1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Local APIC handling, local APIC timers 4 * 5 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 6 * 7 * Fixes 8 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 9 * thanks to Eric Gilmore 10 * and Rolf G. Tews 11 * for testing these extensively. 12 * Maciej W. Rozycki : Various updates and fixes. 13 * Mikael Pettersson : Power Management for UP-APIC. 14 * Pavel Machek and 15 * Mikael Pettersson : PM converted to driver model. 16 */ 17 18 #include <linux/perf_event.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mc146818rtc.h> 21 #include <linux/acpi_pmtmr.h> 22 #include <linux/bitmap.h> 23 #include <linux/clockchips.h> 24 #include <linux/interrupt.h> 25 #include <linux/memblock.h> 26 #include <linux/ftrace.h> 27 #include <linux/ioport.h> 28 #include <linux/export.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/delay.h> 31 #include <linux/timex.h> 32 #include <linux/i8253.h> 33 #include <linux/dmar.h> 34 #include <linux/init.h> 35 #include <linux/cpu.h> 36 #include <linux/dmi.h> 37 #include <linux/smp.h> 38 #include <linux/mm.h> 39 40 #include <xen/xen.h> 41 42 #include <asm/trace/irq_vectors.h> 43 #include <asm/irq_remapping.h> 44 #include <asm/pc-conf-reg.h> 45 #include <asm/perf_event.h> 46 #include <asm/x86_init.h> 47 #include <linux/atomic.h> 48 #include <asm/barrier.h> 49 #include <asm/mpspec.h> 50 #include <asm/i8259.h> 51 #include <asm/proto.h> 52 #include <asm/traps.h> 53 #include <asm/apic.h> 54 #include <asm/acpi.h> 55 #include <asm/io_apic.h> 56 #include <asm/desc.h> 57 #include <asm/hpet.h> 58 #include <asm/mtrr.h> 59 #include <asm/time.h> 60 #include <asm/smp.h> 61 #include <asm/mce.h> 62 #include <asm/tsc.h> 63 #include <asm/hypervisor.h> 64 #include <asm/cpu_device_id.h> 65 #include <asm/intel-family.h> 66 #include <asm/irq_regs.h> 67 #include <asm/cpu.h> 68 69 #include "local.h" 70 71 /* Processor that is doing the boot up */ 72 u32 boot_cpu_physical_apicid __ro_after_init = BAD_APICID; 73 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); 74 75 u8 boot_cpu_apic_version __ro_after_init; 76 77 /* 78 * This variable controls which CPUs receive external NMIs. By default, 79 * external NMIs are delivered only to the BSP. 80 */ 81 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP; 82 83 /* 84 * Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID 85 */ 86 static bool virt_ext_dest_id __ro_after_init; 87 88 /* For parallel bootup. */ 89 unsigned long apic_mmio_base __ro_after_init; 90 91 static inline bool apic_accessible(void) 92 { 93 return x2apic_mode || apic_mmio_base; 94 } 95 96 #ifdef CONFIG_X86_32 97 /* Local APIC was disabled by the BIOS and enabled by the kernel */ 98 static int enabled_via_apicbase __ro_after_init; 99 100 /* 101 * Handle interrupt mode configuration register (IMCR). 102 * This register controls whether the interrupt signals 103 * that reach the BSP come from the master PIC or from the 104 * local APIC. Before entering Symmetric I/O Mode, either 105 * the BIOS or the operating system must switch out of 106 * PIC Mode by changing the IMCR. 107 */ 108 static inline void imcr_pic_to_apic(void) 109 { 110 /* NMI and 8259 INTR go through APIC */ 111 pc_conf_set(PC_CONF_MPS_IMCR, 0x01); 112 } 113 114 static inline void imcr_apic_to_pic(void) 115 { 116 /* NMI and 8259 INTR go directly to BSP */ 117 pc_conf_set(PC_CONF_MPS_IMCR, 0x00); 118 } 119 #endif 120 121 /* 122 * Knob to control our willingness to enable the local APIC. 123 * 124 * +1=force-enable 125 */ 126 static int force_enable_local_apic __initdata; 127 128 /* 129 * APIC command line parameters 130 */ 131 static int __init parse_lapic(char *arg) 132 { 133 if (IS_ENABLED(CONFIG_X86_32) && !arg) 134 force_enable_local_apic = 1; 135 else if (arg && !strncmp(arg, "notscdeadline", 13)) 136 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 137 return 0; 138 } 139 early_param("lapic", parse_lapic); 140 141 #ifdef CONFIG_X86_64 142 static int apic_calibrate_pmtmr __initdata; 143 static __init int setup_apicpmtimer(char *s) 144 { 145 apic_calibrate_pmtmr = 1; 146 notsc_setup(NULL); 147 return 1; 148 } 149 __setup("apicpmtimer", setup_apicpmtimer); 150 #endif 151 152 static unsigned long mp_lapic_addr __ro_after_init; 153 bool apic_is_disabled __ro_after_init; 154 /* Disable local APIC timer from the kernel commandline or via dmi quirk */ 155 static int disable_apic_timer __initdata; 156 /* Local APIC timer works in C2 */ 157 int local_apic_timer_c2_ok __ro_after_init; 158 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); 159 160 /* 161 * Debug level, exported for io_apic.c 162 */ 163 int apic_verbosity __ro_after_init; 164 165 int pic_mode __ro_after_init; 166 167 /* Have we found an MP table */ 168 int smp_found_config __ro_after_init; 169 170 static struct resource lapic_resource = { 171 .name = "Local APIC", 172 .flags = IORESOURCE_MEM | IORESOURCE_BUSY, 173 }; 174 175 unsigned int lapic_timer_period = 0; 176 177 static void apic_pm_activate(void); 178 179 /* 180 * Get the LAPIC version 181 */ 182 static inline int lapic_get_version(void) 183 { 184 return GET_APIC_VERSION(apic_read(APIC_LVR)); 185 } 186 187 /* 188 * Check, if the APIC is integrated or a separate chip 189 */ 190 static inline int lapic_is_integrated(void) 191 { 192 return APIC_INTEGRATED(lapic_get_version()); 193 } 194 195 /* 196 * Check, whether this is a modern or a first generation APIC 197 */ 198 static int modern_apic(void) 199 { 200 /* AMD systems use old APIC versions, so check the CPU */ 201 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 202 boot_cpu_data.x86 >= 0xf) 203 return 1; 204 205 /* Hygon systems use modern APIC */ 206 if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 207 return 1; 208 209 return lapic_get_version() >= 0x14; 210 } 211 212 /* 213 * right after this call apic become NOOP driven 214 * so apic->write/read doesn't do anything 215 */ 216 static void __init apic_disable(void) 217 { 218 apic_install_driver(&apic_noop); 219 } 220 221 void native_apic_icr_write(u32 low, u32 id) 222 { 223 unsigned long flags; 224 225 local_irq_save(flags); 226 apic_write(APIC_ICR2, SET_XAPIC_DEST_FIELD(id)); 227 apic_write(APIC_ICR, low); 228 local_irq_restore(flags); 229 } 230 231 u64 native_apic_icr_read(void) 232 { 233 u32 icr1, icr2; 234 235 icr2 = apic_read(APIC_ICR2); 236 icr1 = apic_read(APIC_ICR); 237 238 return icr1 | ((u64)icr2 << 32); 239 } 240 241 /** 242 * lapic_get_maxlvt - get the maximum number of local vector table entries 243 */ 244 int lapic_get_maxlvt(void) 245 { 246 /* 247 * - we always have APIC integrated on 64bit mode 248 * - 82489DXs do not report # of LVT entries 249 */ 250 return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2; 251 } 252 253 /* 254 * Local APIC timer 255 */ 256 257 /* Clock divisor */ 258 #define APIC_DIVISOR 16 259 #define TSC_DIVISOR 8 260 261 /* i82489DX specific */ 262 #define I82489DX_BASE_DIVIDER (((0x2) << 18)) 263 264 /* 265 * This function sets up the local APIC timer, with a timeout of 266 * 'clocks' APIC bus clock. During calibration we actually call 267 * this function twice on the boot CPU, once with a bogus timeout 268 * value, second time for real. The other (noncalibrating) CPUs 269 * call this function only once, with the real, calibrated value. 270 * 271 * We do reads before writes even if unnecessary, to get around the 272 * P5 APIC double write bug. 273 */ 274 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) 275 { 276 unsigned int lvtt_value, tmp_value; 277 278 lvtt_value = LOCAL_TIMER_VECTOR; 279 if (!oneshot) 280 lvtt_value |= APIC_LVT_TIMER_PERIODIC; 281 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 282 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; 283 284 /* 285 * The i82489DX APIC uses bit 18 and 19 for the base divider. This 286 * overlaps with bit 18 on integrated APICs, but is not documented 287 * in the SDM. No problem though. i82489DX equipped systems do not 288 * have TSC deadline timer. 289 */ 290 if (!lapic_is_integrated()) 291 lvtt_value |= I82489DX_BASE_DIVIDER; 292 293 if (!irqen) 294 lvtt_value |= APIC_LVT_MASKED; 295 296 apic_write(APIC_LVTT, lvtt_value); 297 298 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { 299 /* 300 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, 301 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. 302 * According to Intel, MFENCE can do the serialization here. 303 */ 304 asm volatile("mfence" : : : "memory"); 305 return; 306 } 307 308 /* 309 * Divide PICLK by 16 310 */ 311 tmp_value = apic_read(APIC_TDCR); 312 apic_write(APIC_TDCR, 313 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | 314 APIC_TDR_DIV_16); 315 316 if (!oneshot) 317 apic_write(APIC_TMICT, clocks / APIC_DIVISOR); 318 } 319 320 /* 321 * Setup extended LVT, AMD specific 322 * 323 * Software should use the LVT offsets the BIOS provides. The offsets 324 * are determined by the subsystems using it like those for MCE 325 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts 326 * are supported. Beginning with family 10h at least 4 offsets are 327 * available. 328 * 329 * Since the offsets must be consistent for all cores, we keep track 330 * of the LVT offsets in software and reserve the offset for the same 331 * vector also to be used on other cores. An offset is freed by 332 * setting the entry to APIC_EILVT_MASKED. 333 * 334 * If the BIOS is right, there should be no conflicts. Otherwise a 335 * "[Firmware Bug]: ..." error message is generated. However, if 336 * software does not properly determines the offsets, it is not 337 * necessarily a BIOS bug. 338 */ 339 340 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; 341 342 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) 343 { 344 return (old & APIC_EILVT_MASKED) 345 || (new == APIC_EILVT_MASKED) 346 || ((new & ~APIC_EILVT_MASKED) == old); 347 } 348 349 static unsigned int reserve_eilvt_offset(int offset, unsigned int new) 350 { 351 unsigned int rsvd, vector; 352 353 if (offset >= APIC_EILVT_NR_MAX) 354 return ~0; 355 356 rsvd = atomic_read(&eilvt_offsets[offset]); 357 do { 358 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ 359 if (vector && !eilvt_entry_is_changeable(vector, new)) 360 /* may not change if vectors are different */ 361 return rsvd; 362 } while (!atomic_try_cmpxchg(&eilvt_offsets[offset], &rsvd, new)); 363 364 rsvd = new & ~APIC_EILVT_MASKED; 365 if (rsvd && rsvd != vector) 366 pr_info("LVT offset %d assigned for vector 0x%02x\n", 367 offset, rsvd); 368 369 return new; 370 } 371 372 /* 373 * If mask=1, the LVT entry does not generate interrupts while mask=0 374 * enables the vector. See also the BKDGs. Must be called with 375 * preemption disabled. 376 */ 377 378 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) 379 { 380 unsigned long reg = APIC_EILVTn(offset); 381 unsigned int new, old, reserved; 382 383 new = (mask << 16) | (msg_type << 8) | vector; 384 old = apic_read(reg); 385 reserved = reserve_eilvt_offset(offset, new); 386 387 if (reserved != new) { 388 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 389 "vector 0x%x, but the register is already in use for " 390 "vector 0x%x on another cpu\n", 391 smp_processor_id(), reg, offset, new, reserved); 392 return -EINVAL; 393 } 394 395 if (!eilvt_entry_is_changeable(old, new)) { 396 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 397 "vector 0x%x, but the register is already in use for " 398 "vector 0x%x on this cpu\n", 399 smp_processor_id(), reg, offset, new, old); 400 return -EBUSY; 401 } 402 403 apic_write(reg, new); 404 405 return 0; 406 } 407 EXPORT_SYMBOL_GPL(setup_APIC_eilvt); 408 409 /* 410 * Program the next event, relative to now 411 */ 412 static int lapic_next_event(unsigned long delta, 413 struct clock_event_device *evt) 414 { 415 apic_write(APIC_TMICT, delta); 416 return 0; 417 } 418 419 static int lapic_next_deadline(unsigned long delta, 420 struct clock_event_device *evt) 421 { 422 u64 tsc; 423 424 /* This MSR is special and need a special fence: */ 425 weak_wrmsr_fence(); 426 427 tsc = rdtsc(); 428 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); 429 return 0; 430 } 431 432 static int lapic_timer_shutdown(struct clock_event_device *evt) 433 { 434 unsigned int v; 435 436 /* Lapic used as dummy for broadcast ? */ 437 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 438 return 0; 439 440 v = apic_read(APIC_LVTT); 441 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 442 apic_write(APIC_LVTT, v); 443 apic_write(APIC_TMICT, 0); 444 return 0; 445 } 446 447 static inline int 448 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) 449 { 450 /* Lapic used as dummy for broadcast ? */ 451 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 452 return 0; 453 454 __setup_APIC_LVTT(lapic_timer_period, oneshot, 1); 455 return 0; 456 } 457 458 static int lapic_timer_set_periodic(struct clock_event_device *evt) 459 { 460 return lapic_timer_set_periodic_oneshot(evt, false); 461 } 462 463 static int lapic_timer_set_oneshot(struct clock_event_device *evt) 464 { 465 return lapic_timer_set_periodic_oneshot(evt, true); 466 } 467 468 /* 469 * Local APIC timer broadcast function 470 */ 471 static void lapic_timer_broadcast(const struct cpumask *mask) 472 { 473 #ifdef CONFIG_SMP 474 __apic_send_IPI_mask(mask, LOCAL_TIMER_VECTOR); 475 #endif 476 } 477 478 479 /* 480 * The local apic timer can be used for any function which is CPU local. 481 */ 482 static struct clock_event_device lapic_clockevent = { 483 .name = "lapic", 484 .features = CLOCK_EVT_FEAT_PERIODIC | 485 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP 486 | CLOCK_EVT_FEAT_DUMMY, 487 .shift = 32, 488 .set_state_shutdown = lapic_timer_shutdown, 489 .set_state_periodic = lapic_timer_set_periodic, 490 .set_state_oneshot = lapic_timer_set_oneshot, 491 .set_state_oneshot_stopped = lapic_timer_shutdown, 492 .set_next_event = lapic_next_event, 493 .broadcast = lapic_timer_broadcast, 494 .rating = 100, 495 .irq = -1, 496 }; 497 static DEFINE_PER_CPU(struct clock_event_device, lapic_events); 498 499 static const struct x86_cpu_id deadline_match[] __initconst = { 500 X86_MATCH_VFM_STEPPINGS(INTEL_HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */ 501 X86_MATCH_VFM_STEPPINGS(INTEL_HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */ 502 503 X86_MATCH_VFM(INTEL_BROADWELL_X, 0x0b000020), 504 505 X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011), 506 X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e), 507 X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c), 508 X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003), 509 510 X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136), 511 X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014), 512 X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0), 513 514 X86_MATCH_VFM(INTEL_HASWELL, 0x22), 515 X86_MATCH_VFM(INTEL_HASWELL_L, 0x20), 516 X86_MATCH_VFM(INTEL_HASWELL_G, 0x17), 517 518 X86_MATCH_VFM(INTEL_BROADWELL, 0x25), 519 X86_MATCH_VFM(INTEL_BROADWELL_G, 0x17), 520 521 X86_MATCH_VFM(INTEL_SKYLAKE_L, 0xb2), 522 X86_MATCH_VFM(INTEL_SKYLAKE, 0xb2), 523 524 X86_MATCH_VFM(INTEL_KABYLAKE_L, 0x52), 525 X86_MATCH_VFM(INTEL_KABYLAKE, 0x52), 526 527 {}, 528 }; 529 530 static __init bool apic_validate_deadline_timer(void) 531 { 532 const struct x86_cpu_id *m; 533 u32 rev; 534 535 if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 536 return false; 537 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 538 return true; 539 540 m = x86_match_cpu(deadline_match); 541 if (!m) 542 return true; 543 544 rev = (u32)m->driver_data; 545 546 if (boot_cpu_data.microcode >= rev) 547 return true; 548 549 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 550 pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " 551 "please update microcode to version: 0x%x (or later)\n", rev); 552 return false; 553 } 554 555 /* 556 * Setup the local APIC timer for this CPU. Copy the initialized values 557 * of the boot CPU and register the clock event in the framework. 558 */ 559 static void setup_APIC_timer(void) 560 { 561 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 562 563 if (this_cpu_has(X86_FEATURE_ARAT)) { 564 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; 565 /* Make LAPIC timer preferable over percpu HPET */ 566 lapic_clockevent.rating = 150; 567 } 568 569 memcpy(levt, &lapic_clockevent, sizeof(*levt)); 570 levt->cpumask = cpumask_of(smp_processor_id()); 571 572 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { 573 levt->name = "lapic-deadline"; 574 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | 575 CLOCK_EVT_FEAT_DUMMY); 576 levt->set_next_event = lapic_next_deadline; 577 clockevents_config_and_register(levt, 578 tsc_khz * (1000 / TSC_DIVISOR), 579 0xF, ~0UL); 580 } else 581 clockevents_register_device(levt); 582 } 583 584 /* 585 * Install the updated TSC frequency from recalibration at the TSC 586 * deadline clockevent devices. 587 */ 588 static void __lapic_update_tsc_freq(void *info) 589 { 590 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 591 592 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 593 return; 594 595 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); 596 } 597 598 void lapic_update_tsc_freq(void) 599 { 600 /* 601 * The clockevent device's ->mult and ->shift can both be 602 * changed. In order to avoid races, schedule the frequency 603 * update code on each CPU. 604 */ 605 on_each_cpu(__lapic_update_tsc_freq, NULL, 0); 606 } 607 608 /* 609 * In this functions we calibrate APIC bus clocks to the external timer. 610 * 611 * We want to do the calibration only once since we want to have local timer 612 * irqs synchronous. CPUs connected by the same APIC bus have the very same bus 613 * frequency. 614 * 615 * This was previously done by reading the PIT/HPET and waiting for a wrap 616 * around to find out, that a tick has elapsed. I have a box, where the PIT 617 * readout is broken, so it never gets out of the wait loop again. This was 618 * also reported by others. 619 * 620 * Monitoring the jiffies value is inaccurate and the clockevents 621 * infrastructure allows us to do a simple substitution of the interrupt 622 * handler. 623 * 624 * The calibration routine also uses the pm_timer when possible, as the PIT 625 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes 626 * back to normal later in the boot process). 627 */ 628 629 #define LAPIC_CAL_LOOPS (HZ/10) 630 631 static __initdata int lapic_cal_loops = -1; 632 static __initdata long lapic_cal_t1, lapic_cal_t2; 633 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; 634 static __initdata u32 lapic_cal_pm1, lapic_cal_pm2; 635 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; 636 637 /* 638 * Temporary interrupt handler and polled calibration function. 639 */ 640 static void __init lapic_cal_handler(struct clock_event_device *dev) 641 { 642 unsigned long long tsc = 0; 643 long tapic = apic_read(APIC_TMCCT); 644 u32 pm = acpi_pm_read_early(); 645 646 if (boot_cpu_has(X86_FEATURE_TSC)) 647 tsc = rdtsc(); 648 649 switch (lapic_cal_loops++) { 650 case 0: 651 lapic_cal_t1 = tapic; 652 lapic_cal_tsc1 = tsc; 653 lapic_cal_pm1 = pm; 654 lapic_cal_j1 = jiffies; 655 break; 656 657 case LAPIC_CAL_LOOPS: 658 lapic_cal_t2 = tapic; 659 lapic_cal_tsc2 = tsc; 660 if (pm < lapic_cal_pm1) 661 pm += ACPI_PM_OVRRUN; 662 lapic_cal_pm2 = pm; 663 lapic_cal_j2 = jiffies; 664 break; 665 } 666 } 667 668 static int __init 669 calibrate_by_pmtimer(u32 deltapm, long *delta, long *deltatsc) 670 { 671 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; 672 const long pm_thresh = pm_100ms / 100; 673 unsigned long mult; 674 u64 res; 675 676 #ifndef CONFIG_X86_PM_TIMER 677 return -1; 678 #endif 679 680 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %u\n", deltapm); 681 682 /* Check, if the PM timer is available */ 683 if (!deltapm) 684 return -1; 685 686 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); 687 688 if (deltapm > (pm_100ms - pm_thresh) && 689 deltapm < (pm_100ms + pm_thresh)) { 690 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); 691 return 0; 692 } 693 694 res = (((u64)deltapm) * mult) >> 22; 695 do_div(res, 1000000); 696 pr_warn("APIC calibration not consistent " 697 "with PM-Timer: %ldms instead of 100ms\n", (long)res); 698 699 /* Correct the lapic counter value */ 700 res = (((u64)(*delta)) * pm_100ms); 701 do_div(res, deltapm); 702 pr_info("APIC delta adjusted to PM-Timer: " 703 "%lu (%ld)\n", (unsigned long)res, *delta); 704 *delta = (long)res; 705 706 /* Correct the tsc counter value */ 707 if (boot_cpu_has(X86_FEATURE_TSC)) { 708 res = (((u64)(*deltatsc)) * pm_100ms); 709 do_div(res, deltapm); 710 apic_printk(APIC_VERBOSE, "TSC delta adjusted to " 711 "PM-Timer: %lu (%ld)\n", 712 (unsigned long)res, *deltatsc); 713 *deltatsc = (long)res; 714 } 715 716 return 0; 717 } 718 719 static int __init lapic_init_clockevent(void) 720 { 721 if (!lapic_timer_period) 722 return -1; 723 724 /* Calculate the scaled math multiplication factor */ 725 lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR, 726 TICK_NSEC, lapic_clockevent.shift); 727 lapic_clockevent.max_delta_ns = 728 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); 729 lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; 730 lapic_clockevent.min_delta_ns = 731 clockevent_delta2ns(0xF, &lapic_clockevent); 732 lapic_clockevent.min_delta_ticks = 0xF; 733 734 return 0; 735 } 736 737 bool __init apic_needs_pit(void) 738 { 739 /* 740 * If the frequencies are not known, PIT is required for both TSC 741 * and apic timer calibration. 742 */ 743 if (!tsc_khz || !cpu_khz) 744 return true; 745 746 /* Is there an APIC at all or is it disabled? */ 747 if (!boot_cpu_has(X86_FEATURE_APIC) || apic_is_disabled) 748 return true; 749 750 /* 751 * If interrupt delivery mode is legacy PIC or virtual wire without 752 * configuration, the local APIC timer won't be set up. Make sure 753 * that the PIT is initialized. 754 */ 755 if (apic_intr_mode == APIC_PIC || 756 apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG) 757 return true; 758 759 /* Virt guests may lack ARAT, but still have DEADLINE */ 760 if (!boot_cpu_has(X86_FEATURE_ARAT)) 761 return true; 762 763 /* Deadline timer is based on TSC so no further PIT action required */ 764 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 765 return false; 766 767 /* APIC timer disabled? */ 768 if (disable_apic_timer) 769 return true; 770 /* 771 * The APIC timer frequency is known already, no PIT calibration 772 * required. If unknown, let the PIT be initialized. 773 */ 774 return lapic_timer_period == 0; 775 } 776 777 static int __init calibrate_APIC_clock(void) 778 { 779 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 780 u64 tsc_perj = 0, tsc_start = 0; 781 unsigned long jif_start; 782 unsigned long deltaj; 783 long delta, deltatsc; 784 int pm_referenced = 0; 785 786 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 787 return 0; 788 789 /* 790 * Check if lapic timer has already been calibrated by platform 791 * specific routine, such as tsc calibration code. If so just fill 792 * in the clockevent structure and return. 793 */ 794 if (!lapic_init_clockevent()) { 795 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", 796 lapic_timer_period); 797 /* 798 * Direct calibration methods must have an always running 799 * local APIC timer, no need for broadcast timer. 800 */ 801 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 802 return 0; 803 } 804 805 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" 806 "calibrating APIC timer ...\n"); 807 808 /* 809 * There are platforms w/o global clockevent devices. Instead of 810 * making the calibration conditional on that, use a polling based 811 * approach everywhere. 812 */ 813 local_irq_disable(); 814 815 /* 816 * Setup the APIC counter to maximum. There is no way the lapic 817 * can underflow in the 100ms detection time frame 818 */ 819 __setup_APIC_LVTT(0xffffffff, 0, 0); 820 821 /* 822 * Methods to terminate the calibration loop: 823 * 1) Global clockevent if available (jiffies) 824 * 2) TSC if available and frequency is known 825 */ 826 jif_start = READ_ONCE(jiffies); 827 828 if (tsc_khz) { 829 tsc_start = rdtsc(); 830 tsc_perj = div_u64((u64)tsc_khz * 1000, HZ); 831 } 832 833 /* 834 * Enable interrupts so the tick can fire, if a global 835 * clockevent device is available 836 */ 837 local_irq_enable(); 838 839 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) { 840 /* Wait for a tick to elapse */ 841 while (1) { 842 if (tsc_khz) { 843 u64 tsc_now = rdtsc(); 844 if ((tsc_now - tsc_start) >= tsc_perj) { 845 tsc_start += tsc_perj; 846 break; 847 } 848 } else { 849 unsigned long jif_now = READ_ONCE(jiffies); 850 851 if (time_after(jif_now, jif_start)) { 852 jif_start = jif_now; 853 break; 854 } 855 } 856 cpu_relax(); 857 } 858 859 /* Invoke the calibration routine */ 860 local_irq_disable(); 861 lapic_cal_handler(NULL); 862 local_irq_enable(); 863 } 864 865 local_irq_disable(); 866 867 /* Build delta t1-t2 as apic timer counts down */ 868 delta = lapic_cal_t1 - lapic_cal_t2; 869 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); 870 871 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); 872 873 /* we trust the PM based calibration if possible */ 874 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, 875 &delta, &deltatsc); 876 877 lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; 878 lapic_init_clockevent(); 879 880 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); 881 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); 882 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", 883 lapic_timer_period); 884 885 if (boot_cpu_has(X86_FEATURE_TSC)) { 886 apic_printk(APIC_VERBOSE, "..... CPU clock speed is " 887 "%ld.%04ld MHz.\n", 888 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), 889 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); 890 } 891 892 apic_printk(APIC_VERBOSE, "..... host bus clock speed is " 893 "%u.%04u MHz.\n", 894 lapic_timer_period / (1000000 / HZ), 895 lapic_timer_period % (1000000 / HZ)); 896 897 /* 898 * Do a sanity check on the APIC calibration result 899 */ 900 if (lapic_timer_period < (1000000 / HZ)) { 901 local_irq_enable(); 902 pr_warn("APIC frequency too slow, disabling apic timer\n"); 903 return -1; 904 } 905 906 levt->features &= ~CLOCK_EVT_FEAT_DUMMY; 907 908 /* 909 * PM timer calibration failed or not turned on so lets try APIC 910 * timer based calibration, if a global clockevent device is 911 * available. 912 */ 913 if (!pm_referenced && global_clock_event) { 914 apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); 915 916 /* 917 * Setup the apic timer manually 918 */ 919 levt->event_handler = lapic_cal_handler; 920 lapic_timer_set_periodic(levt); 921 lapic_cal_loops = -1; 922 923 /* Let the interrupts run */ 924 local_irq_enable(); 925 926 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) 927 cpu_relax(); 928 929 /* Stop the lapic timer */ 930 local_irq_disable(); 931 lapic_timer_shutdown(levt); 932 933 /* Jiffies delta */ 934 deltaj = lapic_cal_j2 - lapic_cal_j1; 935 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); 936 937 /* Check, if the jiffies result is consistent */ 938 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) 939 apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); 940 else 941 levt->features |= CLOCK_EVT_FEAT_DUMMY; 942 } 943 local_irq_enable(); 944 945 if (levt->features & CLOCK_EVT_FEAT_DUMMY) { 946 pr_warn("APIC timer disabled due to verification failure\n"); 947 return -1; 948 } 949 950 return 0; 951 } 952 953 /* 954 * Setup the boot APIC 955 * 956 * Calibrate and verify the result. 957 */ 958 void __init setup_boot_APIC_clock(void) 959 { 960 /* 961 * The local apic timer can be disabled via the kernel 962 * commandline or from the CPU detection code. Register the lapic 963 * timer as a dummy clock event source on SMP systems, so the 964 * broadcast mechanism is used. On UP systems simply ignore it. 965 */ 966 if (disable_apic_timer) { 967 pr_info("Disabling APIC timer\n"); 968 /* No broadcast on UP ! */ 969 if (num_possible_cpus() > 1) { 970 lapic_clockevent.mult = 1; 971 setup_APIC_timer(); 972 } 973 return; 974 } 975 976 if (calibrate_APIC_clock()) { 977 /* No broadcast on UP ! */ 978 if (num_possible_cpus() > 1) 979 setup_APIC_timer(); 980 return; 981 } 982 983 /* 984 * If nmi_watchdog is set to IO_APIC, we need the 985 * PIT/HPET going. Otherwise register lapic as a dummy 986 * device. 987 */ 988 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 989 990 /* Setup the lapic or request the broadcast */ 991 setup_APIC_timer(); 992 amd_e400_c1e_apic_setup(); 993 } 994 995 void setup_secondary_APIC_clock(void) 996 { 997 setup_APIC_timer(); 998 amd_e400_c1e_apic_setup(); 999 } 1000 1001 /* 1002 * The guts of the apic timer interrupt 1003 */ 1004 static void local_apic_timer_interrupt(void) 1005 { 1006 struct clock_event_device *evt = this_cpu_ptr(&lapic_events); 1007 1008 /* 1009 * Normally we should not be here till LAPIC has been initialized but 1010 * in some cases like kdump, its possible that there is a pending LAPIC 1011 * timer interrupt from previous kernel's context and is delivered in 1012 * new kernel the moment interrupts are enabled. 1013 * 1014 * Interrupts are enabled early and LAPIC is setup much later, hence 1015 * its possible that when we get here evt->event_handler is NULL. 1016 * Check for event_handler being NULL and discard the interrupt as 1017 * spurious. 1018 */ 1019 if (!evt->event_handler) { 1020 pr_warn("Spurious LAPIC timer interrupt on cpu %d\n", 1021 smp_processor_id()); 1022 /* Switch it off */ 1023 lapic_timer_shutdown(evt); 1024 return; 1025 } 1026 1027 /* 1028 * the NMI deadlock-detector uses this. 1029 */ 1030 inc_irq_stat(apic_timer_irqs); 1031 1032 evt->event_handler(evt); 1033 } 1034 1035 /* 1036 * Local APIC timer interrupt. This is the most natural way for doing 1037 * local interrupts, but local timer interrupts can be emulated by 1038 * broadcast interrupts too. [in case the hw doesn't support APIC timers] 1039 * 1040 * [ if a single-CPU system runs an SMP kernel then we call the local 1041 * interrupt as well. Thus we cannot inline the local irq ... ] 1042 */ 1043 DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt) 1044 { 1045 struct pt_regs *old_regs = set_irq_regs(regs); 1046 1047 apic_eoi(); 1048 trace_local_timer_entry(LOCAL_TIMER_VECTOR); 1049 local_apic_timer_interrupt(); 1050 trace_local_timer_exit(LOCAL_TIMER_VECTOR); 1051 1052 set_irq_regs(old_regs); 1053 } 1054 1055 /* 1056 * Local APIC start and shutdown 1057 */ 1058 1059 /** 1060 * clear_local_APIC - shutdown the local APIC 1061 * 1062 * This is called, when a CPU is disabled and before rebooting, so the state of 1063 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS 1064 * leftovers during boot. 1065 */ 1066 void clear_local_APIC(void) 1067 { 1068 int maxlvt; 1069 u32 v; 1070 1071 if (!apic_accessible()) 1072 return; 1073 1074 maxlvt = lapic_get_maxlvt(); 1075 /* 1076 * Masking an LVT entry can trigger a local APIC error 1077 * if the vector is zero. Mask LVTERR first to prevent this. 1078 */ 1079 if (maxlvt >= 3) { 1080 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ 1081 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); 1082 } 1083 /* 1084 * Careful: we have to set masks only first to deassert 1085 * any level-triggered sources. 1086 */ 1087 v = apic_read(APIC_LVTT); 1088 apic_write(APIC_LVTT, v | APIC_LVT_MASKED); 1089 v = apic_read(APIC_LVT0); 1090 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 1091 v = apic_read(APIC_LVT1); 1092 apic_write(APIC_LVT1, v | APIC_LVT_MASKED); 1093 if (maxlvt >= 4) { 1094 v = apic_read(APIC_LVTPC); 1095 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); 1096 } 1097 1098 /* lets not touch this if we didn't frob it */ 1099 #ifdef CONFIG_X86_THERMAL_VECTOR 1100 if (maxlvt >= 5) { 1101 v = apic_read(APIC_LVTTHMR); 1102 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); 1103 } 1104 #endif 1105 #ifdef CONFIG_X86_MCE_INTEL 1106 if (maxlvt >= 6) { 1107 v = apic_read(APIC_LVTCMCI); 1108 if (!(v & APIC_LVT_MASKED)) 1109 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); 1110 } 1111 #endif 1112 1113 /* 1114 * Clean APIC state for other OSs: 1115 */ 1116 apic_write(APIC_LVTT, APIC_LVT_MASKED); 1117 apic_write(APIC_LVT0, APIC_LVT_MASKED); 1118 apic_write(APIC_LVT1, APIC_LVT_MASKED); 1119 if (maxlvt >= 3) 1120 apic_write(APIC_LVTERR, APIC_LVT_MASKED); 1121 if (maxlvt >= 4) 1122 apic_write(APIC_LVTPC, APIC_LVT_MASKED); 1123 1124 /* Integrated APIC (!82489DX) ? */ 1125 if (lapic_is_integrated()) { 1126 if (maxlvt > 3) 1127 /* Clear ESR due to Pentium errata 3AP and 11AP */ 1128 apic_write(APIC_ESR, 0); 1129 apic_read(APIC_ESR); 1130 } 1131 } 1132 1133 /** 1134 * apic_soft_disable - Clears and software disables the local APIC on hotplug 1135 * 1136 * Contrary to disable_local_APIC() this does not touch the enable bit in 1137 * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC 1138 * bus would require a hardware reset as the APIC would lose track of bus 1139 * arbitration. On systems with FSB delivery APICBASE could be disabled, 1140 * but it has to be guaranteed that no interrupt is sent to the APIC while 1141 * in that state and it's not clear from the SDM whether it still responds 1142 * to INIT/SIPI messages. Stay on the safe side and use software disable. 1143 */ 1144 void apic_soft_disable(void) 1145 { 1146 u32 value; 1147 1148 clear_local_APIC(); 1149 1150 /* Soft disable APIC (implies clearing of registers for 82489DX!). */ 1151 value = apic_read(APIC_SPIV); 1152 value &= ~APIC_SPIV_APIC_ENABLED; 1153 apic_write(APIC_SPIV, value); 1154 } 1155 1156 /** 1157 * disable_local_APIC - clear and disable the local APIC 1158 */ 1159 void disable_local_APIC(void) 1160 { 1161 if (!apic_accessible()) 1162 return; 1163 1164 apic_soft_disable(); 1165 1166 #ifdef CONFIG_X86_32 1167 /* 1168 * When LAPIC was disabled by the BIOS and enabled by the kernel, 1169 * restore the disabled state. 1170 */ 1171 if (enabled_via_apicbase) { 1172 unsigned int l, h; 1173 1174 rdmsr(MSR_IA32_APICBASE, l, h); 1175 l &= ~MSR_IA32_APICBASE_ENABLE; 1176 wrmsr(MSR_IA32_APICBASE, l, h); 1177 } 1178 #endif 1179 } 1180 1181 /* 1182 * If Linux enabled the LAPIC against the BIOS default disable it down before 1183 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and 1184 * not power-off. Additionally clear all LVT entries before disable_local_APIC 1185 * for the case where Linux didn't enable the LAPIC. 1186 */ 1187 void lapic_shutdown(void) 1188 { 1189 unsigned long flags; 1190 1191 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1192 return; 1193 1194 local_irq_save(flags); 1195 1196 #ifdef CONFIG_X86_32 1197 if (!enabled_via_apicbase) 1198 clear_local_APIC(); 1199 else 1200 #endif 1201 disable_local_APIC(); 1202 1203 1204 local_irq_restore(flags); 1205 } 1206 1207 /** 1208 * sync_Arb_IDs - synchronize APIC bus arbitration IDs 1209 */ 1210 void __init sync_Arb_IDs(void) 1211 { 1212 /* 1213 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not 1214 * needed on AMD. 1215 */ 1216 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1217 return; 1218 1219 /* 1220 * Wait for idle. 1221 */ 1222 apic_wait_icr_idle(); 1223 1224 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); 1225 apic_write(APIC_ICR, APIC_DEST_ALLINC | 1226 APIC_INT_LEVELTRIG | APIC_DM_INIT); 1227 } 1228 1229 enum apic_intr_mode_id apic_intr_mode __ro_after_init; 1230 1231 static int __init __apic_intr_mode_select(void) 1232 { 1233 /* Check kernel option */ 1234 if (apic_is_disabled) { 1235 pr_info("APIC disabled via kernel command line\n"); 1236 return APIC_PIC; 1237 } 1238 1239 /* Check BIOS */ 1240 #ifdef CONFIG_X86_64 1241 /* On 64-bit, the APIC must be integrated, Check local APIC only */ 1242 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1243 apic_is_disabled = true; 1244 pr_info("APIC disabled by BIOS\n"); 1245 return APIC_PIC; 1246 } 1247 #else 1248 /* On 32-bit, the APIC may be integrated APIC or 82489DX */ 1249 1250 /* Neither 82489DX nor integrated APIC ? */ 1251 if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) { 1252 apic_is_disabled = true; 1253 return APIC_PIC; 1254 } 1255 1256 /* If the BIOS pretends there is an integrated APIC ? */ 1257 if (!boot_cpu_has(X86_FEATURE_APIC) && 1258 APIC_INTEGRATED(boot_cpu_apic_version)) { 1259 apic_is_disabled = true; 1260 pr_err(FW_BUG "Local APIC not detected, force emulation\n"); 1261 return APIC_PIC; 1262 } 1263 #endif 1264 1265 /* Check MP table or ACPI MADT configuration */ 1266 if (!smp_found_config) { 1267 disable_ioapic_support(); 1268 if (!acpi_lapic) { 1269 pr_info("APIC: ACPI MADT or MP tables are not detected\n"); 1270 return APIC_VIRTUAL_WIRE_NO_CONFIG; 1271 } 1272 return APIC_VIRTUAL_WIRE; 1273 } 1274 1275 #ifdef CONFIG_SMP 1276 /* If SMP should be disabled, then really disable it! */ 1277 if (!setup_max_cpus) { 1278 pr_info("APIC: SMP mode deactivated\n"); 1279 return APIC_SYMMETRIC_IO_NO_ROUTING; 1280 } 1281 #endif 1282 1283 return APIC_SYMMETRIC_IO; 1284 } 1285 1286 /* Select the interrupt delivery mode for the BSP */ 1287 void __init apic_intr_mode_select(void) 1288 { 1289 apic_intr_mode = __apic_intr_mode_select(); 1290 } 1291 1292 /* 1293 * An initial setup of the virtual wire mode. 1294 */ 1295 void __init init_bsp_APIC(void) 1296 { 1297 unsigned int value; 1298 1299 /* 1300 * Don't do the setup now if we have a SMP BIOS as the 1301 * through-I/O-APIC virtual wire mode might be active. 1302 */ 1303 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) 1304 return; 1305 1306 /* 1307 * Do not trust the local APIC being empty at bootup. 1308 */ 1309 clear_local_APIC(); 1310 1311 /* 1312 * Enable APIC. 1313 */ 1314 value = apic_read(APIC_SPIV); 1315 value &= ~APIC_VECTOR_MASK; 1316 value |= APIC_SPIV_APIC_ENABLED; 1317 1318 #ifdef CONFIG_X86_32 1319 /* This bit is reserved on P4/Xeon and should be cleared */ 1320 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 1321 (boot_cpu_data.x86 == 15)) 1322 value &= ~APIC_SPIV_FOCUS_DISABLED; 1323 else 1324 #endif 1325 value |= APIC_SPIV_FOCUS_DISABLED; 1326 value |= SPURIOUS_APIC_VECTOR; 1327 apic_write(APIC_SPIV, value); 1328 1329 /* 1330 * Set up the virtual wire mode. 1331 */ 1332 apic_write(APIC_LVT0, APIC_DM_EXTINT); 1333 value = APIC_DM_NMI; 1334 if (!lapic_is_integrated()) /* 82489DX */ 1335 value |= APIC_LVT_LEVEL_TRIGGER; 1336 if (apic_extnmi == APIC_EXTNMI_NONE) 1337 value |= APIC_LVT_MASKED; 1338 apic_write(APIC_LVT1, value); 1339 } 1340 1341 static void __init apic_bsp_setup(bool upmode); 1342 1343 /* Init the interrupt delivery mode for the BSP */ 1344 void __init apic_intr_mode_init(void) 1345 { 1346 bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT); 1347 1348 switch (apic_intr_mode) { 1349 case APIC_PIC: 1350 pr_info("APIC: Keep in PIC mode(8259)\n"); 1351 return; 1352 case APIC_VIRTUAL_WIRE: 1353 pr_info("APIC: Switch to virtual wire mode setup\n"); 1354 break; 1355 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1356 pr_info("APIC: Switch to virtual wire mode setup with no configuration\n"); 1357 upmode = true; 1358 break; 1359 case APIC_SYMMETRIC_IO: 1360 pr_info("APIC: Switch to symmetric I/O mode setup\n"); 1361 break; 1362 case APIC_SYMMETRIC_IO_NO_ROUTING: 1363 pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n"); 1364 break; 1365 } 1366 1367 x86_64_probe_apic(); 1368 1369 x86_32_install_bigsmp(); 1370 1371 if (x86_platform.apic_post_init) 1372 x86_platform.apic_post_init(); 1373 1374 apic_bsp_setup(upmode); 1375 } 1376 1377 static void lapic_setup_esr(void) 1378 { 1379 unsigned int oldvalue, value, maxlvt; 1380 1381 if (!lapic_is_integrated()) { 1382 pr_info("No ESR for 82489DX.\n"); 1383 return; 1384 } 1385 1386 if (apic->disable_esr) { 1387 /* 1388 * Something untraceable is creating bad interrupts on 1389 * secondary quads ... for the moment, just leave the 1390 * ESR disabled - we can't do anything useful with the 1391 * errors anyway - mbligh 1392 */ 1393 pr_info("Leaving ESR disabled.\n"); 1394 return; 1395 } 1396 1397 maxlvt = lapic_get_maxlvt(); 1398 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1399 apic_write(APIC_ESR, 0); 1400 oldvalue = apic_read(APIC_ESR); 1401 1402 /* enables sending errors */ 1403 value = ERROR_APIC_VECTOR; 1404 apic_write(APIC_LVTERR, value); 1405 1406 /* 1407 * spec says clear errors after enabling vector. 1408 */ 1409 if (maxlvt > 3) 1410 apic_write(APIC_ESR, 0); 1411 value = apic_read(APIC_ESR); 1412 if (value != oldvalue) 1413 apic_printk(APIC_VERBOSE, "ESR value before enabling " 1414 "vector: 0x%08x after: 0x%08x\n", 1415 oldvalue, value); 1416 } 1417 1418 #define APIC_IR_REGS APIC_ISR_NR 1419 #define APIC_IR_BITS (APIC_IR_REGS * 32) 1420 #define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG) 1421 1422 union apic_ir { 1423 unsigned long map[APIC_IR_MAPSIZE]; 1424 u32 regs[APIC_IR_REGS]; 1425 }; 1426 1427 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr) 1428 { 1429 int i, bit; 1430 1431 /* Read the IRRs */ 1432 for (i = 0; i < APIC_IR_REGS; i++) 1433 irr->regs[i] = apic_read(APIC_IRR + i * 0x10); 1434 1435 /* Read the ISRs */ 1436 for (i = 0; i < APIC_IR_REGS; i++) 1437 isr->regs[i] = apic_read(APIC_ISR + i * 0x10); 1438 1439 /* 1440 * If the ISR map is not empty. ACK the APIC and run another round 1441 * to verify whether a pending IRR has been unblocked and turned 1442 * into a ISR. 1443 */ 1444 if (!bitmap_empty(isr->map, APIC_IR_BITS)) { 1445 /* 1446 * There can be multiple ISR bits set when a high priority 1447 * interrupt preempted a lower priority one. Issue an ACK 1448 * per set bit. 1449 */ 1450 for_each_set_bit(bit, isr->map, APIC_IR_BITS) 1451 apic_eoi(); 1452 return true; 1453 } 1454 1455 return !bitmap_empty(irr->map, APIC_IR_BITS); 1456 } 1457 1458 /* 1459 * After a crash, we no longer service the interrupts and a pending 1460 * interrupt from previous kernel might still have ISR bit set. 1461 * 1462 * Most probably by now the CPU has serviced that pending interrupt and it 1463 * might not have done the apic_eoi() because it thought, interrupt 1464 * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear 1465 * the ISR bit and cpu thinks it has already serviced the interrupt. Hence 1466 * a vector might get locked. It was noticed for timer irq (vector 1467 * 0x31). Issue an extra EOI to clear ISR. 1468 * 1469 * If there are pending IRR bits they turn into ISR bits after a higher 1470 * priority ISR bit has been acked. 1471 */ 1472 static void apic_pending_intr_clear(void) 1473 { 1474 union apic_ir irr, isr; 1475 unsigned int i; 1476 1477 /* 512 loops are way oversized and give the APIC a chance to obey. */ 1478 for (i = 0; i < 512; i++) { 1479 if (!apic_check_and_ack(&irr, &isr)) 1480 return; 1481 } 1482 /* Dump the IRR/ISR content if that failed */ 1483 pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map); 1484 } 1485 1486 /** 1487 * setup_local_APIC - setup the local APIC 1488 * 1489 * Used to setup local APIC while initializing BSP or bringing up APs. 1490 * Always called with preemption disabled. 1491 */ 1492 static void setup_local_APIC(void) 1493 { 1494 int cpu = smp_processor_id(); 1495 unsigned int value; 1496 1497 if (apic_is_disabled) { 1498 disable_ioapic_support(); 1499 return; 1500 } 1501 1502 /* 1503 * If this comes from kexec/kcrash the APIC might be enabled in 1504 * SPIV. Soft disable it before doing further initialization. 1505 */ 1506 value = apic_read(APIC_SPIV); 1507 value &= ~APIC_SPIV_APIC_ENABLED; 1508 apic_write(APIC_SPIV, value); 1509 1510 #ifdef CONFIG_X86_32 1511 /* Pound the ESR really hard over the head with a big hammer - mbligh */ 1512 if (lapic_is_integrated() && apic->disable_esr) { 1513 apic_write(APIC_ESR, 0); 1514 apic_write(APIC_ESR, 0); 1515 apic_write(APIC_ESR, 0); 1516 apic_write(APIC_ESR, 0); 1517 } 1518 #endif 1519 /* 1520 * Intel recommends to set DFR, LDR and TPR before enabling 1521 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel 1522 * document number 292116). 1523 * 1524 * Except for APICs which operate in physical destination mode. 1525 */ 1526 if (apic->init_apic_ldr) 1527 apic->init_apic_ldr(); 1528 1529 /* 1530 * Set Task Priority to 'accept all except vectors 0-31'. An APIC 1531 * vector in the 16-31 range could be delivered if TPR == 0, but we 1532 * would think it's an exception and terrible things will happen. We 1533 * never change this later on. 1534 */ 1535 value = apic_read(APIC_TASKPRI); 1536 value &= ~APIC_TPRI_MASK; 1537 value |= 0x10; 1538 apic_write(APIC_TASKPRI, value); 1539 1540 /* Clear eventually stale ISR/IRR bits */ 1541 apic_pending_intr_clear(); 1542 1543 /* 1544 * Now that we are all set up, enable the APIC 1545 */ 1546 value = apic_read(APIC_SPIV); 1547 value &= ~APIC_VECTOR_MASK; 1548 /* 1549 * Enable APIC 1550 */ 1551 value |= APIC_SPIV_APIC_ENABLED; 1552 1553 #ifdef CONFIG_X86_32 1554 /* 1555 * Some unknown Intel IO/APIC (or APIC) errata is biting us with 1556 * certain networking cards. If high frequency interrupts are 1557 * happening on a particular IOAPIC pin, plus the IOAPIC routing 1558 * entry is masked/unmasked at a high rate as well then sooner or 1559 * later IOAPIC line gets 'stuck', no more interrupts are received 1560 * from the device. If focus CPU is disabled then the hang goes 1561 * away, oh well :-( 1562 * 1563 * [ This bug can be reproduced easily with a level-triggered 1564 * PCI Ne2000 networking cards and PII/PIII processors, dual 1565 * BX chipset. ] 1566 */ 1567 /* 1568 * Actually disabling the focus CPU check just makes the hang less 1569 * frequent as it makes the interrupt distribution model be more 1570 * like LRU than MRU (the short-term load is more even across CPUs). 1571 */ 1572 1573 /* 1574 * - enable focus processor (bit==0) 1575 * - 64bit mode always use processor focus 1576 * so no need to set it 1577 */ 1578 value &= ~APIC_SPIV_FOCUS_DISABLED; 1579 #endif 1580 1581 /* 1582 * Set spurious IRQ vector 1583 */ 1584 value |= SPURIOUS_APIC_VECTOR; 1585 apic_write(APIC_SPIV, value); 1586 1587 perf_events_lapic_init(); 1588 1589 /* 1590 * Set up LVT0, LVT1: 1591 * 1592 * set up through-local-APIC on the boot CPU's LINT0. This is not 1593 * strictly necessary in pure symmetric-IO mode, but sometimes 1594 * we delegate interrupts to the 8259A. 1595 */ 1596 /* 1597 * TODO: set up through-local-APIC from through-I/O-APIC? --macro 1598 */ 1599 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; 1600 if (!cpu && (pic_mode || !value || ioapic_is_disabled)) { 1601 value = APIC_DM_EXTINT; 1602 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); 1603 } else { 1604 value = APIC_DM_EXTINT | APIC_LVT_MASKED; 1605 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); 1606 } 1607 apic_write(APIC_LVT0, value); 1608 1609 /* 1610 * Only the BSP sees the LINT1 NMI signal by default. This can be 1611 * modified by apic_extnmi= boot option. 1612 */ 1613 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || 1614 apic_extnmi == APIC_EXTNMI_ALL) 1615 value = APIC_DM_NMI; 1616 else 1617 value = APIC_DM_NMI | APIC_LVT_MASKED; 1618 1619 /* Is 82489DX ? */ 1620 if (!lapic_is_integrated()) 1621 value |= APIC_LVT_LEVEL_TRIGGER; 1622 apic_write(APIC_LVT1, value); 1623 1624 #ifdef CONFIG_X86_MCE_INTEL 1625 /* Recheck CMCI information after local APIC is up on CPU #0 */ 1626 if (!cpu) 1627 cmci_recheck(); 1628 #endif 1629 } 1630 1631 static void end_local_APIC_setup(void) 1632 { 1633 lapic_setup_esr(); 1634 1635 #ifdef CONFIG_X86_32 1636 { 1637 unsigned int value; 1638 /* Disable the local apic timer */ 1639 value = apic_read(APIC_LVTT); 1640 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 1641 apic_write(APIC_LVTT, value); 1642 } 1643 #endif 1644 1645 apic_pm_activate(); 1646 } 1647 1648 /* 1649 * APIC setup function for application processors. Called from smpboot.c 1650 */ 1651 void apic_ap_setup(void) 1652 { 1653 setup_local_APIC(); 1654 end_local_APIC_setup(); 1655 } 1656 1657 static __init void apic_read_boot_cpu_id(bool x2apic) 1658 { 1659 /* 1660 * This can be invoked from check_x2apic() before the APIC has been 1661 * selected. But that code knows for sure that the BIOS enabled 1662 * X2APIC. 1663 */ 1664 if (x2apic) { 1665 boot_cpu_physical_apicid = native_apic_msr_read(APIC_ID); 1666 boot_cpu_apic_version = GET_APIC_VERSION(native_apic_msr_read(APIC_LVR)); 1667 } else { 1668 boot_cpu_physical_apicid = read_apic_id(); 1669 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 1670 } 1671 topology_register_boot_apic(boot_cpu_physical_apicid); 1672 x86_32_probe_bigsmp_early(); 1673 } 1674 1675 #ifdef CONFIG_X86_X2APIC 1676 int x2apic_mode; 1677 EXPORT_SYMBOL_GPL(x2apic_mode); 1678 1679 enum { 1680 X2APIC_OFF, 1681 X2APIC_DISABLED, 1682 /* All states below here have X2APIC enabled */ 1683 X2APIC_ON, 1684 X2APIC_ON_LOCKED 1685 }; 1686 static int x2apic_state; 1687 1688 static bool x2apic_hw_locked(void) 1689 { 1690 u64 x86_arch_cap_msr; 1691 u64 msr; 1692 1693 x86_arch_cap_msr = x86_read_arch_cap_msr(); 1694 if (x86_arch_cap_msr & ARCH_CAP_XAPIC_DISABLE) { 1695 rdmsrl(MSR_IA32_XAPIC_DISABLE_STATUS, msr); 1696 return (msr & LEGACY_XAPIC_DISABLED); 1697 } 1698 return false; 1699 } 1700 1701 static void __x2apic_disable(void) 1702 { 1703 u64 msr; 1704 1705 if (!boot_cpu_has(X86_FEATURE_APIC)) 1706 return; 1707 1708 rdmsrl(MSR_IA32_APICBASE, msr); 1709 if (!(msr & X2APIC_ENABLE)) 1710 return; 1711 /* Disable xapic and x2apic first and then reenable xapic mode */ 1712 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); 1713 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); 1714 printk_once(KERN_INFO "x2apic disabled\n"); 1715 } 1716 1717 static void __x2apic_enable(void) 1718 { 1719 u64 msr; 1720 1721 rdmsrl(MSR_IA32_APICBASE, msr); 1722 if (msr & X2APIC_ENABLE) 1723 return; 1724 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); 1725 printk_once(KERN_INFO "x2apic enabled\n"); 1726 } 1727 1728 static int __init setup_nox2apic(char *str) 1729 { 1730 if (x2apic_enabled()) { 1731 u32 apicid = native_apic_msr_read(APIC_ID); 1732 1733 if (apicid >= 255) { 1734 pr_warn("Apicid: %08x, cannot enforce nox2apic\n", 1735 apicid); 1736 return 0; 1737 } 1738 if (x2apic_hw_locked()) { 1739 pr_warn("APIC locked in x2apic mode, can't disable\n"); 1740 return 0; 1741 } 1742 pr_warn("x2apic already enabled.\n"); 1743 __x2apic_disable(); 1744 } 1745 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 1746 x2apic_state = X2APIC_DISABLED; 1747 x2apic_mode = 0; 1748 return 0; 1749 } 1750 early_param("nox2apic", setup_nox2apic); 1751 1752 /* Called from cpu_init() to enable x2apic on (secondary) cpus */ 1753 void x2apic_setup(void) 1754 { 1755 /* 1756 * Try to make the AP's APIC state match that of the BSP, but if the 1757 * BSP is unlocked and the AP is locked then there is a state mismatch. 1758 * Warn about the mismatch in case a GP fault occurs due to a locked AP 1759 * trying to be turned off. 1760 */ 1761 if (x2apic_state != X2APIC_ON_LOCKED && x2apic_hw_locked()) 1762 pr_warn("x2apic lock mismatch between BSP and AP.\n"); 1763 /* 1764 * If x2apic is not in ON or LOCKED state, disable it if already enabled 1765 * from BIOS. 1766 */ 1767 if (x2apic_state < X2APIC_ON) { 1768 __x2apic_disable(); 1769 return; 1770 } 1771 __x2apic_enable(); 1772 } 1773 1774 static __init void apic_set_fixmap(bool read_apic); 1775 1776 static __init void x2apic_disable(void) 1777 { 1778 u32 x2apic_id; 1779 1780 if (x2apic_state < X2APIC_ON) 1781 return; 1782 1783 x2apic_id = read_apic_id(); 1784 if (x2apic_id >= 255) 1785 panic("Cannot disable x2apic, id: %08x\n", x2apic_id); 1786 1787 if (x2apic_hw_locked()) { 1788 pr_warn("Cannot disable locked x2apic, id: %08x\n", x2apic_id); 1789 return; 1790 } 1791 1792 __x2apic_disable(); 1793 1794 x2apic_mode = 0; 1795 x2apic_state = X2APIC_DISABLED; 1796 1797 /* 1798 * Don't reread the APIC ID as it was already done from 1799 * check_x2apic() and the APIC driver still is a x2APIC variant, 1800 * which fails to do the read after x2APIC was disabled. 1801 */ 1802 apic_set_fixmap(false); 1803 } 1804 1805 static __init void x2apic_enable(void) 1806 { 1807 if (x2apic_state != X2APIC_OFF) 1808 return; 1809 1810 x2apic_mode = 1; 1811 x2apic_state = X2APIC_ON; 1812 __x2apic_enable(); 1813 } 1814 1815 static __init void try_to_enable_x2apic(int remap_mode) 1816 { 1817 if (x2apic_state == X2APIC_DISABLED) 1818 return; 1819 1820 if (remap_mode != IRQ_REMAP_X2APIC_MODE) { 1821 u32 apic_limit = 255; 1822 1823 /* 1824 * Using X2APIC without IR is not architecturally supported 1825 * on bare metal but may be supported in guests. 1826 */ 1827 if (!x86_init.hyper.x2apic_available()) { 1828 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); 1829 x2apic_disable(); 1830 return; 1831 } 1832 1833 /* 1834 * If the hypervisor supports extended destination ID in 1835 * MSI, that increases the maximum APIC ID that can be 1836 * used for non-remapped IRQ domains. 1837 */ 1838 if (x86_init.hyper.msi_ext_dest_id()) { 1839 virt_ext_dest_id = 1; 1840 apic_limit = 32767; 1841 } 1842 1843 /* 1844 * Without IR, all CPUs can be addressed by IOAPIC/MSI only 1845 * in physical mode, and CPUs with an APIC ID that cannot 1846 * be addressed must not be brought online. 1847 */ 1848 x2apic_set_max_apicid(apic_limit); 1849 x2apic_phys = 1; 1850 } 1851 x2apic_enable(); 1852 } 1853 1854 void __init check_x2apic(void) 1855 { 1856 if (x2apic_enabled()) { 1857 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); 1858 x2apic_mode = 1; 1859 if (x2apic_hw_locked()) 1860 x2apic_state = X2APIC_ON_LOCKED; 1861 else 1862 x2apic_state = X2APIC_ON; 1863 apic_read_boot_cpu_id(true); 1864 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { 1865 x2apic_state = X2APIC_DISABLED; 1866 } 1867 } 1868 #else /* CONFIG_X86_X2APIC */ 1869 void __init check_x2apic(void) 1870 { 1871 if (!apic_is_x2apic_enabled()) 1872 return; 1873 /* 1874 * Checkme: Can we simply turn off x2APIC here instead of disabling the APIC? 1875 */ 1876 pr_err("Kernel does not support x2APIC, please recompile with CONFIG_X86_X2APIC.\n"); 1877 pr_err("Disabling APIC, expect reduced performance and functionality.\n"); 1878 1879 apic_is_disabled = true; 1880 setup_clear_cpu_cap(X86_FEATURE_APIC); 1881 } 1882 1883 static inline void try_to_enable_x2apic(int remap_mode) { } 1884 static inline void __x2apic_enable(void) { } 1885 #endif /* !CONFIG_X86_X2APIC */ 1886 1887 void __init enable_IR_x2apic(void) 1888 { 1889 unsigned long flags; 1890 int ret, ir_stat; 1891 1892 if (ioapic_is_disabled) { 1893 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); 1894 return; 1895 } 1896 1897 ir_stat = irq_remapping_prepare(); 1898 if (ir_stat < 0 && !x2apic_supported()) 1899 return; 1900 1901 ret = save_ioapic_entries(); 1902 if (ret) { 1903 pr_info("Saving IO-APIC state failed: %d\n", ret); 1904 return; 1905 } 1906 1907 local_irq_save(flags); 1908 legacy_pic->mask_all(); 1909 mask_ioapic_entries(); 1910 1911 /* If irq_remapping_prepare() succeeded, try to enable it */ 1912 if (ir_stat >= 0) 1913 ir_stat = irq_remapping_enable(); 1914 /* ir_stat contains the remap mode or an error code */ 1915 try_to_enable_x2apic(ir_stat); 1916 1917 if (ir_stat < 0) 1918 restore_ioapic_entries(); 1919 legacy_pic->restore_mask(); 1920 local_irq_restore(flags); 1921 } 1922 1923 #ifdef CONFIG_X86_64 1924 /* 1925 * Detect and enable local APICs on non-SMP boards. 1926 * Original code written by Keir Fraser. 1927 * On AMD64 we trust the BIOS - if it says no APIC it is likely 1928 * not correctly set up (usually the APIC timer won't work etc.) 1929 */ 1930 static bool __init detect_init_APIC(void) 1931 { 1932 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1933 pr_info("No local APIC present\n"); 1934 return false; 1935 } 1936 1937 register_lapic_address(APIC_DEFAULT_PHYS_BASE); 1938 return true; 1939 } 1940 #else 1941 1942 static bool __init apic_verify(unsigned long addr) 1943 { 1944 u32 features, h, l; 1945 1946 /* 1947 * The APIC feature bit should now be enabled 1948 * in `cpuid' 1949 */ 1950 features = cpuid_edx(1); 1951 if (!(features & (1 << X86_FEATURE_APIC))) { 1952 pr_warn("Could not enable APIC!\n"); 1953 return false; 1954 } 1955 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); 1956 1957 /* The BIOS may have set up the APIC at some other address */ 1958 if (boot_cpu_data.x86 >= 6) { 1959 rdmsr(MSR_IA32_APICBASE, l, h); 1960 if (l & MSR_IA32_APICBASE_ENABLE) 1961 addr = l & MSR_IA32_APICBASE_BASE; 1962 } 1963 1964 register_lapic_address(addr); 1965 pr_info("Found and enabled local APIC!\n"); 1966 return true; 1967 } 1968 1969 bool __init apic_force_enable(unsigned long addr) 1970 { 1971 u32 h, l; 1972 1973 if (apic_is_disabled) 1974 return false; 1975 1976 /* 1977 * Some BIOSes disable the local APIC in the APIC_BASE 1978 * MSR. This can only be done in software for Intel P6 or later 1979 * and AMD K7 (Model > 1) or later. 1980 */ 1981 if (boot_cpu_data.x86 >= 6) { 1982 rdmsr(MSR_IA32_APICBASE, l, h); 1983 if (!(l & MSR_IA32_APICBASE_ENABLE)) { 1984 pr_info("Local APIC disabled by BIOS -- reenabling.\n"); 1985 l &= ~MSR_IA32_APICBASE_BASE; 1986 l |= MSR_IA32_APICBASE_ENABLE | addr; 1987 wrmsr(MSR_IA32_APICBASE, l, h); 1988 enabled_via_apicbase = 1; 1989 } 1990 } 1991 return apic_verify(addr); 1992 } 1993 1994 /* 1995 * Detect and initialize APIC 1996 */ 1997 static bool __init detect_init_APIC(void) 1998 { 1999 /* Disabled by kernel option? */ 2000 if (apic_is_disabled) 2001 return false; 2002 2003 switch (boot_cpu_data.x86_vendor) { 2004 case X86_VENDOR_AMD: 2005 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || 2006 (boot_cpu_data.x86 >= 15)) 2007 break; 2008 goto no_apic; 2009 case X86_VENDOR_HYGON: 2010 break; 2011 case X86_VENDOR_INTEL: 2012 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || 2013 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) 2014 break; 2015 goto no_apic; 2016 default: 2017 goto no_apic; 2018 } 2019 2020 if (!boot_cpu_has(X86_FEATURE_APIC)) { 2021 /* 2022 * Over-ride BIOS and try to enable the local APIC only if 2023 * "lapic" specified. 2024 */ 2025 if (!force_enable_local_apic) { 2026 pr_info("Local APIC disabled by BIOS -- " 2027 "you can enable it with \"lapic\"\n"); 2028 return false; 2029 } 2030 if (!apic_force_enable(APIC_DEFAULT_PHYS_BASE)) 2031 return false; 2032 } else { 2033 if (!apic_verify(APIC_DEFAULT_PHYS_BASE)) 2034 return false; 2035 } 2036 2037 apic_pm_activate(); 2038 2039 return true; 2040 2041 no_apic: 2042 pr_info("No local APIC present or hardware disabled\n"); 2043 return false; 2044 } 2045 #endif 2046 2047 /** 2048 * init_apic_mappings - initialize APIC mappings 2049 */ 2050 void __init init_apic_mappings(void) 2051 { 2052 if (apic_validate_deadline_timer()) 2053 pr_info("TSC deadline timer available\n"); 2054 2055 if (x2apic_mode) 2056 return; 2057 2058 if (!smp_found_config) { 2059 if (!detect_init_APIC()) { 2060 pr_info("APIC: disable apic facility\n"); 2061 apic_disable(); 2062 } 2063 } 2064 } 2065 2066 static __init void apic_set_fixmap(bool read_apic) 2067 { 2068 set_fixmap_nocache(FIX_APIC_BASE, mp_lapic_addr); 2069 apic_mmio_base = APIC_BASE; 2070 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", 2071 apic_mmio_base, mp_lapic_addr); 2072 if (read_apic) 2073 apic_read_boot_cpu_id(false); 2074 } 2075 2076 void __init register_lapic_address(unsigned long address) 2077 { 2078 /* This should only happen once */ 2079 WARN_ON_ONCE(mp_lapic_addr); 2080 mp_lapic_addr = address; 2081 2082 if (!x2apic_mode) 2083 apic_set_fixmap(true); 2084 } 2085 2086 /* 2087 * Local APIC interrupts 2088 */ 2089 2090 /* 2091 * Common handling code for spurious_interrupt and spurious_vector entry 2092 * points below. No point in allowing the compiler to inline it twice. 2093 */ 2094 static noinline void handle_spurious_interrupt(u8 vector) 2095 { 2096 u32 v; 2097 2098 trace_spurious_apic_entry(vector); 2099 2100 inc_irq_stat(irq_spurious_count); 2101 2102 /* 2103 * If this is a spurious interrupt then do not acknowledge 2104 */ 2105 if (vector == SPURIOUS_APIC_VECTOR) { 2106 /* See SDM vol 3 */ 2107 pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n", 2108 smp_processor_id()); 2109 goto out; 2110 } 2111 2112 /* 2113 * If it is a vectored one, verify it's set in the ISR. If set, 2114 * acknowledge it. 2115 */ 2116 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); 2117 if (v & (1 << (vector & 0x1f))) { 2118 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n", 2119 vector, smp_processor_id()); 2120 apic_eoi(); 2121 } else { 2122 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n", 2123 vector, smp_processor_id()); 2124 } 2125 out: 2126 trace_spurious_apic_exit(vector); 2127 } 2128 2129 /** 2130 * spurious_interrupt - Catch all for interrupts raised on unused vectors 2131 * @regs: Pointer to pt_regs on stack 2132 * @vector: The vector number 2133 * 2134 * This is invoked from ASM entry code to catch all interrupts which 2135 * trigger on an entry which is routed to the common_spurious idtentry 2136 * point. 2137 */ 2138 DEFINE_IDTENTRY_IRQ(spurious_interrupt) 2139 { 2140 handle_spurious_interrupt(vector); 2141 } 2142 2143 DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt) 2144 { 2145 handle_spurious_interrupt(SPURIOUS_APIC_VECTOR); 2146 } 2147 2148 /* 2149 * This interrupt should never happen with our APIC/SMP architecture 2150 */ 2151 DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt) 2152 { 2153 static const char * const error_interrupt_reason[] = { 2154 "Send CS error", /* APIC Error Bit 0 */ 2155 "Receive CS error", /* APIC Error Bit 1 */ 2156 "Send accept error", /* APIC Error Bit 2 */ 2157 "Receive accept error", /* APIC Error Bit 3 */ 2158 "Redirectable IPI", /* APIC Error Bit 4 */ 2159 "Send illegal vector", /* APIC Error Bit 5 */ 2160 "Received illegal vector", /* APIC Error Bit 6 */ 2161 "Illegal register address", /* APIC Error Bit 7 */ 2162 }; 2163 u32 v, i = 0; 2164 2165 trace_error_apic_entry(ERROR_APIC_VECTOR); 2166 2167 /* First tickle the hardware, only then report what went on. -- REW */ 2168 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ 2169 apic_write(APIC_ESR, 0); 2170 v = apic_read(APIC_ESR); 2171 apic_eoi(); 2172 atomic_inc(&irq_err_count); 2173 2174 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", 2175 smp_processor_id(), v); 2176 2177 v &= 0xff; 2178 while (v) { 2179 if (v & 0x1) 2180 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); 2181 i++; 2182 v >>= 1; 2183 } 2184 2185 apic_printk(APIC_DEBUG, KERN_CONT "\n"); 2186 2187 trace_error_apic_exit(ERROR_APIC_VECTOR); 2188 } 2189 2190 /** 2191 * connect_bsp_APIC - attach the APIC to the interrupt system 2192 */ 2193 static void __init connect_bsp_APIC(void) 2194 { 2195 #ifdef CONFIG_X86_32 2196 if (pic_mode) { 2197 /* 2198 * Do not trust the local APIC being empty at bootup. 2199 */ 2200 clear_local_APIC(); 2201 /* 2202 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's 2203 * local APIC to INT and NMI lines. 2204 */ 2205 apic_printk(APIC_VERBOSE, "leaving PIC mode, " 2206 "enabling APIC mode.\n"); 2207 imcr_pic_to_apic(); 2208 } 2209 #endif 2210 } 2211 2212 /** 2213 * disconnect_bsp_APIC - detach the APIC from the interrupt system 2214 * @virt_wire_setup: indicates, whether virtual wire mode is selected 2215 * 2216 * Virtual wire mode is necessary to deliver legacy interrupts even when the 2217 * APIC is disabled. 2218 */ 2219 void disconnect_bsp_APIC(int virt_wire_setup) 2220 { 2221 unsigned int value; 2222 2223 #ifdef CONFIG_X86_32 2224 if (pic_mode) { 2225 /* 2226 * Put the board back into PIC mode (has an effect only on 2227 * certain older boards). Note that APIC interrupts, including 2228 * IPIs, won't work beyond this point! The only exception are 2229 * INIT IPIs. 2230 */ 2231 apic_printk(APIC_VERBOSE, "disabling APIC mode, " 2232 "entering PIC mode.\n"); 2233 imcr_apic_to_pic(); 2234 return; 2235 } 2236 #endif 2237 2238 /* Go back to Virtual Wire compatibility mode */ 2239 2240 /* For the spurious interrupt use vector F, and enable it */ 2241 value = apic_read(APIC_SPIV); 2242 value &= ~APIC_VECTOR_MASK; 2243 value |= APIC_SPIV_APIC_ENABLED; 2244 value |= 0xf; 2245 apic_write(APIC_SPIV, value); 2246 2247 if (!virt_wire_setup) { 2248 /* 2249 * For LVT0 make it edge triggered, active high, 2250 * external and enabled 2251 */ 2252 value = apic_read(APIC_LVT0); 2253 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2254 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2255 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2256 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2257 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); 2258 apic_write(APIC_LVT0, value); 2259 } else { 2260 /* Disable LVT0 */ 2261 apic_write(APIC_LVT0, APIC_LVT_MASKED); 2262 } 2263 2264 /* 2265 * For LVT1 make it edge triggered, active high, 2266 * nmi and enabled 2267 */ 2268 value = apic_read(APIC_LVT1); 2269 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2270 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2271 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2272 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2273 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); 2274 apic_write(APIC_LVT1, value); 2275 } 2276 2277 void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg, 2278 bool dmar) 2279 { 2280 memset(msg, 0, sizeof(*msg)); 2281 2282 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 2283 msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical; 2284 msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF; 2285 2286 msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED; 2287 msg->arch_data.vector = cfg->vector; 2288 2289 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 2290 /* 2291 * Only the IOMMU itself can use the trick of putting destination 2292 * APIC ID into the high bits of the address. Anything else would 2293 * just be writing to memory if it tried that, and needs IR to 2294 * address APICs which can't be addressed in the normal 32-bit 2295 * address range at 0xFFExxxxx. That is typically just 8 bits, but 2296 * some hypervisors allow the extended destination ID field in bits 2297 * 5-11 to be used, giving support for 15 bits of APIC IDs in total. 2298 */ 2299 if (dmar) 2300 msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8; 2301 else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000) 2302 msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8; 2303 else 2304 WARN_ON_ONCE(cfg->dest_apicid > 0xFF); 2305 } 2306 2307 u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid) 2308 { 2309 u32 dest = msg->arch_addr_lo.destid_0_7; 2310 2311 if (extid) 2312 dest |= msg->arch_addr_hi.destid_8_31 << 8; 2313 return dest; 2314 } 2315 EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid); 2316 2317 static void __init apic_bsp_up_setup(void) 2318 { 2319 reset_phys_cpu_present_map(boot_cpu_physical_apicid); 2320 } 2321 2322 /** 2323 * apic_bsp_setup - Setup function for local apic and io-apic 2324 * @upmode: Force UP mode (for APIC_init_uniprocessor) 2325 */ 2326 static void __init apic_bsp_setup(bool upmode) 2327 { 2328 connect_bsp_APIC(); 2329 if (upmode) 2330 apic_bsp_up_setup(); 2331 setup_local_APIC(); 2332 2333 enable_IO_APIC(); 2334 end_local_APIC_setup(); 2335 irq_remap_enable_fault_handling(); 2336 setup_IO_APIC(); 2337 lapic_update_legacy_vectors(); 2338 } 2339 2340 #ifdef CONFIG_UP_LATE_INIT 2341 void __init up_late_init(void) 2342 { 2343 if (apic_intr_mode == APIC_PIC) 2344 return; 2345 2346 /* Setup local timer */ 2347 x86_init.timers.setup_percpu_clockev(); 2348 } 2349 #endif 2350 2351 /* 2352 * Power management 2353 */ 2354 #ifdef CONFIG_PM 2355 2356 static struct { 2357 /* 2358 * 'active' is true if the local APIC was enabled by us and 2359 * not the BIOS; this signifies that we are also responsible 2360 * for disabling it before entering apm/acpi suspend 2361 */ 2362 int active; 2363 /* r/w apic fields */ 2364 u32 apic_id; 2365 unsigned int apic_taskpri; 2366 unsigned int apic_ldr; 2367 unsigned int apic_dfr; 2368 unsigned int apic_spiv; 2369 unsigned int apic_lvtt; 2370 unsigned int apic_lvtpc; 2371 unsigned int apic_lvt0; 2372 unsigned int apic_lvt1; 2373 unsigned int apic_lvterr; 2374 unsigned int apic_tmict; 2375 unsigned int apic_tdcr; 2376 unsigned int apic_thmr; 2377 unsigned int apic_cmci; 2378 } apic_pm_state; 2379 2380 static int lapic_suspend(void) 2381 { 2382 unsigned long flags; 2383 int maxlvt; 2384 2385 if (!apic_pm_state.active) 2386 return 0; 2387 2388 maxlvt = lapic_get_maxlvt(); 2389 2390 apic_pm_state.apic_id = apic_read(APIC_ID); 2391 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); 2392 apic_pm_state.apic_ldr = apic_read(APIC_LDR); 2393 apic_pm_state.apic_dfr = apic_read(APIC_DFR); 2394 apic_pm_state.apic_spiv = apic_read(APIC_SPIV); 2395 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); 2396 if (maxlvt >= 4) 2397 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); 2398 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); 2399 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); 2400 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); 2401 apic_pm_state.apic_tmict = apic_read(APIC_TMICT); 2402 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); 2403 #ifdef CONFIG_X86_THERMAL_VECTOR 2404 if (maxlvt >= 5) 2405 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); 2406 #endif 2407 #ifdef CONFIG_X86_MCE_INTEL 2408 if (maxlvt >= 6) 2409 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); 2410 #endif 2411 2412 local_irq_save(flags); 2413 2414 /* 2415 * Mask IOAPIC before disabling the local APIC to prevent stale IRR 2416 * entries on some implementations. 2417 */ 2418 mask_ioapic_entries(); 2419 2420 disable_local_APIC(); 2421 2422 irq_remapping_disable(); 2423 2424 local_irq_restore(flags); 2425 return 0; 2426 } 2427 2428 static void lapic_resume(void) 2429 { 2430 unsigned int l, h; 2431 unsigned long flags; 2432 int maxlvt; 2433 2434 if (!apic_pm_state.active) 2435 return; 2436 2437 local_irq_save(flags); 2438 2439 /* 2440 * IO-APIC and PIC have their own resume routines. 2441 * We just mask them here to make sure the interrupt 2442 * subsystem is completely quiet while we enable x2apic 2443 * and interrupt-remapping. 2444 */ 2445 mask_ioapic_entries(); 2446 legacy_pic->mask_all(); 2447 2448 if (x2apic_mode) { 2449 __x2apic_enable(); 2450 } else { 2451 /* 2452 * Make sure the APICBASE points to the right address 2453 * 2454 * FIXME! This will be wrong if we ever support suspend on 2455 * SMP! We'll need to do this as part of the CPU restore! 2456 */ 2457 if (boot_cpu_data.x86 >= 6) { 2458 rdmsr(MSR_IA32_APICBASE, l, h); 2459 l &= ~MSR_IA32_APICBASE_BASE; 2460 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; 2461 wrmsr(MSR_IA32_APICBASE, l, h); 2462 } 2463 } 2464 2465 maxlvt = lapic_get_maxlvt(); 2466 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); 2467 apic_write(APIC_ID, apic_pm_state.apic_id); 2468 apic_write(APIC_DFR, apic_pm_state.apic_dfr); 2469 apic_write(APIC_LDR, apic_pm_state.apic_ldr); 2470 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); 2471 apic_write(APIC_SPIV, apic_pm_state.apic_spiv); 2472 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); 2473 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); 2474 #ifdef CONFIG_X86_THERMAL_VECTOR 2475 if (maxlvt >= 5) 2476 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); 2477 #endif 2478 #ifdef CONFIG_X86_MCE_INTEL 2479 if (maxlvt >= 6) 2480 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); 2481 #endif 2482 if (maxlvt >= 4) 2483 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); 2484 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); 2485 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); 2486 apic_write(APIC_TMICT, apic_pm_state.apic_tmict); 2487 apic_write(APIC_ESR, 0); 2488 apic_read(APIC_ESR); 2489 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); 2490 apic_write(APIC_ESR, 0); 2491 apic_read(APIC_ESR); 2492 2493 irq_remapping_reenable(x2apic_mode); 2494 2495 local_irq_restore(flags); 2496 } 2497 2498 /* 2499 * This device has no shutdown method - fully functioning local APICs 2500 * are needed on every CPU up until machine_halt/restart/poweroff. 2501 */ 2502 2503 static struct syscore_ops lapic_syscore_ops = { 2504 .resume = lapic_resume, 2505 .suspend = lapic_suspend, 2506 }; 2507 2508 static void apic_pm_activate(void) 2509 { 2510 apic_pm_state.active = 1; 2511 } 2512 2513 static int __init init_lapic_sysfs(void) 2514 { 2515 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ 2516 if (boot_cpu_has(X86_FEATURE_APIC)) 2517 register_syscore_ops(&lapic_syscore_ops); 2518 2519 return 0; 2520 } 2521 2522 /* local apic needs to resume before other devices access its registers. */ 2523 core_initcall(init_lapic_sysfs); 2524 2525 #else /* CONFIG_PM */ 2526 2527 static void apic_pm_activate(void) { } 2528 2529 #endif /* CONFIG_PM */ 2530 2531 #ifdef CONFIG_X86_64 2532 2533 static int multi_checked; 2534 static int multi; 2535 2536 static int set_multi(const struct dmi_system_id *d) 2537 { 2538 if (multi) 2539 return 0; 2540 pr_info("APIC: %s detected, Multi Chassis\n", d->ident); 2541 multi = 1; 2542 return 0; 2543 } 2544 2545 static const struct dmi_system_id multi_dmi_table[] = { 2546 { 2547 .callback = set_multi, 2548 .ident = "IBM System Summit2", 2549 .matches = { 2550 DMI_MATCH(DMI_SYS_VENDOR, "IBM"), 2551 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), 2552 }, 2553 }, 2554 {} 2555 }; 2556 2557 static void dmi_check_multi(void) 2558 { 2559 if (multi_checked) 2560 return; 2561 2562 dmi_check_system(multi_dmi_table); 2563 multi_checked = 1; 2564 } 2565 2566 /* 2567 * apic_is_clustered_box() -- Check if we can expect good TSC 2568 * 2569 * Thus far, the major user of this is IBM's Summit2 series: 2570 * Clustered boxes may have unsynced TSC problems if they are 2571 * multi-chassis. 2572 * Use DMI to check them 2573 */ 2574 int apic_is_clustered_box(void) 2575 { 2576 dmi_check_multi(); 2577 return multi; 2578 } 2579 #endif 2580 2581 /* 2582 * APIC command line parameters 2583 */ 2584 static int __init setup_disableapic(char *arg) 2585 { 2586 apic_is_disabled = true; 2587 setup_clear_cpu_cap(X86_FEATURE_APIC); 2588 return 0; 2589 } 2590 early_param("disableapic", setup_disableapic); 2591 2592 /* same as disableapic, for compatibility */ 2593 static int __init setup_nolapic(char *arg) 2594 { 2595 return setup_disableapic(arg); 2596 } 2597 early_param("nolapic", setup_nolapic); 2598 2599 static int __init parse_lapic_timer_c2_ok(char *arg) 2600 { 2601 local_apic_timer_c2_ok = 1; 2602 return 0; 2603 } 2604 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); 2605 2606 static int __init parse_disable_apic_timer(char *arg) 2607 { 2608 disable_apic_timer = 1; 2609 return 0; 2610 } 2611 early_param("noapictimer", parse_disable_apic_timer); 2612 2613 static int __init parse_nolapic_timer(char *arg) 2614 { 2615 disable_apic_timer = 1; 2616 return 0; 2617 } 2618 early_param("nolapic_timer", parse_nolapic_timer); 2619 2620 static int __init apic_set_verbosity(char *arg) 2621 { 2622 if (!arg) { 2623 if (IS_ENABLED(CONFIG_X86_32)) 2624 return -EINVAL; 2625 2626 ioapic_is_disabled = false; 2627 return 0; 2628 } 2629 2630 if (strcmp("debug", arg) == 0) 2631 apic_verbosity = APIC_DEBUG; 2632 else if (strcmp("verbose", arg) == 0) 2633 apic_verbosity = APIC_VERBOSE; 2634 #ifdef CONFIG_X86_64 2635 else { 2636 pr_warn("APIC Verbosity level %s not recognised" 2637 " use apic=verbose or apic=debug\n", arg); 2638 return -EINVAL; 2639 } 2640 #endif 2641 2642 return 0; 2643 } 2644 early_param("apic", apic_set_verbosity); 2645 2646 static int __init lapic_insert_resource(void) 2647 { 2648 if (!apic_mmio_base) 2649 return -1; 2650 2651 /* Put local APIC into the resource map. */ 2652 lapic_resource.start = apic_mmio_base; 2653 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; 2654 insert_resource(&iomem_resource, &lapic_resource); 2655 2656 return 0; 2657 } 2658 2659 /* 2660 * need call insert after e820__reserve_resources() 2661 * that is using request_resource 2662 */ 2663 late_initcall(lapic_insert_resource); 2664 2665 static int __init apic_set_extnmi(char *arg) 2666 { 2667 if (!arg) 2668 return -EINVAL; 2669 2670 if (!strncmp("all", arg, 3)) 2671 apic_extnmi = APIC_EXTNMI_ALL; 2672 else if (!strncmp("none", arg, 4)) 2673 apic_extnmi = APIC_EXTNMI_NONE; 2674 else if (!strncmp("bsp", arg, 3)) 2675 apic_extnmi = APIC_EXTNMI_BSP; 2676 else { 2677 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); 2678 return -EINVAL; 2679 } 2680 2681 return 0; 2682 } 2683 early_param("apic_extnmi", apic_set_extnmi); 2684