */
536 static struct clock_event_device lapic_clockevent = {
537 	.name				= "lapic",
538 	.features			= CLOCK_EVT_FEAT_PERIODIC |
539 					  CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
540 					  | CLOCK_EVT_FEAT_DUMMY,
541 	.shift				= 32,
542 	.set_state_shutdown		= lapic_timer_shutdown,
543 	.set_state_periodic		= lapic_timer_set_periodic,
544 	.set_state_oneshot		= lapic_timer_set_oneshot,
545 	.set_state_oneshot_stopped	= lapic_timer_shutdown,
546 	.set_next_event			= lapic_next_event,
547 	.broadcast			= lapic_timer_broadcast,
548 	.rating				= 100,
549 	.irq				= -1,
550 };
551 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
552 
553 static const struct x86_cpu_id deadline_match[] __initconst = {
554 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */
555 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */
556 
557 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_X,	0x0b000020),
558 
559 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011),
560 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e),
561 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c),
562 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003),
563 
564 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136),
565 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014),
566 	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0),
567 
568 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL,		0x22),
569 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL_L,		0x20),
570 	X86_MATCH_INTEL_FAM6_MODEL( HASWELL_G,		0x17),
571 
572 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL,		0x25),
573 	X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_G,	0x17),
574 
575 	X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE_L,		0xb2),
576 	X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE,		0xb2),
577 
578 	X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE_L,		0x52),
579 	X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE,		0x52),
580 
581 	{},
582 };
583 
584 static __init bool apic_validate_deadline_timer(void)
585 {
586 	const struct x86_cpu_id *m;
587 	u32 rev;
588 
589 	if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
590 		return false;
591 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
592 		return true;
593 
594 	m = x86_match_cpu(deadline_match);
595 	if (!m)
596 		return true;
597 
598 	rev = (u32)m->driver_data;
599 
600 	if (boot_cpu_data.microcode >= rev)
601 		return true;
602 
603 	setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
604 	pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
605 	       "please update microcode to version: 0x%x (or later)\n", rev);
606 	return false;
607 }
608 
609 /*
610  * Setup the local APIC timer for this CPU. Copy the initialized values
611  * of the boot CPU and register the clock event in the framework.
612  */
613 static void setup_APIC_timer(void)
614 {
615 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
616 
617 	if (this_cpu_has(X86_FEATURE_ARAT)) {
618 		lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
619 		/* Make LAPIC timer preferable over percpu HPET */
620 		lapic_clockevent.rating = 150;
621 	}
622 
623 	memcpy(levt, &lapic_clockevent, sizeof(*levt));
624 	levt->cpumask = cpumask_of(smp_processor_id());
625 
626 	if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
627 		levt->name = "lapic-deadline";
628 		levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
629 				    CLOCK_EVT_FEAT_DUMMY);
630 		levt->set_next_event = lapic_next_deadline;
631 		clockevents_config_and_register(levt,
632 						tsc_khz * (1000 / TSC_DIVISOR),
633 						0xF, ~0UL);
634 	} else
635 		clockevents_register_device(levt);
636 }
637 
638 /*
639  * Install the updated TSC frequency from recalibration at the TSC
640  * deadline clockevent devices.
641  */
642 static void __lapic_update_tsc_freq(void *info)
643 {
644 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
645 
646 	if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
647 		return;
648 
649 	clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
650 }
651 
652 void lapic_update_tsc_freq(void)
653 {
654 	/*
655 	 * The clockevent device's ->mult and ->shift can both be
656 	 * changed. In order to avoid races, schedule the frequency
657 	 * update code on each CPU.
658 	 */
659 	on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
660 }
661 
662 /*
663  * In this functions we calibrate APIC bus clocks to the external timer.
664  *
665  * We want to do the calibration only once since we want to have local timer
666  * irqs synchronous. CPUs connected by the same APIC bus have the very same bus
667  * frequency.
668  *
669  * This was previously done by reading the PIT/HPET and waiting for a wrap
670  * around to find out, that a tick has elapsed. I have a box, where the PIT
671  * readout is broken, so it never gets out of the wait loop again. This was
672  * also reported by others.
673  *
674  * Monitoring the jiffies value is inaccurate and the clockevents
675  * infrastructure allows us to do a simple substitution of the interrupt
676  * handler.
677  *
678  * The calibration routine also uses the pm_timer when possible, as the PIT
679  * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
680  * back to normal later in the boot process).
681  */
682 
683 #define LAPIC_CAL_LOOPS		(HZ/10)
684 
685 static __initdata int lapic_cal_loops = -1;
686 static __initdata long lapic_cal_t1, lapic_cal_t2;
687 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
688 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
689 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
690 
691 /*
692  * Temporary interrupt handler and polled calibration function.
693  */
694 static void __init lapic_cal_handler(struct clock_event_device *dev)
695 {
696 	unsigned long long tsc = 0;
697 	long tapic = apic_read(APIC_TMCCT);
698 	unsigned long pm = acpi_pm_read_early();
699 
700 	if (boot_cpu_has(X86_FEATURE_TSC))
701 		tsc = rdtsc();
702 
703 	switch (lapic_cal_loops++) {
704 	case 0:
705 		lapic_cal_t1 = tapic;
706 		lapic_cal_tsc1 = tsc;
707 		lapic_cal_pm1 = pm;
708 		lapic_cal_j1 = jiffies;
709 		break;
710 
711 	case LAPIC_CAL_LOOPS:
712 		lapic_cal_t2 = tapic;
713 		lapic_cal_tsc2 = tsc;
714 		if (pm < lapic_cal_pm1)
715 			pm += ACPI_PM_OVRRUN;
716 		lapic_cal_pm2 = pm;
717 		lapic_cal_j2 = jiffies;
718 		break;
719 	}
720 }
721 
722 static int __init
723 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
724 {
725 	const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
726 	const long pm_thresh = pm_100ms / 100;
727 	unsigned long mult;
728 	u64 res;
729 
730 #ifndef CONFIG_X86_PM_TIMER
731 	return -1;
732 #endif
733 
734 	apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
735 
736 	/* Check, if the PM timer is available */
737 	if (!deltapm)
738 		return -1;
739 
740 	mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
741 
742 	if (deltapm > (pm_100ms - pm_thresh) &&
743 	    deltapm < (pm_100ms + pm_thresh)) {
744 		apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
745 		return 0;
746 	}
747 
748 	res = (((u64)deltapm) *  mult) >> 22;
749 	do_div(res, 1000000);
750 	pr_warn("APIC calibration not consistent "
751 		"with PM-Timer: %ldms instead of 100ms\n", (long)res);
752 
753 	/* Correct the lapic counter value */
754 	res = (((u64)(*delta)) * pm_100ms);
755 	do_div(res, deltapm);
756 	pr_info("APIC delta adjusted to PM-Timer: "
757 		"%lu (%ld)\n", (unsigned long)res, *delta);
758 	*delta = (long)res;
759 
760 	/* Correct the tsc counter value */
761 	if (boot_cpu_has(X86_FEATURE_TSC)) {
762 		res = (((u64)(*deltatsc)) * pm_100ms);
763 		do_div(res, deltapm);
764 		apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
765 					  "PM-Timer: %lu (%ld)\n",
766 					(unsigned long)res, *deltatsc);
767 		*deltatsc = (long)res;
768 	}
769 
770 	return 0;
771 }
772 
773 static int __init lapic_init_clockevent(void)
774 {
775 	if (!lapic_timer_period)
776 		return -1;
777 
778 	/* Calculate the scaled math multiplication factor */
779 	lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR,
780 					TICK_NSEC, lapic_clockevent.shift);
781 	lapic_clockevent.max_delta_ns =
782 		clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
783 	lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
784 	lapic_clockevent.min_delta_ns =
785 		clockevent_delta2ns(0xF, &lapic_clockevent);
786 	lapic_clockevent.min_delta_ticks = 0xF;
787 
788 	return 0;
789 }
790 
791 bool __init apic_needs_pit(void)
792 {
793 	/*
794 	 * If the frequencies are not known, PIT is required for both TSC
795 	 * and apic timer calibration.
796 	 */
797 	if (!tsc_khz || !cpu_khz)
798 		return true;
799 
800 	/* Is there an APIC at all or is it disabled? */
801 	if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic)
802 		return true;
803 
804 	/*
805 	 * If interrupt delivery mode is legacy PIC or virtual wire without
806 	 * configuration, the local APIC timer wont be set up. Make sure
807 	 * that the PIT is initialized.
808 	 */
809 	if (apic_intr_mode == APIC_PIC ||
810 	    apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG)
811 		return true;
812 
813 	/* Virt guests may lack ARAT, but still have DEADLINE */
814 	if (!boot_cpu_has(X86_FEATURE_ARAT))
815 		return true;
816 
817 	/* Deadline timer is based on TSC so no further PIT action required */
818 	if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
819 		return false;
820 
821 	/* APIC timer disabled? */
822 	if (disable_apic_timer)
823 		return true;
824 	/*
825 	 * The APIC timer frequency is known already, no PIT calibration
826 	 * required. If unknown, let the PIT be initialized.
827 	 */
828 	return lapic_timer_period == 0;
829 }
830 
831 static int __init calibrate_APIC_clock(void)
832 {
833 	struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
834 	u64 tsc_perj = 0, tsc_start = 0;
835 	unsigned long jif_start;
836 	unsigned long deltaj;
837 	long delta, deltatsc;
838 	int pm_referenced = 0;
839 
840 	if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
841 		return 0;
842 
843 	/*
844 	 * Check if lapic timer has already been calibrated by platform
845 	 * specific routine, such as tsc calibration code. If so just fill
846 	 * in the clockevent structure and return.
847 	 */
848 	if (!lapic_init_clockevent()) {
849 		apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
850 			    lapic_timer_period);
851 		/*
852 		 * Direct calibration methods must have an always running
853 		 * local APIC timer, no need for broadcast timer.
854 		 */
855 		lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
856 		return 0;
857 	}
858 
859 	apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
860 		    "calibrating APIC timer ...\n");
861 
862 	/*
863 	 * There are platforms w/o global clockevent devices. Instead of
864 	 * making the calibration conditional on that, use a polling based
865 	 * approach everywhere.
866 	 */
867 	local_irq_disable();
868 
869 	/*
870 	 * Setup the APIC counter to maximum. There is no way the lapic
871 	 * can underflow in the 100ms detection time frame
872 	 */
873 	__setup_APIC_LVTT(0xffffffff, 0, 0);
874 
875 	/*
876 	 * Methods to terminate the calibration loop:
877 	 *  1) Global clockevent if available (jiffies)
878 	 *  2) TSC if available and frequency is known
879 	 */
880 	jif_start = READ_ONCE(jiffies);
881 
882 	if (tsc_khz) {
883 		tsc_start = rdtsc();
884 		tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
885 	}
886 
887 	/*
888 	 * Enable interrupts so the tick can fire, if a global
889 	 * clockevent device is available
890 	 */
891 	local_irq_enable();
892 
893 	while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
894 		/* Wait for a tick to elapse */
895 		while (1) {
896 			if (tsc_khz) {
897 				u64 tsc_now = rdtsc();
898 				if ((tsc_now - tsc_start) >= tsc_perj) {
899 					tsc_start += tsc_perj;
900 					break;
901 				}
902 			} else {
903 				unsigned long jif_now = READ_ONCE(jiffies);
904 
905 				if (time_after(jif_now, jif_start)) {
906 					jif_start = jif_now;
907 					break;
908 				}
909 			}
910 			cpu_relax();
911 		}
912 
913 		/* Invoke the calibration routine */
914 		local_irq_disable();
915 		lapic_cal_handler(NULL);
916 		local_irq_enable();
917 	}
918 
919 	local_irq_disable();
920 
921 	/* Build delta t1-t2 as apic timer counts down */
922 	delta = lapic_cal_t1 - lapic_cal_t2;
923 	apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
924 
925 	deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
926 
927 	/* we trust the PM based calibration if possible */
928 	pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
929 					&delta, &deltatsc);
930 
931 	lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
932 	lapic_init_clockevent();
933 
934 	apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
935 	apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
936 	apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
937 		    lapic_timer_period);
938 
939 	if (boot_cpu_has(X86_FEATURE_TSC)) {
940 		apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
941 			    "%ld.%04ld MHz.\n",
942 			    (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
943 			    (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
944 	}
945 
946 	apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
947 		    "%u.%04u MHz.\n",
948 		    lapic_timer_period / (1000000 / HZ),
949 		    lapic_timer_period % (1000000 / HZ));
950 
951 	/*
952 	 * Do a sanity check on the APIC calibration result
953 	 */
954 	if (lapic_timer_period < (1000000 / HZ)) {
955 		local_irq_enable();
956 		pr_warn("APIC frequency too slow, disabling apic timer\n");
957 		return -1;
958 	}
959 
960 	levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
961 
962 	/*
963 	 * PM timer calibration failed or not turned on so lets try APIC
964 	 * timer based calibration, if a global clockevent device is
965 	 * available.
966 	 */
967 	if (!pm_referenced && global_clock_event) {
968 		apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
969 
970 		/*
971 		 * Setup the apic timer manually
972 		 */
973 		levt->event_handler = lapic_cal_handler;
974 		lapic_timer_set_periodic(levt);
975 		lapic_cal_loops = -1;
976 
977 		/* Let the interrupts run */
978 		local_irq_enable();
979 
980 		while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
981 			cpu_relax();
982 
983 		/* Stop the lapic timer */
984 		local_irq_disable();
985 		lapic_timer_shutdown(levt);
986 
987 		/* Jiffies delta */
988 		deltaj = lapic_cal_j2 - lapic_cal_j1;
989 		apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
990 
991 		/* Check, if the jiffies result is consistent */
992 		if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
993 			apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
994 		else
995 			levt->features |= CLOCK_EVT_FEAT_DUMMY;
996 	}
997 	local_irq_enable();
998 
999 	if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
1000 		pr_warn("APIC timer disabled due to verification failure\n");
1001 		return -1;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 /*
1008  * Setup the boot APIC
1009  *
1010  * Calibrate and verify the result.
1011  */
1012 void __init setup_boot_APIC_clock(void)
1013 {
1014 	/*
1015 	 * The local apic timer can be disabled via the kernel
1016 	 * commandline or from the CPU detection code. Register the lapic
1017 	 * timer as a dummy clock event source on SMP systems, so the
1018 	 * broadcast mechanism is used. On UP systems simply ignore it.
1019 	 */
1020 	if (disable_apic_timer) {
1021 		pr_info("Disabling APIC timer\n");
1022 		/* No broadcast on UP ! */
1023 		if (num_possible_cpus() > 1) {
1024 			lapic_clockevent.mult = 1;
1025 			setup_APIC_timer();
1026 		}
1027 		return;
1028 	}
1029 
1030 	if (calibrate_APIC_clock()) {
1031 		/* No broadcast on UP ! */
1032 		if (num_possible_cpus() > 1)
1033 			setup_APIC_timer();
1034 		return;
1035 	}
1036 
1037 	/*
1038 	 * If nmi_watchdog is set to IO_APIC, we need the
1039 	 * PIT/HPET going.  Otherwise register lapic as a dummy
1040 	 * device.
1041 	 */
1042 	lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
1043 
1044 	/* Setup the lapic or request the broadcast */
1045 	setup_APIC_timer();
1046 	amd_e400_c1e_apic_setup();
1047 }
1048 
1049 void setup_secondary_APIC_clock(void)
1050 {
1051 	setup_APIC_timer();
1052 	amd_e400_c1e_apic_setup();
1053 }
1054 
1055 /*
1056  * The guts of the apic timer interrupt
1057  */
1058 static void local_apic_timer_interrupt(void)
1059 {
1060 	struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
1061 
1062 	/*
1063 	 * Normally we should not be here till LAPIC has been initialized but
1064 	 * in some cases like kdump, its possible that there is a pending LAPIC
1065 	 * timer interrupt from previous kernel's context and is delivered in
1066 	 * new kernel the moment interrupts are enabled.
1067 	 *
1068 	 * Interrupts are enabled early and LAPIC is setup much later, hence
1069 	 * its possible that when we get here evt->event_handler is NULL.
1070 	 * Check for event_handler being NULL and discard the interrupt as
1071 	 * spurious.
1072 	 */
1073 	if (!evt->event_handler) {
1074 		pr_warn("Spurious LAPIC timer interrupt on cpu %d\n",
1075 			smp_processor_id());
1076 		/* Switch it off */
1077 		lapic_timer_shutdown(evt);
1078 		return;
1079 	}
1080 
1081 	/*
1082 	 * the NMI deadlock-detector uses this.
1083 	 */
1084 	inc_irq_stat(apic_timer_irqs);
1085 
1086 	evt->event_handler(evt);
1087 }
1088 
1089 /*
1090  * Local APIC timer interrupt. This is the most natural way for doing
1091  * local interrupts, but local timer interrupts can be emulated by
1092  * broadcast interrupts too. [in case the hw doesn't support APIC timers]
1093  *
1094  * [ if a single-CPU system runs an SMP kernel then we call the local
1095  *   interrupt as well. Thus we cannot inline the local irq ... ]
1096  */
1097 DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt)
1098 {
1099 	struct pt_regs *old_regs = set_irq_regs(regs);
1100 
1101 	ack_APIC_irq();
1102 	trace_local_timer_entry(LOCAL_TIMER_VECTOR);
1103 	local_apic_timer_interrupt();
1104 	trace_local_timer_exit(LOCAL_TIMER_VECTOR);
1105 
1106 	set_irq_regs(old_regs);
1107 }
1108 
1109 int setup_profiling_timer(unsigned int multiplier)
1110 {
1111 	return -EINVAL;
1112 }
1113 
1114 /*
1115  * Local APIC start and shutdown
1116  */
1117 
1118 /**
1119  * clear_local_APIC - shutdown the local APIC
1120  *
1121  * This is called, when a CPU is disabled and before rebooting, so the state of
1122  * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1123  * leftovers during boot.
1124  */
1125 void clear_local_APIC(void)
1126 {
1127 	int maxlvt;
1128 	u32 v;
1129 
1130 	/* APIC hasn't been mapped yet */
1131 	if (!x2apic_mode && !apic_phys)
1132 		return;
1133 
1134 	maxlvt = lapic_get_maxlvt();
1135 	/*
1136 	 * Masking an LVT entry can trigger a local APIC error
1137 	 * if the vector is zero. Mask LVTERR first to prevent this.
1138 	 */
1139 	if (maxlvt >= 3) {
1140 		v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1141 		apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1142 	}
1143 	/*
1144 	 * Careful: we have to set masks only first to deassert
1145 	 * any level-triggered sources.
1146 	 */
1147 	v = apic_read(APIC_LVTT);
1148 	apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1149 	v = apic_read(APIC_LVT0);
1150 	apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1151 	v = apic_read(APIC_LVT1);
1152 	apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1153 	if (maxlvt >= 4) {
1154 		v = apic_read(APIC_LVTPC);
1155 		apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1156 	}
1157 
1158 	/* lets not touch this if we didn't frob it */
1159 #ifdef CONFIG_X86_THERMAL_VECTOR
1160 	if (maxlvt >= 5) {
1161 		v = apic_read(APIC_LVTTHMR);
1162 		apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1163 	}
1164 #endif
1165 #ifdef CONFIG_X86_MCE_INTEL
1166 	if (maxlvt >= 6) {
1167 		v = apic_read(APIC_LVTCMCI);
1168 		if (!(v & APIC_LVT_MASKED))
1169 			apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1170 	}
1171 #endif
1172 
1173 	/*
1174 	 * Clean APIC state for other OSs:
1175 	 */
1176 	apic_write(APIC_LVTT, APIC_LVT_MASKED);
1177 	apic_write(APIC_LVT0, APIC_LVT_MASKED);
1178 	apic_write(APIC_LVT1, APIC_LVT_MASKED);
1179 	if (maxlvt >= 3)
1180 		apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1181 	if (maxlvt >= 4)
1182 		apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1183 
1184 	/* Integrated APIC (!82489DX) ? */
1185 	if (lapic_is_integrated()) {
1186 		if (maxlvt > 3)
1187 			/* Clear ESR due to Pentium errata 3AP and 11AP */
1188 			apic_write(APIC_ESR, 0);
1189 		apic_read(APIC_ESR);
1190 	}
1191 }
1192 
1193 /**
1194  * apic_soft_disable - Clears and software disables the local APIC on hotplug
1195  *
1196  * Contrary to disable_local_APIC() this does not touch the enable bit in
1197  * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC
1198  * bus would require a hardware reset as the APIC would lose track of bus
1199  * arbitration. On systems with FSB delivery APICBASE could be disabled,
1200  * but it has to be guaranteed that no interrupt is sent to the APIC while
1201  * in that state and it's not clear from the SDM whether it still responds
1202  * to INIT/SIPI messages. Stay on the safe side and use software disable.
1203  */
1204 void apic_soft_disable(void)
1205 {
1206 	u32 value;
1207 
1208 	clear_local_APIC();
1209 
1210 	/* Soft disable APIC (implies clearing of registers for 82489DX!). */
1211 	value = apic_read(APIC_SPIV);
1212 	value &= ~APIC_SPIV_APIC_ENABLED;
1213 	apic_write(APIC_SPIV, value);
1214 }
1215 
1216 /**
1217  * disable_local_APIC - clear and disable the local APIC
1218  */
1219 void disable_local_APIC(void)
1220 {
1221 	/* APIC hasn't been mapped yet */
1222 	if (!x2apic_mode && !apic_phys)
1223 		return;
1224 
1225 	apic_soft_disable();
1226 
1227 #ifdef CONFIG_X86_32
1228 	/*
1229 	 * When LAPIC was disabled by the BIOS and enabled by the kernel,
1230 	 * restore the disabled state.
1231 	 */
1232 	if (enabled_via_apicbase) {
1233 		unsigned int l, h;
1234 
1235 		rdmsr(MSR_IA32_APICBASE, l, h);
1236 		l &= ~MSR_IA32_APICBASE_ENABLE;
1237 		wrmsr(MSR_IA32_APICBASE, l, h);
1238 	}
1239 #endif
1240 }
1241 
1242 /*
1243  * If Linux enabled the LAPIC against the BIOS default disable it down before
1244  * re-entering the BIOS on shutdown.  Otherwise the BIOS may get confused and
1245  * not power-off.  Additionally clear all LVT entries before disable_local_APIC
1246  * for the case where Linux didn't enable the LAPIC.
1247  */
1248 void lapic_shutdown(void)
1249 {
1250 	unsigned long flags;
1251 
1252 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1253 		return;
1254 
1255 	local_irq_save(flags);
1256 
1257 #ifdef CONFIG_X86_32
1258 	if (!enabled_via_apicbase)
1259 		clear_local_APIC();
1260 	else
1261 #endif
1262 		disable_local_APIC();
1263 
1264 
1265 	local_irq_restore(flags);
1266 }
1267 
1268 /**
1269  * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1270  */
1271 void __init sync_Arb_IDs(void)
1272 {
1273 	/*
1274 	 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1275 	 * needed on AMD.
1276 	 */
1277 	if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1278 		return;
1279 
1280 	/*
1281 	 * Wait for idle.
1282 	 */
1283 	apic_wait_icr_idle();
1284 
1285 	apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1286 	apic_write(APIC_ICR, APIC_DEST_ALLINC |
1287 			APIC_INT_LEVELTRIG | APIC_DM_INIT);
1288 }
1289 
1290 enum apic_intr_mode_id apic_intr_mode __ro_after_init;
1291 
1292 static int __init __apic_intr_mode_select(void)
1293 {
1294 	/* Check kernel option */
1295 	if (disable_apic) {
1296 		pr_info("APIC disabled via kernel command line\n");
1297 		return APIC_PIC;
1298 	}
1299 
1300 	/* Check BIOS */
1301 #ifdef CONFIG_X86_64
1302 	/* On 64-bit, the APIC must be integrated, Check local APIC only */
1303 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
1304 		disable_apic = 1;
1305 		pr_info("APIC disabled by BIOS\n");
1306 		return APIC_PIC;
1307 	}
1308 #else
1309 	/* On 32-bit, the APIC may be integrated APIC or 82489DX */
1310 
1311 	/* Neither 82489DX nor integrated APIC ? */
1312 	if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
1313 		disable_apic = 1;
1314 		return APIC_PIC;
1315 	}
1316 
1317 	/* If the BIOS pretends there is an integrated APIC ? */
1318 	if (!boot_cpu_has(X86_FEATURE_APIC) &&
1319 		APIC_INTEGRATED(boot_cpu_apic_version)) {
1320 		disable_apic = 1;
1321 		pr_err(FW_BUG "Local APIC %d not detected, force emulation\n",
1322 				       boot_cpu_physical_apicid);
1323 		return APIC_PIC;
1324 	}
1325 #endif
1326 
1327 	/* Check MP table or ACPI MADT configuration */
1328 	if (!smp_found_config) {
1329 		disable_ioapic_support();
1330 		if (!acpi_lapic) {
1331 			pr_info("APIC: ACPI MADT or MP tables are not detected\n");
1332 			return APIC_VIRTUAL_WIRE_NO_CONFIG;
1333 		}
1334 		return APIC_VIRTUAL_WIRE;
1335 	}
1336 
1337 #ifdef CONFIG_SMP
1338 	/* If SMP should be disabled, then really disable it! */
1339 	if (!setup_max_cpus) {
1340 		pr_info("APIC: SMP mode deactivated\n");
1341 		return APIC_SYMMETRIC_IO_NO_ROUTING;
1342 	}
1343 
1344 	if (read_apic_id() != boot_cpu_physical_apicid) {
1345 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1346 		     read_apic_id(), boot_cpu_physical_apicid);
1347 		/* Or can we switch back to PIC here? */
1348 	}
1349 #endif
1350 
1351 	return APIC_SYMMETRIC_IO;
1352 }
1353 
1354 /* Select the interrupt delivery mode for the BSP */
1355 void __init apic_intr_mode_select(void)
1356 {
1357 	apic_intr_mode = __apic_intr_mode_select();
1358 }
1359 
1360 /*
1361  * An initial setup of the virtual wire mode.
1362  */
1363 void __init init_bsp_APIC(void)
1364 {
1365 	unsigned int value;
1366 
1367 	/*
1368 	 * Don't do the setup now if we have a SMP BIOS as the
1369 	 * through-I/O-APIC virtual wire mode might be active.
1370 	 */
1371 	if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1372 		return;
1373 
1374 	/*
1375 	 * Do not trust the local APIC being empty at bootup.
1376 	 */
1377 	clear_local_APIC();
1378 
1379 	/*
1380 	 * Enable APIC.
1381 	 */
1382 	value = apic_read(APIC_SPIV);
1383 	value &= ~APIC_VECTOR_MASK;
1384 	value |= APIC_SPIV_APIC_ENABLED;
1385 
1386 #ifdef CONFIG_X86_32
1387 	/* This bit is reserved on P4/Xeon and should be cleared */
1388 	if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1389 	    (boot_cpu_data.x86 == 15))
1390 		value &= ~APIC_SPIV_FOCUS_DISABLED;
1391 	else
1392 #endif
1393 		value |= APIC_SPIV_FOCUS_DISABLED;
1394 	value |= SPURIOUS_APIC_VECTOR;
1395 	apic_write(APIC_SPIV, value);
1396 
1397 	/*
1398 	 * Set up the virtual wire mode.
1399 	 */
1400 	apic_write(APIC_LVT0, APIC_DM_EXTINT);
1401 	value = APIC_DM_NMI;
1402 	if (!lapic_is_integrated())		/* 82489DX */
1403 		value |= APIC_LVT_LEVEL_TRIGGER;
1404 	if (apic_extnmi == APIC_EXTNMI_NONE)
1405 		value |= APIC_LVT_MASKED;
1406 	apic_write(APIC_LVT1, value);
1407 }
1408 
1409 static void __init apic_bsp_setup(bool upmode);
1410 
1411 /* Init the interrupt delivery mode for the BSP */
1412 void __init apic_intr_mode_init(void)
1413 {
1414 	bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
1415 
1416 	switch (apic_intr_mode) {
1417 	case APIC_PIC:
1418 		pr_info("APIC: Keep in PIC mode(8259)\n");
1419 		return;
1420 	case APIC_VIRTUAL_WIRE:
1421 		pr_info("APIC: Switch to virtual wire mode setup\n");
1422 		default_setup_apic_routing();
1423 		break;
1424 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1425 		pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
1426 		upmode = true;
1427 		default_setup_apic_routing();
1428 		break;
1429 	case APIC_SYMMETRIC_IO:
1430 		pr_info("APIC: Switch to symmetric I/O mode setup\n");
1431 		default_setup_apic_routing();
1432 		break;
1433 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1434 		pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
1435 		break;
1436 	}
1437 
1438 	if (x86_platform.apic_post_init)
1439 		x86_platform.apic_post_init();
1440 
1441 	apic_bsp_setup(upmode);
1442 }
1443 
1444 static void lapic_setup_esr(void)
1445 {
1446 	unsigned int oldvalue, value, maxlvt;
1447 
1448 	if (!lapic_is_integrated()) {
1449 		pr_info("No ESR for 82489DX.\n");
1450 		return;
1451 	}
1452 
1453 	if (apic->disable_esr) {
1454 		/*
1455 		 * Something untraceable is creating bad interrupts on
1456 		 * secondary quads ... for the moment, just leave the
1457 		 * ESR disabled - we can't do anything useful with the
1458 		 * errors anyway - mbligh
1459 		 */
1460 		pr_info("Leaving ESR disabled.\n");
1461 		return;
1462 	}
1463 
1464 	maxlvt = lapic_get_maxlvt();
1465 	if (maxlvt > 3)		/* Due to the Pentium erratum 3AP. */
1466 		apic_write(APIC_ESR, 0);
1467 	oldvalue = apic_read(APIC_ESR);
1468 
1469 	/* enables sending errors */
1470 	value = ERROR_APIC_VECTOR;
1471 	apic_write(APIC_LVTERR, value);
1472 
1473 	/*
1474 	 * spec says clear errors after enabling vector.
1475 	 */
1476 	if (maxlvt > 3)
1477 		apic_write(APIC_ESR, 0);
1478 	value = apic_read(APIC_ESR);
1479 	if (value != oldvalue)
1480 		apic_printk(APIC_VERBOSE, "ESR value before enabling "
1481 			"vector: 0x%08x  after: 0x%08x\n",
1482 			oldvalue, value);
1483 }
1484 
1485 #define APIC_IR_REGS		APIC_ISR_NR
1486 #define APIC_IR_BITS		(APIC_IR_REGS * 32)
1487 #define APIC_IR_MAPSIZE		(APIC_IR_BITS / BITS_PER_LONG)
1488 
1489 union apic_ir {
1490 	unsigned long	map[APIC_IR_MAPSIZE];
1491 	u32		regs[APIC_IR_REGS];
1492 };
1493 
1494 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr)
1495 {
1496 	int i, bit;
1497 
1498 	/* Read the IRRs */
1499 	for (i = 0; i < APIC_IR_REGS; i++)
1500 		irr->regs[i] = apic_read(APIC_IRR + i * 0x10);
1501 
1502 	/* Read the ISRs */
1503 	for (i = 0; i < APIC_IR_REGS; i++)
1504 		isr->regs[i] = apic_read(APIC_ISR + i * 0x10);
1505 
1506 	/*
1507 	 * If the ISR map is not empty. ACK the APIC and run another round
1508 	 * to verify whether a pending IRR has been unblocked and turned
1509 	 * into a ISR.
1510 	 */
1511 	if (!bitmap_empty(isr->map, APIC_IR_BITS)) {
1512 		/*
1513 		 * There can be multiple ISR bits set when a high priority
1514 		 * interrupt preempted a lower priority one. Issue an ACK
1515 		 * per set bit.
1516 		 */
1517 		for_each_set_bit(bit, isr->map, APIC_IR_BITS)
1518 			ack_APIC_irq();
1519 		return true;
1520 	}
1521 
1522 	return !bitmap_empty(irr->map, APIC_IR_BITS);
1523 }
1524 
1525 /*
1526  * After a crash, we no longer service the interrupts and a pending
1527  * interrupt from previous kernel might still have ISR bit set.
1528  *
1529  * Most probably by now the CPU has serviced that pending interrupt and it
1530  * might not have done the ack_APIC_irq() because it thought, interrupt
1531  * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear
1532  * the ISR bit and cpu thinks it has already serviced the interrupt. Hence
1533  * a vector might get locked. It was noticed for timer irq (vector
1534  * 0x31). Issue an extra EOI to clear ISR.
1535  *
1536  * If there are pending IRR bits they turn into ISR bits after a higher
1537  * priority ISR bit has been acked.
1538  */
1539 static void apic_pending_intr_clear(void)
1540 {
1541 	union apic_ir irr, isr;
1542 	unsigned int i;
1543 
1544 	/* 512 loops are way oversized and give the APIC a chance to obey. */
1545 	for (i = 0; i < 512; i++) {
1546 		if (!apic_check_and_ack(&irr, &isr))
1547 			return;
1548 	}
1549 	/* Dump the IRR/ISR content if that failed */
1550 	pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map);
1551 }
1552 
1553 /**
1554  * setup_local_APIC - setup the local APIC
1555  *
1556  * Used to setup local APIC while initializing BSP or bringing up APs.
1557  * Always called with preemption disabled.
1558  */
1559 static void setup_local_APIC(void)
1560 {
1561 	int cpu = smp_processor_id();
1562 	unsigned int value;
1563 
1564 	if (disable_apic) {
1565 		disable_ioapic_support();
1566 		return;
1567 	}
1568 
1569 	/*
1570 	 * If this comes from kexec/kcrash the APIC might be enabled in
1571 	 * SPIV. Soft disable it before doing further initialization.
1572 	 */
1573 	value = apic_read(APIC_SPIV);
1574 	value &= ~APIC_SPIV_APIC_ENABLED;
1575 	apic_write(APIC_SPIV, value);
1576 
1577 #ifdef CONFIG_X86_32
1578 	/* Pound the ESR really hard over the head with a big hammer - mbligh */
1579 	if (lapic_is_integrated() && apic->disable_esr) {
1580 		apic_write(APIC_ESR, 0);
1581 		apic_write(APIC_ESR, 0);
1582 		apic_write(APIC_ESR, 0);
1583 		apic_write(APIC_ESR, 0);
1584 	}
1585 #endif
1586 	/*
1587 	 * Double-check whether this APIC is really registered.
1588 	 * This is meaningless in clustered apic mode, so we skip it.
1589 	 */
1590 	BUG_ON(!apic->apic_id_registered());
1591 
1592 	/*
1593 	 * Intel recommends to set DFR, LDR and TPR before enabling
1594 	 * an APIC.  See e.g. "AP-388 82489DX User's Manual" (Intel
1595 	 * document number 292116).  So here it goes...
1596 	 */
1597 	apic->init_apic_ldr();
1598 
1599 #ifdef CONFIG_X86_32
1600 	if (apic->dest_mode_logical) {
1601 		int logical_apicid, ldr_apicid;
1602 
1603 		/*
1604 		 * APIC LDR is initialized.  If logical_apicid mapping was
1605 		 * initialized during get_smp_config(), make sure it matches
1606 		 * the actual value.
1607 		 */
1608 		logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1609 		ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1610 		if (logical_apicid != BAD_APICID)
1611 			WARN_ON(logical_apicid != ldr_apicid);
1612 		/* Always use the value from LDR. */
1613 		early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
1614 	}
1615 #endif
1616 
1617 	/*
1618 	 * Set Task Priority to 'accept all except vectors 0-31'.  An APIC
1619 	 * vector in the 16-31 range could be delivered if TPR == 0, but we
1620 	 * would think it's an exception and terrible things will happen.  We
1621 	 * never change this later on.
1622 	 */
1623 	value = apic_read(APIC_TASKPRI);
1624 	value &= ~APIC_TPRI_MASK;
1625 	value |= 0x10;
1626 	apic_write(APIC_TASKPRI, value);
1627 
1628 	/* Clear eventually stale ISR/IRR bits */
1629 	apic_pending_intr_clear();
1630 
1631 	/*
1632 	 * Now that we are all set up, enable the APIC
1633 	 */
1634 	value = apic_read(APIC_SPIV);
1635 	value &= ~APIC_VECTOR_MASK;
1636 	/*
1637 	 * Enable APIC
1638 	 */
1639 	value |= APIC_SPIV_APIC_ENABLED;
1640 
1641 #ifdef CONFIG_X86_32
1642 	/*
1643 	 * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1644 	 * certain networking cards. If high frequency interrupts are
1645 	 * happening on a particular IOAPIC pin, plus the IOAPIC routing
1646 	 * entry is masked/unmasked at a high rate as well then sooner or
1647 	 * later IOAPIC line gets 'stuck', no more interrupts are received
1648 	 * from the device. If focus CPU is disabled then the hang goes
1649 	 * away, oh well :-(
1650 	 *
1651 	 * [ This bug can be reproduced easily with a level-triggered
1652 	 *   PCI Ne2000 networking cards and PII/PIII processors, dual
1653 	 *   BX chipset. ]
1654 	 */
1655 	/*
1656 	 * Actually disabling the focus CPU check just makes the hang less
1657 	 * frequent as it makes the interrupt distribution model be more
1658 	 * like LRU than MRU (the short-term load is more even across CPUs).
1659 	 */
1660 
1661 	/*
1662 	 * - enable focus processor (bit==0)
1663 	 * - 64bit mode always use processor focus
1664 	 *   so no need to set it
1665 	 */
1666 	value &= ~APIC_SPIV_FOCUS_DISABLED;
1667 #endif
1668 
1669 	/*
1670 	 * Set spurious IRQ vector
1671 	 */
1672 	value |= SPURIOUS_APIC_VECTOR;
1673 	apic_write(APIC_SPIV, value);
1674 
1675 	perf_events_lapic_init();
1676 
1677 	/*
1678 	 * Set up LVT0, LVT1:
1679 	 *
1680 	 * set up through-local-APIC on the boot CPU's LINT0. This is not
1681 	 * strictly necessary in pure symmetric-IO mode, but sometimes
1682 	 * we delegate interrupts to the 8259A.
1683 	 */
1684 	/*
1685 	 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1686 	 */
1687 	value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1688 	if (!cpu && (pic_mode || !value || skip_ioapic_setup)) {
1689 		value = APIC_DM_EXTINT;
1690 		apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1691 	} else {
1692 		value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1693 		apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1694 	}
1695 	apic_write(APIC_LVT0, value);
1696 
1697 	/*
1698 	 * Only the BSP sees the LINT1 NMI signal by default. This can be
1699 	 * modified by apic_extnmi= boot option.
1700 	 */
1701 	if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1702 	    apic_extnmi == APIC_EXTNMI_ALL)
1703 		value = APIC_DM_NMI;
1704 	else
1705 		value = APIC_DM_NMI | APIC_LVT_MASKED;
1706 
1707 	/* Is 82489DX ? */
1708 	if (!lapic_is_integrated())
1709 		value |= APIC_LVT_LEVEL_TRIGGER;
1710 	apic_write(APIC_LVT1, value);
1711 
1712 #ifdef CONFIG_X86_MCE_INTEL
1713 	/* Recheck CMCI information after local APIC is up on CPU #0 */
1714 	if (!cpu)
1715 		cmci_recheck();
1716 #endif
1717 }
1718 
1719 static void end_local_APIC_setup(void)
1720 {
1721 	lapic_setup_esr();
1722 
1723 #ifdef CONFIG_X86_32
1724 	{
1725 		unsigned int value;
1726 		/* Disable the local apic timer */
1727 		value = apic_read(APIC_LVTT);
1728 		value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1729 		apic_write(APIC_LVTT, value);
1730 	}
1731 #endif
1732 
1733 	apic_pm_activate();
1734 }
1735 
1736 /*
1737  * APIC setup function for application processors. Called from smpboot.c
1738  */
1739 void apic_ap_setup(void)
1740 {
1741 	setup_local_APIC();
1742 	end_local_APIC_setup();
1743 }
1744 
1745 #ifdef CONFIG_X86_X2APIC
1746 int x2apic_mode;
1747 EXPORT_SYMBOL_GPL(x2apic_mode);
1748 
1749 enum {
1750 	X2APIC_OFF,
1751 	X2APIC_ON,
1752 	X2APIC_DISABLED,
1753 };
1754 static int x2apic_state;
1755 
1756 static void __x2apic_disable(void)
1757 {
1758 	u64 msr;
1759 
1760 	if (!boot_cpu_has(X86_FEATURE_APIC))
1761 		return;
1762 
1763 	rdmsrl(MSR_IA32_APICBASE, msr);
1764 	if (!(msr & X2APIC_ENABLE))
1765 		return;
1766 	/* Disable xapic and x2apic first and then reenable xapic mode */
1767 	wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1768 	wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1769 	printk_once(KERN_INFO "x2apic disabled\n");
1770 }
1771 
1772 static void __x2apic_enable(void)
1773 {
1774 	u64 msr;
1775 
1776 	rdmsrl(MSR_IA32_APICBASE, msr);
1777 	if (msr & X2APIC_ENABLE)
1778 		return;
1779 	wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1780 	printk_once(KERN_INFO "x2apic enabled\n");
1781 }
1782 
1783 static int __init setup_nox2apic(char *str)
1784 {
1785 	if (x2apic_enabled()) {
1786 		int apicid = native_apic_msr_read(APIC_ID);
1787 
1788 		if (apicid >= 255) {
1789 			pr_warn("Apicid: %08x, cannot enforce nox2apic\n",
1790 				apicid);
1791 			return 0;
1792 		}
1793 		pr_warn("x2apic already enabled.\n");
1794 		__x2apic_disable();
1795 	}
1796 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1797 	x2apic_state = X2APIC_DISABLED;
1798 	x2apic_mode = 0;
1799 	return 0;
1800 }
1801 early_param("nox2apic", setup_nox2apic);
1802 
1803 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
1804 void x2apic_setup(void)
1805 {
1806 	/*
1807 	 * If x2apic is not in ON state, disable it if already enabled
1808 	 * from BIOS.
1809 	 */
1810 	if (x2apic_state != X2APIC_ON) {
1811 		__x2apic_disable();
1812 		return;
1813 	}
1814 	__x2apic_enable();
1815 }
1816 
1817 static __init void x2apic_disable(void)
1818 {
1819 	u32 x2apic_id, state = x2apic_state;
1820 
1821 	x2apic_mode = 0;
1822 	x2apic_state = X2APIC_DISABLED;
1823 
1824 	if (state != X2APIC_ON)
1825 		return;
1826 
1827 	x2apic_id = read_apic_id();
1828 	if (x2apic_id >= 255)
1829 		panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1830 
1831 	__x2apic_disable();
1832 	register_lapic_address(mp_lapic_addr);
1833 }
1834 
1835 static __init void x2apic_enable(void)
1836 {
1837 	if (x2apic_state != X2APIC_OFF)
1838 		return;
1839 
1840 	x2apic_mode = 1;
1841 	x2apic_state = X2APIC_ON;
1842 	__x2apic_enable();
1843 }
1844 
1845 static __init void try_to_enable_x2apic(int remap_mode)
1846 {
1847 	if (x2apic_state == X2APIC_DISABLED)
1848 		return;
1849 
1850 	if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1851 		u32 apic_limit = 255;
1852 
1853 		/*
1854 		 * Using X2APIC without IR is not architecturally supported
1855 		 * on bare metal but may be supported in guests.
1856 		 */
1857 		if (!x86_init.hyper.x2apic_available()) {
1858 			pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1859 			x2apic_disable();
1860 			return;
1861 		}
1862 
1863 		/*
1864 		 * If the hypervisor supports extended destination ID in
1865 		 * MSI, that increases the maximum APIC ID that can be
1866 		 * used for non-remapped IRQ domains.
1867 		 */
1868 		if (x86_init.hyper.msi_ext_dest_id()) {
1869 			virt_ext_dest_id = 1;
1870 			apic_limit = 32767;
1871 		}
1872 
1873 		/*
1874 		 * Without IR, all CPUs can be addressed by IOAPIC/MSI only
1875 		 * in physical mode, and CPUs with an APIC ID that cannot
1876 		 * be addressed must not be brought online.
1877 		 */
1878 		x2apic_set_max_apicid(apic_limit);
1879 		x2apic_phys = 1;
1880 	}
1881 	x2apic_enable();
1882 }
1883 
1884 void __init check_x2apic(void)
1885 {
1886 	if (x2apic_enabled()) {
1887 		pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1888 		x2apic_mode = 1;
1889 		x2apic_state = X2APIC_ON;
1890 	} else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1891 		x2apic_state = X2APIC_DISABLED;
1892 	}
1893 }
1894 #else /* CONFIG_X86_X2APIC */
1895 static int __init validate_x2apic(void)
1896 {
1897 	if (!apic_is_x2apic_enabled())
1898 		return 0;
1899 	/*
1900 	 * Checkme: Can we simply turn off x2apic here instead of panic?
1901 	 */
1902 	panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n");
1903 }
1904 early_initcall(validate_x2apic);
1905 
1906 static inline void try_to_enable_x2apic(int remap_mode) { }
1907 static inline void __x2apic_enable(void) { }
1908 #endif /* !CONFIG_X86_X2APIC */
1909 
1910 void __init enable_IR_x2apic(void)
1911 {
1912 	unsigned long flags;
1913 	int ret, ir_stat;
1914 
1915 	if (skip_ioapic_setup) {
1916 		pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1917 		return;
1918 	}
1919 
1920 	ir_stat = irq_remapping_prepare();
1921 	if (ir_stat < 0 && !x2apic_supported())
1922 		return;
1923 
1924 	ret = save_ioapic_entries();
1925 	if (ret) {
1926 		pr_info("Saving IO-APIC state failed: %d\n", ret);
1927 		return;
1928 	}
1929 
1930 	local_irq_save(flags);
1931 	legacy_pic->mask_all();
1932 	mask_ioapic_entries();
1933 
1934 	/* If irq_remapping_prepare() succeeded, try to enable it */
1935 	if (ir_stat >= 0)
1936 		ir_stat = irq_remapping_enable();
1937 	/* ir_stat contains the remap mode or an error code */
1938 	try_to_enable_x2apic(ir_stat);
1939 
1940 	if (ir_stat < 0)
1941 		restore_ioapic_entries();
1942 	legacy_pic->restore_mask();
1943 	local_irq_restore(flags);
1944 }
1945 
1946 #ifdef CONFIG_X86_64
1947 /*
1948  * Detect and enable local APICs on non-SMP boards.
1949  * Original code written by Keir Fraser.
1950  * On AMD64 we trust the BIOS - if it says no APIC it is likely
1951  * not correctly set up (usually the APIC timer won't work etc.)
1952  */
1953 static int __init detect_init_APIC(void)
1954 {
1955 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
1956 		pr_info("No local APIC present\n");
1957 		return -1;
1958 	}
1959 
1960 	mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1961 	return 0;
1962 }
1963 #else
1964 
1965 static int __init apic_verify(void)
1966 {
1967 	u32 features, h, l;
1968 
1969 	/*
1970 	 * The APIC feature bit should now be enabled
1971 	 * in `cpuid'
1972 	 */
1973 	features = cpuid_edx(1);
1974 	if (!(features & (1 << X86_FEATURE_APIC))) {
1975 		pr_warn("Could not enable APIC!\n");
1976 		return -1;
1977 	}
1978 	set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1979 	mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1980 
1981 	/* The BIOS may have set up the APIC at some other address */
1982 	if (boot_cpu_data.x86 >= 6) {
1983 		rdmsr(MSR_IA32_APICBASE, l, h);
1984 		if (l & MSR_IA32_APICBASE_ENABLE)
1985 			mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
1986 	}
1987 
1988 	pr_info("Found and enabled local APIC!\n");
1989 	return 0;
1990 }
1991 
1992 int __init apic_force_enable(unsigned long addr)
1993 {
1994 	u32 h, l;
1995 
1996 	if (disable_apic)
1997 		return -1;
1998 
1999 	/*
2000 	 * Some BIOSes disable the local APIC in the APIC_BASE
2001 	 * MSR. This can only be done in software for Intel P6 or later
2002 	 * and AMD K7 (Model > 1) or later.
2003 	 */
2004 	if (boot_cpu_data.x86 >= 6) {
2005 		rdmsr(MSR_IA32_APICBASE, l, h);
2006 		if (!(l & MSR_IA32_APICBASE_ENABLE)) {
2007 			pr_info("Local APIC disabled by BIOS -- reenabling.\n");
2008 			l &= ~MSR_IA32_APICBASE_BASE;
2009 			l |= MSR_IA32_APICBASE_ENABLE | addr;
2010 			wrmsr(MSR_IA32_APICBASE, l, h);
2011 			enabled_via_apicbase = 1;
2012 		}
2013 	}
2014 	return apic_verify();
2015 }
2016 
2017 /*
2018  * Detect and initialize APIC
2019  */
2020 static int __init detect_init_APIC(void)
2021 {
2022 	/* Disabled by kernel option? */
2023 	if (disable_apic)
2024 		return -1;
2025 
2026 	switch (boot_cpu_data.x86_vendor) {
2027 	case X86_VENDOR_AMD:
2028 		if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
2029 		    (boot_cpu_data.x86 >= 15))
2030 			break;
2031 		goto no_apic;
2032 	case X86_VENDOR_HYGON:
2033 		break;
2034 	case X86_VENDOR_INTEL:
2035 		if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
2036 		    (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
2037 			break;
2038 		goto no_apic;
2039 	default:
2040 		goto no_apic;
2041 	}
2042 
2043 	if (!boot_cpu_has(X86_FEATURE_APIC)) {
2044 		/*
2045 		 * Over-ride BIOS and try to enable the local APIC only if
2046 		 * "lapic" specified.
2047 		 */
2048 		if (!force_enable_local_apic) {
2049 			pr_info("Local APIC disabled by BIOS -- "
2050 				"you can enable it with \"lapic\"\n");
2051 			return -1;
2052 		}
2053 		if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
2054 			return -1;
2055 	} else {
2056 		if (apic_verify())
2057 			return -1;
2058 	}
2059 
2060 	apic_pm_activate();
2061 
2062 	return 0;
2063 
2064 no_apic:
2065 	pr_info("No local APIC present or hardware disabled\n");
2066 	return -1;
2067 }
2068 #endif
2069 
2070 /**
2071  * init_apic_mappings - initialize APIC mappings
2072  */
2073 void __init init_apic_mappings(void)
2074 {
2075 	unsigned int new_apicid;
2076 
2077 	if (apic_validate_deadline_timer())
2078 		pr_info("TSC deadline timer available\n");
2079 
2080 	if (x2apic_mode) {
2081 		boot_cpu_physical_apicid = read_apic_id();
2082 		return;
2083 	}
2084 
2085 	/* If no local APIC can be found return early */
2086 	if (!smp_found_config && detect_init_APIC()) {
2087 		/* lets NOP'ify apic operations */
2088 		pr_info("APIC: disable apic facility\n");
2089 		apic_disable();
2090 	} else {
2091 		apic_phys = mp_lapic_addr;
2092 
2093 		/*
2094 		 * If the system has ACPI MADT tables or MP info, the LAPIC
2095 		 * address is already registered.
2096 		 */
2097 		if (!acpi_lapic && !smp_found_config)
2098 			register_lapic_address(apic_phys);
2099 	}
2100 
2101 	/*
2102 	 * Fetch the APIC ID of the BSP in case we have a
2103 	 * default configuration (or the MP table is broken).
2104 	 */
2105 	new_apicid = read_apic_id();
2106 	if (boot_cpu_physical_apicid != new_apicid) {
2107 		boot_cpu_physical_apicid = new_apicid;
2108 		/*
2109 		 * yeah -- we lie about apic_version
2110 		 * in case if apic was disabled via boot option
2111 		 * but it's not a problem for SMP compiled kernel
2112 		 * since apic_intr_mode_select is prepared for such
2113 		 * a case and disable smp mode
2114 		 */
2115 		boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2116 	}
2117 }
2118 
2119 void __init register_lapic_address(unsigned long address)
2120 {
2121 	mp_lapic_addr = address;
2122 
2123 	if (!x2apic_mode) {
2124 		set_fixmap_nocache(FIX_APIC_BASE, address);
2125 		apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
2126 			    APIC_BASE, address);
2127 	}
2128 	if (boot_cpu_physical_apicid == -1U) {
2129 		boot_cpu_physical_apicid  = read_apic_id();
2130 		boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2131 	}
2132 }
2133 
2134 /*
2135  * Local APIC interrupts
2136  */
2137 
2138 /*
2139  * Common handling code for spurious_interrupt and spurious_vector entry
2140  * points below. No point in allowing the compiler to inline it twice.
2141  */
2142 static noinline void handle_spurious_interrupt(u8 vector)
2143 {
2144 	u32 v;
2145 
2146 	trace_spurious_apic_entry(vector);
2147 
2148 	inc_irq_stat(irq_spurious_count);
2149 
2150 	/*
2151 	 * If this is a spurious interrupt then do not acknowledge
2152 	 */
2153 	if (vector == SPURIOUS_APIC_VECTOR) {
2154 		/* See SDM vol 3 */
2155 		pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n",
2156 			smp_processor_id());
2157 		goto out;
2158 	}
2159 
2160 	/*
2161 	 * If it is a vectored one, verify it's set in the ISR. If set,
2162 	 * acknowledge it.
2163 	 */
2164 	v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
2165 	if (v & (1 << (vector & 0x1f))) {
2166 		pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n",
2167 			vector, smp_processor_id());
2168 		ack_APIC_irq();
2169 	} else {
2170 		pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n",
2171 			vector, smp_processor_id());
2172 	}
2173 out:
2174 	trace_spurious_apic_exit(vector);
2175 }
2176 
2177 /**
2178  * spurious_interrupt - Catch all for interrupts raised on unused vectors
2179  * @regs:	Pointer to pt_regs on stack
2180  * @vector:	The vector number
2181  *
2182  * This is invoked from ASM entry code to catch all interrupts which
2183  * trigger on an entry which is routed to the common_spurious idtentry
2184  * point.
2185  */
2186 DEFINE_IDTENTRY_IRQ(spurious_interrupt)
2187 {
2188 	handle_spurious_interrupt(vector);
2189 }
2190 
2191 DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt)
2192 {
2193 	handle_spurious_interrupt(SPURIOUS_APIC_VECTOR);
2194 }
2195 
2196 /*
2197  * This interrupt should never happen with our APIC/SMP architecture
2198  */
2199 DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt)
2200 {
2201 	static const char * const error_interrupt_reason[] = {
2202 		"Send CS error",		/* APIC Error Bit 0 */
2203 		"Receive CS error",		/* APIC Error Bit 1 */
2204 		"Send accept error",		/* APIC Error Bit 2 */
2205 		"Receive accept error",		/* APIC Error Bit 3 */
2206 		"Redirectable IPI",		/* APIC Error Bit 4 */
2207 		"Send illegal vector",		/* APIC Error Bit 5 */
2208 		"Received illegal vector",	/* APIC Error Bit 6 */
2209 		"Illegal register address",	/* APIC Error Bit 7 */
2210 	};
2211 	u32 v, i = 0;
2212 
2213 	trace_error_apic_entry(ERROR_APIC_VECTOR);
2214 
2215 	/* First tickle the hardware, only then report what went on. -- REW */
2216 	if (lapic_get_maxlvt() > 3)	/* Due to the Pentium erratum 3AP. */
2217 		apic_write(APIC_ESR, 0);
2218 	v = apic_read(APIC_ESR);
2219 	ack_APIC_irq();
2220 	atomic_inc(&irq_err_count);
2221 
2222 	apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
2223 		    smp_processor_id(), v);
2224 
2225 	v &= 0xff;
2226 	while (v) {
2227 		if (v & 0x1)
2228 			apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
2229 		i++;
2230 		v >>= 1;
2231 	}
2232 
2233 	apic_printk(APIC_DEBUG, KERN_CONT "\n");
2234 
2235 	trace_error_apic_exit(ERROR_APIC_VECTOR);
2236 }
2237 
2238 /**
2239  * connect_bsp_APIC - attach the APIC to the interrupt system
2240  */
2241 static void __init connect_bsp_APIC(void)
2242 {
2243 #ifdef CONFIG_X86_32
2244 	if (pic_mode) {
2245 		/*
2246 		 * Do not trust the local APIC being empty at bootup.
2247 		 */
2248 		clear_local_APIC();
2249 		/*
2250 		 * PIC mode, enable APIC mode in the IMCR, i.e.  connect BSP's
2251 		 * local APIC to INT and NMI lines.
2252 		 */
2253 		apic_printk(APIC_VERBOSE, "leaving PIC mode, "
2254 				"enabling APIC mode.\n");
2255 		imcr_pic_to_apic();
2256 	}
2257 #endif
2258 }
2259 
2260 /**
2261  * disconnect_bsp_APIC - detach the APIC from the interrupt system
2262  * @virt_wire_setup:	indicates, whether virtual wire mode is selected
2263  *
2264  * Virtual wire mode is necessary to deliver legacy interrupts even when the
2265  * APIC is disabled.
2266  */
2267 void disconnect_bsp_APIC(int virt_wire_setup)
2268 {
2269 	unsigned int value;
2270 
2271 #ifdef CONFIG_X86_32
2272 	if (pic_mode) {
2273 		/*
2274 		 * Put the board back into PIC mode (has an effect only on
2275 		 * certain older boards).  Note that APIC interrupts, including
2276 		 * IPIs, won't work beyond this point!  The only exception are
2277 		 * INIT IPIs.
2278 		 */
2279 		apic_printk(APIC_VERBOSE, "disabling APIC mode, "
2280 				"entering PIC mode.\n");
2281 		imcr_apic_to_pic();
2282 		return;
2283 	}
2284 #endif
2285 
2286 	/* Go back to Virtual Wire compatibility mode */
2287 
2288 	/* For the spurious interrupt use vector F, and enable it */
2289 	value = apic_read(APIC_SPIV);
2290 	value &= ~APIC_VECTOR_MASK;
2291 	value |= APIC_SPIV_APIC_ENABLED;
2292 	value |= 0xf;
2293 	apic_write(APIC_SPIV, value);
2294 
2295 	if (!virt_wire_setup) {
2296 		/*
2297 		 * For LVT0 make it edge triggered, active high,
2298 		 * external and enabled
2299 		 */
2300 		value = apic_read(APIC_LVT0);
2301 		value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2302 			APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2303 			APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2304 		value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2305 		value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2306 		apic_write(APIC_LVT0, value);
2307 	} else {
2308 		/* Disable LVT0 */
2309 		apic_write(APIC_LVT0, APIC_LVT_MASKED);
2310 	}
2311 
2312 	/*
2313 	 * For LVT1 make it edge triggered, active high,
2314 	 * nmi and enabled
2315 	 */
2316 	value = apic_read(APIC_LVT1);
2317 	value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2318 			APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2319 			APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2320 	value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2321 	value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2322 	apic_write(APIC_LVT1, value);
2323 }
2324 
2325 /*
2326  * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2327  * contiguously, it equals to current allocated max logical CPU ID plus 1.
2328  * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range,
2329  * so the maximum of nr_logical_cpuids is nr_cpu_ids.
2330  *
2331  * NOTE: Reserve 0 for BSP.
2332  */
2333 static int nr_logical_cpuids = 1;
2334 
2335 /*
2336  * Used to store mapping between logical CPU IDs and APIC IDs.
2337  */
2338 static int cpuid_to_apicid[] = {
2339 	[0 ... NR_CPUS - 1] = -1,
2340 };
2341 
2342 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
2343 {
2344 	return phys_id == cpuid_to_apicid[cpu];
2345 }
2346 
2347 #ifdef CONFIG_SMP
2348 /**
2349  * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread
2350  * @apicid: APIC ID to check
2351  */
2352 bool apic_id_is_primary_thread(unsigned int apicid)
2353 {
2354 	u32 mask;
2355 
2356 	if (smp_num_siblings == 1)
2357 		return true;
2358 	/* Isolate the SMT bit(s) in the APICID and check for 0 */
2359 	mask = (1U << (fls(smp_num_siblings) - 1)) - 1;
2360 	return !(apicid & mask);
2361 }
2362 #endif
2363 
2364 /*
2365  * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2366  * and cpuid_to_apicid[] synchronized.
2367  */
2368 static int allocate_logical_cpuid(int apicid)
2369 {
2370 	int i;
2371 
2372 	/*
2373 	 * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2374 	 * check if the kernel has allocated a cpuid for it.
2375 	 */
2376 	for (i = 0; i < nr_logical_cpuids; i++) {
2377 		if (cpuid_to_apicid[i] == apicid)
2378 			return i;
2379 	}
2380 
2381 	/* Allocate a new cpuid. */
2382 	if (nr_logical_cpuids >= nr_cpu_ids) {
2383 		WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. "
2384 			     "Processor %d/0x%x and the rest are ignored.\n",
2385 			     nr_cpu_ids, nr_logical_cpuids, apicid);
2386 		return -EINVAL;
2387 	}
2388 
2389 	cpuid_to_apicid[nr_logical_cpuids] = apicid;
2390 	return nr_logical_cpuids++;
2391 }
2392 
2393 int generic_processor_info(int apicid, int version)
2394 {
2395 	int cpu, max = nr_cpu_ids;
2396 	bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2397 				phys_cpu_present_map);
2398 
2399 	/*
2400 	 * boot_cpu_physical_apicid is designed to have the apicid
2401 	 * returned by read_apic_id(), i.e, the apicid of the
2402 	 * currently booting-up processor. However, on some platforms,
2403 	 * it is temporarily modified by the apicid reported as BSP
2404 	 * through MP table. Concretely:
2405 	 *
2406 	 * - arch/x86/kernel/mpparse.c: MP_processor_info()
2407 	 * - arch/x86/mm/amdtopology.c: amd_numa_init()
2408 	 *
2409 	 * This function is executed with the modified
2410 	 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2411 	 * parameter doesn't work to disable APs on kdump 2nd kernel.
2412 	 *
2413 	 * Since fixing handling of boot_cpu_physical_apicid requires
2414 	 * another discussion and tests on each platform, we leave it
2415 	 * for now and here we use read_apic_id() directly in this
2416 	 * function, generic_processor_info().
2417 	 */
2418 	if (disabled_cpu_apicid != BAD_APICID &&
2419 	    disabled_cpu_apicid != read_apic_id() &&
2420 	    disabled_cpu_apicid == apicid) {
2421 		int thiscpu = num_processors + disabled_cpus;
2422 
2423 		pr_warn("APIC: Disabling requested cpu."
2424 			" Processor %d/0x%x ignored.\n", thiscpu, apicid);
2425 
2426 		disabled_cpus++;
2427 		return -ENODEV;
2428 	}
2429 
2430 	/*
2431 	 * If boot cpu has not been detected yet, then only allow upto
2432 	 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2433 	 */
2434 	if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2435 	    apicid != boot_cpu_physical_apicid) {
2436 		int thiscpu = max + disabled_cpus - 1;
2437 
2438 		pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost"
2439 			" reached. Keeping one slot for boot cpu."
2440 			"  Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2441 
2442 		disabled_cpus++;
2443 		return -ENODEV;
2444 	}
2445 
2446 	if (num_processors >= nr_cpu_ids) {
2447 		int thiscpu = max + disabled_cpus;
2448 
2449 		pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. "
2450 			"Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2451 
2452 		disabled_cpus++;
2453 		return -EINVAL;
2454 	}
2455 
2456 	if (apicid == boot_cpu_physical_apicid) {
2457 		/*
2458 		 * x86_bios_cpu_apicid is required to have processors listed
2459 		 * in same order as logical cpu numbers. Hence the first
2460 		 * entry is BSP, and so on.
2461 		 * boot_cpu_init() already hold bit 0 in cpu_present_mask
2462 		 * for BSP.
2463 		 */
2464 		cpu = 0;
2465 
2466 		/* Logical cpuid 0 is reserved for BSP. */
2467 		cpuid_to_apicid[0] = apicid;
2468 	} else {
2469 		cpu = allocate_logical_cpuid(apicid);
2470 		if (cpu < 0) {
2471 			disabled_cpus++;
2472 			return -EINVAL;
2473 		}
2474 	}
2475 
2476 	/*
2477 	 * Validate version
2478 	 */
2479 	if (version == 0x0) {
2480 		pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2481 			cpu, apicid);
2482 		version = 0x10;
2483 	}
2484 
2485 	if (version != boot_cpu_apic_version) {
2486 		pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2487 			boot_cpu_apic_version, cpu, version);
2488 	}
2489 
2490 	if (apicid > max_physical_apicid)
2491 		max_physical_apicid = apicid;
2492 
2493 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2494 	early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2495 	early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2496 #endif
2497 #ifdef CONFIG_X86_32
2498 	early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2499 		apic->x86_32_early_logical_apicid(cpu);
2500 #endif
2501 	set_cpu_possible(cpu, true);
2502 	physid_set(apicid, phys_cpu_present_map);
2503 	set_cpu_present(cpu, true);
2504 	num_processors++;
2505 
2506 	return cpu;
2507 }
2508 
2509 int hard_smp_processor_id(void)
2510 {
2511 	return read_apic_id();
2512 }
2513 
2514 void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg,
2515 			   bool dmar)
2516 {
2517 	memset(msg, 0, sizeof(*msg));
2518 
2519 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
2520 	msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical;
2521 	msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF;
2522 
2523 	msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED;
2524 	msg->arch_data.vector = cfg->vector;
2525 
2526 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
2527 	/*
2528 	 * Only the IOMMU itself can use the trick of putting destination
2529 	 * APIC ID into the high bits of the address. Anything else would
2530 	 * just be writing to memory if it tried that, and needs IR to
2531 	 * address APICs which can't be addressed in the normal 32-bit
2532 	 * address range at 0xFFExxxxx. That is typically just 8 bits, but
2533 	 * some hypervisors allow the extended destination ID field in bits
2534 	 * 5-11 to be used, giving support for 15 bits of APIC IDs in total.
2535 	 */
2536 	if (dmar)
2537 		msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8;
2538 	else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000)
2539 		msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8;
2540 	else
2541 		WARN_ON_ONCE(cfg->dest_apicid > 0xFF);
2542 }
2543 
2544 u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid)
2545 {
2546 	u32 dest = msg->arch_addr_lo.destid_0_7;
2547 
2548 	if (extid)
2549 		dest |= msg->arch_addr_hi.destid_8_31 << 8;
2550 	return dest;
2551 }
2552 EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid);
2553 
2554 /*
2555  * Override the generic EOI implementation with an optimized version.
2556  * Only called during early boot when only one CPU is active and with
2557  * interrupts disabled, so we know this does not race with actual APIC driver
2558  * use.
2559  */
2560 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2561 {
2562 	struct apic **drv;
2563 
2564 	for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2565 		/* Should happen once for each apic */
2566 		WARN_ON((*drv)->eoi_write == eoi_write);
2567 		(*drv)->native_eoi_write = (*drv)->eoi_write;
2568 		(*drv)->eoi_write = eoi_write;
2569 	}
2570 }
2571 
2572 static void __init apic_bsp_up_setup(void)
2573 {
2574 #ifdef CONFIG_X86_64
2575 	apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid));
2576 #else
2577 	/*
2578 	 * Hack: In case of kdump, after a crash, kernel might be booting
2579 	 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2580 	 * might be zero if read from MP tables. Get it from LAPIC.
2581 	 */
2582 # ifdef CONFIG_CRASH_DUMP
2583 	boot_cpu_physical_apicid = read_apic_id();
2584 # endif
2585 #endif
2586 	physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2587 }
2588 
2589 /**
2590  * apic_bsp_setup - Setup function for local apic and io-apic
2591  * @upmode:		Force UP mode (for APIC_init_uniprocessor)
2592  */
2593 static void __init apic_bsp_setup(bool upmode)
2594 {
2595 	connect_bsp_APIC();
2596 	if (upmode)
2597 		apic_bsp_up_setup();
2598 	setup_local_APIC();
2599 
2600 	enable_IO_APIC();
2601 	end_local_APIC_setup();
2602 	irq_remap_enable_fault_handling();
2603 	setup_IO_APIC();
2604 	lapic_update_legacy_vectors();
2605 }
2606 
2607 #ifdef CONFIG_UP_LATE_INIT
2608 void __init up_late_init(void)
2609 {
2610 	if (apic_intr_mode == APIC_PIC)
2611 		return;
2612 
2613 	/* Setup local timer */
2614 	x86_init.timers.setup_percpu_clockev();
2615 }
2616 #endif
2617 
2618 /*
2619  * Power management
2620  */
2621 #ifdef CONFIG_PM
2622 
2623 static struct {
2624 	/*
2625 	 * 'active' is true if the local APIC was enabled by us and
2626 	 * not the BIOS; this signifies that we are also responsible
2627 	 * for disabling it before entering apm/acpi suspend
2628 	 */
2629 	int active;
2630 	/* r/w apic fields */
2631 	unsigned int apic_id;
2632 	unsigned int apic_taskpri;
2633 	unsigned int apic_ldr;
2634 	unsigned int apic_dfr;
2635 	unsigned int apic_spiv;
2636 	unsigned int apic_lvtt;
2637 	unsigned int apic_lvtpc;
2638 	unsigned int apic_lvt0;
2639 	unsigned int apic_lvt1;
2640 	unsigned int apic_lvterr;
2641 	unsigned int apic_tmict;
2642 	unsigned int apic_tdcr;
2643 	unsigned int apic_thmr;
2644 	unsigned int apic_cmci;
2645 } apic_pm_state;
2646 
2647 static int lapic_suspend(void)
2648 {
2649 	unsigned long flags;
2650 	int maxlvt;
2651 
2652 	if (!apic_pm_state.active)
2653 		return 0;
2654 
2655 	maxlvt = lapic_get_maxlvt();
2656 
2657 	apic_pm_state.apic_id = apic_read(APIC_ID);
2658 	apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2659 	apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2660 	apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2661 	apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2662 	apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2663 	if (maxlvt >= 4)
2664 		apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2665 	apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2666 	apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2667 	apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2668 	apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2669 	apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2670 #ifdef CONFIG_X86_THERMAL_VECTOR
2671 	if (maxlvt >= 5)
2672 		apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2673 #endif
2674 #ifdef CONFIG_X86_MCE_INTEL
2675 	if (maxlvt >= 6)
2676 		apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2677 #endif
2678 
2679 	local_irq_save(flags);
2680 
2681 	/*
2682 	 * Mask IOAPIC before disabling the local APIC to prevent stale IRR
2683 	 * entries on some implementations.
2684 	 */
2685 	mask_ioapic_entries();
2686 
2687 	disable_local_APIC();
2688 
2689 	irq_remapping_disable();
2690 
2691 	local_irq_restore(flags);
2692 	return 0;
2693 }
2694 
2695 static void lapic_resume(void)
2696 {
2697 	unsigned int l, h;
2698 	unsigned long flags;
2699 	int maxlvt;
2700 
2701 	if (!apic_pm_state.active)
2702 		return;
2703 
2704 	local_irq_save(flags);
2705 
2706 	/*
2707 	 * IO-APIC and PIC have their own resume routines.
2708 	 * We just mask them here to make sure the interrupt
2709 	 * subsystem is completely quiet while we enable x2apic
2710 	 * and interrupt-remapping.
2711 	 */
2712 	mask_ioapic_entries();
2713 	legacy_pic->mask_all();
2714 
2715 	if (x2apic_mode) {
2716 		__x2apic_enable();
2717 	} else {
2718 		/*
2719 		 * Make sure the APICBASE points to the right address
2720 		 *
2721 		 * FIXME! This will be wrong if we ever support suspend on
2722 		 * SMP! We'll need to do this as part of the CPU restore!
2723 		 */
2724 		if (boot_cpu_data.x86 >= 6) {
2725 			rdmsr(MSR_IA32_APICBASE, l, h);
2726 			l &= ~MSR_IA32_APICBASE_BASE;
2727 			l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2728 			wrmsr(MSR_IA32_APICBASE, l, h);
2729 		}
2730 	}
2731 
2732 	maxlvt = lapic_get_maxlvt();
2733 	apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2734 	apic_write(APIC_ID, apic_pm_state.apic_id);
2735 	apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2736 	apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2737 	apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2738 	apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2739 	apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2740 	apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2741 #ifdef CONFIG_X86_THERMAL_VECTOR
2742 	if (maxlvt >= 5)
2743 		apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2744 #endif
2745 #ifdef CONFIG_X86_MCE_INTEL
2746 	if (maxlvt >= 6)
2747 		apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2748 #endif
2749 	if (maxlvt >= 4)
2750 		apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2751 	apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2752 	apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2753 	apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2754 	apic_write(APIC_ESR, 0);
2755 	apic_read(APIC_ESR);
2756 	apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2757 	apic_write(APIC_ESR, 0);
2758 	apic_read(APIC_ESR);
2759 
2760 	irq_remapping_reenable(x2apic_mode);
2761 
2762 	local_irq_restore(flags);
2763 }
2764 
2765 /*
2766  * This device has no shutdown method - fully functioning local APICs
2767  * are needed on every CPU up until machine_halt/restart/poweroff.
2768  */
2769 
2770 static struct syscore_ops lapic_syscore_ops = {
2771 	.resume		= lapic_resume,
2772 	.suspend	= lapic_suspend,
2773 };
2774 
2775 static void apic_pm_activate(void)
2776 {
2777 	apic_pm_state.active = 1;
2778 }
2779 
2780 static int __init init_lapic_sysfs(void)
2781 {
2782 	/* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2783 	if (boot_cpu_has(X86_FEATURE_APIC))
2784 		register_syscore_ops(&lapic_syscore_ops);
2785 
2786 	return 0;
2787 }
2788 
2789 /* local apic needs to resume before other devices access its registers. */
2790 core_initcall(init_lapic_sysfs);
2791 
2792 #else	/* CONFIG_PM */
2793 
2794 static void apic_pm_activate(void) { }
2795 
2796 #endif	/* CONFIG_PM */
2797 
2798 #ifdef CONFIG_X86_64
2799 
2800 static int multi_checked;
2801 static int multi;
2802 
2803 static int set_multi(const struct dmi_system_id *d)
2804 {
2805 	if (multi)
2806 		return 0;
2807 	pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2808 	multi = 1;
2809 	return 0;
2810 }
2811 
2812 static const struct dmi_system_id multi_dmi_table[] = {
2813 	{
2814 		.callback = set_multi,
2815 		.ident = "IBM System Summit2",
2816 		.matches = {
2817 			DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2818 			DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2819 		},
2820 	},
2821 	{}
2822 };
2823 
2824 static void dmi_check_multi(void)
2825 {
2826 	if (multi_checked)
2827 		return;
2828 
2829 	dmi_check_system(multi_dmi_table);
2830 	multi_checked = 1;
2831 }
2832 
2833 /*
2834  * apic_is_clustered_box() -- Check if we can expect good TSC
2835  *
2836  * Thus far, the major user of this is IBM's Summit2 series:
2837  * Clustered boxes may have unsynced TSC problems if they are
2838  * multi-chassis.
2839  * Use DMI to check them
2840  */
2841 int apic_is_clustered_box(void)
2842 {
2843 	dmi_check_multi();
2844 	return multi;
2845 }
2846 #endif
2847 
2848 /*
2849  * APIC command line parameters
2850  */
2851 static int __init setup_disableapic(char *arg)
2852 {
2853 	disable_apic = 1;
2854 	setup_clear_cpu_cap(X86_FEATURE_APIC);
2855 	return 0;
2856 }
2857 early_param("disableapic", setup_disableapic);
2858 
2859 /* same as disableapic, for compatibility */
2860 static int __init setup_nolapic(char *arg)
2861 {
2862 	return setup_disableapic(arg);
2863 }
2864 early_param("nolapic", setup_nolapic);
2865 
2866 static int __init parse_lapic_timer_c2_ok(char *arg)
2867 {
2868 	local_apic_timer_c2_ok = 1;
2869 	return 0;
2870 }
2871 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2872 
2873 static int __init parse_disable_apic_timer(char *arg)
2874 {
2875 	disable_apic_timer = 1;
2876 	return 0;
2877 }
2878 early_param("noapictimer", parse_disable_apic_timer);
2879 
2880 static int __init parse_nolapic_timer(char *arg)
2881 {
2882 	disable_apic_timer = 1;
2883 	return 0;
2884 }
2885 early_param("nolapic_timer", parse_nolapic_timer);
2886 
2887 static int __init apic_set_verbosity(char *arg)
2888 {
2889 	if (!arg)  {
2890 #ifdef CONFIG_X86_64
2891 		skip_ioapic_setup = 0;
2892 		return 0;
2893 #endif
2894 		return -EINVAL;
2895 	}
2896 
2897 	if (strcmp("debug", arg) == 0)
2898 		apic_verbosity = APIC_DEBUG;
2899 	else if (strcmp("verbose", arg) == 0)
2900 		apic_verbosity = APIC_VERBOSE;
2901 #ifdef CONFIG_X86_64
2902 	else {
2903 		pr_warn("APIC Verbosity level %s not recognised"
2904 			" use apic=verbose or apic=debug\n", arg);
2905 		return -EINVAL;
2906 	}
2907 #endif
2908 
2909 	return 0;
2910 }
2911 early_param("apic", apic_set_verbosity);
2912 
2913 static int __init lapic_insert_resource(void)
2914 {
2915 	if (!apic_phys)
2916 		return -1;
2917 
2918 	/* Put local APIC into the resource map. */
2919 	lapic_resource.start = apic_phys;
2920 	lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2921 	insert_resource(&iomem_resource, &lapic_resource);
2922 
2923 	return 0;
2924 }
2925 
2926 /*
2927  * need call insert after e820__reserve_resources()
2928  * that is using request_resource
2929  */
2930 late_initcall(lapic_insert_resource);
2931 
2932 static int __init apic_set_disabled_cpu_apicid(char *arg)
2933 {
2934 	if (!arg || !get_option(&arg, &disabled_cpu_apicid))
2935 		return -EINVAL;
2936 
2937 	return 0;
2938 }
2939 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
2940 
2941 static int __init apic_set_extnmi(char *arg)
2942 {
2943 	if (!arg)
2944 		return -EINVAL;
2945 
2946 	if (!strncmp("all", arg, 3))
2947 		apic_extnmi = APIC_EXTNMI_ALL;
2948 	else if (!strncmp("none", arg, 4))
2949 		apic_extnmi = APIC_EXTNMI_NONE;
2950 	else if (!strncmp("bsp", arg, 3))
2951 		apic_extnmi = APIC_EXTNMI_BSP;
2952 	else {
2953 		pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2954 		return -EINVAL;
2955 	}
2956 
2957 	return 0;
2958 }
2959 early_param("apic_extnmi", apic_set_extnmi);
2960