1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "SMP alternatives: " fmt 3 4 #include <linux/module.h> 5 #include <linux/sched.h> 6 #include <linux/perf_event.h> 7 #include <linux/mutex.h> 8 #include <linux/list.h> 9 #include <linux/stringify.h> 10 #include <linux/highmem.h> 11 #include <linux/mm.h> 12 #include <linux/vmalloc.h> 13 #include <linux/memory.h> 14 #include <linux/stop_machine.h> 15 #include <linux/slab.h> 16 #include <linux/kdebug.h> 17 #include <linux/kprobes.h> 18 #include <linux/mmu_context.h> 19 #include <linux/bsearch.h> 20 #include <linux/sync_core.h> 21 #include <asm/text-patching.h> 22 #include <asm/alternative.h> 23 #include <asm/sections.h> 24 #include <asm/mce.h> 25 #include <asm/nmi.h> 26 #include <asm/cacheflush.h> 27 #include <asm/tlbflush.h> 28 #include <asm/insn.h> 29 #include <asm/io.h> 30 #include <asm/fixmap.h> 31 #include <asm/paravirt.h> 32 #include <asm/asm-prototypes.h> 33 #include <asm/cfi.h> 34 35 int __read_mostly alternatives_patched; 36 37 EXPORT_SYMBOL_GPL(alternatives_patched); 38 39 #define MAX_PATCH_LEN (255-1) 40 41 #define DA_ALL (~0) 42 #define DA_ALT 0x01 43 #define DA_RET 0x02 44 #define DA_RETPOLINE 0x04 45 #define DA_ENDBR 0x08 46 #define DA_SMP 0x10 47 48 static unsigned int __initdata_or_module debug_alternative; 49 50 static int __init debug_alt(char *str) 51 { 52 if (str && *str == '=') 53 str++; 54 55 if (!str || kstrtouint(str, 0, &debug_alternative)) 56 debug_alternative = DA_ALL; 57 58 return 1; 59 } 60 __setup("debug-alternative", debug_alt); 61 62 static int noreplace_smp; 63 64 static int __init setup_noreplace_smp(char *str) 65 { 66 noreplace_smp = 1; 67 return 1; 68 } 69 __setup("noreplace-smp", setup_noreplace_smp); 70 71 #define DPRINTK(type, fmt, args...) \ 72 do { \ 73 if (debug_alternative & DA_##type) \ 74 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ 75 } while (0) 76 77 #define DUMP_BYTES(type, buf, len, fmt, args...) \ 78 do { \ 79 if (unlikely(debug_alternative & DA_##type)) { \ 80 int j; \ 81 \ 82 if (!(len)) \ 83 break; \ 84 \ 85 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 86 for (j = 0; j < (len) - 1; j++) \ 87 printk(KERN_CONT "%02hhx ", buf[j]); \ 88 printk(KERN_CONT "%02hhx\n", buf[j]); \ 89 } \ 90 } while (0) 91 92 static const unsigned char x86nops[] = 93 { 94 BYTES_NOP1, 95 BYTES_NOP2, 96 BYTES_NOP3, 97 BYTES_NOP4, 98 BYTES_NOP5, 99 BYTES_NOP6, 100 BYTES_NOP7, 101 BYTES_NOP8, 102 #ifdef CONFIG_64BIT 103 BYTES_NOP9, 104 BYTES_NOP10, 105 BYTES_NOP11, 106 #endif 107 }; 108 109 const unsigned char * const x86_nops[ASM_NOP_MAX+1] = 110 { 111 NULL, 112 x86nops, 113 x86nops + 1, 114 x86nops + 1 + 2, 115 x86nops + 1 + 2 + 3, 116 x86nops + 1 + 2 + 3 + 4, 117 x86nops + 1 + 2 + 3 + 4 + 5, 118 x86nops + 1 + 2 + 3 + 4 + 5 + 6, 119 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 120 #ifdef CONFIG_64BIT 121 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 122 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, 123 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, 124 #endif 125 }; 126 127 /* 128 * Fill the buffer with a single effective instruction of size @len. 129 * 130 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info) 131 * for every single-byte NOP, try to generate the maximally available NOP of 132 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for 133 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and 134 * *jump* over instead of executing long and daft NOPs. 135 */ 136 static void __init_or_module add_nop(u8 *instr, unsigned int len) 137 { 138 u8 *target = instr + len; 139 140 if (!len) 141 return; 142 143 if (len <= ASM_NOP_MAX) { 144 memcpy(instr, x86_nops[len], len); 145 return; 146 } 147 148 if (len < 128) { 149 __text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE); 150 instr += JMP8_INSN_SIZE; 151 } else { 152 __text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE); 153 instr += JMP32_INSN_SIZE; 154 } 155 156 for (;instr < target; instr++) 157 *instr = INT3_INSN_OPCODE; 158 } 159 160 extern s32 __retpoline_sites[], __retpoline_sites_end[]; 161 extern s32 __return_sites[], __return_sites_end[]; 162 extern s32 __cfi_sites[], __cfi_sites_end[]; 163 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[]; 164 extern s32 __smp_locks[], __smp_locks_end[]; 165 void text_poke_early(void *addr, const void *opcode, size_t len); 166 167 /* 168 * Matches NOP and NOPL, not any of the other possible NOPs. 169 */ 170 static bool insn_is_nop(struct insn *insn) 171 { 172 /* Anything NOP, but no REP NOP */ 173 if (insn->opcode.bytes[0] == 0x90 && 174 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3)) 175 return true; 176 177 /* NOPL */ 178 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F) 179 return true; 180 181 /* TODO: more nops */ 182 183 return false; 184 } 185 186 /* 187 * Find the offset of the first non-NOP instruction starting at @offset 188 * but no further than @len. 189 */ 190 static int skip_nops(u8 *instr, int offset, int len) 191 { 192 struct insn insn; 193 194 for (; offset < len; offset += insn.length) { 195 if (insn_decode_kernel(&insn, &instr[offset])) 196 break; 197 198 if (!insn_is_nop(&insn)) 199 break; 200 } 201 202 return offset; 203 } 204 205 /* 206 * Optimize a sequence of NOPs, possibly preceded by an unconditional jump 207 * to the end of the NOP sequence into a single NOP. 208 */ 209 static bool __init_or_module 210 __optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target) 211 { 212 int i = *next - insn->length; 213 214 switch (insn->opcode.bytes[0]) { 215 case JMP8_INSN_OPCODE: 216 case JMP32_INSN_OPCODE: 217 *prev = i; 218 *target = *next + insn->immediate.value; 219 return false; 220 } 221 222 if (insn_is_nop(insn)) { 223 int nop = i; 224 225 *next = skip_nops(instr, *next, len); 226 if (*target && *next == *target) 227 nop = *prev; 228 229 add_nop(instr + nop, *next - nop); 230 DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next); 231 return true; 232 } 233 234 *target = 0; 235 return false; 236 } 237 238 /* 239 * "noinline" to cause control flow change and thus invalidate I$ and 240 * cause refetch after modification. 241 */ 242 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len) 243 { 244 int prev, target = 0; 245 246 for (int next, i = 0; i < len; i = next) { 247 struct insn insn; 248 249 if (insn_decode_kernel(&insn, &instr[i])) 250 return; 251 252 next = i + insn.length; 253 254 __optimize_nops(instr, len, &insn, &next, &prev, &target); 255 } 256 } 257 258 static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len) 259 { 260 unsigned long flags; 261 262 local_irq_save(flags); 263 optimize_nops(instr, len); 264 sync_core(); 265 local_irq_restore(flags); 266 } 267 268 /* 269 * In this context, "source" is where the instructions are placed in the 270 * section .altinstr_replacement, for example during kernel build by the 271 * toolchain. 272 * "Destination" is where the instructions are being patched in by this 273 * machinery. 274 * 275 * The source offset is: 276 * 277 * src_imm = target - src_next_ip (1) 278 * 279 * and the target offset is: 280 * 281 * dst_imm = target - dst_next_ip (2) 282 * 283 * so rework (1) as an expression for target like: 284 * 285 * target = src_imm + src_next_ip (1a) 286 * 287 * and substitute in (2) to get: 288 * 289 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3) 290 * 291 * Now, since the instruction stream is 'identical' at src and dst (it 292 * is being copied after all) it can be stated that: 293 * 294 * src_next_ip = src + ip_offset 295 * dst_next_ip = dst + ip_offset (4) 296 * 297 * Substitute (4) in (3) and observe ip_offset being cancelled out to 298 * obtain: 299 * 300 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset) 301 * = src_imm + src - dst + ip_offset - ip_offset 302 * = src_imm + src - dst (5) 303 * 304 * IOW, only the relative displacement of the code block matters. 305 */ 306 307 #define apply_reloc_n(n_, p_, d_) \ 308 do { \ 309 s32 v = *(s##n_ *)(p_); \ 310 v += (d_); \ 311 BUG_ON((v >> 31) != (v >> (n_-1))); \ 312 *(s##n_ *)(p_) = (s##n_)v; \ 313 } while (0) 314 315 316 static __always_inline 317 void apply_reloc(int n, void *ptr, uintptr_t diff) 318 { 319 switch (n) { 320 case 1: apply_reloc_n(8, ptr, diff); break; 321 case 2: apply_reloc_n(16, ptr, diff); break; 322 case 4: apply_reloc_n(32, ptr, diff); break; 323 default: BUG(); 324 } 325 } 326 327 static __always_inline 328 bool need_reloc(unsigned long offset, u8 *src, size_t src_len) 329 { 330 u8 *target = src + offset; 331 /* 332 * If the target is inside the patched block, it's relative to the 333 * block itself and does not need relocation. 334 */ 335 return (target < src || target > src + src_len); 336 } 337 338 static void __init_or_module noinline 339 apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len) 340 { 341 int prev, target = 0; 342 343 for (int next, i = 0; i < len; i = next) { 344 struct insn insn; 345 346 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i]))) 347 return; 348 349 next = i + insn.length; 350 351 if (__optimize_nops(buf, len, &insn, &next, &prev, &target)) 352 continue; 353 354 switch (insn.opcode.bytes[0]) { 355 case 0x0f: 356 if (insn.opcode.bytes[1] < 0x80 || 357 insn.opcode.bytes[1] > 0x8f) 358 break; 359 360 fallthrough; /* Jcc.d32 */ 361 case 0x70 ... 0x7f: /* Jcc.d8 */ 362 case JMP8_INSN_OPCODE: 363 case JMP32_INSN_OPCODE: 364 case CALL_INSN_OPCODE: 365 if (need_reloc(next + insn.immediate.value, src, src_len)) { 366 apply_reloc(insn.immediate.nbytes, 367 buf + i + insn_offset_immediate(&insn), 368 src - dest); 369 } 370 371 /* 372 * Where possible, convert JMP.d32 into JMP.d8. 373 */ 374 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) { 375 s32 imm = insn.immediate.value; 376 imm += src - dest; 377 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE; 378 if ((imm >> 31) == (imm >> 7)) { 379 buf[i+0] = JMP8_INSN_OPCODE; 380 buf[i+1] = (s8)imm; 381 382 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2); 383 } 384 } 385 break; 386 } 387 388 if (insn_rip_relative(&insn)) { 389 if (need_reloc(next + insn.displacement.value, src, src_len)) { 390 apply_reloc(insn.displacement.nbytes, 391 buf + i + insn_offset_displacement(&insn), 392 src - dest); 393 } 394 } 395 } 396 } 397 398 /* Low-level backend functions usable from alternative code replacements. */ 399 DEFINE_ASM_FUNC(nop_func, "", .entry.text); 400 EXPORT_SYMBOL_GPL(nop_func); 401 402 noinstr void BUG_func(void) 403 { 404 BUG(); 405 } 406 EXPORT_SYMBOL(BUG_func); 407 408 #define CALL_RIP_REL_OPCODE 0xff 409 #define CALL_RIP_REL_MODRM 0x15 410 411 /* 412 * Rewrite the "call BUG_func" replacement to point to the target of the 413 * indirect pv_ops call "call *disp(%ip)". 414 */ 415 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a) 416 { 417 void *target, *bug = &BUG_func; 418 s32 disp; 419 420 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) { 421 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n"); 422 BUG(); 423 } 424 425 if (a->instrlen != 6 || 426 instr[0] != CALL_RIP_REL_OPCODE || 427 instr[1] != CALL_RIP_REL_MODRM) { 428 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n"); 429 BUG(); 430 } 431 432 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */ 433 disp = *(s32 *)(instr + 2); 434 #ifdef CONFIG_X86_64 435 /* ff 15 00 00 00 00 call *0x0(%rip) */ 436 /* target address is stored at "next instruction + disp". */ 437 target = *(void **)(instr + a->instrlen + disp); 438 #else 439 /* ff 15 00 00 00 00 call *0x0 */ 440 /* target address is stored at disp. */ 441 target = *(void **)disp; 442 #endif 443 if (!target) 444 target = bug; 445 446 /* (BUG_func - .) + (target - BUG_func) := target - . */ 447 *(s32 *)(insn_buff + 1) += target - bug; 448 449 if (target == &nop_func) 450 return 0; 451 452 return 5; 453 } 454 455 /* 456 * Replace instructions with better alternatives for this CPU type. This runs 457 * before SMP is initialized to avoid SMP problems with self modifying code. 458 * This implies that asymmetric systems where APs have less capabilities than 459 * the boot processor are not handled. Tough. Make sure you disable such 460 * features by hand. 461 * 462 * Marked "noinline" to cause control flow change and thus insn cache 463 * to refetch changed I$ lines. 464 */ 465 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 466 struct alt_instr *end) 467 { 468 struct alt_instr *a; 469 u8 *instr, *replacement; 470 u8 insn_buff[MAX_PATCH_LEN]; 471 472 DPRINTK(ALT, "alt table %px, -> %px", start, end); 473 474 /* 475 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using 476 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here. 477 * During the process, KASAN becomes confused seeing partial LA57 478 * conversion and triggers a false-positive out-of-bound report. 479 * 480 * Disable KASAN until the patching is complete. 481 */ 482 kasan_disable_current(); 483 484 /* 485 * The scan order should be from start to end. A later scanned 486 * alternative code can overwrite previously scanned alternative code. 487 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 488 * patch code. 489 * 490 * So be careful if you want to change the scan order to any other 491 * order. 492 */ 493 for (a = start; a < end; a++) { 494 int insn_buff_sz = 0; 495 496 instr = (u8 *)&a->instr_offset + a->instr_offset; 497 replacement = (u8 *)&a->repl_offset + a->repl_offset; 498 BUG_ON(a->instrlen > sizeof(insn_buff)); 499 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); 500 501 /* 502 * Patch if either: 503 * - feature is present 504 * - feature not present but ALT_FLAG_NOT is set to mean, 505 * patch if feature is *NOT* present. 506 */ 507 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) { 508 optimize_nops_inplace(instr, a->instrlen); 509 continue; 510 } 511 512 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x", 513 a->cpuid >> 5, 514 a->cpuid & 0x1f, 515 instr, instr, a->instrlen, 516 replacement, a->replacementlen, a->flags); 517 518 memcpy(insn_buff, replacement, a->replacementlen); 519 insn_buff_sz = a->replacementlen; 520 521 if (a->flags & ALT_FLAG_DIRECT_CALL) { 522 insn_buff_sz = alt_replace_call(instr, insn_buff, a); 523 if (insn_buff_sz < 0) 524 continue; 525 } 526 527 for (; insn_buff_sz < a->instrlen; insn_buff_sz++) 528 insn_buff[insn_buff_sz] = 0x90; 529 530 apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen); 531 532 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr); 533 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement); 534 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr); 535 536 text_poke_early(instr, insn_buff, insn_buff_sz); 537 } 538 539 kasan_enable_current(); 540 } 541 542 static inline bool is_jcc32(struct insn *insn) 543 { 544 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ 545 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80; 546 } 547 548 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL) 549 550 /* 551 * CALL/JMP *%\reg 552 */ 553 static int emit_indirect(int op, int reg, u8 *bytes) 554 { 555 int i = 0; 556 u8 modrm; 557 558 switch (op) { 559 case CALL_INSN_OPCODE: 560 modrm = 0x10; /* Reg = 2; CALL r/m */ 561 break; 562 563 case JMP32_INSN_OPCODE: 564 modrm = 0x20; /* Reg = 4; JMP r/m */ 565 break; 566 567 default: 568 WARN_ON_ONCE(1); 569 return -1; 570 } 571 572 if (reg >= 8) { 573 bytes[i++] = 0x41; /* REX.B prefix */ 574 reg -= 8; 575 } 576 577 modrm |= 0xc0; /* Mod = 3 */ 578 modrm += reg; 579 580 bytes[i++] = 0xff; /* opcode */ 581 bytes[i++] = modrm; 582 583 return i; 584 } 585 586 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes) 587 { 588 u8 op = insn->opcode.bytes[0]; 589 int i = 0; 590 591 /* 592 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional 593 * tail-calls. Deal with them. 594 */ 595 if (is_jcc32(insn)) { 596 bytes[i++] = op; 597 op = insn->opcode.bytes[1]; 598 goto clang_jcc; 599 } 600 601 if (insn->length == 6) 602 bytes[i++] = 0x2e; /* CS-prefix */ 603 604 switch (op) { 605 case CALL_INSN_OPCODE: 606 __text_gen_insn(bytes+i, op, addr+i, 607 __x86_indirect_call_thunk_array[reg], 608 CALL_INSN_SIZE); 609 i += CALL_INSN_SIZE; 610 break; 611 612 case JMP32_INSN_OPCODE: 613 clang_jcc: 614 __text_gen_insn(bytes+i, op, addr+i, 615 __x86_indirect_jump_thunk_array[reg], 616 JMP32_INSN_SIZE); 617 i += JMP32_INSN_SIZE; 618 break; 619 620 default: 621 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr); 622 return -1; 623 } 624 625 WARN_ON_ONCE(i != insn->length); 626 627 return i; 628 } 629 630 /* 631 * Rewrite the compiler generated retpoline thunk calls. 632 * 633 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate 634 * indirect instructions, avoiding the extra indirection. 635 * 636 * For example, convert: 637 * 638 * CALL __x86_indirect_thunk_\reg 639 * 640 * into: 641 * 642 * CALL *%\reg 643 * 644 * It also tries to inline spectre_v2=retpoline,lfence when size permits. 645 */ 646 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) 647 { 648 retpoline_thunk_t *target; 649 int reg, ret, i = 0; 650 u8 op, cc; 651 652 target = addr + insn->length + insn->immediate.value; 653 reg = target - __x86_indirect_thunk_array; 654 655 if (WARN_ON_ONCE(reg & ~0xf)) 656 return -1; 657 658 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ 659 BUG_ON(reg == 4); 660 661 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && 662 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 663 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 664 return emit_call_track_retpoline(addr, insn, reg, bytes); 665 666 return -1; 667 } 668 669 op = insn->opcode.bytes[0]; 670 671 /* 672 * Convert: 673 * 674 * Jcc.d32 __x86_indirect_thunk_\reg 675 * 676 * into: 677 * 678 * Jncc.d8 1f 679 * [ LFENCE ] 680 * JMP *%\reg 681 * [ NOP ] 682 * 1: 683 */ 684 if (is_jcc32(insn)) { 685 cc = insn->opcode.bytes[1] & 0xf; 686 cc ^= 1; /* invert condition */ 687 688 bytes[i++] = 0x70 + cc; /* Jcc.d8 */ 689 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ 690 691 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ 692 op = JMP32_INSN_OPCODE; 693 } 694 695 /* 696 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. 697 */ 698 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 699 bytes[i++] = 0x0f; 700 bytes[i++] = 0xae; 701 bytes[i++] = 0xe8; /* LFENCE */ 702 } 703 704 ret = emit_indirect(op, reg, bytes + i); 705 if (ret < 0) 706 return ret; 707 i += ret; 708 709 /* 710 * The compiler is supposed to EMIT an INT3 after every unconditional 711 * JMP instruction due to AMD BTC. However, if the compiler is too old 712 * or SLS isn't enabled, we still need an INT3 after indirect JMPs 713 * even on Intel. 714 */ 715 if (op == JMP32_INSN_OPCODE && i < insn->length) 716 bytes[i++] = INT3_INSN_OPCODE; 717 718 for (; i < insn->length;) 719 bytes[i++] = BYTES_NOP1; 720 721 return i; 722 } 723 724 /* 725 * Generated by 'objtool --retpoline'. 726 */ 727 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) 728 { 729 s32 *s; 730 731 for (s = start; s < end; s++) { 732 void *addr = (void *)s + *s; 733 struct insn insn; 734 int len, ret; 735 u8 bytes[16]; 736 u8 op1, op2; 737 738 ret = insn_decode_kernel(&insn, addr); 739 if (WARN_ON_ONCE(ret < 0)) 740 continue; 741 742 op1 = insn.opcode.bytes[0]; 743 op2 = insn.opcode.bytes[1]; 744 745 switch (op1) { 746 case CALL_INSN_OPCODE: 747 case JMP32_INSN_OPCODE: 748 break; 749 750 case 0x0f: /* escape */ 751 if (op2 >= 0x80 && op2 <= 0x8f) 752 break; 753 fallthrough; 754 default: 755 WARN_ON_ONCE(1); 756 continue; 757 } 758 759 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS", 760 addr, addr, insn.length, 761 addr + insn.length + insn.immediate.value); 762 763 len = patch_retpoline(addr, &insn, bytes); 764 if (len == insn.length) { 765 optimize_nops(bytes, len); 766 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr); 767 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr); 768 text_poke_early(addr, bytes, len); 769 } 770 } 771 } 772 773 #ifdef CONFIG_RETHUNK 774 775 /* 776 * Rewrite the compiler generated return thunk tail-calls. 777 * 778 * For example, convert: 779 * 780 * JMP __x86_return_thunk 781 * 782 * into: 783 * 784 * RET 785 */ 786 static int patch_return(void *addr, struct insn *insn, u8 *bytes) 787 { 788 int i = 0; 789 790 /* Patch the custom return thunks... */ 791 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) { 792 i = JMP32_INSN_SIZE; 793 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i); 794 } else { 795 /* ... or patch them out if not needed. */ 796 bytes[i++] = RET_INSN_OPCODE; 797 } 798 799 for (; i < insn->length;) 800 bytes[i++] = INT3_INSN_OPCODE; 801 return i; 802 } 803 804 void __init_or_module noinline apply_returns(s32 *start, s32 *end) 805 { 806 s32 *s; 807 808 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) 809 static_call_force_reinit(); 810 811 for (s = start; s < end; s++) { 812 void *dest = NULL, *addr = (void *)s + *s; 813 struct insn insn; 814 int len, ret; 815 u8 bytes[16]; 816 u8 op; 817 818 ret = insn_decode_kernel(&insn, addr); 819 if (WARN_ON_ONCE(ret < 0)) 820 continue; 821 822 op = insn.opcode.bytes[0]; 823 if (op == JMP32_INSN_OPCODE) 824 dest = addr + insn.length + insn.immediate.value; 825 826 if (__static_call_fixup(addr, op, dest) || 827 WARN_ONCE(dest != &__x86_return_thunk, 828 "missing return thunk: %pS-%pS: %*ph", 829 addr, dest, 5, addr)) 830 continue; 831 832 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS", 833 addr, addr, insn.length, 834 addr + insn.length + insn.immediate.value); 835 836 len = patch_return(addr, &insn, bytes); 837 if (len == insn.length) { 838 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr); 839 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr); 840 text_poke_early(addr, bytes, len); 841 } 842 } 843 } 844 #else 845 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 846 #endif /* CONFIG_RETHUNK */ 847 848 #else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */ 849 850 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } 851 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 852 853 #endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */ 854 855 #ifdef CONFIG_X86_KERNEL_IBT 856 857 static void poison_cfi(void *addr); 858 859 static void __init_or_module poison_endbr(void *addr, bool warn) 860 { 861 u32 endbr, poison = gen_endbr_poison(); 862 863 if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr))) 864 return; 865 866 if (!is_endbr(endbr)) { 867 WARN_ON_ONCE(warn); 868 return; 869 } 870 871 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr); 872 873 /* 874 * When we have IBT, the lack of ENDBR will trigger #CP 875 */ 876 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr); 877 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr); 878 text_poke_early(addr, &poison, 4); 879 } 880 881 /* 882 * Generated by: objtool --ibt 883 * 884 * Seal the functions for indirect calls by clobbering the ENDBR instructions 885 * and the kCFI hash value. 886 */ 887 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end) 888 { 889 s32 *s; 890 891 for (s = start; s < end; s++) { 892 void *addr = (void *)s + *s; 893 894 poison_endbr(addr, true); 895 if (IS_ENABLED(CONFIG_FINEIBT)) 896 poison_cfi(addr - 16); 897 } 898 } 899 900 #else 901 902 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { } 903 904 #endif /* CONFIG_X86_KERNEL_IBT */ 905 906 #ifdef CONFIG_FINEIBT 907 #define __CFI_DEFAULT CFI_DEFAULT 908 #elif defined(CONFIG_CFI_CLANG) 909 #define __CFI_DEFAULT CFI_KCFI 910 #else 911 #define __CFI_DEFAULT CFI_OFF 912 #endif 913 914 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT; 915 916 #ifdef CONFIG_CFI_CLANG 917 struct bpf_insn; 918 919 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */ 920 extern unsigned int __bpf_prog_runX(const void *ctx, 921 const struct bpf_insn *insn); 922 923 /* 924 * Force a reference to the external symbol so the compiler generates 925 * __kcfi_typid. 926 */ 927 __ADDRESSABLE(__bpf_prog_runX); 928 929 /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */ 930 asm ( 931 " .pushsection .data..ro_after_init,\"aw\",@progbits \n" 932 " .type cfi_bpf_hash,@object \n" 933 " .globl cfi_bpf_hash \n" 934 " .p2align 2, 0x0 \n" 935 "cfi_bpf_hash: \n" 936 " .long __kcfi_typeid___bpf_prog_runX \n" 937 " .size cfi_bpf_hash, 4 \n" 938 " .popsection \n" 939 ); 940 941 /* Must match bpf_callback_t */ 942 extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64); 943 944 __ADDRESSABLE(__bpf_callback_fn); 945 946 /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */ 947 asm ( 948 " .pushsection .data..ro_after_init,\"aw\",@progbits \n" 949 " .type cfi_bpf_subprog_hash,@object \n" 950 " .globl cfi_bpf_subprog_hash \n" 951 " .p2align 2, 0x0 \n" 952 "cfi_bpf_subprog_hash: \n" 953 " .long __kcfi_typeid___bpf_callback_fn \n" 954 " .size cfi_bpf_subprog_hash, 4 \n" 955 " .popsection \n" 956 ); 957 958 u32 cfi_get_func_hash(void *func) 959 { 960 u32 hash; 961 962 func -= cfi_get_offset(); 963 switch (cfi_mode) { 964 case CFI_FINEIBT: 965 func += 7; 966 break; 967 case CFI_KCFI: 968 func += 1; 969 break; 970 default: 971 return 0; 972 } 973 974 if (get_kernel_nofault(hash, func)) 975 return 0; 976 977 return hash; 978 } 979 #endif 980 981 #ifdef CONFIG_FINEIBT 982 983 static bool cfi_rand __ro_after_init = true; 984 static u32 cfi_seed __ro_after_init; 985 986 /* 987 * Re-hash the CFI hash with a boot-time seed while making sure the result is 988 * not a valid ENDBR instruction. 989 */ 990 static u32 cfi_rehash(u32 hash) 991 { 992 hash ^= cfi_seed; 993 while (unlikely(is_endbr(hash) || is_endbr(-hash))) { 994 bool lsb = hash & 1; 995 hash >>= 1; 996 if (lsb) 997 hash ^= 0x80200003; 998 } 999 return hash; 1000 } 1001 1002 static __init int cfi_parse_cmdline(char *str) 1003 { 1004 if (!str) 1005 return -EINVAL; 1006 1007 while (str) { 1008 char *next = strchr(str, ','); 1009 if (next) { 1010 *next = 0; 1011 next++; 1012 } 1013 1014 if (!strcmp(str, "auto")) { 1015 cfi_mode = CFI_DEFAULT; 1016 } else if (!strcmp(str, "off")) { 1017 cfi_mode = CFI_OFF; 1018 cfi_rand = false; 1019 } else if (!strcmp(str, "kcfi")) { 1020 cfi_mode = CFI_KCFI; 1021 } else if (!strcmp(str, "fineibt")) { 1022 cfi_mode = CFI_FINEIBT; 1023 } else if (!strcmp(str, "norand")) { 1024 cfi_rand = false; 1025 } else { 1026 pr_err("Ignoring unknown cfi option (%s).", str); 1027 } 1028 1029 str = next; 1030 } 1031 1032 return 0; 1033 } 1034 early_param("cfi", cfi_parse_cmdline); 1035 1036 /* 1037 * kCFI FineIBT 1038 * 1039 * __cfi_\func: __cfi_\func: 1040 * movl $0x12345678,%eax // 5 endbr64 // 4 1041 * nop subl $0x12345678,%r10d // 7 1042 * nop jz 1f // 2 1043 * nop ud2 // 2 1044 * nop 1: nop // 1 1045 * nop 1046 * nop 1047 * nop 1048 * nop 1049 * nop 1050 * nop 1051 * nop 1052 * 1053 * 1054 * caller: caller: 1055 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6 1056 * addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4 1057 * je 1f // 2 nop4 // 4 1058 * ud2 // 2 1059 * 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5 1060 * 1061 */ 1062 1063 asm( ".pushsection .rodata \n" 1064 "fineibt_preamble_start: \n" 1065 " endbr64 \n" 1066 " subl $0x12345678, %r10d \n" 1067 " je fineibt_preamble_end \n" 1068 " ud2 \n" 1069 " nop \n" 1070 "fineibt_preamble_end: \n" 1071 ".popsection\n" 1072 ); 1073 1074 extern u8 fineibt_preamble_start[]; 1075 extern u8 fineibt_preamble_end[]; 1076 1077 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start) 1078 #define fineibt_preamble_hash 7 1079 1080 asm( ".pushsection .rodata \n" 1081 "fineibt_caller_start: \n" 1082 " movl $0x12345678, %r10d \n" 1083 " sub $16, %r11 \n" 1084 ASM_NOP4 1085 "fineibt_caller_end: \n" 1086 ".popsection \n" 1087 ); 1088 1089 extern u8 fineibt_caller_start[]; 1090 extern u8 fineibt_caller_end[]; 1091 1092 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start) 1093 #define fineibt_caller_hash 2 1094 1095 #define fineibt_caller_jmp (fineibt_caller_size - 2) 1096 1097 static u32 decode_preamble_hash(void *addr) 1098 { 1099 u8 *p = addr; 1100 1101 /* b8 78 56 34 12 mov $0x12345678,%eax */ 1102 if (p[0] == 0xb8) 1103 return *(u32 *)(addr + 1); 1104 1105 return 0; /* invalid hash value */ 1106 } 1107 1108 static u32 decode_caller_hash(void *addr) 1109 { 1110 u8 *p = addr; 1111 1112 /* 41 ba 78 56 34 12 mov $0x12345678,%r10d */ 1113 if (p[0] == 0x41 && p[1] == 0xba) 1114 return -*(u32 *)(addr + 2); 1115 1116 /* e8 0c 78 56 34 12 jmp.d8 +12 */ 1117 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp) 1118 return -*(u32 *)(addr + 2); 1119 1120 return 0; /* invalid hash value */ 1121 } 1122 1123 /* .retpoline_sites */ 1124 static int cfi_disable_callers(s32 *start, s32 *end) 1125 { 1126 /* 1127 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate 1128 * in tact for later usage. Also see decode_caller_hash() and 1129 * cfi_rewrite_callers(). 1130 */ 1131 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp }; 1132 s32 *s; 1133 1134 for (s = start; s < end; s++) { 1135 void *addr = (void *)s + *s; 1136 u32 hash; 1137 1138 addr -= fineibt_caller_size; 1139 hash = decode_caller_hash(addr); 1140 if (!hash) /* nocfi callers */ 1141 continue; 1142 1143 text_poke_early(addr, jmp, 2); 1144 } 1145 1146 return 0; 1147 } 1148 1149 static int cfi_enable_callers(s32 *start, s32 *end) 1150 { 1151 /* 1152 * Re-enable kCFI, undo what cfi_disable_callers() did. 1153 */ 1154 const u8 mov[] = { 0x41, 0xba }; 1155 s32 *s; 1156 1157 for (s = start; s < end; s++) { 1158 void *addr = (void *)s + *s; 1159 u32 hash; 1160 1161 addr -= fineibt_caller_size; 1162 hash = decode_caller_hash(addr); 1163 if (!hash) /* nocfi callers */ 1164 continue; 1165 1166 text_poke_early(addr, mov, 2); 1167 } 1168 1169 return 0; 1170 } 1171 1172 /* .cfi_sites */ 1173 static int cfi_rand_preamble(s32 *start, s32 *end) 1174 { 1175 s32 *s; 1176 1177 for (s = start; s < end; s++) { 1178 void *addr = (void *)s + *s; 1179 u32 hash; 1180 1181 hash = decode_preamble_hash(addr); 1182 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1183 addr, addr, 5, addr)) 1184 return -EINVAL; 1185 1186 hash = cfi_rehash(hash); 1187 text_poke_early(addr + 1, &hash, 4); 1188 } 1189 1190 return 0; 1191 } 1192 1193 static int cfi_rewrite_preamble(s32 *start, s32 *end) 1194 { 1195 s32 *s; 1196 1197 for (s = start; s < end; s++) { 1198 void *addr = (void *)s + *s; 1199 u32 hash; 1200 1201 hash = decode_preamble_hash(addr); 1202 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1203 addr, addr, 5, addr)) 1204 return -EINVAL; 1205 1206 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size); 1207 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678); 1208 text_poke_early(addr + fineibt_preamble_hash, &hash, 4); 1209 } 1210 1211 return 0; 1212 } 1213 1214 static void cfi_rewrite_endbr(s32 *start, s32 *end) 1215 { 1216 s32 *s; 1217 1218 for (s = start; s < end; s++) { 1219 void *addr = (void *)s + *s; 1220 1221 poison_endbr(addr+16, false); 1222 } 1223 } 1224 1225 /* .retpoline_sites */ 1226 static int cfi_rand_callers(s32 *start, s32 *end) 1227 { 1228 s32 *s; 1229 1230 for (s = start; s < end; s++) { 1231 void *addr = (void *)s + *s; 1232 u32 hash; 1233 1234 addr -= fineibt_caller_size; 1235 hash = decode_caller_hash(addr); 1236 if (hash) { 1237 hash = -cfi_rehash(hash); 1238 text_poke_early(addr + 2, &hash, 4); 1239 } 1240 } 1241 1242 return 0; 1243 } 1244 1245 static int cfi_rewrite_callers(s32 *start, s32 *end) 1246 { 1247 s32 *s; 1248 1249 for (s = start; s < end; s++) { 1250 void *addr = (void *)s + *s; 1251 u32 hash; 1252 1253 addr -= fineibt_caller_size; 1254 hash = decode_caller_hash(addr); 1255 if (hash) { 1256 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size); 1257 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678); 1258 text_poke_early(addr + fineibt_caller_hash, &hash, 4); 1259 } 1260 /* rely on apply_retpolines() */ 1261 } 1262 1263 return 0; 1264 } 1265 1266 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1267 s32 *start_cfi, s32 *end_cfi, bool builtin) 1268 { 1269 int ret; 1270 1271 if (WARN_ONCE(fineibt_preamble_size != 16, 1272 "FineIBT preamble wrong size: %ld", fineibt_preamble_size)) 1273 return; 1274 1275 if (cfi_mode == CFI_DEFAULT) { 1276 cfi_mode = CFI_KCFI; 1277 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) 1278 cfi_mode = CFI_FINEIBT; 1279 } 1280 1281 /* 1282 * Rewrite the callers to not use the __cfi_ stubs, such that we might 1283 * rewrite them. This disables all CFI. If this succeeds but any of the 1284 * later stages fails, we're without CFI. 1285 */ 1286 ret = cfi_disable_callers(start_retpoline, end_retpoline); 1287 if (ret) 1288 goto err; 1289 1290 if (cfi_rand) { 1291 if (builtin) { 1292 cfi_seed = get_random_u32(); 1293 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash); 1294 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash); 1295 } 1296 1297 ret = cfi_rand_preamble(start_cfi, end_cfi); 1298 if (ret) 1299 goto err; 1300 1301 ret = cfi_rand_callers(start_retpoline, end_retpoline); 1302 if (ret) 1303 goto err; 1304 } 1305 1306 switch (cfi_mode) { 1307 case CFI_OFF: 1308 if (builtin) 1309 pr_info("Disabling CFI\n"); 1310 return; 1311 1312 case CFI_KCFI: 1313 ret = cfi_enable_callers(start_retpoline, end_retpoline); 1314 if (ret) 1315 goto err; 1316 1317 if (builtin) 1318 pr_info("Using kCFI\n"); 1319 return; 1320 1321 case CFI_FINEIBT: 1322 /* place the FineIBT preamble at func()-16 */ 1323 ret = cfi_rewrite_preamble(start_cfi, end_cfi); 1324 if (ret) 1325 goto err; 1326 1327 /* rewrite the callers to target func()-16 */ 1328 ret = cfi_rewrite_callers(start_retpoline, end_retpoline); 1329 if (ret) 1330 goto err; 1331 1332 /* now that nobody targets func()+0, remove ENDBR there */ 1333 cfi_rewrite_endbr(start_cfi, end_cfi); 1334 1335 if (builtin) 1336 pr_info("Using FineIBT CFI\n"); 1337 return; 1338 1339 default: 1340 break; 1341 } 1342 1343 err: 1344 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n"); 1345 } 1346 1347 static inline void poison_hash(void *addr) 1348 { 1349 *(u32 *)addr = 0; 1350 } 1351 1352 static void poison_cfi(void *addr) 1353 { 1354 switch (cfi_mode) { 1355 case CFI_FINEIBT: 1356 /* 1357 * __cfi_\func: 1358 * osp nopl (%rax) 1359 * subl $0, %r10d 1360 * jz 1f 1361 * ud2 1362 * 1: nop 1363 */ 1364 poison_endbr(addr, false); 1365 poison_hash(addr + fineibt_preamble_hash); 1366 break; 1367 1368 case CFI_KCFI: 1369 /* 1370 * __cfi_\func: 1371 * movl $0, %eax 1372 * .skip 11, 0x90 1373 */ 1374 poison_hash(addr + 1); 1375 break; 1376 1377 default: 1378 break; 1379 } 1380 } 1381 1382 #else 1383 1384 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1385 s32 *start_cfi, s32 *end_cfi, bool builtin) 1386 { 1387 } 1388 1389 #ifdef CONFIG_X86_KERNEL_IBT 1390 static void poison_cfi(void *addr) { } 1391 #endif 1392 1393 #endif 1394 1395 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1396 s32 *start_cfi, s32 *end_cfi) 1397 { 1398 return __apply_fineibt(start_retpoline, end_retpoline, 1399 start_cfi, end_cfi, 1400 /* .builtin = */ false); 1401 } 1402 1403 #ifdef CONFIG_SMP 1404 static void alternatives_smp_lock(const s32 *start, const s32 *end, 1405 u8 *text, u8 *text_end) 1406 { 1407 const s32 *poff; 1408 1409 for (poff = start; poff < end; poff++) { 1410 u8 *ptr = (u8 *)poff + *poff; 1411 1412 if (!*poff || ptr < text || ptr >= text_end) 1413 continue; 1414 /* turn DS segment override prefix into lock prefix */ 1415 if (*ptr == 0x3e) 1416 text_poke(ptr, ((unsigned char []){0xf0}), 1); 1417 } 1418 } 1419 1420 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 1421 u8 *text, u8 *text_end) 1422 { 1423 const s32 *poff; 1424 1425 for (poff = start; poff < end; poff++) { 1426 u8 *ptr = (u8 *)poff + *poff; 1427 1428 if (!*poff || ptr < text || ptr >= text_end) 1429 continue; 1430 /* turn lock prefix into DS segment override prefix */ 1431 if (*ptr == 0xf0) 1432 text_poke(ptr, ((unsigned char []){0x3E}), 1); 1433 } 1434 } 1435 1436 struct smp_alt_module { 1437 /* what is this ??? */ 1438 struct module *mod; 1439 char *name; 1440 1441 /* ptrs to lock prefixes */ 1442 const s32 *locks; 1443 const s32 *locks_end; 1444 1445 /* .text segment, needed to avoid patching init code ;) */ 1446 u8 *text; 1447 u8 *text_end; 1448 1449 struct list_head next; 1450 }; 1451 static LIST_HEAD(smp_alt_modules); 1452 static bool uniproc_patched = false; /* protected by text_mutex */ 1453 1454 void __init_or_module alternatives_smp_module_add(struct module *mod, 1455 char *name, 1456 void *locks, void *locks_end, 1457 void *text, void *text_end) 1458 { 1459 struct smp_alt_module *smp; 1460 1461 mutex_lock(&text_mutex); 1462 if (!uniproc_patched) 1463 goto unlock; 1464 1465 if (num_possible_cpus() == 1) 1466 /* Don't bother remembering, we'll never have to undo it. */ 1467 goto smp_unlock; 1468 1469 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 1470 if (NULL == smp) 1471 /* we'll run the (safe but slow) SMP code then ... */ 1472 goto unlock; 1473 1474 smp->mod = mod; 1475 smp->name = name; 1476 smp->locks = locks; 1477 smp->locks_end = locks_end; 1478 smp->text = text; 1479 smp->text_end = text_end; 1480 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n", 1481 smp->locks, smp->locks_end, 1482 smp->text, smp->text_end, smp->name); 1483 1484 list_add_tail(&smp->next, &smp_alt_modules); 1485 smp_unlock: 1486 alternatives_smp_unlock(locks, locks_end, text, text_end); 1487 unlock: 1488 mutex_unlock(&text_mutex); 1489 } 1490 1491 void __init_or_module alternatives_smp_module_del(struct module *mod) 1492 { 1493 struct smp_alt_module *item; 1494 1495 mutex_lock(&text_mutex); 1496 list_for_each_entry(item, &smp_alt_modules, next) { 1497 if (mod != item->mod) 1498 continue; 1499 list_del(&item->next); 1500 kfree(item); 1501 break; 1502 } 1503 mutex_unlock(&text_mutex); 1504 } 1505 1506 void alternatives_enable_smp(void) 1507 { 1508 struct smp_alt_module *mod; 1509 1510 /* Why bother if there are no other CPUs? */ 1511 BUG_ON(num_possible_cpus() == 1); 1512 1513 mutex_lock(&text_mutex); 1514 1515 if (uniproc_patched) { 1516 pr_info("switching to SMP code\n"); 1517 BUG_ON(num_online_cpus() != 1); 1518 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 1519 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 1520 list_for_each_entry(mod, &smp_alt_modules, next) 1521 alternatives_smp_lock(mod->locks, mod->locks_end, 1522 mod->text, mod->text_end); 1523 uniproc_patched = false; 1524 } 1525 mutex_unlock(&text_mutex); 1526 } 1527 1528 /* 1529 * Return 1 if the address range is reserved for SMP-alternatives. 1530 * Must hold text_mutex. 1531 */ 1532 int alternatives_text_reserved(void *start, void *end) 1533 { 1534 struct smp_alt_module *mod; 1535 const s32 *poff; 1536 u8 *text_start = start; 1537 u8 *text_end = end; 1538 1539 lockdep_assert_held(&text_mutex); 1540 1541 list_for_each_entry(mod, &smp_alt_modules, next) { 1542 if (mod->text > text_end || mod->text_end < text_start) 1543 continue; 1544 for (poff = mod->locks; poff < mod->locks_end; poff++) { 1545 const u8 *ptr = (const u8 *)poff + *poff; 1546 1547 if (text_start <= ptr && text_end > ptr) 1548 return 1; 1549 } 1550 } 1551 1552 return 0; 1553 } 1554 #endif /* CONFIG_SMP */ 1555 1556 /* 1557 * Self-test for the INT3 based CALL emulation code. 1558 * 1559 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up 1560 * properly and that there is a stack gap between the INT3 frame and the 1561 * previous context. Without this gap doing a virtual PUSH on the interrupted 1562 * stack would corrupt the INT3 IRET frame. 1563 * 1564 * See entry_{32,64}.S for more details. 1565 */ 1566 1567 /* 1568 * We define the int3_magic() function in assembly to control the calling 1569 * convention such that we can 'call' it from assembly. 1570 */ 1571 1572 extern void int3_magic(unsigned int *ptr); /* defined in asm */ 1573 1574 asm ( 1575 " .pushsection .init.text, \"ax\", @progbits\n" 1576 " .type int3_magic, @function\n" 1577 "int3_magic:\n" 1578 ANNOTATE_NOENDBR 1579 " movl $1, (%" _ASM_ARG1 ")\n" 1580 ASM_RET 1581 " .size int3_magic, .-int3_magic\n" 1582 " .popsection\n" 1583 ); 1584 1585 extern void int3_selftest_ip(void); /* defined in asm below */ 1586 1587 static int __init 1588 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) 1589 { 1590 unsigned long selftest = (unsigned long)&int3_selftest_ip; 1591 struct die_args *args = data; 1592 struct pt_regs *regs = args->regs; 1593 1594 OPTIMIZER_HIDE_VAR(selftest); 1595 1596 if (!regs || user_mode(regs)) 1597 return NOTIFY_DONE; 1598 1599 if (val != DIE_INT3) 1600 return NOTIFY_DONE; 1601 1602 if (regs->ip - INT3_INSN_SIZE != selftest) 1603 return NOTIFY_DONE; 1604 1605 int3_emulate_call(regs, (unsigned long)&int3_magic); 1606 return NOTIFY_STOP; 1607 } 1608 1609 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */ 1610 static noinline void __init int3_selftest(void) 1611 { 1612 static __initdata struct notifier_block int3_exception_nb = { 1613 .notifier_call = int3_exception_notify, 1614 .priority = INT_MAX-1, /* last */ 1615 }; 1616 unsigned int val = 0; 1617 1618 BUG_ON(register_die_notifier(&int3_exception_nb)); 1619 1620 /* 1621 * Basically: int3_magic(&val); but really complicated :-) 1622 * 1623 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb 1624 * notifier above will emulate CALL for us. 1625 */ 1626 asm volatile ("int3_selftest_ip:\n\t" 1627 ANNOTATE_NOENDBR 1628 " int3; nop; nop; nop; nop\n\t" 1629 : ASM_CALL_CONSTRAINT 1630 : __ASM_SEL_RAW(a, D) (&val) 1631 : "memory"); 1632 1633 BUG_ON(val != 1); 1634 1635 unregister_die_notifier(&int3_exception_nb); 1636 } 1637 1638 static __initdata int __alt_reloc_selftest_addr; 1639 1640 extern void __init __alt_reloc_selftest(void *arg); 1641 __visible noinline void __init __alt_reloc_selftest(void *arg) 1642 { 1643 WARN_ON(arg != &__alt_reloc_selftest_addr); 1644 } 1645 1646 static noinline void __init alt_reloc_selftest(void) 1647 { 1648 /* 1649 * Tests apply_relocation(). 1650 * 1651 * This has a relative immediate (CALL) in a place other than the first 1652 * instruction and additionally on x86_64 we get a RIP-relative LEA: 1653 * 1654 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c 1655 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4 1656 * 1657 * Getting this wrong will either crash and burn or tickle the WARN 1658 * above. 1659 */ 1660 asm_inline volatile ( 1661 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS) 1662 : /* output */ 1663 : [mem] "m" (__alt_reloc_selftest_addr) 1664 : _ASM_ARG1 1665 ); 1666 } 1667 1668 void __init alternative_instructions(void) 1669 { 1670 int3_selftest(); 1671 1672 /* 1673 * The patching is not fully atomic, so try to avoid local 1674 * interruptions that might execute the to be patched code. 1675 * Other CPUs are not running. 1676 */ 1677 stop_nmi(); 1678 1679 /* 1680 * Don't stop machine check exceptions while patching. 1681 * MCEs only happen when something got corrupted and in this 1682 * case we must do something about the corruption. 1683 * Ignoring it is worse than an unlikely patching race. 1684 * Also machine checks tend to be broadcast and if one CPU 1685 * goes into machine check the others follow quickly, so we don't 1686 * expect a machine check to cause undue problems during to code 1687 * patching. 1688 */ 1689 1690 /* 1691 * Make sure to set (artificial) features depending on used paravirt 1692 * functions which can later influence alternative patching. 1693 */ 1694 paravirt_set_cap(); 1695 1696 __apply_fineibt(__retpoline_sites, __retpoline_sites_end, 1697 __cfi_sites, __cfi_sites_end, true); 1698 1699 /* 1700 * Rewrite the retpolines, must be done before alternatives since 1701 * those can rewrite the retpoline thunks. 1702 */ 1703 apply_retpolines(__retpoline_sites, __retpoline_sites_end); 1704 apply_returns(__return_sites, __return_sites_end); 1705 1706 apply_alternatives(__alt_instructions, __alt_instructions_end); 1707 1708 /* 1709 * Now all calls are established. Apply the call thunks if 1710 * required. 1711 */ 1712 callthunks_patch_builtin_calls(); 1713 1714 /* 1715 * Seal all functions that do not have their address taken. 1716 */ 1717 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end); 1718 1719 #ifdef CONFIG_SMP 1720 /* Patch to UP if other cpus not imminent. */ 1721 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 1722 uniproc_patched = true; 1723 alternatives_smp_module_add(NULL, "core kernel", 1724 __smp_locks, __smp_locks_end, 1725 _text, _etext); 1726 } 1727 1728 if (!uniproc_patched || num_possible_cpus() == 1) { 1729 free_init_pages("SMP alternatives", 1730 (unsigned long)__smp_locks, 1731 (unsigned long)__smp_locks_end); 1732 } 1733 #endif 1734 1735 restart_nmi(); 1736 alternatives_patched = 1; 1737 1738 alt_reloc_selftest(); 1739 } 1740 1741 /** 1742 * text_poke_early - Update instructions on a live kernel at boot time 1743 * @addr: address to modify 1744 * @opcode: source of the copy 1745 * @len: length to copy 1746 * 1747 * When you use this code to patch more than one byte of an instruction 1748 * you need to make sure that other CPUs cannot execute this code in parallel. 1749 * Also no thread must be currently preempted in the middle of these 1750 * instructions. And on the local CPU you need to be protected against NMI or 1751 * MCE handlers seeing an inconsistent instruction while you patch. 1752 */ 1753 void __init_or_module text_poke_early(void *addr, const void *opcode, 1754 size_t len) 1755 { 1756 unsigned long flags; 1757 1758 if (boot_cpu_has(X86_FEATURE_NX) && 1759 is_module_text_address((unsigned long)addr)) { 1760 /* 1761 * Modules text is marked initially as non-executable, so the 1762 * code cannot be running and speculative code-fetches are 1763 * prevented. Just change the code. 1764 */ 1765 memcpy(addr, opcode, len); 1766 } else { 1767 local_irq_save(flags); 1768 memcpy(addr, opcode, len); 1769 sync_core(); 1770 local_irq_restore(flags); 1771 1772 /* 1773 * Could also do a CLFLUSH here to speed up CPU recovery; but 1774 * that causes hangs on some VIA CPUs. 1775 */ 1776 } 1777 } 1778 1779 typedef struct { 1780 struct mm_struct *mm; 1781 } temp_mm_state_t; 1782 1783 /* 1784 * Using a temporary mm allows to set temporary mappings that are not accessible 1785 * by other CPUs. Such mappings are needed to perform sensitive memory writes 1786 * that override the kernel memory protections (e.g., W^X), without exposing the 1787 * temporary page-table mappings that are required for these write operations to 1788 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the 1789 * mapping is torn down. 1790 * 1791 * Context: The temporary mm needs to be used exclusively by a single core. To 1792 * harden security IRQs must be disabled while the temporary mm is 1793 * loaded, thereby preventing interrupt handler bugs from overriding 1794 * the kernel memory protection. 1795 */ 1796 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) 1797 { 1798 temp_mm_state_t temp_state; 1799 1800 lockdep_assert_irqs_disabled(); 1801 1802 /* 1803 * Make sure not to be in TLB lazy mode, as otherwise we'll end up 1804 * with a stale address space WITHOUT being in lazy mode after 1805 * restoring the previous mm. 1806 */ 1807 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) 1808 leave_mm(smp_processor_id()); 1809 1810 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1811 switch_mm_irqs_off(NULL, mm, current); 1812 1813 /* 1814 * If breakpoints are enabled, disable them while the temporary mm is 1815 * used. Userspace might set up watchpoints on addresses that are used 1816 * in the temporary mm, which would lead to wrong signals being sent or 1817 * crashes. 1818 * 1819 * Note that breakpoints are not disabled selectively, which also causes 1820 * kernel breakpoints (e.g., perf's) to be disabled. This might be 1821 * undesirable, but still seems reasonable as the code that runs in the 1822 * temporary mm should be short. 1823 */ 1824 if (hw_breakpoint_active()) 1825 hw_breakpoint_disable(); 1826 1827 return temp_state; 1828 } 1829 1830 static inline void unuse_temporary_mm(temp_mm_state_t prev_state) 1831 { 1832 lockdep_assert_irqs_disabled(); 1833 switch_mm_irqs_off(NULL, prev_state.mm, current); 1834 1835 /* 1836 * Restore the breakpoints if they were disabled before the temporary mm 1837 * was loaded. 1838 */ 1839 if (hw_breakpoint_active()) 1840 hw_breakpoint_restore(); 1841 } 1842 1843 __ro_after_init struct mm_struct *poking_mm; 1844 __ro_after_init unsigned long poking_addr; 1845 1846 static void text_poke_memcpy(void *dst, const void *src, size_t len) 1847 { 1848 memcpy(dst, src, len); 1849 } 1850 1851 static void text_poke_memset(void *dst, const void *src, size_t len) 1852 { 1853 int c = *(const int *)src; 1854 1855 memset(dst, c, len); 1856 } 1857 1858 typedef void text_poke_f(void *dst, const void *src, size_t len); 1859 1860 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len) 1861 { 1862 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; 1863 struct page *pages[2] = {NULL}; 1864 temp_mm_state_t prev; 1865 unsigned long flags; 1866 pte_t pte, *ptep; 1867 spinlock_t *ptl; 1868 pgprot_t pgprot; 1869 1870 /* 1871 * While boot memory allocator is running we cannot use struct pages as 1872 * they are not yet initialized. There is no way to recover. 1873 */ 1874 BUG_ON(!after_bootmem); 1875 1876 if (!core_kernel_text((unsigned long)addr)) { 1877 pages[0] = vmalloc_to_page(addr); 1878 if (cross_page_boundary) 1879 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 1880 } else { 1881 pages[0] = virt_to_page(addr); 1882 WARN_ON(!PageReserved(pages[0])); 1883 if (cross_page_boundary) 1884 pages[1] = virt_to_page(addr + PAGE_SIZE); 1885 } 1886 /* 1887 * If something went wrong, crash and burn since recovery paths are not 1888 * implemented. 1889 */ 1890 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); 1891 1892 /* 1893 * Map the page without the global bit, as TLB flushing is done with 1894 * flush_tlb_mm_range(), which is intended for non-global PTEs. 1895 */ 1896 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); 1897 1898 /* 1899 * The lock is not really needed, but this allows to avoid open-coding. 1900 */ 1901 ptep = get_locked_pte(poking_mm, poking_addr, &ptl); 1902 1903 /* 1904 * This must not fail; preallocated in poking_init(). 1905 */ 1906 VM_BUG_ON(!ptep); 1907 1908 local_irq_save(flags); 1909 1910 pte = mk_pte(pages[0], pgprot); 1911 set_pte_at(poking_mm, poking_addr, ptep, pte); 1912 1913 if (cross_page_boundary) { 1914 pte = mk_pte(pages[1], pgprot); 1915 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte); 1916 } 1917 1918 /* 1919 * Loading the temporary mm behaves as a compiler barrier, which 1920 * guarantees that the PTE will be set at the time memcpy() is done. 1921 */ 1922 prev = use_temporary_mm(poking_mm); 1923 1924 kasan_disable_current(); 1925 func((u8 *)poking_addr + offset_in_page(addr), src, len); 1926 kasan_enable_current(); 1927 1928 /* 1929 * Ensure that the PTE is only cleared after the instructions of memcpy 1930 * were issued by using a compiler barrier. 1931 */ 1932 barrier(); 1933 1934 pte_clear(poking_mm, poking_addr, ptep); 1935 if (cross_page_boundary) 1936 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1); 1937 1938 /* 1939 * Loading the previous page-table hierarchy requires a serializing 1940 * instruction that already allows the core to see the updated version. 1941 * Xen-PV is assumed to serialize execution in a similar manner. 1942 */ 1943 unuse_temporary_mm(prev); 1944 1945 /* 1946 * Flushing the TLB might involve IPIs, which would require enabled 1947 * IRQs, but not if the mm is not used, as it is in this point. 1948 */ 1949 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr + 1950 (cross_page_boundary ? 2 : 1) * PAGE_SIZE, 1951 PAGE_SHIFT, false); 1952 1953 if (func == text_poke_memcpy) { 1954 /* 1955 * If the text does not match what we just wrote then something is 1956 * fundamentally screwy; there's nothing we can really do about that. 1957 */ 1958 BUG_ON(memcmp(addr, src, len)); 1959 } 1960 1961 local_irq_restore(flags); 1962 pte_unmap_unlock(ptep, ptl); 1963 return addr; 1964 } 1965 1966 /** 1967 * text_poke - Update instructions on a live kernel 1968 * @addr: address to modify 1969 * @opcode: source of the copy 1970 * @len: length to copy 1971 * 1972 * Only atomic text poke/set should be allowed when not doing early patching. 1973 * It means the size must be writable atomically and the address must be aligned 1974 * in a way that permits an atomic write. It also makes sure we fit on a single 1975 * page. 1976 * 1977 * Note that the caller must ensure that if the modified code is part of a 1978 * module, the module would not be removed during poking. This can be achieved 1979 * by registering a module notifier, and ordering module removal and patching 1980 * through a mutex. 1981 */ 1982 void *text_poke(void *addr, const void *opcode, size_t len) 1983 { 1984 lockdep_assert_held(&text_mutex); 1985 1986 return __text_poke(text_poke_memcpy, addr, opcode, len); 1987 } 1988 1989 /** 1990 * text_poke_kgdb - Update instructions on a live kernel by kgdb 1991 * @addr: address to modify 1992 * @opcode: source of the copy 1993 * @len: length to copy 1994 * 1995 * Only atomic text poke/set should be allowed when not doing early patching. 1996 * It means the size must be writable atomically and the address must be aligned 1997 * in a way that permits an atomic write. It also makes sure we fit on a single 1998 * page. 1999 * 2000 * Context: should only be used by kgdb, which ensures no other core is running, 2001 * despite the fact it does not hold the text_mutex. 2002 */ 2003 void *text_poke_kgdb(void *addr, const void *opcode, size_t len) 2004 { 2005 return __text_poke(text_poke_memcpy, addr, opcode, len); 2006 } 2007 2008 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, 2009 bool core_ok) 2010 { 2011 unsigned long start = (unsigned long)addr; 2012 size_t patched = 0; 2013 2014 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start))) 2015 return NULL; 2016 2017 while (patched < len) { 2018 unsigned long ptr = start + patched; 2019 size_t s; 2020 2021 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2022 2023 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s); 2024 patched += s; 2025 } 2026 return addr; 2027 } 2028 2029 /** 2030 * text_poke_copy - Copy instructions into (an unused part of) RX memory 2031 * @addr: address to modify 2032 * @opcode: source of the copy 2033 * @len: length to copy, could be more than 2x PAGE_SIZE 2034 * 2035 * Not safe against concurrent execution; useful for JITs to dump 2036 * new code blocks into unused regions of RX memory. Can be used in 2037 * conjunction with synchronize_rcu_tasks() to wait for existing 2038 * execution to quiesce after having made sure no existing functions 2039 * pointers are live. 2040 */ 2041 void *text_poke_copy(void *addr, const void *opcode, size_t len) 2042 { 2043 mutex_lock(&text_mutex); 2044 addr = text_poke_copy_locked(addr, opcode, len, false); 2045 mutex_unlock(&text_mutex); 2046 return addr; 2047 } 2048 2049 /** 2050 * text_poke_set - memset into (an unused part of) RX memory 2051 * @addr: address to modify 2052 * @c: the byte to fill the area with 2053 * @len: length to copy, could be more than 2x PAGE_SIZE 2054 * 2055 * This is useful to overwrite unused regions of RX memory with illegal 2056 * instructions. 2057 */ 2058 void *text_poke_set(void *addr, int c, size_t len) 2059 { 2060 unsigned long start = (unsigned long)addr; 2061 size_t patched = 0; 2062 2063 if (WARN_ON_ONCE(core_kernel_text(start))) 2064 return NULL; 2065 2066 mutex_lock(&text_mutex); 2067 while (patched < len) { 2068 unsigned long ptr = start + patched; 2069 size_t s; 2070 2071 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2072 2073 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s); 2074 patched += s; 2075 } 2076 mutex_unlock(&text_mutex); 2077 return addr; 2078 } 2079 2080 static void do_sync_core(void *info) 2081 { 2082 sync_core(); 2083 } 2084 2085 void text_poke_sync(void) 2086 { 2087 on_each_cpu(do_sync_core, NULL, 1); 2088 } 2089 2090 /* 2091 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of 2092 * this thing. When len == 6 everything is prefixed with 0x0f and we map 2093 * opcode to Jcc.d8, using len to distinguish. 2094 */ 2095 struct text_poke_loc { 2096 /* addr := _stext + rel_addr */ 2097 s32 rel_addr; 2098 s32 disp; 2099 u8 len; 2100 u8 opcode; 2101 const u8 text[POKE_MAX_OPCODE_SIZE]; 2102 /* see text_poke_bp_batch() */ 2103 u8 old; 2104 }; 2105 2106 struct bp_patching_desc { 2107 struct text_poke_loc *vec; 2108 int nr_entries; 2109 atomic_t refs; 2110 }; 2111 2112 static struct bp_patching_desc bp_desc; 2113 2114 static __always_inline 2115 struct bp_patching_desc *try_get_desc(void) 2116 { 2117 struct bp_patching_desc *desc = &bp_desc; 2118 2119 if (!raw_atomic_inc_not_zero(&desc->refs)) 2120 return NULL; 2121 2122 return desc; 2123 } 2124 2125 static __always_inline void put_desc(void) 2126 { 2127 struct bp_patching_desc *desc = &bp_desc; 2128 2129 smp_mb__before_atomic(); 2130 raw_atomic_dec(&desc->refs); 2131 } 2132 2133 static __always_inline void *text_poke_addr(struct text_poke_loc *tp) 2134 { 2135 return _stext + tp->rel_addr; 2136 } 2137 2138 static __always_inline int patch_cmp(const void *key, const void *elt) 2139 { 2140 struct text_poke_loc *tp = (struct text_poke_loc *) elt; 2141 2142 if (key < text_poke_addr(tp)) 2143 return -1; 2144 if (key > text_poke_addr(tp)) 2145 return 1; 2146 return 0; 2147 } 2148 2149 noinstr int poke_int3_handler(struct pt_regs *regs) 2150 { 2151 struct bp_patching_desc *desc; 2152 struct text_poke_loc *tp; 2153 int ret = 0; 2154 void *ip; 2155 2156 if (user_mode(regs)) 2157 return 0; 2158 2159 /* 2160 * Having observed our INT3 instruction, we now must observe 2161 * bp_desc with non-zero refcount: 2162 * 2163 * bp_desc.refs = 1 INT3 2164 * WMB RMB 2165 * write INT3 if (bp_desc.refs != 0) 2166 */ 2167 smp_rmb(); 2168 2169 desc = try_get_desc(); 2170 if (!desc) 2171 return 0; 2172 2173 /* 2174 * Discount the INT3. See text_poke_bp_batch(). 2175 */ 2176 ip = (void *) regs->ip - INT3_INSN_SIZE; 2177 2178 /* 2179 * Skip the binary search if there is a single member in the vector. 2180 */ 2181 if (unlikely(desc->nr_entries > 1)) { 2182 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries, 2183 sizeof(struct text_poke_loc), 2184 patch_cmp); 2185 if (!tp) 2186 goto out_put; 2187 } else { 2188 tp = desc->vec; 2189 if (text_poke_addr(tp) != ip) 2190 goto out_put; 2191 } 2192 2193 ip += tp->len; 2194 2195 switch (tp->opcode) { 2196 case INT3_INSN_OPCODE: 2197 /* 2198 * Someone poked an explicit INT3, they'll want to handle it, 2199 * do not consume. 2200 */ 2201 goto out_put; 2202 2203 case RET_INSN_OPCODE: 2204 int3_emulate_ret(regs); 2205 break; 2206 2207 case CALL_INSN_OPCODE: 2208 int3_emulate_call(regs, (long)ip + tp->disp); 2209 break; 2210 2211 case JMP32_INSN_OPCODE: 2212 case JMP8_INSN_OPCODE: 2213 int3_emulate_jmp(regs, (long)ip + tp->disp); 2214 break; 2215 2216 case 0x70 ... 0x7f: /* Jcc */ 2217 int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp); 2218 break; 2219 2220 default: 2221 BUG(); 2222 } 2223 2224 ret = 1; 2225 2226 out_put: 2227 put_desc(); 2228 return ret; 2229 } 2230 2231 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc)) 2232 static struct text_poke_loc tp_vec[TP_VEC_MAX]; 2233 static int tp_vec_nr; 2234 2235 /** 2236 * text_poke_bp_batch() -- update instructions on live kernel on SMP 2237 * @tp: vector of instructions to patch 2238 * @nr_entries: number of entries in the vector 2239 * 2240 * Modify multi-byte instruction by using int3 breakpoint on SMP. 2241 * We completely avoid stop_machine() here, and achieve the 2242 * synchronization using int3 breakpoint. 2243 * 2244 * The way it is done: 2245 * - For each entry in the vector: 2246 * - add a int3 trap to the address that will be patched 2247 * - sync cores 2248 * - For each entry in the vector: 2249 * - update all but the first byte of the patched range 2250 * - sync cores 2251 * - For each entry in the vector: 2252 * - replace the first byte (int3) by the first byte of 2253 * replacing opcode 2254 * - sync cores 2255 */ 2256 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries) 2257 { 2258 unsigned char int3 = INT3_INSN_OPCODE; 2259 unsigned int i; 2260 int do_sync; 2261 2262 lockdep_assert_held(&text_mutex); 2263 2264 bp_desc.vec = tp; 2265 bp_desc.nr_entries = nr_entries; 2266 2267 /* 2268 * Corresponds to the implicit memory barrier in try_get_desc() to 2269 * ensure reading a non-zero refcount provides up to date bp_desc data. 2270 */ 2271 atomic_set_release(&bp_desc.refs, 1); 2272 2273 /* 2274 * Function tracing can enable thousands of places that need to be 2275 * updated. This can take quite some time, and with full kernel debugging 2276 * enabled, this could cause the softlockup watchdog to trigger. 2277 * This function gets called every 256 entries added to be patched. 2278 * Call cond_resched() here to make sure that other tasks can get scheduled 2279 * while processing all the functions being patched. 2280 */ 2281 cond_resched(); 2282 2283 /* 2284 * Corresponding read barrier in int3 notifier for making sure the 2285 * nr_entries and handler are correctly ordered wrt. patching. 2286 */ 2287 smp_wmb(); 2288 2289 /* 2290 * First step: add a int3 trap to the address that will be patched. 2291 */ 2292 for (i = 0; i < nr_entries; i++) { 2293 tp[i].old = *(u8 *)text_poke_addr(&tp[i]); 2294 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE); 2295 } 2296 2297 text_poke_sync(); 2298 2299 /* 2300 * Second step: update all but the first byte of the patched range. 2301 */ 2302 for (do_sync = 0, i = 0; i < nr_entries; i++) { 2303 u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, }; 2304 u8 _new[POKE_MAX_OPCODE_SIZE+1]; 2305 const u8 *new = tp[i].text; 2306 int len = tp[i].len; 2307 2308 if (len - INT3_INSN_SIZE > 0) { 2309 memcpy(old + INT3_INSN_SIZE, 2310 text_poke_addr(&tp[i]) + INT3_INSN_SIZE, 2311 len - INT3_INSN_SIZE); 2312 2313 if (len == 6) { 2314 _new[0] = 0x0f; 2315 memcpy(_new + 1, new, 5); 2316 new = _new; 2317 } 2318 2319 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE, 2320 new + INT3_INSN_SIZE, 2321 len - INT3_INSN_SIZE); 2322 2323 do_sync++; 2324 } 2325 2326 /* 2327 * Emit a perf event to record the text poke, primarily to 2328 * support Intel PT decoding which must walk the executable code 2329 * to reconstruct the trace. The flow up to here is: 2330 * - write INT3 byte 2331 * - IPI-SYNC 2332 * - write instruction tail 2333 * At this point the actual control flow will be through the 2334 * INT3 and handler and not hit the old or new instruction. 2335 * Intel PT outputs FUP/TIP packets for the INT3, so the flow 2336 * can still be decoded. Subsequently: 2337 * - emit RECORD_TEXT_POKE with the new instruction 2338 * - IPI-SYNC 2339 * - write first byte 2340 * - IPI-SYNC 2341 * So before the text poke event timestamp, the decoder will see 2342 * either the old instruction flow or FUP/TIP of INT3. After the 2343 * text poke event timestamp, the decoder will see either the 2344 * new instruction flow or FUP/TIP of INT3. Thus decoders can 2345 * use the timestamp as the point at which to modify the 2346 * executable code. 2347 * The old instruction is recorded so that the event can be 2348 * processed forwards or backwards. 2349 */ 2350 perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len); 2351 } 2352 2353 if (do_sync) { 2354 /* 2355 * According to Intel, this core syncing is very likely 2356 * not necessary and we'd be safe even without it. But 2357 * better safe than sorry (plus there's not only Intel). 2358 */ 2359 text_poke_sync(); 2360 } 2361 2362 /* 2363 * Third step: replace the first byte (int3) by the first byte of 2364 * replacing opcode. 2365 */ 2366 for (do_sync = 0, i = 0; i < nr_entries; i++) { 2367 u8 byte = tp[i].text[0]; 2368 2369 if (tp[i].len == 6) 2370 byte = 0x0f; 2371 2372 if (byte == INT3_INSN_OPCODE) 2373 continue; 2374 2375 text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE); 2376 do_sync++; 2377 } 2378 2379 if (do_sync) 2380 text_poke_sync(); 2381 2382 /* 2383 * Remove and wait for refs to be zero. 2384 */ 2385 if (!atomic_dec_and_test(&bp_desc.refs)) 2386 atomic_cond_read_acquire(&bp_desc.refs, !VAL); 2387 } 2388 2389 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr, 2390 const void *opcode, size_t len, const void *emulate) 2391 { 2392 struct insn insn; 2393 int ret, i = 0; 2394 2395 if (len == 6) 2396 i = 1; 2397 memcpy((void *)tp->text, opcode+i, len-i); 2398 if (!emulate) 2399 emulate = opcode; 2400 2401 ret = insn_decode_kernel(&insn, emulate); 2402 BUG_ON(ret < 0); 2403 2404 tp->rel_addr = addr - (void *)_stext; 2405 tp->len = len; 2406 tp->opcode = insn.opcode.bytes[0]; 2407 2408 if (is_jcc32(&insn)) { 2409 /* 2410 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish. 2411 */ 2412 tp->opcode = insn.opcode.bytes[1] - 0x10; 2413 } 2414 2415 switch (tp->opcode) { 2416 case RET_INSN_OPCODE: 2417 case JMP32_INSN_OPCODE: 2418 case JMP8_INSN_OPCODE: 2419 /* 2420 * Control flow instructions without implied execution of the 2421 * next instruction can be padded with INT3. 2422 */ 2423 for (i = insn.length; i < len; i++) 2424 BUG_ON(tp->text[i] != INT3_INSN_OPCODE); 2425 break; 2426 2427 default: 2428 BUG_ON(len != insn.length); 2429 } 2430 2431 switch (tp->opcode) { 2432 case INT3_INSN_OPCODE: 2433 case RET_INSN_OPCODE: 2434 break; 2435 2436 case CALL_INSN_OPCODE: 2437 case JMP32_INSN_OPCODE: 2438 case JMP8_INSN_OPCODE: 2439 case 0x70 ... 0x7f: /* Jcc */ 2440 tp->disp = insn.immediate.value; 2441 break; 2442 2443 default: /* assume NOP */ 2444 switch (len) { 2445 case 2: /* NOP2 -- emulate as JMP8+0 */ 2446 BUG_ON(memcmp(emulate, x86_nops[len], len)); 2447 tp->opcode = JMP8_INSN_OPCODE; 2448 tp->disp = 0; 2449 break; 2450 2451 case 5: /* NOP5 -- emulate as JMP32+0 */ 2452 BUG_ON(memcmp(emulate, x86_nops[len], len)); 2453 tp->opcode = JMP32_INSN_OPCODE; 2454 tp->disp = 0; 2455 break; 2456 2457 default: /* unknown instruction */ 2458 BUG(); 2459 } 2460 break; 2461 } 2462 } 2463 2464 /* 2465 * We hard rely on the tp_vec being ordered; ensure this is so by flushing 2466 * early if needed. 2467 */ 2468 static bool tp_order_fail(void *addr) 2469 { 2470 struct text_poke_loc *tp; 2471 2472 if (!tp_vec_nr) 2473 return false; 2474 2475 if (!addr) /* force */ 2476 return true; 2477 2478 tp = &tp_vec[tp_vec_nr - 1]; 2479 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr) 2480 return true; 2481 2482 return false; 2483 } 2484 2485 static void text_poke_flush(void *addr) 2486 { 2487 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) { 2488 text_poke_bp_batch(tp_vec, tp_vec_nr); 2489 tp_vec_nr = 0; 2490 } 2491 } 2492 2493 void text_poke_finish(void) 2494 { 2495 text_poke_flush(NULL); 2496 } 2497 2498 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate) 2499 { 2500 struct text_poke_loc *tp; 2501 2502 text_poke_flush(addr); 2503 2504 tp = &tp_vec[tp_vec_nr++]; 2505 text_poke_loc_init(tp, addr, opcode, len, emulate); 2506 } 2507 2508 /** 2509 * text_poke_bp() -- update instructions on live kernel on SMP 2510 * @addr: address to patch 2511 * @opcode: opcode of new instruction 2512 * @len: length to copy 2513 * @emulate: instruction to be emulated 2514 * 2515 * Update a single instruction with the vector in the stack, avoiding 2516 * dynamically allocated memory. This function should be used when it is 2517 * not possible to allocate memory. 2518 */ 2519 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate) 2520 { 2521 struct text_poke_loc tp; 2522 2523 text_poke_loc_init(&tp, addr, opcode, len, emulate); 2524 text_poke_bp_batch(&tp, 1); 2525 } 2526