xref: /linux/arch/x86/kernel/alternative.c (revision da8e05f84a11c3cc3b0ba0a3c62d20e358002d99)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
33 
34 int __read_mostly alternatives_patched;
35 
36 EXPORT_SYMBOL_GPL(alternatives_patched);
37 
38 #define MAX_PATCH_LEN (255-1)
39 
40 static int __initdata_or_module debug_alternative;
41 
42 static int __init debug_alt(char *str)
43 {
44 	debug_alternative = 1;
45 	return 1;
46 }
47 __setup("debug-alternative", debug_alt);
48 
49 static int noreplace_smp;
50 
51 static int __init setup_noreplace_smp(char *str)
52 {
53 	noreplace_smp = 1;
54 	return 1;
55 }
56 __setup("noreplace-smp", setup_noreplace_smp);
57 
58 #define DPRINTK(fmt, args...)						\
59 do {									\
60 	if (debug_alternative)						\
61 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
62 } while (0)
63 
64 #define DUMP_BYTES(buf, len, fmt, args...)				\
65 do {									\
66 	if (unlikely(debug_alternative)) {				\
67 		int j;							\
68 									\
69 		if (!(len))						\
70 			break;						\
71 									\
72 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
73 		for (j = 0; j < (len) - 1; j++)				\
74 			printk(KERN_CONT "%02hhx ", buf[j]);		\
75 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
76 	}								\
77 } while (0)
78 
79 static const unsigned char x86nops[] =
80 {
81 	BYTES_NOP1,
82 	BYTES_NOP2,
83 	BYTES_NOP3,
84 	BYTES_NOP4,
85 	BYTES_NOP5,
86 	BYTES_NOP6,
87 	BYTES_NOP7,
88 	BYTES_NOP8,
89 };
90 
91 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
92 {
93 	NULL,
94 	x86nops,
95 	x86nops + 1,
96 	x86nops + 1 + 2,
97 	x86nops + 1 + 2 + 3,
98 	x86nops + 1 + 2 + 3 + 4,
99 	x86nops + 1 + 2 + 3 + 4 + 5,
100 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
101 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
102 };
103 
104 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
105 static void __init_or_module add_nops(void *insns, unsigned int len)
106 {
107 	while (len > 0) {
108 		unsigned int noplen = len;
109 		if (noplen > ASM_NOP_MAX)
110 			noplen = ASM_NOP_MAX;
111 		memcpy(insns, x86_nops[noplen], noplen);
112 		insns += noplen;
113 		len -= noplen;
114 	}
115 }
116 
117 extern s32 __retpoline_sites[], __retpoline_sites_end[];
118 extern s32 __return_sites[], __return_sites_end[];
119 extern s32 __cfi_sites[], __cfi_sites_end[];
120 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
121 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
122 extern s32 __smp_locks[], __smp_locks_end[];
123 void text_poke_early(void *addr, const void *opcode, size_t len);
124 
125 /*
126  * Are we looking at a near JMP with a 1 or 4-byte displacement.
127  */
128 static inline bool is_jmp(const u8 opcode)
129 {
130 	return opcode == 0xeb || opcode == 0xe9;
131 }
132 
133 static void __init_or_module
134 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
135 {
136 	u8 *next_rip, *tgt_rip;
137 	s32 n_dspl, o_dspl;
138 	int repl_len;
139 
140 	if (a->replacementlen != 5)
141 		return;
142 
143 	o_dspl = *(s32 *)(insn_buff + 1);
144 
145 	/* next_rip of the replacement JMP */
146 	next_rip = repl_insn + a->replacementlen;
147 	/* target rip of the replacement JMP */
148 	tgt_rip  = next_rip + o_dspl;
149 	n_dspl = tgt_rip - orig_insn;
150 
151 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
152 
153 	if (tgt_rip - orig_insn >= 0) {
154 		if (n_dspl - 2 <= 127)
155 			goto two_byte_jmp;
156 		else
157 			goto five_byte_jmp;
158 	/* negative offset */
159 	} else {
160 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
161 			goto two_byte_jmp;
162 		else
163 			goto five_byte_jmp;
164 	}
165 
166 two_byte_jmp:
167 	n_dspl -= 2;
168 
169 	insn_buff[0] = 0xeb;
170 	insn_buff[1] = (s8)n_dspl;
171 	add_nops(insn_buff + 2, 3);
172 
173 	repl_len = 2;
174 	goto done;
175 
176 five_byte_jmp:
177 	n_dspl -= 5;
178 
179 	insn_buff[0] = 0xe9;
180 	*(s32 *)&insn_buff[1] = n_dspl;
181 
182 	repl_len = 5;
183 
184 done:
185 
186 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
187 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
188 }
189 
190 /*
191  * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
192  *
193  * @instr: instruction byte stream
194  * @instrlen: length of the above
195  * @off: offset within @instr where the first NOP has been detected
196  *
197  * Return: number of NOPs found (and replaced).
198  */
199 static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
200 {
201 	unsigned long flags;
202 	int i = off, nnops;
203 
204 	while (i < instrlen) {
205 		if (instr[i] != 0x90)
206 			break;
207 
208 		i++;
209 	}
210 
211 	nnops = i - off;
212 
213 	if (nnops <= 1)
214 		return nnops;
215 
216 	local_irq_save(flags);
217 	add_nops(instr + off, nnops);
218 	local_irq_restore(flags);
219 
220 	DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
221 
222 	return nnops;
223 }
224 
225 /*
226  * "noinline" to cause control flow change and thus invalidate I$ and
227  * cause refetch after modification.
228  */
229 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
230 {
231 	struct insn insn;
232 	int i = 0;
233 
234 	/*
235 	 * Jump over the non-NOP insns and optimize single-byte NOPs into bigger
236 	 * ones.
237 	 */
238 	for (;;) {
239 		if (insn_decode_kernel(&insn, &instr[i]))
240 			return;
241 
242 		/*
243 		 * See if this and any potentially following NOPs can be
244 		 * optimized.
245 		 */
246 		if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
247 			i += optimize_nops_range(instr, len, i);
248 		else
249 			i += insn.length;
250 
251 		if (i >= len)
252 			return;
253 	}
254 }
255 
256 /*
257  * Replace instructions with better alternatives for this CPU type. This runs
258  * before SMP is initialized to avoid SMP problems with self modifying code.
259  * This implies that asymmetric systems where APs have less capabilities than
260  * the boot processor are not handled. Tough. Make sure you disable such
261  * features by hand.
262  *
263  * Marked "noinline" to cause control flow change and thus insn cache
264  * to refetch changed I$ lines.
265  */
266 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
267 						  struct alt_instr *end)
268 {
269 	struct alt_instr *a;
270 	u8 *instr, *replacement;
271 	u8 insn_buff[MAX_PATCH_LEN];
272 
273 	DPRINTK("alt table %px, -> %px", start, end);
274 	/*
275 	 * The scan order should be from start to end. A later scanned
276 	 * alternative code can overwrite previously scanned alternative code.
277 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
278 	 * patch code.
279 	 *
280 	 * So be careful if you want to change the scan order to any other
281 	 * order.
282 	 */
283 	for (a = start; a < end; a++) {
284 		int insn_buff_sz = 0;
285 		/* Mask away "NOT" flag bit for feature to test. */
286 		u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
287 
288 		instr = (u8 *)&a->instr_offset + a->instr_offset;
289 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
290 		BUG_ON(a->instrlen > sizeof(insn_buff));
291 		BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
292 
293 		/*
294 		 * Patch if either:
295 		 * - feature is present
296 		 * - feature not present but ALTINSTR_FLAG_INV is set to mean,
297 		 *   patch if feature is *NOT* present.
298 		 */
299 		if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
300 			goto next;
301 
302 		DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
303 			(a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
304 			feature >> 5,
305 			feature & 0x1f,
306 			instr, instr, a->instrlen,
307 			replacement, a->replacementlen);
308 
309 		DUMP_BYTES(instr, a->instrlen, "%px:   old_insn: ", instr);
310 		DUMP_BYTES(replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
311 
312 		memcpy(insn_buff, replacement, a->replacementlen);
313 		insn_buff_sz = a->replacementlen;
314 
315 		/*
316 		 * 0xe8 is a relative jump; fix the offset.
317 		 *
318 		 * Instruction length is checked before the opcode to avoid
319 		 * accessing uninitialized bytes for zero-length replacements.
320 		 */
321 		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
322 			*(s32 *)(insn_buff + 1) += replacement - instr;
323 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
324 				*(s32 *)(insn_buff + 1),
325 				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
326 		}
327 
328 		if (a->replacementlen && is_jmp(replacement[0]))
329 			recompute_jump(a, instr, replacement, insn_buff);
330 
331 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
332 			insn_buff[insn_buff_sz] = 0x90;
333 
334 		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
335 
336 		text_poke_early(instr, insn_buff, insn_buff_sz);
337 
338 next:
339 		optimize_nops(instr, a->instrlen);
340 	}
341 }
342 
343 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
344 
345 /*
346  * CALL/JMP *%\reg
347  */
348 static int emit_indirect(int op, int reg, u8 *bytes)
349 {
350 	int i = 0;
351 	u8 modrm;
352 
353 	switch (op) {
354 	case CALL_INSN_OPCODE:
355 		modrm = 0x10; /* Reg = 2; CALL r/m */
356 		break;
357 
358 	case JMP32_INSN_OPCODE:
359 		modrm = 0x20; /* Reg = 4; JMP r/m */
360 		break;
361 
362 	default:
363 		WARN_ON_ONCE(1);
364 		return -1;
365 	}
366 
367 	if (reg >= 8) {
368 		bytes[i++] = 0x41; /* REX.B prefix */
369 		reg -= 8;
370 	}
371 
372 	modrm |= 0xc0; /* Mod = 3 */
373 	modrm += reg;
374 
375 	bytes[i++] = 0xff; /* opcode */
376 	bytes[i++] = modrm;
377 
378 	return i;
379 }
380 
381 static inline bool is_jcc32(struct insn *insn)
382 {
383 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
384 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
385 }
386 
387 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
388 {
389 	u8 op = insn->opcode.bytes[0];
390 	int i = 0;
391 
392 	/*
393 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
394 	 * tail-calls. Deal with them.
395 	 */
396 	if (is_jcc32(insn)) {
397 		bytes[i++] = op;
398 		op = insn->opcode.bytes[1];
399 		goto clang_jcc;
400 	}
401 
402 	if (insn->length == 6)
403 		bytes[i++] = 0x2e; /* CS-prefix */
404 
405 	switch (op) {
406 	case CALL_INSN_OPCODE:
407 		__text_gen_insn(bytes+i, op, addr+i,
408 				__x86_indirect_call_thunk_array[reg],
409 				CALL_INSN_SIZE);
410 		i += CALL_INSN_SIZE;
411 		break;
412 
413 	case JMP32_INSN_OPCODE:
414 clang_jcc:
415 		__text_gen_insn(bytes+i, op, addr+i,
416 				__x86_indirect_jump_thunk_array[reg],
417 				JMP32_INSN_SIZE);
418 		i += JMP32_INSN_SIZE;
419 		break;
420 
421 	default:
422 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
423 		return -1;
424 	}
425 
426 	WARN_ON_ONCE(i != insn->length);
427 
428 	return i;
429 }
430 
431 /*
432  * Rewrite the compiler generated retpoline thunk calls.
433  *
434  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
435  * indirect instructions, avoiding the extra indirection.
436  *
437  * For example, convert:
438  *
439  *   CALL __x86_indirect_thunk_\reg
440  *
441  * into:
442  *
443  *   CALL *%\reg
444  *
445  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
446  */
447 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
448 {
449 	retpoline_thunk_t *target;
450 	int reg, ret, i = 0;
451 	u8 op, cc;
452 
453 	target = addr + insn->length + insn->immediate.value;
454 	reg = target - __x86_indirect_thunk_array;
455 
456 	if (WARN_ON_ONCE(reg & ~0xf))
457 		return -1;
458 
459 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
460 	BUG_ON(reg == 4);
461 
462 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
463 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
464 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
465 			return emit_call_track_retpoline(addr, insn, reg, bytes);
466 
467 		return -1;
468 	}
469 
470 	op = insn->opcode.bytes[0];
471 
472 	/*
473 	 * Convert:
474 	 *
475 	 *   Jcc.d32 __x86_indirect_thunk_\reg
476 	 *
477 	 * into:
478 	 *
479 	 *   Jncc.d8 1f
480 	 *   [ LFENCE ]
481 	 *   JMP *%\reg
482 	 *   [ NOP ]
483 	 * 1:
484 	 */
485 	if (is_jcc32(insn)) {
486 		cc = insn->opcode.bytes[1] & 0xf;
487 		cc ^= 1; /* invert condition */
488 
489 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
490 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
491 
492 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
493 		op = JMP32_INSN_OPCODE;
494 	}
495 
496 	/*
497 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
498 	 */
499 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
500 		bytes[i++] = 0x0f;
501 		bytes[i++] = 0xae;
502 		bytes[i++] = 0xe8; /* LFENCE */
503 	}
504 
505 	ret = emit_indirect(op, reg, bytes + i);
506 	if (ret < 0)
507 		return ret;
508 	i += ret;
509 
510 	/*
511 	 * The compiler is supposed to EMIT an INT3 after every unconditional
512 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
513 	 * or SLS isn't enabled, we still need an INT3 after indirect JMPs
514 	 * even on Intel.
515 	 */
516 	if (op == JMP32_INSN_OPCODE && i < insn->length)
517 		bytes[i++] = INT3_INSN_OPCODE;
518 
519 	for (; i < insn->length;)
520 		bytes[i++] = BYTES_NOP1;
521 
522 	return i;
523 }
524 
525 /*
526  * Generated by 'objtool --retpoline'.
527  */
528 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
529 {
530 	s32 *s;
531 
532 	for (s = start; s < end; s++) {
533 		void *addr = (void *)s + *s;
534 		struct insn insn;
535 		int len, ret;
536 		u8 bytes[16];
537 		u8 op1, op2;
538 
539 		ret = insn_decode_kernel(&insn, addr);
540 		if (WARN_ON_ONCE(ret < 0))
541 			continue;
542 
543 		op1 = insn.opcode.bytes[0];
544 		op2 = insn.opcode.bytes[1];
545 
546 		switch (op1) {
547 		case CALL_INSN_OPCODE:
548 		case JMP32_INSN_OPCODE:
549 			break;
550 
551 		case 0x0f: /* escape */
552 			if (op2 >= 0x80 && op2 <= 0x8f)
553 				break;
554 			fallthrough;
555 		default:
556 			WARN_ON_ONCE(1);
557 			continue;
558 		}
559 
560 		DPRINTK("retpoline at: %pS (%px) len: %d to: %pS",
561 			addr, addr, insn.length,
562 			addr + insn.length + insn.immediate.value);
563 
564 		len = patch_retpoline(addr, &insn, bytes);
565 		if (len == insn.length) {
566 			optimize_nops(bytes, len);
567 			DUMP_BYTES(((u8*)addr),  len, "%px: orig: ", addr);
568 			DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
569 			text_poke_early(addr, bytes, len);
570 		}
571 	}
572 }
573 
574 #ifdef CONFIG_RETHUNK
575 
576 #ifdef CONFIG_CALL_THUNKS
577 void (*x86_return_thunk)(void) __ro_after_init = &__x86_return_thunk;
578 #endif
579 
580 /*
581  * Rewrite the compiler generated return thunk tail-calls.
582  *
583  * For example, convert:
584  *
585  *   JMP __x86_return_thunk
586  *
587  * into:
588  *
589  *   RET
590  */
591 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
592 {
593 	int i = 0;
594 
595 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
596 		if (x86_return_thunk == __x86_return_thunk)
597 			return -1;
598 
599 		i = JMP32_INSN_SIZE;
600 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
601 	} else {
602 		bytes[i++] = RET_INSN_OPCODE;
603 	}
604 
605 	for (; i < insn->length;)
606 		bytes[i++] = INT3_INSN_OPCODE;
607 	return i;
608 }
609 
610 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
611 {
612 	s32 *s;
613 
614 	for (s = start; s < end; s++) {
615 		void *dest = NULL, *addr = (void *)s + *s;
616 		struct insn insn;
617 		int len, ret;
618 		u8 bytes[16];
619 		u8 op;
620 
621 		ret = insn_decode_kernel(&insn, addr);
622 		if (WARN_ON_ONCE(ret < 0))
623 			continue;
624 
625 		op = insn.opcode.bytes[0];
626 		if (op == JMP32_INSN_OPCODE)
627 			dest = addr + insn.length + insn.immediate.value;
628 
629 		if (__static_call_fixup(addr, op, dest) ||
630 		    WARN_ONCE(dest != &__x86_return_thunk,
631 			      "missing return thunk: %pS-%pS: %*ph",
632 			      addr, dest, 5, addr))
633 			continue;
634 
635 		DPRINTK("return thunk at: %pS (%px) len: %d to: %pS",
636 			addr, addr, insn.length,
637 			addr + insn.length + insn.immediate.value);
638 
639 		len = patch_return(addr, &insn, bytes);
640 		if (len == insn.length) {
641 			DUMP_BYTES(((u8*)addr),  len, "%px: orig: ", addr);
642 			DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
643 			text_poke_early(addr, bytes, len);
644 		}
645 	}
646 }
647 #else
648 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
649 #endif /* CONFIG_RETHUNK */
650 
651 #else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
652 
653 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
654 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
655 
656 #endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
657 
658 #ifdef CONFIG_X86_KERNEL_IBT
659 
660 static void poison_endbr(void *addr, bool warn)
661 {
662 	u32 endbr, poison = gen_endbr_poison();
663 
664 	if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
665 		return;
666 
667 	if (!is_endbr(endbr)) {
668 		WARN_ON_ONCE(warn);
669 		return;
670 	}
671 
672 	DPRINTK("ENDBR at: %pS (%px)", addr, addr);
673 
674 	/*
675 	 * When we have IBT, the lack of ENDBR will trigger #CP
676 	 */
677 	DUMP_BYTES(((u8*)addr), 4, "%px: orig: ", addr);
678 	DUMP_BYTES(((u8*)&poison), 4, "%px: repl: ", addr);
679 	text_poke_early(addr, &poison, 4);
680 }
681 
682 /*
683  * Generated by: objtool --ibt
684  */
685 void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end)
686 {
687 	s32 *s;
688 
689 	for (s = start; s < end; s++) {
690 		void *addr = (void *)s + *s;
691 
692 		poison_endbr(addr, true);
693 		if (IS_ENABLED(CONFIG_FINEIBT))
694 			poison_endbr(addr - 16, false);
695 	}
696 }
697 
698 #else
699 
700 void __init_or_module apply_ibt_endbr(s32 *start, s32 *end) { }
701 
702 #endif /* CONFIG_X86_KERNEL_IBT */
703 
704 #ifdef CONFIG_FINEIBT
705 
706 enum cfi_mode {
707 	CFI_DEFAULT,
708 	CFI_OFF,
709 	CFI_KCFI,
710 	CFI_FINEIBT,
711 };
712 
713 static enum cfi_mode cfi_mode __ro_after_init = CFI_DEFAULT;
714 static bool cfi_rand __ro_after_init = true;
715 static u32  cfi_seed __ro_after_init;
716 
717 /*
718  * Re-hash the CFI hash with a boot-time seed while making sure the result is
719  * not a valid ENDBR instruction.
720  */
721 static u32 cfi_rehash(u32 hash)
722 {
723 	hash ^= cfi_seed;
724 	while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
725 		bool lsb = hash & 1;
726 		hash >>= 1;
727 		if (lsb)
728 			hash ^= 0x80200003;
729 	}
730 	return hash;
731 }
732 
733 static __init int cfi_parse_cmdline(char *str)
734 {
735 	if (!str)
736 		return -EINVAL;
737 
738 	while (str) {
739 		char *next = strchr(str, ',');
740 		if (next) {
741 			*next = 0;
742 			next++;
743 		}
744 
745 		if (!strcmp(str, "auto")) {
746 			cfi_mode = CFI_DEFAULT;
747 		} else if (!strcmp(str, "off")) {
748 			cfi_mode = CFI_OFF;
749 			cfi_rand = false;
750 		} else if (!strcmp(str, "kcfi")) {
751 			cfi_mode = CFI_KCFI;
752 		} else if (!strcmp(str, "fineibt")) {
753 			cfi_mode = CFI_FINEIBT;
754 		} else if (!strcmp(str, "norand")) {
755 			cfi_rand = false;
756 		} else {
757 			pr_err("Ignoring unknown cfi option (%s).", str);
758 		}
759 
760 		str = next;
761 	}
762 
763 	return 0;
764 }
765 early_param("cfi", cfi_parse_cmdline);
766 
767 /*
768  * kCFI						FineIBT
769  *
770  * __cfi_\func:					__cfi_\func:
771  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
772  *	nop					     subl   $0x12345678,%r10d   // 7
773  *	nop					     jz     1f			// 2
774  *	nop					     ud2			// 2
775  *	nop					1:   nop			// 1
776  *	nop
777  *	nop
778  *	nop
779  *	nop
780  *	nop
781  *	nop
782  *	nop
783  *
784  *
785  * caller:					caller:
786  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
787  *	addl	$-15(%r11),%r10d	 // 4	     sub    $16,%r11		// 4
788  *	je	1f			 // 2	     nop4			// 4
789  *	ud2				 // 2
790  * 1:	call	__x86_indirect_thunk_r11 // 5	     call   *%r11; nop2;	// 5
791  *
792  */
793 
794 asm(	".pushsection .rodata			\n"
795 	"fineibt_preamble_start:		\n"
796 	"	endbr64				\n"
797 	"	subl	$0x12345678, %r10d	\n"
798 	"	je	fineibt_preamble_end	\n"
799 	"	ud2				\n"
800 	"	nop				\n"
801 	"fineibt_preamble_end:			\n"
802 	".popsection\n"
803 );
804 
805 extern u8 fineibt_preamble_start[];
806 extern u8 fineibt_preamble_end[];
807 
808 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
809 #define fineibt_preamble_hash 7
810 
811 asm(	".pushsection .rodata			\n"
812 	"fineibt_caller_start:			\n"
813 	"	movl	$0x12345678, %r10d	\n"
814 	"	sub	$16, %r11		\n"
815 	ASM_NOP4
816 	"fineibt_caller_end:			\n"
817 	".popsection				\n"
818 );
819 
820 extern u8 fineibt_caller_start[];
821 extern u8 fineibt_caller_end[];
822 
823 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
824 #define fineibt_caller_hash 2
825 
826 #define fineibt_caller_jmp (fineibt_caller_size - 2)
827 
828 static u32 decode_preamble_hash(void *addr)
829 {
830 	u8 *p = addr;
831 
832 	/* b8 78 56 34 12          mov    $0x12345678,%eax */
833 	if (p[0] == 0xb8)
834 		return *(u32 *)(addr + 1);
835 
836 	return 0; /* invalid hash value */
837 }
838 
839 static u32 decode_caller_hash(void *addr)
840 {
841 	u8 *p = addr;
842 
843 	/* 41 ba 78 56 34 12       mov    $0x12345678,%r10d */
844 	if (p[0] == 0x41 && p[1] == 0xba)
845 		return -*(u32 *)(addr + 2);
846 
847 	/* e8 0c 78 56 34 12	   jmp.d8  +12 */
848 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
849 		return -*(u32 *)(addr + 2);
850 
851 	return 0; /* invalid hash value */
852 }
853 
854 /* .retpoline_sites */
855 static int cfi_disable_callers(s32 *start, s32 *end)
856 {
857 	/*
858 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
859 	 * in tact for later usage. Also see decode_caller_hash() and
860 	 * cfi_rewrite_callers().
861 	 */
862 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
863 	s32 *s;
864 
865 	for (s = start; s < end; s++) {
866 		void *addr = (void *)s + *s;
867 		u32 hash;
868 
869 		addr -= fineibt_caller_size;
870 		hash = decode_caller_hash(addr);
871 		if (!hash) /* nocfi callers */
872 			continue;
873 
874 		text_poke_early(addr, jmp, 2);
875 	}
876 
877 	return 0;
878 }
879 
880 static int cfi_enable_callers(s32 *start, s32 *end)
881 {
882 	/*
883 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
884 	 */
885 	const u8 mov[] = { 0x41, 0xba };
886 	s32 *s;
887 
888 	for (s = start; s < end; s++) {
889 		void *addr = (void *)s + *s;
890 		u32 hash;
891 
892 		addr -= fineibt_caller_size;
893 		hash = decode_caller_hash(addr);
894 		if (!hash) /* nocfi callers */
895 			continue;
896 
897 		text_poke_early(addr, mov, 2);
898 	}
899 
900 	return 0;
901 }
902 
903 /* .cfi_sites */
904 static int cfi_rand_preamble(s32 *start, s32 *end)
905 {
906 	s32 *s;
907 
908 	for (s = start; s < end; s++) {
909 		void *addr = (void *)s + *s;
910 		u32 hash;
911 
912 		hash = decode_preamble_hash(addr);
913 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
914 			 addr, addr, 5, addr))
915 			return -EINVAL;
916 
917 		hash = cfi_rehash(hash);
918 		text_poke_early(addr + 1, &hash, 4);
919 	}
920 
921 	return 0;
922 }
923 
924 static int cfi_rewrite_preamble(s32 *start, s32 *end)
925 {
926 	s32 *s;
927 
928 	for (s = start; s < end; s++) {
929 		void *addr = (void *)s + *s;
930 		u32 hash;
931 
932 		hash = decode_preamble_hash(addr);
933 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
934 			 addr, addr, 5, addr))
935 			return -EINVAL;
936 
937 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
938 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
939 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
940 	}
941 
942 	return 0;
943 }
944 
945 /* .retpoline_sites */
946 static int cfi_rand_callers(s32 *start, s32 *end)
947 {
948 	s32 *s;
949 
950 	for (s = start; s < end; s++) {
951 		void *addr = (void *)s + *s;
952 		u32 hash;
953 
954 		addr -= fineibt_caller_size;
955 		hash = decode_caller_hash(addr);
956 		if (hash) {
957 			hash = -cfi_rehash(hash);
958 			text_poke_early(addr + 2, &hash, 4);
959 		}
960 	}
961 
962 	return 0;
963 }
964 
965 static int cfi_rewrite_callers(s32 *start, s32 *end)
966 {
967 	s32 *s;
968 
969 	for (s = start; s < end; s++) {
970 		void *addr = (void *)s + *s;
971 		u32 hash;
972 
973 		addr -= fineibt_caller_size;
974 		hash = decode_caller_hash(addr);
975 		if (hash) {
976 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
977 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
978 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
979 		}
980 		/* rely on apply_retpolines() */
981 	}
982 
983 	return 0;
984 }
985 
986 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
987 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
988 {
989 	int ret;
990 
991 	if (WARN_ONCE(fineibt_preamble_size != 16,
992 		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
993 		return;
994 
995 	if (cfi_mode == CFI_DEFAULT) {
996 		cfi_mode = CFI_KCFI;
997 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
998 			cfi_mode = CFI_FINEIBT;
999 	}
1000 
1001 	/*
1002 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1003 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1004 	 * later stages fails, we're without CFI.
1005 	 */
1006 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1007 	if (ret)
1008 		goto err;
1009 
1010 	if (cfi_rand) {
1011 		if (builtin)
1012 			cfi_seed = get_random_u32();
1013 
1014 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1015 		if (ret)
1016 			goto err;
1017 
1018 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1019 		if (ret)
1020 			goto err;
1021 	}
1022 
1023 	switch (cfi_mode) {
1024 	case CFI_OFF:
1025 		if (builtin)
1026 			pr_info("Disabling CFI\n");
1027 		return;
1028 
1029 	case CFI_KCFI:
1030 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1031 		if (ret)
1032 			goto err;
1033 
1034 		if (builtin)
1035 			pr_info("Using kCFI\n");
1036 		return;
1037 
1038 	case CFI_FINEIBT:
1039 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1040 		if (ret)
1041 			goto err;
1042 
1043 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1044 		if (ret)
1045 			goto err;
1046 
1047 		if (builtin)
1048 			pr_info("Using FineIBT CFI\n");
1049 		return;
1050 
1051 	default:
1052 		break;
1053 	}
1054 
1055 err:
1056 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1057 }
1058 
1059 #else
1060 
1061 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1062 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1063 {
1064 }
1065 
1066 #endif
1067 
1068 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1069 		   s32 *start_cfi, s32 *end_cfi)
1070 {
1071 	return __apply_fineibt(start_retpoline, end_retpoline,
1072 			       start_cfi, end_cfi,
1073 			       /* .builtin = */ false);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1078 				  u8 *text, u8 *text_end)
1079 {
1080 	const s32 *poff;
1081 
1082 	for (poff = start; poff < end; poff++) {
1083 		u8 *ptr = (u8 *)poff + *poff;
1084 
1085 		if (!*poff || ptr < text || ptr >= text_end)
1086 			continue;
1087 		/* turn DS segment override prefix into lock prefix */
1088 		if (*ptr == 0x3e)
1089 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
1090 	}
1091 }
1092 
1093 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1094 				    u8 *text, u8 *text_end)
1095 {
1096 	const s32 *poff;
1097 
1098 	for (poff = start; poff < end; poff++) {
1099 		u8 *ptr = (u8 *)poff + *poff;
1100 
1101 		if (!*poff || ptr < text || ptr >= text_end)
1102 			continue;
1103 		/* turn lock prefix into DS segment override prefix */
1104 		if (*ptr == 0xf0)
1105 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
1106 	}
1107 }
1108 
1109 struct smp_alt_module {
1110 	/* what is this ??? */
1111 	struct module	*mod;
1112 	char		*name;
1113 
1114 	/* ptrs to lock prefixes */
1115 	const s32	*locks;
1116 	const s32	*locks_end;
1117 
1118 	/* .text segment, needed to avoid patching init code ;) */
1119 	u8		*text;
1120 	u8		*text_end;
1121 
1122 	struct list_head next;
1123 };
1124 static LIST_HEAD(smp_alt_modules);
1125 static bool uniproc_patched = false;	/* protected by text_mutex */
1126 
1127 void __init_or_module alternatives_smp_module_add(struct module *mod,
1128 						  char *name,
1129 						  void *locks, void *locks_end,
1130 						  void *text,  void *text_end)
1131 {
1132 	struct smp_alt_module *smp;
1133 
1134 	mutex_lock(&text_mutex);
1135 	if (!uniproc_patched)
1136 		goto unlock;
1137 
1138 	if (num_possible_cpus() == 1)
1139 		/* Don't bother remembering, we'll never have to undo it. */
1140 		goto smp_unlock;
1141 
1142 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1143 	if (NULL == smp)
1144 		/* we'll run the (safe but slow) SMP code then ... */
1145 		goto unlock;
1146 
1147 	smp->mod	= mod;
1148 	smp->name	= name;
1149 	smp->locks	= locks;
1150 	smp->locks_end	= locks_end;
1151 	smp->text	= text;
1152 	smp->text_end	= text_end;
1153 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
1154 		smp->locks, smp->locks_end,
1155 		smp->text, smp->text_end, smp->name);
1156 
1157 	list_add_tail(&smp->next, &smp_alt_modules);
1158 smp_unlock:
1159 	alternatives_smp_unlock(locks, locks_end, text, text_end);
1160 unlock:
1161 	mutex_unlock(&text_mutex);
1162 }
1163 
1164 void __init_or_module alternatives_smp_module_del(struct module *mod)
1165 {
1166 	struct smp_alt_module *item;
1167 
1168 	mutex_lock(&text_mutex);
1169 	list_for_each_entry(item, &smp_alt_modules, next) {
1170 		if (mod != item->mod)
1171 			continue;
1172 		list_del(&item->next);
1173 		kfree(item);
1174 		break;
1175 	}
1176 	mutex_unlock(&text_mutex);
1177 }
1178 
1179 void alternatives_enable_smp(void)
1180 {
1181 	struct smp_alt_module *mod;
1182 
1183 	/* Why bother if there are no other CPUs? */
1184 	BUG_ON(num_possible_cpus() == 1);
1185 
1186 	mutex_lock(&text_mutex);
1187 
1188 	if (uniproc_patched) {
1189 		pr_info("switching to SMP code\n");
1190 		BUG_ON(num_online_cpus() != 1);
1191 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1192 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1193 		list_for_each_entry(mod, &smp_alt_modules, next)
1194 			alternatives_smp_lock(mod->locks, mod->locks_end,
1195 					      mod->text, mod->text_end);
1196 		uniproc_patched = false;
1197 	}
1198 	mutex_unlock(&text_mutex);
1199 }
1200 
1201 /*
1202  * Return 1 if the address range is reserved for SMP-alternatives.
1203  * Must hold text_mutex.
1204  */
1205 int alternatives_text_reserved(void *start, void *end)
1206 {
1207 	struct smp_alt_module *mod;
1208 	const s32 *poff;
1209 	u8 *text_start = start;
1210 	u8 *text_end = end;
1211 
1212 	lockdep_assert_held(&text_mutex);
1213 
1214 	list_for_each_entry(mod, &smp_alt_modules, next) {
1215 		if (mod->text > text_end || mod->text_end < text_start)
1216 			continue;
1217 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
1218 			const u8 *ptr = (const u8 *)poff + *poff;
1219 
1220 			if (text_start <= ptr && text_end > ptr)
1221 				return 1;
1222 		}
1223 	}
1224 
1225 	return 0;
1226 }
1227 #endif /* CONFIG_SMP */
1228 
1229 #ifdef CONFIG_PARAVIRT
1230 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
1231 				     struct paravirt_patch_site *end)
1232 {
1233 	struct paravirt_patch_site *p;
1234 	char insn_buff[MAX_PATCH_LEN];
1235 
1236 	for (p = start; p < end; p++) {
1237 		unsigned int used;
1238 
1239 		BUG_ON(p->len > MAX_PATCH_LEN);
1240 		/* prep the buffer with the original instructions */
1241 		memcpy(insn_buff, p->instr, p->len);
1242 		used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
1243 
1244 		BUG_ON(used > p->len);
1245 
1246 		/* Pad the rest with nops */
1247 		add_nops(insn_buff + used, p->len - used);
1248 		text_poke_early(p->instr, insn_buff, p->len);
1249 	}
1250 }
1251 extern struct paravirt_patch_site __start_parainstructions[],
1252 	__stop_parainstructions[];
1253 #endif	/* CONFIG_PARAVIRT */
1254 
1255 /*
1256  * Self-test for the INT3 based CALL emulation code.
1257  *
1258  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1259  * properly and that there is a stack gap between the INT3 frame and the
1260  * previous context. Without this gap doing a virtual PUSH on the interrupted
1261  * stack would corrupt the INT3 IRET frame.
1262  *
1263  * See entry_{32,64}.S for more details.
1264  */
1265 
1266 /*
1267  * We define the int3_magic() function in assembly to control the calling
1268  * convention such that we can 'call' it from assembly.
1269  */
1270 
1271 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1272 
1273 asm (
1274 "	.pushsection	.init.text, \"ax\", @progbits\n"
1275 "	.type		int3_magic, @function\n"
1276 "int3_magic:\n"
1277 	ANNOTATE_NOENDBR
1278 "	movl	$1, (%" _ASM_ARG1 ")\n"
1279 	ASM_RET
1280 "	.size		int3_magic, .-int3_magic\n"
1281 "	.popsection\n"
1282 );
1283 
1284 extern void int3_selftest_ip(void); /* defined in asm below */
1285 
1286 static int __init
1287 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1288 {
1289 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
1290 	struct die_args *args = data;
1291 	struct pt_regs *regs = args->regs;
1292 
1293 	OPTIMIZER_HIDE_VAR(selftest);
1294 
1295 	if (!regs || user_mode(regs))
1296 		return NOTIFY_DONE;
1297 
1298 	if (val != DIE_INT3)
1299 		return NOTIFY_DONE;
1300 
1301 	if (regs->ip - INT3_INSN_SIZE != selftest)
1302 		return NOTIFY_DONE;
1303 
1304 	int3_emulate_call(regs, (unsigned long)&int3_magic);
1305 	return NOTIFY_STOP;
1306 }
1307 
1308 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1309 static noinline void __init int3_selftest(void)
1310 {
1311 	static __initdata struct notifier_block int3_exception_nb = {
1312 		.notifier_call	= int3_exception_notify,
1313 		.priority	= INT_MAX-1, /* last */
1314 	};
1315 	unsigned int val = 0;
1316 
1317 	BUG_ON(register_die_notifier(&int3_exception_nb));
1318 
1319 	/*
1320 	 * Basically: int3_magic(&val); but really complicated :-)
1321 	 *
1322 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1323 	 * notifier above will emulate CALL for us.
1324 	 */
1325 	asm volatile ("int3_selftest_ip:\n\t"
1326 		      ANNOTATE_NOENDBR
1327 		      "    int3; nop; nop; nop; nop\n\t"
1328 		      : ASM_CALL_CONSTRAINT
1329 		      : __ASM_SEL_RAW(a, D) (&val)
1330 		      : "memory");
1331 
1332 	BUG_ON(val != 1);
1333 
1334 	unregister_die_notifier(&int3_exception_nb);
1335 }
1336 
1337 void __init alternative_instructions(void)
1338 {
1339 	int3_selftest();
1340 
1341 	/*
1342 	 * The patching is not fully atomic, so try to avoid local
1343 	 * interruptions that might execute the to be patched code.
1344 	 * Other CPUs are not running.
1345 	 */
1346 	stop_nmi();
1347 
1348 	/*
1349 	 * Don't stop machine check exceptions while patching.
1350 	 * MCEs only happen when something got corrupted and in this
1351 	 * case we must do something about the corruption.
1352 	 * Ignoring it is worse than an unlikely patching race.
1353 	 * Also machine checks tend to be broadcast and if one CPU
1354 	 * goes into machine check the others follow quickly, so we don't
1355 	 * expect a machine check to cause undue problems during to code
1356 	 * patching.
1357 	 */
1358 
1359 	/*
1360 	 * Paravirt patching and alternative patching can be combined to
1361 	 * replace a function call with a short direct code sequence (e.g.
1362 	 * by setting a constant return value instead of doing that in an
1363 	 * external function).
1364 	 * In order to make this work the following sequence is required:
1365 	 * 1. set (artificial) features depending on used paravirt
1366 	 *    functions which can later influence alternative patching
1367 	 * 2. apply paravirt patching (generally replacing an indirect
1368 	 *    function call with a direct one)
1369 	 * 3. apply alternative patching (e.g. replacing a direct function
1370 	 *    call with a custom code sequence)
1371 	 * Doing paravirt patching after alternative patching would clobber
1372 	 * the optimization of the custom code with a function call again.
1373 	 */
1374 	paravirt_set_cap();
1375 
1376 	/*
1377 	 * First patch paravirt functions, such that we overwrite the indirect
1378 	 * call with the direct call.
1379 	 */
1380 	apply_paravirt(__parainstructions, __parainstructions_end);
1381 
1382 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1383 			__cfi_sites, __cfi_sites_end, true);
1384 
1385 	/*
1386 	 * Rewrite the retpolines, must be done before alternatives since
1387 	 * those can rewrite the retpoline thunks.
1388 	 */
1389 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1390 	apply_returns(__return_sites, __return_sites_end);
1391 
1392 	/*
1393 	 * Then patch alternatives, such that those paravirt calls that are in
1394 	 * alternatives can be overwritten by their immediate fragments.
1395 	 */
1396 	apply_alternatives(__alt_instructions, __alt_instructions_end);
1397 
1398 	/*
1399 	 * Now all calls are established. Apply the call thunks if
1400 	 * required.
1401 	 */
1402 	callthunks_patch_builtin_calls();
1403 
1404 	apply_ibt_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1405 
1406 #ifdef CONFIG_SMP
1407 	/* Patch to UP if other cpus not imminent. */
1408 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1409 		uniproc_patched = true;
1410 		alternatives_smp_module_add(NULL, "core kernel",
1411 					    __smp_locks, __smp_locks_end,
1412 					    _text, _etext);
1413 	}
1414 
1415 	if (!uniproc_patched || num_possible_cpus() == 1) {
1416 		free_init_pages("SMP alternatives",
1417 				(unsigned long)__smp_locks,
1418 				(unsigned long)__smp_locks_end);
1419 	}
1420 #endif
1421 
1422 	restart_nmi();
1423 	alternatives_patched = 1;
1424 }
1425 
1426 /**
1427  * text_poke_early - Update instructions on a live kernel at boot time
1428  * @addr: address to modify
1429  * @opcode: source of the copy
1430  * @len: length to copy
1431  *
1432  * When you use this code to patch more than one byte of an instruction
1433  * you need to make sure that other CPUs cannot execute this code in parallel.
1434  * Also no thread must be currently preempted in the middle of these
1435  * instructions. And on the local CPU you need to be protected against NMI or
1436  * MCE handlers seeing an inconsistent instruction while you patch.
1437  */
1438 void __init_or_module text_poke_early(void *addr, const void *opcode,
1439 				      size_t len)
1440 {
1441 	unsigned long flags;
1442 
1443 	if (boot_cpu_has(X86_FEATURE_NX) &&
1444 	    is_module_text_address((unsigned long)addr)) {
1445 		/*
1446 		 * Modules text is marked initially as non-executable, so the
1447 		 * code cannot be running and speculative code-fetches are
1448 		 * prevented. Just change the code.
1449 		 */
1450 		memcpy(addr, opcode, len);
1451 	} else {
1452 		local_irq_save(flags);
1453 		memcpy(addr, opcode, len);
1454 		local_irq_restore(flags);
1455 		sync_core();
1456 
1457 		/*
1458 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
1459 		 * that causes hangs on some VIA CPUs.
1460 		 */
1461 	}
1462 }
1463 
1464 typedef struct {
1465 	struct mm_struct *mm;
1466 } temp_mm_state_t;
1467 
1468 /*
1469  * Using a temporary mm allows to set temporary mappings that are not accessible
1470  * by other CPUs. Such mappings are needed to perform sensitive memory writes
1471  * that override the kernel memory protections (e.g., W^X), without exposing the
1472  * temporary page-table mappings that are required for these write operations to
1473  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1474  * mapping is torn down.
1475  *
1476  * Context: The temporary mm needs to be used exclusively by a single core. To
1477  *          harden security IRQs must be disabled while the temporary mm is
1478  *          loaded, thereby preventing interrupt handler bugs from overriding
1479  *          the kernel memory protection.
1480  */
1481 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1482 {
1483 	temp_mm_state_t temp_state;
1484 
1485 	lockdep_assert_irqs_disabled();
1486 
1487 	/*
1488 	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1489 	 * with a stale address space WITHOUT being in lazy mode after
1490 	 * restoring the previous mm.
1491 	 */
1492 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1493 		leave_mm(smp_processor_id());
1494 
1495 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1496 	switch_mm_irqs_off(NULL, mm, current);
1497 
1498 	/*
1499 	 * If breakpoints are enabled, disable them while the temporary mm is
1500 	 * used. Userspace might set up watchpoints on addresses that are used
1501 	 * in the temporary mm, which would lead to wrong signals being sent or
1502 	 * crashes.
1503 	 *
1504 	 * Note that breakpoints are not disabled selectively, which also causes
1505 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1506 	 * undesirable, but still seems reasonable as the code that runs in the
1507 	 * temporary mm should be short.
1508 	 */
1509 	if (hw_breakpoint_active())
1510 		hw_breakpoint_disable();
1511 
1512 	return temp_state;
1513 }
1514 
1515 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1516 {
1517 	lockdep_assert_irqs_disabled();
1518 	switch_mm_irqs_off(NULL, prev_state.mm, current);
1519 
1520 	/*
1521 	 * Restore the breakpoints if they were disabled before the temporary mm
1522 	 * was loaded.
1523 	 */
1524 	if (hw_breakpoint_active())
1525 		hw_breakpoint_restore();
1526 }
1527 
1528 __ro_after_init struct mm_struct *poking_mm;
1529 __ro_after_init unsigned long poking_addr;
1530 
1531 static void text_poke_memcpy(void *dst, const void *src, size_t len)
1532 {
1533 	memcpy(dst, src, len);
1534 }
1535 
1536 static void text_poke_memset(void *dst, const void *src, size_t len)
1537 {
1538 	int c = *(const int *)src;
1539 
1540 	memset(dst, c, len);
1541 }
1542 
1543 typedef void text_poke_f(void *dst, const void *src, size_t len);
1544 
1545 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1546 {
1547 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1548 	struct page *pages[2] = {NULL};
1549 	temp_mm_state_t prev;
1550 	unsigned long flags;
1551 	pte_t pte, *ptep;
1552 	spinlock_t *ptl;
1553 	pgprot_t pgprot;
1554 
1555 	/*
1556 	 * While boot memory allocator is running we cannot use struct pages as
1557 	 * they are not yet initialized. There is no way to recover.
1558 	 */
1559 	BUG_ON(!after_bootmem);
1560 
1561 	if (!core_kernel_text((unsigned long)addr)) {
1562 		pages[0] = vmalloc_to_page(addr);
1563 		if (cross_page_boundary)
1564 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1565 	} else {
1566 		pages[0] = virt_to_page(addr);
1567 		WARN_ON(!PageReserved(pages[0]));
1568 		if (cross_page_boundary)
1569 			pages[1] = virt_to_page(addr + PAGE_SIZE);
1570 	}
1571 	/*
1572 	 * If something went wrong, crash and burn since recovery paths are not
1573 	 * implemented.
1574 	 */
1575 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1576 
1577 	/*
1578 	 * Map the page without the global bit, as TLB flushing is done with
1579 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1580 	 */
1581 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1582 
1583 	/*
1584 	 * The lock is not really needed, but this allows to avoid open-coding.
1585 	 */
1586 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1587 
1588 	/*
1589 	 * This must not fail; preallocated in poking_init().
1590 	 */
1591 	VM_BUG_ON(!ptep);
1592 
1593 	local_irq_save(flags);
1594 
1595 	pte = mk_pte(pages[0], pgprot);
1596 	set_pte_at(poking_mm, poking_addr, ptep, pte);
1597 
1598 	if (cross_page_boundary) {
1599 		pte = mk_pte(pages[1], pgprot);
1600 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1601 	}
1602 
1603 	/*
1604 	 * Loading the temporary mm behaves as a compiler barrier, which
1605 	 * guarantees that the PTE will be set at the time memcpy() is done.
1606 	 */
1607 	prev = use_temporary_mm(poking_mm);
1608 
1609 	kasan_disable_current();
1610 	func((u8 *)poking_addr + offset_in_page(addr), src, len);
1611 	kasan_enable_current();
1612 
1613 	/*
1614 	 * Ensure that the PTE is only cleared after the instructions of memcpy
1615 	 * were issued by using a compiler barrier.
1616 	 */
1617 	barrier();
1618 
1619 	pte_clear(poking_mm, poking_addr, ptep);
1620 	if (cross_page_boundary)
1621 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1622 
1623 	/*
1624 	 * Loading the previous page-table hierarchy requires a serializing
1625 	 * instruction that already allows the core to see the updated version.
1626 	 * Xen-PV is assumed to serialize execution in a similar manner.
1627 	 */
1628 	unuse_temporary_mm(prev);
1629 
1630 	/*
1631 	 * Flushing the TLB might involve IPIs, which would require enabled
1632 	 * IRQs, but not if the mm is not used, as it is in this point.
1633 	 */
1634 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1635 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1636 			   PAGE_SHIFT, false);
1637 
1638 	if (func == text_poke_memcpy) {
1639 		/*
1640 		 * If the text does not match what we just wrote then something is
1641 		 * fundamentally screwy; there's nothing we can really do about that.
1642 		 */
1643 		BUG_ON(memcmp(addr, src, len));
1644 	}
1645 
1646 	local_irq_restore(flags);
1647 	pte_unmap_unlock(ptep, ptl);
1648 	return addr;
1649 }
1650 
1651 /**
1652  * text_poke - Update instructions on a live kernel
1653  * @addr: address to modify
1654  * @opcode: source of the copy
1655  * @len: length to copy
1656  *
1657  * Only atomic text poke/set should be allowed when not doing early patching.
1658  * It means the size must be writable atomically and the address must be aligned
1659  * in a way that permits an atomic write. It also makes sure we fit on a single
1660  * page.
1661  *
1662  * Note that the caller must ensure that if the modified code is part of a
1663  * module, the module would not be removed during poking. This can be achieved
1664  * by registering a module notifier, and ordering module removal and patching
1665  * trough a mutex.
1666  */
1667 void *text_poke(void *addr, const void *opcode, size_t len)
1668 {
1669 	lockdep_assert_held(&text_mutex);
1670 
1671 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1672 }
1673 
1674 /**
1675  * text_poke_kgdb - Update instructions on a live kernel by kgdb
1676  * @addr: address to modify
1677  * @opcode: source of the copy
1678  * @len: length to copy
1679  *
1680  * Only atomic text poke/set should be allowed when not doing early patching.
1681  * It means the size must be writable atomically and the address must be aligned
1682  * in a way that permits an atomic write. It also makes sure we fit on a single
1683  * page.
1684  *
1685  * Context: should only be used by kgdb, which ensures no other core is running,
1686  *	    despite the fact it does not hold the text_mutex.
1687  */
1688 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1689 {
1690 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1691 }
1692 
1693 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
1694 			    bool core_ok)
1695 {
1696 	unsigned long start = (unsigned long)addr;
1697 	size_t patched = 0;
1698 
1699 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
1700 		return NULL;
1701 
1702 	while (patched < len) {
1703 		unsigned long ptr = start + patched;
1704 		size_t s;
1705 
1706 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1707 
1708 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
1709 		patched += s;
1710 	}
1711 	return addr;
1712 }
1713 
1714 /**
1715  * text_poke_copy - Copy instructions into (an unused part of) RX memory
1716  * @addr: address to modify
1717  * @opcode: source of the copy
1718  * @len: length to copy, could be more than 2x PAGE_SIZE
1719  *
1720  * Not safe against concurrent execution; useful for JITs to dump
1721  * new code blocks into unused regions of RX memory. Can be used in
1722  * conjunction with synchronize_rcu_tasks() to wait for existing
1723  * execution to quiesce after having made sure no existing functions
1724  * pointers are live.
1725  */
1726 void *text_poke_copy(void *addr, const void *opcode, size_t len)
1727 {
1728 	mutex_lock(&text_mutex);
1729 	addr = text_poke_copy_locked(addr, opcode, len, false);
1730 	mutex_unlock(&text_mutex);
1731 	return addr;
1732 }
1733 
1734 /**
1735  * text_poke_set - memset into (an unused part of) RX memory
1736  * @addr: address to modify
1737  * @c: the byte to fill the area with
1738  * @len: length to copy, could be more than 2x PAGE_SIZE
1739  *
1740  * This is useful to overwrite unused regions of RX memory with illegal
1741  * instructions.
1742  */
1743 void *text_poke_set(void *addr, int c, size_t len)
1744 {
1745 	unsigned long start = (unsigned long)addr;
1746 	size_t patched = 0;
1747 
1748 	if (WARN_ON_ONCE(core_kernel_text(start)))
1749 		return NULL;
1750 
1751 	mutex_lock(&text_mutex);
1752 	while (patched < len) {
1753 		unsigned long ptr = start + patched;
1754 		size_t s;
1755 
1756 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1757 
1758 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
1759 		patched += s;
1760 	}
1761 	mutex_unlock(&text_mutex);
1762 	return addr;
1763 }
1764 
1765 static void do_sync_core(void *info)
1766 {
1767 	sync_core();
1768 }
1769 
1770 void text_poke_sync(void)
1771 {
1772 	on_each_cpu(do_sync_core, NULL, 1);
1773 }
1774 
1775 struct text_poke_loc {
1776 	/* addr := _stext + rel_addr */
1777 	s32 rel_addr;
1778 	s32 disp;
1779 	u8 len;
1780 	u8 opcode;
1781 	const u8 text[POKE_MAX_OPCODE_SIZE];
1782 	/* see text_poke_bp_batch() */
1783 	u8 old;
1784 };
1785 
1786 struct bp_patching_desc {
1787 	struct text_poke_loc *vec;
1788 	int nr_entries;
1789 	atomic_t refs;
1790 };
1791 
1792 static struct bp_patching_desc bp_desc;
1793 
1794 static __always_inline
1795 struct bp_patching_desc *try_get_desc(void)
1796 {
1797 	struct bp_patching_desc *desc = &bp_desc;
1798 
1799 	if (!arch_atomic_inc_not_zero(&desc->refs))
1800 		return NULL;
1801 
1802 	return desc;
1803 }
1804 
1805 static __always_inline void put_desc(void)
1806 {
1807 	struct bp_patching_desc *desc = &bp_desc;
1808 
1809 	smp_mb__before_atomic();
1810 	arch_atomic_dec(&desc->refs);
1811 }
1812 
1813 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1814 {
1815 	return _stext + tp->rel_addr;
1816 }
1817 
1818 static __always_inline int patch_cmp(const void *key, const void *elt)
1819 {
1820 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1821 
1822 	if (key < text_poke_addr(tp))
1823 		return -1;
1824 	if (key > text_poke_addr(tp))
1825 		return 1;
1826 	return 0;
1827 }
1828 
1829 noinstr int poke_int3_handler(struct pt_regs *regs)
1830 {
1831 	struct bp_patching_desc *desc;
1832 	struct text_poke_loc *tp;
1833 	int ret = 0;
1834 	void *ip;
1835 
1836 	if (user_mode(regs))
1837 		return 0;
1838 
1839 	/*
1840 	 * Having observed our INT3 instruction, we now must observe
1841 	 * bp_desc with non-zero refcount:
1842 	 *
1843 	 *	bp_desc.refs = 1		INT3
1844 	 *	WMB				RMB
1845 	 *	write INT3			if (bp_desc.refs != 0)
1846 	 */
1847 	smp_rmb();
1848 
1849 	desc = try_get_desc();
1850 	if (!desc)
1851 		return 0;
1852 
1853 	/*
1854 	 * Discount the INT3. See text_poke_bp_batch().
1855 	 */
1856 	ip = (void *) regs->ip - INT3_INSN_SIZE;
1857 
1858 	/*
1859 	 * Skip the binary search if there is a single member in the vector.
1860 	 */
1861 	if (unlikely(desc->nr_entries > 1)) {
1862 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1863 				      sizeof(struct text_poke_loc),
1864 				      patch_cmp);
1865 		if (!tp)
1866 			goto out_put;
1867 	} else {
1868 		tp = desc->vec;
1869 		if (text_poke_addr(tp) != ip)
1870 			goto out_put;
1871 	}
1872 
1873 	ip += tp->len;
1874 
1875 	switch (tp->opcode) {
1876 	case INT3_INSN_OPCODE:
1877 		/*
1878 		 * Someone poked an explicit INT3, they'll want to handle it,
1879 		 * do not consume.
1880 		 */
1881 		goto out_put;
1882 
1883 	case RET_INSN_OPCODE:
1884 		int3_emulate_ret(regs);
1885 		break;
1886 
1887 	case CALL_INSN_OPCODE:
1888 		int3_emulate_call(regs, (long)ip + tp->disp);
1889 		break;
1890 
1891 	case JMP32_INSN_OPCODE:
1892 	case JMP8_INSN_OPCODE:
1893 		int3_emulate_jmp(regs, (long)ip + tp->disp);
1894 		break;
1895 
1896 	default:
1897 		BUG();
1898 	}
1899 
1900 	ret = 1;
1901 
1902 out_put:
1903 	put_desc();
1904 	return ret;
1905 }
1906 
1907 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1908 static struct text_poke_loc tp_vec[TP_VEC_MAX];
1909 static int tp_vec_nr;
1910 
1911 /**
1912  * text_poke_bp_batch() -- update instructions on live kernel on SMP
1913  * @tp:			vector of instructions to patch
1914  * @nr_entries:		number of entries in the vector
1915  *
1916  * Modify multi-byte instruction by using int3 breakpoint on SMP.
1917  * We completely avoid stop_machine() here, and achieve the
1918  * synchronization using int3 breakpoint.
1919  *
1920  * The way it is done:
1921  *	- For each entry in the vector:
1922  *		- add a int3 trap to the address that will be patched
1923  *	- sync cores
1924  *	- For each entry in the vector:
1925  *		- update all but the first byte of the patched range
1926  *	- sync cores
1927  *	- For each entry in the vector:
1928  *		- replace the first byte (int3) by the first byte of
1929  *		  replacing opcode
1930  *	- sync cores
1931  */
1932 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1933 {
1934 	unsigned char int3 = INT3_INSN_OPCODE;
1935 	unsigned int i;
1936 	int do_sync;
1937 
1938 	lockdep_assert_held(&text_mutex);
1939 
1940 	bp_desc.vec = tp;
1941 	bp_desc.nr_entries = nr_entries;
1942 
1943 	/*
1944 	 * Corresponds to the implicit memory barrier in try_get_desc() to
1945 	 * ensure reading a non-zero refcount provides up to date bp_desc data.
1946 	 */
1947 	atomic_set_release(&bp_desc.refs, 1);
1948 
1949 	/*
1950 	 * Corresponding read barrier in int3 notifier for making sure the
1951 	 * nr_entries and handler are correctly ordered wrt. patching.
1952 	 */
1953 	smp_wmb();
1954 
1955 	/*
1956 	 * First step: add a int3 trap to the address that will be patched.
1957 	 */
1958 	for (i = 0; i < nr_entries; i++) {
1959 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1960 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1961 	}
1962 
1963 	text_poke_sync();
1964 
1965 	/*
1966 	 * Second step: update all but the first byte of the patched range.
1967 	 */
1968 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1969 		u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1970 		int len = tp[i].len;
1971 
1972 		if (len - INT3_INSN_SIZE > 0) {
1973 			memcpy(old + INT3_INSN_SIZE,
1974 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1975 			       len - INT3_INSN_SIZE);
1976 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1977 				  (const char *)tp[i].text + INT3_INSN_SIZE,
1978 				  len - INT3_INSN_SIZE);
1979 			do_sync++;
1980 		}
1981 
1982 		/*
1983 		 * Emit a perf event to record the text poke, primarily to
1984 		 * support Intel PT decoding which must walk the executable code
1985 		 * to reconstruct the trace. The flow up to here is:
1986 		 *   - write INT3 byte
1987 		 *   - IPI-SYNC
1988 		 *   - write instruction tail
1989 		 * At this point the actual control flow will be through the
1990 		 * INT3 and handler and not hit the old or new instruction.
1991 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1992 		 * can still be decoded. Subsequently:
1993 		 *   - emit RECORD_TEXT_POKE with the new instruction
1994 		 *   - IPI-SYNC
1995 		 *   - write first byte
1996 		 *   - IPI-SYNC
1997 		 * So before the text poke event timestamp, the decoder will see
1998 		 * either the old instruction flow or FUP/TIP of INT3. After the
1999 		 * text poke event timestamp, the decoder will see either the
2000 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2001 		 * use the timestamp as the point at which to modify the
2002 		 * executable code.
2003 		 * The old instruction is recorded so that the event can be
2004 		 * processed forwards or backwards.
2005 		 */
2006 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
2007 				     tp[i].text, len);
2008 	}
2009 
2010 	if (do_sync) {
2011 		/*
2012 		 * According to Intel, this core syncing is very likely
2013 		 * not necessary and we'd be safe even without it. But
2014 		 * better safe than sorry (plus there's not only Intel).
2015 		 */
2016 		text_poke_sync();
2017 	}
2018 
2019 	/*
2020 	 * Third step: replace the first byte (int3) by the first byte of
2021 	 * replacing opcode.
2022 	 */
2023 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2024 		if (tp[i].text[0] == INT3_INSN_OPCODE)
2025 			continue;
2026 
2027 		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
2028 		do_sync++;
2029 	}
2030 
2031 	if (do_sync)
2032 		text_poke_sync();
2033 
2034 	/*
2035 	 * Remove and wait for refs to be zero.
2036 	 */
2037 	if (!atomic_dec_and_test(&bp_desc.refs))
2038 		atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2039 }
2040 
2041 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2042 			       const void *opcode, size_t len, const void *emulate)
2043 {
2044 	struct insn insn;
2045 	int ret, i;
2046 
2047 	memcpy((void *)tp->text, opcode, len);
2048 	if (!emulate)
2049 		emulate = opcode;
2050 
2051 	ret = insn_decode_kernel(&insn, emulate);
2052 	BUG_ON(ret < 0);
2053 
2054 	tp->rel_addr = addr - (void *)_stext;
2055 	tp->len = len;
2056 	tp->opcode = insn.opcode.bytes[0];
2057 
2058 	switch (tp->opcode) {
2059 	case RET_INSN_OPCODE:
2060 	case JMP32_INSN_OPCODE:
2061 	case JMP8_INSN_OPCODE:
2062 		/*
2063 		 * Control flow instructions without implied execution of the
2064 		 * next instruction can be padded with INT3.
2065 		 */
2066 		for (i = insn.length; i < len; i++)
2067 			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2068 		break;
2069 
2070 	default:
2071 		BUG_ON(len != insn.length);
2072 	}
2073 
2074 
2075 	switch (tp->opcode) {
2076 	case INT3_INSN_OPCODE:
2077 	case RET_INSN_OPCODE:
2078 		break;
2079 
2080 	case CALL_INSN_OPCODE:
2081 	case JMP32_INSN_OPCODE:
2082 	case JMP8_INSN_OPCODE:
2083 		tp->disp = insn.immediate.value;
2084 		break;
2085 
2086 	default: /* assume NOP */
2087 		switch (len) {
2088 		case 2: /* NOP2 -- emulate as JMP8+0 */
2089 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2090 			tp->opcode = JMP8_INSN_OPCODE;
2091 			tp->disp = 0;
2092 			break;
2093 
2094 		case 5: /* NOP5 -- emulate as JMP32+0 */
2095 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2096 			tp->opcode = JMP32_INSN_OPCODE;
2097 			tp->disp = 0;
2098 			break;
2099 
2100 		default: /* unknown instruction */
2101 			BUG();
2102 		}
2103 		break;
2104 	}
2105 }
2106 
2107 /*
2108  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2109  * early if needed.
2110  */
2111 static bool tp_order_fail(void *addr)
2112 {
2113 	struct text_poke_loc *tp;
2114 
2115 	if (!tp_vec_nr)
2116 		return false;
2117 
2118 	if (!addr) /* force */
2119 		return true;
2120 
2121 	tp = &tp_vec[tp_vec_nr - 1];
2122 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2123 		return true;
2124 
2125 	return false;
2126 }
2127 
2128 static void text_poke_flush(void *addr)
2129 {
2130 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2131 		text_poke_bp_batch(tp_vec, tp_vec_nr);
2132 		tp_vec_nr = 0;
2133 	}
2134 }
2135 
2136 void text_poke_finish(void)
2137 {
2138 	text_poke_flush(NULL);
2139 }
2140 
2141 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2142 {
2143 	struct text_poke_loc *tp;
2144 
2145 	text_poke_flush(addr);
2146 
2147 	tp = &tp_vec[tp_vec_nr++];
2148 	text_poke_loc_init(tp, addr, opcode, len, emulate);
2149 }
2150 
2151 /**
2152  * text_poke_bp() -- update instructions on live kernel on SMP
2153  * @addr:	address to patch
2154  * @opcode:	opcode of new instruction
2155  * @len:	length to copy
2156  * @emulate:	instruction to be emulated
2157  *
2158  * Update a single instruction with the vector in the stack, avoiding
2159  * dynamically allocated memory. This function should be used when it is
2160  * not possible to allocate memory.
2161  */
2162 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2163 {
2164 	struct text_poke_loc tp;
2165 
2166 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
2167 	text_poke_bp_batch(&tp, 1);
2168 }
2169