xref: /linux/arch/x86/kernel/alternative.c (revision da51bbcdbace8f43adf6066934c3926b656376e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
33 #include <asm/cfi.h>
34 
35 int __read_mostly alternatives_patched;
36 
37 EXPORT_SYMBOL_GPL(alternatives_patched);
38 
39 #define MAX_PATCH_LEN (255-1)
40 
41 #define DA_ALL		(~0)
42 #define DA_ALT		0x01
43 #define DA_RET		0x02
44 #define DA_RETPOLINE	0x04
45 #define DA_ENDBR	0x08
46 #define DA_SMP		0x10
47 
48 static unsigned int debug_alternative;
49 
50 static int __init debug_alt(char *str)
51 {
52 	if (str && *str == '=')
53 		str++;
54 
55 	if (!str || kstrtouint(str, 0, &debug_alternative))
56 		debug_alternative = DA_ALL;
57 
58 	return 1;
59 }
60 __setup("debug-alternative", debug_alt);
61 
62 static int noreplace_smp;
63 
64 static int __init setup_noreplace_smp(char *str)
65 {
66 	noreplace_smp = 1;
67 	return 1;
68 }
69 __setup("noreplace-smp", setup_noreplace_smp);
70 
71 #define DPRINTK(type, fmt, args...)					\
72 do {									\
73 	if (debug_alternative & DA_##type)				\
74 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
75 } while (0)
76 
77 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
78 do {									\
79 	if (unlikely(debug_alternative & DA_##type)) {			\
80 		int j;							\
81 									\
82 		if (!(len))						\
83 			break;						\
84 									\
85 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
86 		for (j = 0; j < (len) - 1; j++)				\
87 			printk(KERN_CONT "%02hhx ", buf[j]);		\
88 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
89 	}								\
90 } while (0)
91 
92 static const unsigned char x86nops[] =
93 {
94 	BYTES_NOP1,
95 	BYTES_NOP2,
96 	BYTES_NOP3,
97 	BYTES_NOP4,
98 	BYTES_NOP5,
99 	BYTES_NOP6,
100 	BYTES_NOP7,
101 	BYTES_NOP8,
102 #ifdef CONFIG_64BIT
103 	BYTES_NOP9,
104 	BYTES_NOP10,
105 	BYTES_NOP11,
106 #endif
107 };
108 
109 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
110 {
111 	NULL,
112 	x86nops,
113 	x86nops + 1,
114 	x86nops + 1 + 2,
115 	x86nops + 1 + 2 + 3,
116 	x86nops + 1 + 2 + 3 + 4,
117 	x86nops + 1 + 2 + 3 + 4 + 5,
118 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
119 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
120 #ifdef CONFIG_64BIT
121 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
122 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
123 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
124 #endif
125 };
126 
127 /*
128  * Fill the buffer with a single effective instruction of size @len.
129  *
130  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
131  * for every single-byte NOP, try to generate the maximally available NOP of
132  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
133  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
134  * *jump* over instead of executing long and daft NOPs.
135  */
136 static void add_nop(u8 *instr, unsigned int len)
137 {
138 	u8 *target = instr + len;
139 
140 	if (!len)
141 		return;
142 
143 	if (len <= ASM_NOP_MAX) {
144 		memcpy(instr, x86_nops[len], len);
145 		return;
146 	}
147 
148 	if (len < 128) {
149 		__text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE);
150 		instr += JMP8_INSN_SIZE;
151 	} else {
152 		__text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE);
153 		instr += JMP32_INSN_SIZE;
154 	}
155 
156 	for (;instr < target; instr++)
157 		*instr = INT3_INSN_OPCODE;
158 }
159 
160 extern s32 __retpoline_sites[], __retpoline_sites_end[];
161 extern s32 __return_sites[], __return_sites_end[];
162 extern s32 __cfi_sites[], __cfi_sites_end[];
163 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
164 extern s32 __smp_locks[], __smp_locks_end[];
165 void text_poke_early(void *addr, const void *opcode, size_t len);
166 
167 /*
168  * Matches NOP and NOPL, not any of the other possible NOPs.
169  */
170 static bool insn_is_nop(struct insn *insn)
171 {
172 	/* Anything NOP, but no REP NOP */
173 	if (insn->opcode.bytes[0] == 0x90 &&
174 	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
175 		return true;
176 
177 	/* NOPL */
178 	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
179 		return true;
180 
181 	/* TODO: more nops */
182 
183 	return false;
184 }
185 
186 /*
187  * Find the offset of the first non-NOP instruction starting at @offset
188  * but no further than @len.
189  */
190 static int skip_nops(u8 *instr, int offset, int len)
191 {
192 	struct insn insn;
193 
194 	for (; offset < len; offset += insn.length) {
195 		if (insn_decode_kernel(&insn, &instr[offset]))
196 			break;
197 
198 		if (!insn_is_nop(&insn))
199 			break;
200 	}
201 
202 	return offset;
203 }
204 
205 /*
206  * Optimize a sequence of NOPs, possibly preceded by an unconditional jump
207  * to the end of the NOP sequence into a single NOP.
208  */
209 static bool
210 __optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target)
211 {
212 	int i = *next - insn->length;
213 
214 	switch (insn->opcode.bytes[0]) {
215 	case JMP8_INSN_OPCODE:
216 	case JMP32_INSN_OPCODE:
217 		*prev = i;
218 		*target = *next + insn->immediate.value;
219 		return false;
220 	}
221 
222 	if (insn_is_nop(insn)) {
223 		int nop = i;
224 
225 		*next = skip_nops(instr, *next, len);
226 		if (*target && *next == *target)
227 			nop = *prev;
228 
229 		add_nop(instr + nop, *next - nop);
230 		DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next);
231 		return true;
232 	}
233 
234 	*target = 0;
235 	return false;
236 }
237 
238 /*
239  * "noinline" to cause control flow change and thus invalidate I$ and
240  * cause refetch after modification.
241  */
242 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
243 {
244 	int prev, target = 0;
245 
246 	for (int next, i = 0; i < len; i = next) {
247 		struct insn insn;
248 
249 		if (insn_decode_kernel(&insn, &instr[i]))
250 			return;
251 
252 		next = i + insn.length;
253 
254 		__optimize_nops(instr, len, &insn, &next, &prev, &target);
255 	}
256 }
257 
258 static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len)
259 {
260 	unsigned long flags;
261 
262 	local_irq_save(flags);
263 	optimize_nops(instr, len);
264 	sync_core();
265 	local_irq_restore(flags);
266 }
267 
268 /*
269  * In this context, "source" is where the instructions are placed in the
270  * section .altinstr_replacement, for example during kernel build by the
271  * toolchain.
272  * "Destination" is where the instructions are being patched in by this
273  * machinery.
274  *
275  * The source offset is:
276  *
277  *   src_imm = target - src_next_ip                  (1)
278  *
279  * and the target offset is:
280  *
281  *   dst_imm = target - dst_next_ip                  (2)
282  *
283  * so rework (1) as an expression for target like:
284  *
285  *   target = src_imm + src_next_ip                  (1a)
286  *
287  * and substitute in (2) to get:
288  *
289  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
290  *
291  * Now, since the instruction stream is 'identical' at src and dst (it
292  * is being copied after all) it can be stated that:
293  *
294  *   src_next_ip = src + ip_offset
295  *   dst_next_ip = dst + ip_offset                   (4)
296  *
297  * Substitute (4) in (3) and observe ip_offset being cancelled out to
298  * obtain:
299  *
300  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
301  *           = src_imm + src - dst + ip_offset - ip_offset
302  *           = src_imm + src - dst                   (5)
303  *
304  * IOW, only the relative displacement of the code block matters.
305  */
306 
307 #define apply_reloc_n(n_, p_, d_)				\
308 	do {							\
309 		s32 v = *(s##n_ *)(p_);				\
310 		v += (d_);					\
311 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
312 		*(s##n_ *)(p_) = (s##n_)v;			\
313 	} while (0)
314 
315 
316 static __always_inline
317 void apply_reloc(int n, void *ptr, uintptr_t diff)
318 {
319 	switch (n) {
320 	case 1: apply_reloc_n(8, ptr, diff); break;
321 	case 2: apply_reloc_n(16, ptr, diff); break;
322 	case 4: apply_reloc_n(32, ptr, diff); break;
323 	default: BUG();
324 	}
325 }
326 
327 static __always_inline
328 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
329 {
330 	u8 *target = src + offset;
331 	/*
332 	 * If the target is inside the patched block, it's relative to the
333 	 * block itself and does not need relocation.
334 	 */
335 	return (target < src || target > src + src_len);
336 }
337 
338 void apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len)
339 {
340 	int prev, target = 0;
341 
342 	for (int next, i = 0; i < len; i = next) {
343 		struct insn insn;
344 
345 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
346 			return;
347 
348 		next = i + insn.length;
349 
350 		if (__optimize_nops(buf, len, &insn, &next, &prev, &target))
351 			continue;
352 
353 		switch (insn.opcode.bytes[0]) {
354 		case 0x0f:
355 			if (insn.opcode.bytes[1] < 0x80 ||
356 			    insn.opcode.bytes[1] > 0x8f)
357 				break;
358 
359 			fallthrough;	/* Jcc.d32 */
360 		case 0x70 ... 0x7f:	/* Jcc.d8 */
361 		case JMP8_INSN_OPCODE:
362 		case JMP32_INSN_OPCODE:
363 		case CALL_INSN_OPCODE:
364 			if (need_reloc(next + insn.immediate.value, src, src_len)) {
365 				apply_reloc(insn.immediate.nbytes,
366 					    buf + i + insn_offset_immediate(&insn),
367 					    src - dest);
368 			}
369 
370 			/*
371 			 * Where possible, convert JMP.d32 into JMP.d8.
372 			 */
373 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
374 				s32 imm = insn.immediate.value;
375 				imm += src - dest;
376 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
377 				if ((imm >> 31) == (imm >> 7)) {
378 					buf[i+0] = JMP8_INSN_OPCODE;
379 					buf[i+1] = (s8)imm;
380 
381 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
382 				}
383 			}
384 			break;
385 		}
386 
387 		if (insn_rip_relative(&insn)) {
388 			if (need_reloc(next + insn.displacement.value, src, src_len)) {
389 				apply_reloc(insn.displacement.nbytes,
390 					    buf + i + insn_offset_displacement(&insn),
391 					    src - dest);
392 			}
393 		}
394 	}
395 }
396 
397 /* Low-level backend functions usable from alternative code replacements. */
398 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
399 EXPORT_SYMBOL_GPL(nop_func);
400 
401 noinstr void BUG_func(void)
402 {
403 	BUG();
404 }
405 EXPORT_SYMBOL(BUG_func);
406 
407 #define CALL_RIP_REL_OPCODE	0xff
408 #define CALL_RIP_REL_MODRM	0x15
409 
410 /*
411  * Rewrite the "call BUG_func" replacement to point to the target of the
412  * indirect pv_ops call "call *disp(%ip)".
413  */
414 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
415 {
416 	void *target, *bug = &BUG_func;
417 	s32 disp;
418 
419 	if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
420 		pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
421 		BUG();
422 	}
423 
424 	if (a->instrlen != 6 ||
425 	    instr[0] != CALL_RIP_REL_OPCODE ||
426 	    instr[1] != CALL_RIP_REL_MODRM) {
427 		pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
428 		BUG();
429 	}
430 
431 	/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
432 	disp = *(s32 *)(instr + 2);
433 #ifdef CONFIG_X86_64
434 	/* ff 15 00 00 00 00   call   *0x0(%rip) */
435 	/* target address is stored at "next instruction + disp". */
436 	target = *(void **)(instr + a->instrlen + disp);
437 #else
438 	/* ff 15 00 00 00 00   call   *0x0 */
439 	/* target address is stored at disp. */
440 	target = *(void **)disp;
441 #endif
442 	if (!target)
443 		target = bug;
444 
445 	/* (BUG_func - .) + (target - BUG_func) := target - . */
446 	*(s32 *)(insn_buff + 1) += target - bug;
447 
448 	if (target == &nop_func)
449 		return 0;
450 
451 	return 5;
452 }
453 
454 /*
455  * Replace instructions with better alternatives for this CPU type. This runs
456  * before SMP is initialized to avoid SMP problems with self modifying code.
457  * This implies that asymmetric systems where APs have less capabilities than
458  * the boot processor are not handled. Tough. Make sure you disable such
459  * features by hand.
460  *
461  * Marked "noinline" to cause control flow change and thus insn cache
462  * to refetch changed I$ lines.
463  */
464 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
465 						  struct alt_instr *end)
466 {
467 	struct alt_instr *a;
468 	u8 *instr, *replacement;
469 	u8 insn_buff[MAX_PATCH_LEN];
470 
471 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
472 
473 	/*
474 	 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
475 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
476 	 * During the process, KASAN becomes confused seeing partial LA57
477 	 * conversion and triggers a false-positive out-of-bound report.
478 	 *
479 	 * Disable KASAN until the patching is complete.
480 	 */
481 	kasan_disable_current();
482 
483 	/*
484 	 * The scan order should be from start to end. A later scanned
485 	 * alternative code can overwrite previously scanned alternative code.
486 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
487 	 * patch code.
488 	 *
489 	 * So be careful if you want to change the scan order to any other
490 	 * order.
491 	 */
492 	for (a = start; a < end; a++) {
493 		int insn_buff_sz = 0;
494 
495 		instr = (u8 *)&a->instr_offset + a->instr_offset;
496 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
497 		BUG_ON(a->instrlen > sizeof(insn_buff));
498 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
499 
500 		/*
501 		 * Patch if either:
502 		 * - feature is present
503 		 * - feature not present but ALT_FLAG_NOT is set to mean,
504 		 *   patch if feature is *NOT* present.
505 		 */
506 		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
507 			optimize_nops_inplace(instr, a->instrlen);
508 			continue;
509 		}
510 
511 		DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
512 			a->cpuid >> 5,
513 			a->cpuid & 0x1f,
514 			instr, instr, a->instrlen,
515 			replacement, a->replacementlen, a->flags);
516 
517 		memcpy(insn_buff, replacement, a->replacementlen);
518 		insn_buff_sz = a->replacementlen;
519 
520 		if (a->flags & ALT_FLAG_DIRECT_CALL) {
521 			insn_buff_sz = alt_replace_call(instr, insn_buff, a);
522 			if (insn_buff_sz < 0)
523 				continue;
524 		}
525 
526 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
527 			insn_buff[insn_buff_sz] = 0x90;
528 
529 		apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen);
530 
531 		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
532 		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
533 		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
534 
535 		text_poke_early(instr, insn_buff, insn_buff_sz);
536 	}
537 
538 	kasan_enable_current();
539 }
540 
541 static inline bool is_jcc32(struct insn *insn)
542 {
543 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
544 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
545 }
546 
547 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
548 
549 /*
550  * CALL/JMP *%\reg
551  */
552 static int emit_indirect(int op, int reg, u8 *bytes)
553 {
554 	int i = 0;
555 	u8 modrm;
556 
557 	switch (op) {
558 	case CALL_INSN_OPCODE:
559 		modrm = 0x10; /* Reg = 2; CALL r/m */
560 		break;
561 
562 	case JMP32_INSN_OPCODE:
563 		modrm = 0x20; /* Reg = 4; JMP r/m */
564 		break;
565 
566 	default:
567 		WARN_ON_ONCE(1);
568 		return -1;
569 	}
570 
571 	if (reg >= 8) {
572 		bytes[i++] = 0x41; /* REX.B prefix */
573 		reg -= 8;
574 	}
575 
576 	modrm |= 0xc0; /* Mod = 3 */
577 	modrm += reg;
578 
579 	bytes[i++] = 0xff; /* opcode */
580 	bytes[i++] = modrm;
581 
582 	return i;
583 }
584 
585 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
586 {
587 	u8 op = insn->opcode.bytes[0];
588 	int i = 0;
589 
590 	/*
591 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
592 	 * tail-calls. Deal with them.
593 	 */
594 	if (is_jcc32(insn)) {
595 		bytes[i++] = op;
596 		op = insn->opcode.bytes[1];
597 		goto clang_jcc;
598 	}
599 
600 	if (insn->length == 6)
601 		bytes[i++] = 0x2e; /* CS-prefix */
602 
603 	switch (op) {
604 	case CALL_INSN_OPCODE:
605 		__text_gen_insn(bytes+i, op, addr+i,
606 				__x86_indirect_call_thunk_array[reg],
607 				CALL_INSN_SIZE);
608 		i += CALL_INSN_SIZE;
609 		break;
610 
611 	case JMP32_INSN_OPCODE:
612 clang_jcc:
613 		__text_gen_insn(bytes+i, op, addr+i,
614 				__x86_indirect_jump_thunk_array[reg],
615 				JMP32_INSN_SIZE);
616 		i += JMP32_INSN_SIZE;
617 		break;
618 
619 	default:
620 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
621 		return -1;
622 	}
623 
624 	WARN_ON_ONCE(i != insn->length);
625 
626 	return i;
627 }
628 
629 /*
630  * Rewrite the compiler generated retpoline thunk calls.
631  *
632  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
633  * indirect instructions, avoiding the extra indirection.
634  *
635  * For example, convert:
636  *
637  *   CALL __x86_indirect_thunk_\reg
638  *
639  * into:
640  *
641  *   CALL *%\reg
642  *
643  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
644  */
645 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
646 {
647 	retpoline_thunk_t *target;
648 	int reg, ret, i = 0;
649 	u8 op, cc;
650 
651 	target = addr + insn->length + insn->immediate.value;
652 	reg = target - __x86_indirect_thunk_array;
653 
654 	if (WARN_ON_ONCE(reg & ~0xf))
655 		return -1;
656 
657 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
658 	BUG_ON(reg == 4);
659 
660 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
661 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
662 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
663 			return emit_call_track_retpoline(addr, insn, reg, bytes);
664 
665 		return -1;
666 	}
667 
668 	op = insn->opcode.bytes[0];
669 
670 	/*
671 	 * Convert:
672 	 *
673 	 *   Jcc.d32 __x86_indirect_thunk_\reg
674 	 *
675 	 * into:
676 	 *
677 	 *   Jncc.d8 1f
678 	 *   [ LFENCE ]
679 	 *   JMP *%\reg
680 	 *   [ NOP ]
681 	 * 1:
682 	 */
683 	if (is_jcc32(insn)) {
684 		cc = insn->opcode.bytes[1] & 0xf;
685 		cc ^= 1; /* invert condition */
686 
687 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
688 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
689 
690 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
691 		op = JMP32_INSN_OPCODE;
692 	}
693 
694 	/*
695 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
696 	 */
697 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
698 		bytes[i++] = 0x0f;
699 		bytes[i++] = 0xae;
700 		bytes[i++] = 0xe8; /* LFENCE */
701 	}
702 
703 	ret = emit_indirect(op, reg, bytes + i);
704 	if (ret < 0)
705 		return ret;
706 	i += ret;
707 
708 	/*
709 	 * The compiler is supposed to EMIT an INT3 after every unconditional
710 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
711 	 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
712 	 * indirect JMPs even on Intel.
713 	 */
714 	if (op == JMP32_INSN_OPCODE && i < insn->length)
715 		bytes[i++] = INT3_INSN_OPCODE;
716 
717 	for (; i < insn->length;)
718 		bytes[i++] = BYTES_NOP1;
719 
720 	return i;
721 }
722 
723 /*
724  * Generated by 'objtool --retpoline'.
725  */
726 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
727 {
728 	s32 *s;
729 
730 	for (s = start; s < end; s++) {
731 		void *addr = (void *)s + *s;
732 		struct insn insn;
733 		int len, ret;
734 		u8 bytes[16];
735 		u8 op1, op2;
736 
737 		ret = insn_decode_kernel(&insn, addr);
738 		if (WARN_ON_ONCE(ret < 0))
739 			continue;
740 
741 		op1 = insn.opcode.bytes[0];
742 		op2 = insn.opcode.bytes[1];
743 
744 		switch (op1) {
745 		case CALL_INSN_OPCODE:
746 		case JMP32_INSN_OPCODE:
747 			break;
748 
749 		case 0x0f: /* escape */
750 			if (op2 >= 0x80 && op2 <= 0x8f)
751 				break;
752 			fallthrough;
753 		default:
754 			WARN_ON_ONCE(1);
755 			continue;
756 		}
757 
758 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
759 			addr, addr, insn.length,
760 			addr + insn.length + insn.immediate.value);
761 
762 		len = patch_retpoline(addr, &insn, bytes);
763 		if (len == insn.length) {
764 			optimize_nops(bytes, len);
765 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
766 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
767 			text_poke_early(addr, bytes, len);
768 		}
769 	}
770 }
771 
772 #ifdef CONFIG_MITIGATION_RETHUNK
773 
774 /*
775  * Rewrite the compiler generated return thunk tail-calls.
776  *
777  * For example, convert:
778  *
779  *   JMP __x86_return_thunk
780  *
781  * into:
782  *
783  *   RET
784  */
785 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
786 {
787 	int i = 0;
788 
789 	/* Patch the custom return thunks... */
790 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
791 		i = JMP32_INSN_SIZE;
792 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
793 	} else {
794 		/* ... or patch them out if not needed. */
795 		bytes[i++] = RET_INSN_OPCODE;
796 	}
797 
798 	for (; i < insn->length;)
799 		bytes[i++] = INT3_INSN_OPCODE;
800 	return i;
801 }
802 
803 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
804 {
805 	s32 *s;
806 
807 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
808 		static_call_force_reinit();
809 
810 	for (s = start; s < end; s++) {
811 		void *dest = NULL, *addr = (void *)s + *s;
812 		struct insn insn;
813 		int len, ret;
814 		u8 bytes[16];
815 		u8 op;
816 
817 		ret = insn_decode_kernel(&insn, addr);
818 		if (WARN_ON_ONCE(ret < 0))
819 			continue;
820 
821 		op = insn.opcode.bytes[0];
822 		if (op == JMP32_INSN_OPCODE)
823 			dest = addr + insn.length + insn.immediate.value;
824 
825 		if (__static_call_fixup(addr, op, dest) ||
826 		    WARN_ONCE(dest != &__x86_return_thunk,
827 			      "missing return thunk: %pS-%pS: %*ph",
828 			      addr, dest, 5, addr))
829 			continue;
830 
831 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
832 			addr, addr, insn.length,
833 			addr + insn.length + insn.immediate.value);
834 
835 		len = patch_return(addr, &insn, bytes);
836 		if (len == insn.length) {
837 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
838 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
839 			text_poke_early(addr, bytes, len);
840 		}
841 	}
842 }
843 #else
844 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
845 #endif /* CONFIG_MITIGATION_RETHUNK */
846 
847 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
848 
849 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
850 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
851 
852 #endif /* CONFIG_MITIGATION_RETPOLINE && CONFIG_OBJTOOL */
853 
854 #ifdef CONFIG_X86_KERNEL_IBT
855 
856 static void poison_cfi(void *addr);
857 
858 static void __init_or_module poison_endbr(void *addr, bool warn)
859 {
860 	u32 endbr, poison = gen_endbr_poison();
861 
862 	if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
863 		return;
864 
865 	if (!is_endbr(endbr)) {
866 		WARN_ON_ONCE(warn);
867 		return;
868 	}
869 
870 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
871 
872 	/*
873 	 * When we have IBT, the lack of ENDBR will trigger #CP
874 	 */
875 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
876 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
877 	text_poke_early(addr, &poison, 4);
878 }
879 
880 /*
881  * Generated by: objtool --ibt
882  *
883  * Seal the functions for indirect calls by clobbering the ENDBR instructions
884  * and the kCFI hash value.
885  */
886 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
887 {
888 	s32 *s;
889 
890 	for (s = start; s < end; s++) {
891 		void *addr = (void *)s + *s;
892 
893 		poison_endbr(addr, true);
894 		if (IS_ENABLED(CONFIG_FINEIBT))
895 			poison_cfi(addr - 16);
896 	}
897 }
898 
899 #else
900 
901 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
902 
903 #endif /* CONFIG_X86_KERNEL_IBT */
904 
905 #ifdef CONFIG_FINEIBT
906 #define __CFI_DEFAULT	CFI_DEFAULT
907 #elif defined(CONFIG_CFI_CLANG)
908 #define __CFI_DEFAULT	CFI_KCFI
909 #else
910 #define __CFI_DEFAULT	CFI_OFF
911 #endif
912 
913 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
914 
915 #ifdef CONFIG_CFI_CLANG
916 struct bpf_insn;
917 
918 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
919 extern unsigned int __bpf_prog_runX(const void *ctx,
920 				    const struct bpf_insn *insn);
921 
922 /*
923  * Force a reference to the external symbol so the compiler generates
924  * __kcfi_typid.
925  */
926 __ADDRESSABLE(__bpf_prog_runX);
927 
928 /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */
929 asm (
930 "	.pushsection	.data..ro_after_init,\"aw\",@progbits	\n"
931 "	.type	cfi_bpf_hash,@object				\n"
932 "	.globl	cfi_bpf_hash					\n"
933 "	.p2align	2, 0x0					\n"
934 "cfi_bpf_hash:							\n"
935 "	.long	__kcfi_typeid___bpf_prog_runX			\n"
936 "	.size	cfi_bpf_hash, 4					\n"
937 "	.popsection						\n"
938 );
939 
940 /* Must match bpf_callback_t */
941 extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64);
942 
943 __ADDRESSABLE(__bpf_callback_fn);
944 
945 /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */
946 asm (
947 "	.pushsection	.data..ro_after_init,\"aw\",@progbits	\n"
948 "	.type	cfi_bpf_subprog_hash,@object			\n"
949 "	.globl	cfi_bpf_subprog_hash				\n"
950 "	.p2align	2, 0x0					\n"
951 "cfi_bpf_subprog_hash:						\n"
952 "	.long	__kcfi_typeid___bpf_callback_fn			\n"
953 "	.size	cfi_bpf_subprog_hash, 4				\n"
954 "	.popsection						\n"
955 );
956 
957 u32 cfi_get_func_hash(void *func)
958 {
959 	u32 hash;
960 
961 	func -= cfi_get_offset();
962 	switch (cfi_mode) {
963 	case CFI_FINEIBT:
964 		func += 7;
965 		break;
966 	case CFI_KCFI:
967 		func += 1;
968 		break;
969 	default:
970 		return 0;
971 	}
972 
973 	if (get_kernel_nofault(hash, func))
974 		return 0;
975 
976 	return hash;
977 }
978 #endif
979 
980 #ifdef CONFIG_FINEIBT
981 
982 static bool cfi_rand __ro_after_init = true;
983 static u32  cfi_seed __ro_after_init;
984 
985 /*
986  * Re-hash the CFI hash with a boot-time seed while making sure the result is
987  * not a valid ENDBR instruction.
988  */
989 static u32 cfi_rehash(u32 hash)
990 {
991 	hash ^= cfi_seed;
992 	while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
993 		bool lsb = hash & 1;
994 		hash >>= 1;
995 		if (lsb)
996 			hash ^= 0x80200003;
997 	}
998 	return hash;
999 }
1000 
1001 static __init int cfi_parse_cmdline(char *str)
1002 {
1003 	if (!str)
1004 		return -EINVAL;
1005 
1006 	while (str) {
1007 		char *next = strchr(str, ',');
1008 		if (next) {
1009 			*next = 0;
1010 			next++;
1011 		}
1012 
1013 		if (!strcmp(str, "auto")) {
1014 			cfi_mode = CFI_DEFAULT;
1015 		} else if (!strcmp(str, "off")) {
1016 			cfi_mode = CFI_OFF;
1017 			cfi_rand = false;
1018 		} else if (!strcmp(str, "kcfi")) {
1019 			cfi_mode = CFI_KCFI;
1020 		} else if (!strcmp(str, "fineibt")) {
1021 			cfi_mode = CFI_FINEIBT;
1022 		} else if (!strcmp(str, "norand")) {
1023 			cfi_rand = false;
1024 		} else {
1025 			pr_err("Ignoring unknown cfi option (%s).", str);
1026 		}
1027 
1028 		str = next;
1029 	}
1030 
1031 	return 0;
1032 }
1033 early_param("cfi", cfi_parse_cmdline);
1034 
1035 /*
1036  * kCFI						FineIBT
1037  *
1038  * __cfi_\func:					__cfi_\func:
1039  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
1040  *	nop					     subl   $0x12345678,%r10d   // 7
1041  *	nop					     jz     1f			// 2
1042  *	nop					     ud2			// 2
1043  *	nop					1:   nop			// 1
1044  *	nop
1045  *	nop
1046  *	nop
1047  *	nop
1048  *	nop
1049  *	nop
1050  *	nop
1051  *
1052  *
1053  * caller:					caller:
1054  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
1055  *	addl	$-15(%r11),%r10d	 // 4	     sub    $16,%r11		// 4
1056  *	je	1f			 // 2	     nop4			// 4
1057  *	ud2				 // 2
1058  * 1:	call	__x86_indirect_thunk_r11 // 5	     call   *%r11; nop2;	// 5
1059  *
1060  */
1061 
1062 asm(	".pushsection .rodata			\n"
1063 	"fineibt_preamble_start:		\n"
1064 	"	endbr64				\n"
1065 	"	subl	$0x12345678, %r10d	\n"
1066 	"	je	fineibt_preamble_end	\n"
1067 	"	ud2				\n"
1068 	"	nop				\n"
1069 	"fineibt_preamble_end:			\n"
1070 	".popsection\n"
1071 );
1072 
1073 extern u8 fineibt_preamble_start[];
1074 extern u8 fineibt_preamble_end[];
1075 
1076 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1077 #define fineibt_preamble_hash 7
1078 
1079 asm(	".pushsection .rodata			\n"
1080 	"fineibt_caller_start:			\n"
1081 	"	movl	$0x12345678, %r10d	\n"
1082 	"	sub	$16, %r11		\n"
1083 	ASM_NOP4
1084 	"fineibt_caller_end:			\n"
1085 	".popsection				\n"
1086 );
1087 
1088 extern u8 fineibt_caller_start[];
1089 extern u8 fineibt_caller_end[];
1090 
1091 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1092 #define fineibt_caller_hash 2
1093 
1094 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1095 
1096 static u32 decode_preamble_hash(void *addr)
1097 {
1098 	u8 *p = addr;
1099 
1100 	/* b8 78 56 34 12          mov    $0x12345678,%eax */
1101 	if (p[0] == 0xb8)
1102 		return *(u32 *)(addr + 1);
1103 
1104 	return 0; /* invalid hash value */
1105 }
1106 
1107 static u32 decode_caller_hash(void *addr)
1108 {
1109 	u8 *p = addr;
1110 
1111 	/* 41 ba 78 56 34 12       mov    $0x12345678,%r10d */
1112 	if (p[0] == 0x41 && p[1] == 0xba)
1113 		return -*(u32 *)(addr + 2);
1114 
1115 	/* e8 0c 78 56 34 12	   jmp.d8  +12 */
1116 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1117 		return -*(u32 *)(addr + 2);
1118 
1119 	return 0; /* invalid hash value */
1120 }
1121 
1122 /* .retpoline_sites */
1123 static int cfi_disable_callers(s32 *start, s32 *end)
1124 {
1125 	/*
1126 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1127 	 * in tact for later usage. Also see decode_caller_hash() and
1128 	 * cfi_rewrite_callers().
1129 	 */
1130 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1131 	s32 *s;
1132 
1133 	for (s = start; s < end; s++) {
1134 		void *addr = (void *)s + *s;
1135 		u32 hash;
1136 
1137 		addr -= fineibt_caller_size;
1138 		hash = decode_caller_hash(addr);
1139 		if (!hash) /* nocfi callers */
1140 			continue;
1141 
1142 		text_poke_early(addr, jmp, 2);
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int cfi_enable_callers(s32 *start, s32 *end)
1149 {
1150 	/*
1151 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1152 	 */
1153 	const u8 mov[] = { 0x41, 0xba };
1154 	s32 *s;
1155 
1156 	for (s = start; s < end; s++) {
1157 		void *addr = (void *)s + *s;
1158 		u32 hash;
1159 
1160 		addr -= fineibt_caller_size;
1161 		hash = decode_caller_hash(addr);
1162 		if (!hash) /* nocfi callers */
1163 			continue;
1164 
1165 		text_poke_early(addr, mov, 2);
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 /* .cfi_sites */
1172 static int cfi_rand_preamble(s32 *start, s32 *end)
1173 {
1174 	s32 *s;
1175 
1176 	for (s = start; s < end; s++) {
1177 		void *addr = (void *)s + *s;
1178 		u32 hash;
1179 
1180 		hash = decode_preamble_hash(addr);
1181 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1182 			 addr, addr, 5, addr))
1183 			return -EINVAL;
1184 
1185 		hash = cfi_rehash(hash);
1186 		text_poke_early(addr + 1, &hash, 4);
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1193 {
1194 	s32 *s;
1195 
1196 	for (s = start; s < end; s++) {
1197 		void *addr = (void *)s + *s;
1198 		u32 hash;
1199 
1200 		hash = decode_preamble_hash(addr);
1201 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1202 			 addr, addr, 5, addr))
1203 			return -EINVAL;
1204 
1205 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1206 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1207 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1214 {
1215 	s32 *s;
1216 
1217 	for (s = start; s < end; s++) {
1218 		void *addr = (void *)s + *s;
1219 
1220 		poison_endbr(addr+16, false);
1221 	}
1222 }
1223 
1224 /* .retpoline_sites */
1225 static int cfi_rand_callers(s32 *start, s32 *end)
1226 {
1227 	s32 *s;
1228 
1229 	for (s = start; s < end; s++) {
1230 		void *addr = (void *)s + *s;
1231 		u32 hash;
1232 
1233 		addr -= fineibt_caller_size;
1234 		hash = decode_caller_hash(addr);
1235 		if (hash) {
1236 			hash = -cfi_rehash(hash);
1237 			text_poke_early(addr + 2, &hash, 4);
1238 		}
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static int cfi_rewrite_callers(s32 *start, s32 *end)
1245 {
1246 	s32 *s;
1247 
1248 	for (s = start; s < end; s++) {
1249 		void *addr = (void *)s + *s;
1250 		u32 hash;
1251 
1252 		addr -= fineibt_caller_size;
1253 		hash = decode_caller_hash(addr);
1254 		if (hash) {
1255 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1256 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1257 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1258 		}
1259 		/* rely on apply_retpolines() */
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1266 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1267 {
1268 	int ret;
1269 
1270 	if (WARN_ONCE(fineibt_preamble_size != 16,
1271 		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1272 		return;
1273 
1274 	if (cfi_mode == CFI_DEFAULT) {
1275 		cfi_mode = CFI_KCFI;
1276 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1277 			cfi_mode = CFI_FINEIBT;
1278 	}
1279 
1280 	/*
1281 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1282 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1283 	 * later stages fails, we're without CFI.
1284 	 */
1285 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1286 	if (ret)
1287 		goto err;
1288 
1289 	if (cfi_rand) {
1290 		if (builtin) {
1291 			cfi_seed = get_random_u32();
1292 			cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1293 			cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1294 		}
1295 
1296 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1297 		if (ret)
1298 			goto err;
1299 
1300 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1301 		if (ret)
1302 			goto err;
1303 	}
1304 
1305 	switch (cfi_mode) {
1306 	case CFI_OFF:
1307 		if (builtin)
1308 			pr_info("Disabling CFI\n");
1309 		return;
1310 
1311 	case CFI_KCFI:
1312 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1313 		if (ret)
1314 			goto err;
1315 
1316 		if (builtin)
1317 			pr_info("Using kCFI\n");
1318 		return;
1319 
1320 	case CFI_FINEIBT:
1321 		/* place the FineIBT preamble at func()-16 */
1322 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1323 		if (ret)
1324 			goto err;
1325 
1326 		/* rewrite the callers to target func()-16 */
1327 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1328 		if (ret)
1329 			goto err;
1330 
1331 		/* now that nobody targets func()+0, remove ENDBR there */
1332 		cfi_rewrite_endbr(start_cfi, end_cfi);
1333 
1334 		if (builtin)
1335 			pr_info("Using FineIBT CFI\n");
1336 		return;
1337 
1338 	default:
1339 		break;
1340 	}
1341 
1342 err:
1343 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1344 }
1345 
1346 static inline void poison_hash(void *addr)
1347 {
1348 	*(u32 *)addr = 0;
1349 }
1350 
1351 static void poison_cfi(void *addr)
1352 {
1353 	switch (cfi_mode) {
1354 	case CFI_FINEIBT:
1355 		/*
1356 		 * __cfi_\func:
1357 		 *	osp nopl (%rax)
1358 		 *	subl	$0, %r10d
1359 		 *	jz	1f
1360 		 *	ud2
1361 		 * 1:	nop
1362 		 */
1363 		poison_endbr(addr, false);
1364 		poison_hash(addr + fineibt_preamble_hash);
1365 		break;
1366 
1367 	case CFI_KCFI:
1368 		/*
1369 		 * __cfi_\func:
1370 		 *	movl	$0, %eax
1371 		 *	.skip	11, 0x90
1372 		 */
1373 		poison_hash(addr + 1);
1374 		break;
1375 
1376 	default:
1377 		break;
1378 	}
1379 }
1380 
1381 #else
1382 
1383 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1384 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1385 {
1386 }
1387 
1388 #ifdef CONFIG_X86_KERNEL_IBT
1389 static void poison_cfi(void *addr) { }
1390 #endif
1391 
1392 #endif
1393 
1394 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1395 		   s32 *start_cfi, s32 *end_cfi)
1396 {
1397 	return __apply_fineibt(start_retpoline, end_retpoline,
1398 			       start_cfi, end_cfi,
1399 			       /* .builtin = */ false);
1400 }
1401 
1402 #ifdef CONFIG_SMP
1403 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1404 				  u8 *text, u8 *text_end)
1405 {
1406 	const s32 *poff;
1407 
1408 	for (poff = start; poff < end; poff++) {
1409 		u8 *ptr = (u8 *)poff + *poff;
1410 
1411 		if (!*poff || ptr < text || ptr >= text_end)
1412 			continue;
1413 		/* turn DS segment override prefix into lock prefix */
1414 		if (*ptr == 0x3e)
1415 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
1416 	}
1417 }
1418 
1419 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1420 				    u8 *text, u8 *text_end)
1421 {
1422 	const s32 *poff;
1423 
1424 	for (poff = start; poff < end; poff++) {
1425 		u8 *ptr = (u8 *)poff + *poff;
1426 
1427 		if (!*poff || ptr < text || ptr >= text_end)
1428 			continue;
1429 		/* turn lock prefix into DS segment override prefix */
1430 		if (*ptr == 0xf0)
1431 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
1432 	}
1433 }
1434 
1435 struct smp_alt_module {
1436 	/* what is this ??? */
1437 	struct module	*mod;
1438 	char		*name;
1439 
1440 	/* ptrs to lock prefixes */
1441 	const s32	*locks;
1442 	const s32	*locks_end;
1443 
1444 	/* .text segment, needed to avoid patching init code ;) */
1445 	u8		*text;
1446 	u8		*text_end;
1447 
1448 	struct list_head next;
1449 };
1450 static LIST_HEAD(smp_alt_modules);
1451 static bool uniproc_patched = false;	/* protected by text_mutex */
1452 
1453 void __init_or_module alternatives_smp_module_add(struct module *mod,
1454 						  char *name,
1455 						  void *locks, void *locks_end,
1456 						  void *text,  void *text_end)
1457 {
1458 	struct smp_alt_module *smp;
1459 
1460 	mutex_lock(&text_mutex);
1461 	if (!uniproc_patched)
1462 		goto unlock;
1463 
1464 	if (num_possible_cpus() == 1)
1465 		/* Don't bother remembering, we'll never have to undo it. */
1466 		goto smp_unlock;
1467 
1468 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1469 	if (NULL == smp)
1470 		/* we'll run the (safe but slow) SMP code then ... */
1471 		goto unlock;
1472 
1473 	smp->mod	= mod;
1474 	smp->name	= name;
1475 	smp->locks	= locks;
1476 	smp->locks_end	= locks_end;
1477 	smp->text	= text;
1478 	smp->text_end	= text_end;
1479 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1480 		smp->locks, smp->locks_end,
1481 		smp->text, smp->text_end, smp->name);
1482 
1483 	list_add_tail(&smp->next, &smp_alt_modules);
1484 smp_unlock:
1485 	alternatives_smp_unlock(locks, locks_end, text, text_end);
1486 unlock:
1487 	mutex_unlock(&text_mutex);
1488 }
1489 
1490 void __init_or_module alternatives_smp_module_del(struct module *mod)
1491 {
1492 	struct smp_alt_module *item;
1493 
1494 	mutex_lock(&text_mutex);
1495 	list_for_each_entry(item, &smp_alt_modules, next) {
1496 		if (mod != item->mod)
1497 			continue;
1498 		list_del(&item->next);
1499 		kfree(item);
1500 		break;
1501 	}
1502 	mutex_unlock(&text_mutex);
1503 }
1504 
1505 void alternatives_enable_smp(void)
1506 {
1507 	struct smp_alt_module *mod;
1508 
1509 	/* Why bother if there are no other CPUs? */
1510 	BUG_ON(num_possible_cpus() == 1);
1511 
1512 	mutex_lock(&text_mutex);
1513 
1514 	if (uniproc_patched) {
1515 		pr_info("switching to SMP code\n");
1516 		BUG_ON(num_online_cpus() != 1);
1517 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1518 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1519 		list_for_each_entry(mod, &smp_alt_modules, next)
1520 			alternatives_smp_lock(mod->locks, mod->locks_end,
1521 					      mod->text, mod->text_end);
1522 		uniproc_patched = false;
1523 	}
1524 	mutex_unlock(&text_mutex);
1525 }
1526 
1527 /*
1528  * Return 1 if the address range is reserved for SMP-alternatives.
1529  * Must hold text_mutex.
1530  */
1531 int alternatives_text_reserved(void *start, void *end)
1532 {
1533 	struct smp_alt_module *mod;
1534 	const s32 *poff;
1535 	u8 *text_start = start;
1536 	u8 *text_end = end;
1537 
1538 	lockdep_assert_held(&text_mutex);
1539 
1540 	list_for_each_entry(mod, &smp_alt_modules, next) {
1541 		if (mod->text > text_end || mod->text_end < text_start)
1542 			continue;
1543 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
1544 			const u8 *ptr = (const u8 *)poff + *poff;
1545 
1546 			if (text_start <= ptr && text_end > ptr)
1547 				return 1;
1548 		}
1549 	}
1550 
1551 	return 0;
1552 }
1553 #endif /* CONFIG_SMP */
1554 
1555 /*
1556  * Self-test for the INT3 based CALL emulation code.
1557  *
1558  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1559  * properly and that there is a stack gap between the INT3 frame and the
1560  * previous context. Without this gap doing a virtual PUSH on the interrupted
1561  * stack would corrupt the INT3 IRET frame.
1562  *
1563  * See entry_{32,64}.S for more details.
1564  */
1565 
1566 /*
1567  * We define the int3_magic() function in assembly to control the calling
1568  * convention such that we can 'call' it from assembly.
1569  */
1570 
1571 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1572 
1573 asm (
1574 "	.pushsection	.init.text, \"ax\", @progbits\n"
1575 "	.type		int3_magic, @function\n"
1576 "int3_magic:\n"
1577 	ANNOTATE_NOENDBR
1578 "	movl	$1, (%" _ASM_ARG1 ")\n"
1579 	ASM_RET
1580 "	.size		int3_magic, .-int3_magic\n"
1581 "	.popsection\n"
1582 );
1583 
1584 extern void int3_selftest_ip(void); /* defined in asm below */
1585 
1586 static int __init
1587 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1588 {
1589 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
1590 	struct die_args *args = data;
1591 	struct pt_regs *regs = args->regs;
1592 
1593 	OPTIMIZER_HIDE_VAR(selftest);
1594 
1595 	if (!regs || user_mode(regs))
1596 		return NOTIFY_DONE;
1597 
1598 	if (val != DIE_INT3)
1599 		return NOTIFY_DONE;
1600 
1601 	if (regs->ip - INT3_INSN_SIZE != selftest)
1602 		return NOTIFY_DONE;
1603 
1604 	int3_emulate_call(regs, (unsigned long)&int3_magic);
1605 	return NOTIFY_STOP;
1606 }
1607 
1608 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1609 static noinline void __init int3_selftest(void)
1610 {
1611 	static __initdata struct notifier_block int3_exception_nb = {
1612 		.notifier_call	= int3_exception_notify,
1613 		.priority	= INT_MAX-1, /* last */
1614 	};
1615 	unsigned int val = 0;
1616 
1617 	BUG_ON(register_die_notifier(&int3_exception_nb));
1618 
1619 	/*
1620 	 * Basically: int3_magic(&val); but really complicated :-)
1621 	 *
1622 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1623 	 * notifier above will emulate CALL for us.
1624 	 */
1625 	asm volatile ("int3_selftest_ip:\n\t"
1626 		      ANNOTATE_NOENDBR
1627 		      "    int3; nop; nop; nop; nop\n\t"
1628 		      : ASM_CALL_CONSTRAINT
1629 		      : __ASM_SEL_RAW(a, D) (&val)
1630 		      : "memory");
1631 
1632 	BUG_ON(val != 1);
1633 
1634 	unregister_die_notifier(&int3_exception_nb);
1635 }
1636 
1637 static __initdata int __alt_reloc_selftest_addr;
1638 
1639 extern void __init __alt_reloc_selftest(void *arg);
1640 __visible noinline void __init __alt_reloc_selftest(void *arg)
1641 {
1642 	WARN_ON(arg != &__alt_reloc_selftest_addr);
1643 }
1644 
1645 static noinline void __init alt_reloc_selftest(void)
1646 {
1647 	/*
1648 	 * Tests apply_relocation().
1649 	 *
1650 	 * This has a relative immediate (CALL) in a place other than the first
1651 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1652 	 *
1653 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
1654 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
1655 	 *
1656 	 * Getting this wrong will either crash and burn or tickle the WARN
1657 	 * above.
1658 	 */
1659 	asm_inline volatile (
1660 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1661 		: /* output */
1662 		: [mem] "m" (__alt_reloc_selftest_addr)
1663 		: _ASM_ARG1
1664 	);
1665 }
1666 
1667 void __init alternative_instructions(void)
1668 {
1669 	int3_selftest();
1670 
1671 	/*
1672 	 * The patching is not fully atomic, so try to avoid local
1673 	 * interruptions that might execute the to be patched code.
1674 	 * Other CPUs are not running.
1675 	 */
1676 	stop_nmi();
1677 
1678 	/*
1679 	 * Don't stop machine check exceptions while patching.
1680 	 * MCEs only happen when something got corrupted and in this
1681 	 * case we must do something about the corruption.
1682 	 * Ignoring it is worse than an unlikely patching race.
1683 	 * Also machine checks tend to be broadcast and if one CPU
1684 	 * goes into machine check the others follow quickly, so we don't
1685 	 * expect a machine check to cause undue problems during to code
1686 	 * patching.
1687 	 */
1688 
1689 	/*
1690 	 * Make sure to set (artificial) features depending on used paravirt
1691 	 * functions which can later influence alternative patching.
1692 	 */
1693 	paravirt_set_cap();
1694 
1695 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1696 			__cfi_sites, __cfi_sites_end, true);
1697 
1698 	/*
1699 	 * Rewrite the retpolines, must be done before alternatives since
1700 	 * those can rewrite the retpoline thunks.
1701 	 */
1702 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1703 	apply_returns(__return_sites, __return_sites_end);
1704 
1705 	apply_alternatives(__alt_instructions, __alt_instructions_end);
1706 
1707 	/*
1708 	 * Now all calls are established. Apply the call thunks if
1709 	 * required.
1710 	 */
1711 	callthunks_patch_builtin_calls();
1712 
1713 	/*
1714 	 * Seal all functions that do not have their address taken.
1715 	 */
1716 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1717 
1718 #ifdef CONFIG_SMP
1719 	/* Patch to UP if other cpus not imminent. */
1720 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1721 		uniproc_patched = true;
1722 		alternatives_smp_module_add(NULL, "core kernel",
1723 					    __smp_locks, __smp_locks_end,
1724 					    _text, _etext);
1725 	}
1726 
1727 	if (!uniproc_patched || num_possible_cpus() == 1) {
1728 		free_init_pages("SMP alternatives",
1729 				(unsigned long)__smp_locks,
1730 				(unsigned long)__smp_locks_end);
1731 	}
1732 #endif
1733 
1734 	restart_nmi();
1735 	alternatives_patched = 1;
1736 
1737 	alt_reloc_selftest();
1738 }
1739 
1740 /**
1741  * text_poke_early - Update instructions on a live kernel at boot time
1742  * @addr: address to modify
1743  * @opcode: source of the copy
1744  * @len: length to copy
1745  *
1746  * When you use this code to patch more than one byte of an instruction
1747  * you need to make sure that other CPUs cannot execute this code in parallel.
1748  * Also no thread must be currently preempted in the middle of these
1749  * instructions. And on the local CPU you need to be protected against NMI or
1750  * MCE handlers seeing an inconsistent instruction while you patch.
1751  */
1752 void __init_or_module text_poke_early(void *addr, const void *opcode,
1753 				      size_t len)
1754 {
1755 	unsigned long flags;
1756 
1757 	if (boot_cpu_has(X86_FEATURE_NX) &&
1758 	    is_module_text_address((unsigned long)addr)) {
1759 		/*
1760 		 * Modules text is marked initially as non-executable, so the
1761 		 * code cannot be running and speculative code-fetches are
1762 		 * prevented. Just change the code.
1763 		 */
1764 		memcpy(addr, opcode, len);
1765 	} else {
1766 		local_irq_save(flags);
1767 		memcpy(addr, opcode, len);
1768 		sync_core();
1769 		local_irq_restore(flags);
1770 
1771 		/*
1772 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
1773 		 * that causes hangs on some VIA CPUs.
1774 		 */
1775 	}
1776 }
1777 
1778 typedef struct {
1779 	struct mm_struct *mm;
1780 } temp_mm_state_t;
1781 
1782 /*
1783  * Using a temporary mm allows to set temporary mappings that are not accessible
1784  * by other CPUs. Such mappings are needed to perform sensitive memory writes
1785  * that override the kernel memory protections (e.g., W^X), without exposing the
1786  * temporary page-table mappings that are required for these write operations to
1787  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1788  * mapping is torn down.
1789  *
1790  * Context: The temporary mm needs to be used exclusively by a single core. To
1791  *          harden security IRQs must be disabled while the temporary mm is
1792  *          loaded, thereby preventing interrupt handler bugs from overriding
1793  *          the kernel memory protection.
1794  */
1795 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1796 {
1797 	temp_mm_state_t temp_state;
1798 
1799 	lockdep_assert_irqs_disabled();
1800 
1801 	/*
1802 	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1803 	 * with a stale address space WITHOUT being in lazy mode after
1804 	 * restoring the previous mm.
1805 	 */
1806 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1807 		leave_mm();
1808 
1809 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1810 	switch_mm_irqs_off(NULL, mm, current);
1811 
1812 	/*
1813 	 * If breakpoints are enabled, disable them while the temporary mm is
1814 	 * used. Userspace might set up watchpoints on addresses that are used
1815 	 * in the temporary mm, which would lead to wrong signals being sent or
1816 	 * crashes.
1817 	 *
1818 	 * Note that breakpoints are not disabled selectively, which also causes
1819 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1820 	 * undesirable, but still seems reasonable as the code that runs in the
1821 	 * temporary mm should be short.
1822 	 */
1823 	if (hw_breakpoint_active())
1824 		hw_breakpoint_disable();
1825 
1826 	return temp_state;
1827 }
1828 
1829 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1830 {
1831 	lockdep_assert_irqs_disabled();
1832 	switch_mm_irqs_off(NULL, prev_state.mm, current);
1833 
1834 	/*
1835 	 * Restore the breakpoints if they were disabled before the temporary mm
1836 	 * was loaded.
1837 	 */
1838 	if (hw_breakpoint_active())
1839 		hw_breakpoint_restore();
1840 }
1841 
1842 __ro_after_init struct mm_struct *poking_mm;
1843 __ro_after_init unsigned long poking_addr;
1844 
1845 static void text_poke_memcpy(void *dst, const void *src, size_t len)
1846 {
1847 	memcpy(dst, src, len);
1848 }
1849 
1850 static void text_poke_memset(void *dst, const void *src, size_t len)
1851 {
1852 	int c = *(const int *)src;
1853 
1854 	memset(dst, c, len);
1855 }
1856 
1857 typedef void text_poke_f(void *dst, const void *src, size_t len);
1858 
1859 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1860 {
1861 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1862 	struct page *pages[2] = {NULL};
1863 	temp_mm_state_t prev;
1864 	unsigned long flags;
1865 	pte_t pte, *ptep;
1866 	spinlock_t *ptl;
1867 	pgprot_t pgprot;
1868 
1869 	/*
1870 	 * While boot memory allocator is running we cannot use struct pages as
1871 	 * they are not yet initialized. There is no way to recover.
1872 	 */
1873 	BUG_ON(!after_bootmem);
1874 
1875 	if (!core_kernel_text((unsigned long)addr)) {
1876 		pages[0] = vmalloc_to_page(addr);
1877 		if (cross_page_boundary)
1878 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1879 	} else {
1880 		pages[0] = virt_to_page(addr);
1881 		WARN_ON(!PageReserved(pages[0]));
1882 		if (cross_page_boundary)
1883 			pages[1] = virt_to_page(addr + PAGE_SIZE);
1884 	}
1885 	/*
1886 	 * If something went wrong, crash and burn since recovery paths are not
1887 	 * implemented.
1888 	 */
1889 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1890 
1891 	/*
1892 	 * Map the page without the global bit, as TLB flushing is done with
1893 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1894 	 */
1895 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1896 
1897 	/*
1898 	 * The lock is not really needed, but this allows to avoid open-coding.
1899 	 */
1900 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1901 
1902 	/*
1903 	 * This must not fail; preallocated in poking_init().
1904 	 */
1905 	VM_BUG_ON(!ptep);
1906 
1907 	local_irq_save(flags);
1908 
1909 	pte = mk_pte(pages[0], pgprot);
1910 	set_pte_at(poking_mm, poking_addr, ptep, pte);
1911 
1912 	if (cross_page_boundary) {
1913 		pte = mk_pte(pages[1], pgprot);
1914 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1915 	}
1916 
1917 	/*
1918 	 * Loading the temporary mm behaves as a compiler barrier, which
1919 	 * guarantees that the PTE will be set at the time memcpy() is done.
1920 	 */
1921 	prev = use_temporary_mm(poking_mm);
1922 
1923 	kasan_disable_current();
1924 	func((u8 *)poking_addr + offset_in_page(addr), src, len);
1925 	kasan_enable_current();
1926 
1927 	/*
1928 	 * Ensure that the PTE is only cleared after the instructions of memcpy
1929 	 * were issued by using a compiler barrier.
1930 	 */
1931 	barrier();
1932 
1933 	pte_clear(poking_mm, poking_addr, ptep);
1934 	if (cross_page_boundary)
1935 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1936 
1937 	/*
1938 	 * Loading the previous page-table hierarchy requires a serializing
1939 	 * instruction that already allows the core to see the updated version.
1940 	 * Xen-PV is assumed to serialize execution in a similar manner.
1941 	 */
1942 	unuse_temporary_mm(prev);
1943 
1944 	/*
1945 	 * Flushing the TLB might involve IPIs, which would require enabled
1946 	 * IRQs, but not if the mm is not used, as it is in this point.
1947 	 */
1948 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1949 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1950 			   PAGE_SHIFT, false);
1951 
1952 	if (func == text_poke_memcpy) {
1953 		/*
1954 		 * If the text does not match what we just wrote then something is
1955 		 * fundamentally screwy; there's nothing we can really do about that.
1956 		 */
1957 		BUG_ON(memcmp(addr, src, len));
1958 	}
1959 
1960 	local_irq_restore(flags);
1961 	pte_unmap_unlock(ptep, ptl);
1962 	return addr;
1963 }
1964 
1965 /**
1966  * text_poke - Update instructions on a live kernel
1967  * @addr: address to modify
1968  * @opcode: source of the copy
1969  * @len: length to copy
1970  *
1971  * Only atomic text poke/set should be allowed when not doing early patching.
1972  * It means the size must be writable atomically and the address must be aligned
1973  * in a way that permits an atomic write. It also makes sure we fit on a single
1974  * page.
1975  *
1976  * Note that the caller must ensure that if the modified code is part of a
1977  * module, the module would not be removed during poking. This can be achieved
1978  * by registering a module notifier, and ordering module removal and patching
1979  * through a mutex.
1980  */
1981 void *text_poke(void *addr, const void *opcode, size_t len)
1982 {
1983 	lockdep_assert_held(&text_mutex);
1984 
1985 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1986 }
1987 
1988 /**
1989  * text_poke_kgdb - Update instructions on a live kernel by kgdb
1990  * @addr: address to modify
1991  * @opcode: source of the copy
1992  * @len: length to copy
1993  *
1994  * Only atomic text poke/set should be allowed when not doing early patching.
1995  * It means the size must be writable atomically and the address must be aligned
1996  * in a way that permits an atomic write. It also makes sure we fit on a single
1997  * page.
1998  *
1999  * Context: should only be used by kgdb, which ensures no other core is running,
2000  *	    despite the fact it does not hold the text_mutex.
2001  */
2002 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2003 {
2004 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2005 }
2006 
2007 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2008 			    bool core_ok)
2009 {
2010 	unsigned long start = (unsigned long)addr;
2011 	size_t patched = 0;
2012 
2013 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2014 		return NULL;
2015 
2016 	while (patched < len) {
2017 		unsigned long ptr = start + patched;
2018 		size_t s;
2019 
2020 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2021 
2022 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2023 		patched += s;
2024 	}
2025 	return addr;
2026 }
2027 
2028 /**
2029  * text_poke_copy - Copy instructions into (an unused part of) RX memory
2030  * @addr: address to modify
2031  * @opcode: source of the copy
2032  * @len: length to copy, could be more than 2x PAGE_SIZE
2033  *
2034  * Not safe against concurrent execution; useful for JITs to dump
2035  * new code blocks into unused regions of RX memory. Can be used in
2036  * conjunction with synchronize_rcu_tasks() to wait for existing
2037  * execution to quiesce after having made sure no existing functions
2038  * pointers are live.
2039  */
2040 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2041 {
2042 	mutex_lock(&text_mutex);
2043 	addr = text_poke_copy_locked(addr, opcode, len, false);
2044 	mutex_unlock(&text_mutex);
2045 	return addr;
2046 }
2047 
2048 /**
2049  * text_poke_set - memset into (an unused part of) RX memory
2050  * @addr: address to modify
2051  * @c: the byte to fill the area with
2052  * @len: length to copy, could be more than 2x PAGE_SIZE
2053  *
2054  * This is useful to overwrite unused regions of RX memory with illegal
2055  * instructions.
2056  */
2057 void *text_poke_set(void *addr, int c, size_t len)
2058 {
2059 	unsigned long start = (unsigned long)addr;
2060 	size_t patched = 0;
2061 
2062 	if (WARN_ON_ONCE(core_kernel_text(start)))
2063 		return NULL;
2064 
2065 	mutex_lock(&text_mutex);
2066 	while (patched < len) {
2067 		unsigned long ptr = start + patched;
2068 		size_t s;
2069 
2070 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2071 
2072 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2073 		patched += s;
2074 	}
2075 	mutex_unlock(&text_mutex);
2076 	return addr;
2077 }
2078 
2079 static void do_sync_core(void *info)
2080 {
2081 	sync_core();
2082 }
2083 
2084 void text_poke_sync(void)
2085 {
2086 	on_each_cpu(do_sync_core, NULL, 1);
2087 }
2088 
2089 /*
2090  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2091  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2092  * opcode to Jcc.d8, using len to distinguish.
2093  */
2094 struct text_poke_loc {
2095 	/* addr := _stext + rel_addr */
2096 	s32 rel_addr;
2097 	s32 disp;
2098 	u8 len;
2099 	u8 opcode;
2100 	const u8 text[POKE_MAX_OPCODE_SIZE];
2101 	/* see text_poke_bp_batch() */
2102 	u8 old;
2103 };
2104 
2105 struct bp_patching_desc {
2106 	struct text_poke_loc *vec;
2107 	int nr_entries;
2108 	atomic_t refs;
2109 };
2110 
2111 static struct bp_patching_desc bp_desc;
2112 
2113 static __always_inline
2114 struct bp_patching_desc *try_get_desc(void)
2115 {
2116 	struct bp_patching_desc *desc = &bp_desc;
2117 
2118 	if (!raw_atomic_inc_not_zero(&desc->refs))
2119 		return NULL;
2120 
2121 	return desc;
2122 }
2123 
2124 static __always_inline void put_desc(void)
2125 {
2126 	struct bp_patching_desc *desc = &bp_desc;
2127 
2128 	smp_mb__before_atomic();
2129 	raw_atomic_dec(&desc->refs);
2130 }
2131 
2132 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2133 {
2134 	return _stext + tp->rel_addr;
2135 }
2136 
2137 static __always_inline int patch_cmp(const void *key, const void *elt)
2138 {
2139 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2140 
2141 	if (key < text_poke_addr(tp))
2142 		return -1;
2143 	if (key > text_poke_addr(tp))
2144 		return 1;
2145 	return 0;
2146 }
2147 
2148 noinstr int poke_int3_handler(struct pt_regs *regs)
2149 {
2150 	struct bp_patching_desc *desc;
2151 	struct text_poke_loc *tp;
2152 	int ret = 0;
2153 	void *ip;
2154 
2155 	if (user_mode(regs))
2156 		return 0;
2157 
2158 	/*
2159 	 * Having observed our INT3 instruction, we now must observe
2160 	 * bp_desc with non-zero refcount:
2161 	 *
2162 	 *	bp_desc.refs = 1		INT3
2163 	 *	WMB				RMB
2164 	 *	write INT3			if (bp_desc.refs != 0)
2165 	 */
2166 	smp_rmb();
2167 
2168 	desc = try_get_desc();
2169 	if (!desc)
2170 		return 0;
2171 
2172 	/*
2173 	 * Discount the INT3. See text_poke_bp_batch().
2174 	 */
2175 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2176 
2177 	/*
2178 	 * Skip the binary search if there is a single member in the vector.
2179 	 */
2180 	if (unlikely(desc->nr_entries > 1)) {
2181 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2182 				      sizeof(struct text_poke_loc),
2183 				      patch_cmp);
2184 		if (!tp)
2185 			goto out_put;
2186 	} else {
2187 		tp = desc->vec;
2188 		if (text_poke_addr(tp) != ip)
2189 			goto out_put;
2190 	}
2191 
2192 	ip += tp->len;
2193 
2194 	switch (tp->opcode) {
2195 	case INT3_INSN_OPCODE:
2196 		/*
2197 		 * Someone poked an explicit INT3, they'll want to handle it,
2198 		 * do not consume.
2199 		 */
2200 		goto out_put;
2201 
2202 	case RET_INSN_OPCODE:
2203 		int3_emulate_ret(regs);
2204 		break;
2205 
2206 	case CALL_INSN_OPCODE:
2207 		int3_emulate_call(regs, (long)ip + tp->disp);
2208 		break;
2209 
2210 	case JMP32_INSN_OPCODE:
2211 	case JMP8_INSN_OPCODE:
2212 		int3_emulate_jmp(regs, (long)ip + tp->disp);
2213 		break;
2214 
2215 	case 0x70 ... 0x7f: /* Jcc */
2216 		int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2217 		break;
2218 
2219 	default:
2220 		BUG();
2221 	}
2222 
2223 	ret = 1;
2224 
2225 out_put:
2226 	put_desc();
2227 	return ret;
2228 }
2229 
2230 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2231 static struct text_poke_loc tp_vec[TP_VEC_MAX];
2232 static int tp_vec_nr;
2233 
2234 /**
2235  * text_poke_bp_batch() -- update instructions on live kernel on SMP
2236  * @tp:			vector of instructions to patch
2237  * @nr_entries:		number of entries in the vector
2238  *
2239  * Modify multi-byte instruction by using int3 breakpoint on SMP.
2240  * We completely avoid stop_machine() here, and achieve the
2241  * synchronization using int3 breakpoint.
2242  *
2243  * The way it is done:
2244  *	- For each entry in the vector:
2245  *		- add a int3 trap to the address that will be patched
2246  *	- sync cores
2247  *	- For each entry in the vector:
2248  *		- update all but the first byte of the patched range
2249  *	- sync cores
2250  *	- For each entry in the vector:
2251  *		- replace the first byte (int3) by the first byte of
2252  *		  replacing opcode
2253  *	- sync cores
2254  */
2255 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2256 {
2257 	unsigned char int3 = INT3_INSN_OPCODE;
2258 	unsigned int i;
2259 	int do_sync;
2260 
2261 	lockdep_assert_held(&text_mutex);
2262 
2263 	bp_desc.vec = tp;
2264 	bp_desc.nr_entries = nr_entries;
2265 
2266 	/*
2267 	 * Corresponds to the implicit memory barrier in try_get_desc() to
2268 	 * ensure reading a non-zero refcount provides up to date bp_desc data.
2269 	 */
2270 	atomic_set_release(&bp_desc.refs, 1);
2271 
2272 	/*
2273 	 * Function tracing can enable thousands of places that need to be
2274 	 * updated. This can take quite some time, and with full kernel debugging
2275 	 * enabled, this could cause the softlockup watchdog to trigger.
2276 	 * This function gets called every 256 entries added to be patched.
2277 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2278 	 * while processing all the functions being patched.
2279 	 */
2280 	cond_resched();
2281 
2282 	/*
2283 	 * Corresponding read barrier in int3 notifier for making sure the
2284 	 * nr_entries and handler are correctly ordered wrt. patching.
2285 	 */
2286 	smp_wmb();
2287 
2288 	/*
2289 	 * First step: add a int3 trap to the address that will be patched.
2290 	 */
2291 	for (i = 0; i < nr_entries; i++) {
2292 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2293 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2294 	}
2295 
2296 	text_poke_sync();
2297 
2298 	/*
2299 	 * Second step: update all but the first byte of the patched range.
2300 	 */
2301 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2302 		u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2303 		u8 _new[POKE_MAX_OPCODE_SIZE+1];
2304 		const u8 *new = tp[i].text;
2305 		int len = tp[i].len;
2306 
2307 		if (len - INT3_INSN_SIZE > 0) {
2308 			memcpy(old + INT3_INSN_SIZE,
2309 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2310 			       len - INT3_INSN_SIZE);
2311 
2312 			if (len == 6) {
2313 				_new[0] = 0x0f;
2314 				memcpy(_new + 1, new, 5);
2315 				new = _new;
2316 			}
2317 
2318 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2319 				  new + INT3_INSN_SIZE,
2320 				  len - INT3_INSN_SIZE);
2321 
2322 			do_sync++;
2323 		}
2324 
2325 		/*
2326 		 * Emit a perf event to record the text poke, primarily to
2327 		 * support Intel PT decoding which must walk the executable code
2328 		 * to reconstruct the trace. The flow up to here is:
2329 		 *   - write INT3 byte
2330 		 *   - IPI-SYNC
2331 		 *   - write instruction tail
2332 		 * At this point the actual control flow will be through the
2333 		 * INT3 and handler and not hit the old or new instruction.
2334 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2335 		 * can still be decoded. Subsequently:
2336 		 *   - emit RECORD_TEXT_POKE with the new instruction
2337 		 *   - IPI-SYNC
2338 		 *   - write first byte
2339 		 *   - IPI-SYNC
2340 		 * So before the text poke event timestamp, the decoder will see
2341 		 * either the old instruction flow or FUP/TIP of INT3. After the
2342 		 * text poke event timestamp, the decoder will see either the
2343 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2344 		 * use the timestamp as the point at which to modify the
2345 		 * executable code.
2346 		 * The old instruction is recorded so that the event can be
2347 		 * processed forwards or backwards.
2348 		 */
2349 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2350 	}
2351 
2352 	if (do_sync) {
2353 		/*
2354 		 * According to Intel, this core syncing is very likely
2355 		 * not necessary and we'd be safe even without it. But
2356 		 * better safe than sorry (plus there's not only Intel).
2357 		 */
2358 		text_poke_sync();
2359 	}
2360 
2361 	/*
2362 	 * Third step: replace the first byte (int3) by the first byte of
2363 	 * replacing opcode.
2364 	 */
2365 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2366 		u8 byte = tp[i].text[0];
2367 
2368 		if (tp[i].len == 6)
2369 			byte = 0x0f;
2370 
2371 		if (byte == INT3_INSN_OPCODE)
2372 			continue;
2373 
2374 		text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2375 		do_sync++;
2376 	}
2377 
2378 	if (do_sync)
2379 		text_poke_sync();
2380 
2381 	/*
2382 	 * Remove and wait for refs to be zero.
2383 	 */
2384 	if (!atomic_dec_and_test(&bp_desc.refs))
2385 		atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2386 }
2387 
2388 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2389 			       const void *opcode, size_t len, const void *emulate)
2390 {
2391 	struct insn insn;
2392 	int ret, i = 0;
2393 
2394 	if (len == 6)
2395 		i = 1;
2396 	memcpy((void *)tp->text, opcode+i, len-i);
2397 	if (!emulate)
2398 		emulate = opcode;
2399 
2400 	ret = insn_decode_kernel(&insn, emulate);
2401 	BUG_ON(ret < 0);
2402 
2403 	tp->rel_addr = addr - (void *)_stext;
2404 	tp->len = len;
2405 	tp->opcode = insn.opcode.bytes[0];
2406 
2407 	if (is_jcc32(&insn)) {
2408 		/*
2409 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2410 		 */
2411 		tp->opcode = insn.opcode.bytes[1] - 0x10;
2412 	}
2413 
2414 	switch (tp->opcode) {
2415 	case RET_INSN_OPCODE:
2416 	case JMP32_INSN_OPCODE:
2417 	case JMP8_INSN_OPCODE:
2418 		/*
2419 		 * Control flow instructions without implied execution of the
2420 		 * next instruction can be padded with INT3.
2421 		 */
2422 		for (i = insn.length; i < len; i++)
2423 			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2424 		break;
2425 
2426 	default:
2427 		BUG_ON(len != insn.length);
2428 	}
2429 
2430 	switch (tp->opcode) {
2431 	case INT3_INSN_OPCODE:
2432 	case RET_INSN_OPCODE:
2433 		break;
2434 
2435 	case CALL_INSN_OPCODE:
2436 	case JMP32_INSN_OPCODE:
2437 	case JMP8_INSN_OPCODE:
2438 	case 0x70 ... 0x7f: /* Jcc */
2439 		tp->disp = insn.immediate.value;
2440 		break;
2441 
2442 	default: /* assume NOP */
2443 		switch (len) {
2444 		case 2: /* NOP2 -- emulate as JMP8+0 */
2445 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2446 			tp->opcode = JMP8_INSN_OPCODE;
2447 			tp->disp = 0;
2448 			break;
2449 
2450 		case 5: /* NOP5 -- emulate as JMP32+0 */
2451 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2452 			tp->opcode = JMP32_INSN_OPCODE;
2453 			tp->disp = 0;
2454 			break;
2455 
2456 		default: /* unknown instruction */
2457 			BUG();
2458 		}
2459 		break;
2460 	}
2461 }
2462 
2463 /*
2464  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2465  * early if needed.
2466  */
2467 static bool tp_order_fail(void *addr)
2468 {
2469 	struct text_poke_loc *tp;
2470 
2471 	if (!tp_vec_nr)
2472 		return false;
2473 
2474 	if (!addr) /* force */
2475 		return true;
2476 
2477 	tp = &tp_vec[tp_vec_nr - 1];
2478 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2479 		return true;
2480 
2481 	return false;
2482 }
2483 
2484 static void text_poke_flush(void *addr)
2485 {
2486 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2487 		text_poke_bp_batch(tp_vec, tp_vec_nr);
2488 		tp_vec_nr = 0;
2489 	}
2490 }
2491 
2492 void text_poke_finish(void)
2493 {
2494 	text_poke_flush(NULL);
2495 }
2496 
2497 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2498 {
2499 	struct text_poke_loc *tp;
2500 
2501 	text_poke_flush(addr);
2502 
2503 	tp = &tp_vec[tp_vec_nr++];
2504 	text_poke_loc_init(tp, addr, opcode, len, emulate);
2505 }
2506 
2507 /**
2508  * text_poke_bp() -- update instructions on live kernel on SMP
2509  * @addr:	address to patch
2510  * @opcode:	opcode of new instruction
2511  * @len:	length to copy
2512  * @emulate:	instruction to be emulated
2513  *
2514  * Update a single instruction with the vector in the stack, avoiding
2515  * dynamically allocated memory. This function should be used when it is
2516  * not possible to allocate memory.
2517  */
2518 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2519 {
2520 	struct text_poke_loc tp;
2521 
2522 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
2523 	text_poke_bp_batch(&tp, 1);
2524 }
2525