1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "SMP alternatives: " fmt 3 4 #include <linux/module.h> 5 #include <linux/sched.h> 6 #include <linux/perf_event.h> 7 #include <linux/mutex.h> 8 #include <linux/list.h> 9 #include <linux/stringify.h> 10 #include <linux/highmem.h> 11 #include <linux/mm.h> 12 #include <linux/vmalloc.h> 13 #include <linux/memory.h> 14 #include <linux/stop_machine.h> 15 #include <linux/slab.h> 16 #include <linux/kdebug.h> 17 #include <linux/kprobes.h> 18 #include <linux/mmu_context.h> 19 #include <linux/bsearch.h> 20 #include <linux/sync_core.h> 21 #include <asm/text-patching.h> 22 #include <asm/alternative.h> 23 #include <asm/sections.h> 24 #include <asm/mce.h> 25 #include <asm/nmi.h> 26 #include <asm/cacheflush.h> 27 #include <asm/tlbflush.h> 28 #include <asm/insn.h> 29 #include <asm/io.h> 30 #include <asm/fixmap.h> 31 #include <asm/paravirt.h> 32 #include <asm/asm-prototypes.h> 33 #include <asm/cfi.h> 34 35 int __read_mostly alternatives_patched; 36 37 EXPORT_SYMBOL_GPL(alternatives_patched); 38 39 #define MAX_PATCH_LEN (255-1) 40 41 #define DA_ALL (~0) 42 #define DA_ALT 0x01 43 #define DA_RET 0x02 44 #define DA_RETPOLINE 0x04 45 #define DA_ENDBR 0x08 46 #define DA_SMP 0x10 47 48 static unsigned int debug_alternative; 49 50 static int __init debug_alt(char *str) 51 { 52 if (str && *str == '=') 53 str++; 54 55 if (!str || kstrtouint(str, 0, &debug_alternative)) 56 debug_alternative = DA_ALL; 57 58 return 1; 59 } 60 __setup("debug-alternative", debug_alt); 61 62 static int noreplace_smp; 63 64 static int __init setup_noreplace_smp(char *str) 65 { 66 noreplace_smp = 1; 67 return 1; 68 } 69 __setup("noreplace-smp", setup_noreplace_smp); 70 71 #define DPRINTK(type, fmt, args...) \ 72 do { \ 73 if (debug_alternative & DA_##type) \ 74 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ 75 } while (0) 76 77 #define DUMP_BYTES(type, buf, len, fmt, args...) \ 78 do { \ 79 if (unlikely(debug_alternative & DA_##type)) { \ 80 int j; \ 81 \ 82 if (!(len)) \ 83 break; \ 84 \ 85 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 86 for (j = 0; j < (len) - 1; j++) \ 87 printk(KERN_CONT "%02hhx ", buf[j]); \ 88 printk(KERN_CONT "%02hhx\n", buf[j]); \ 89 } \ 90 } while (0) 91 92 static const unsigned char x86nops[] = 93 { 94 BYTES_NOP1, 95 BYTES_NOP2, 96 BYTES_NOP3, 97 BYTES_NOP4, 98 BYTES_NOP5, 99 BYTES_NOP6, 100 BYTES_NOP7, 101 BYTES_NOP8, 102 #ifdef CONFIG_64BIT 103 BYTES_NOP9, 104 BYTES_NOP10, 105 BYTES_NOP11, 106 #endif 107 }; 108 109 const unsigned char * const x86_nops[ASM_NOP_MAX+1] = 110 { 111 NULL, 112 x86nops, 113 x86nops + 1, 114 x86nops + 1 + 2, 115 x86nops + 1 + 2 + 3, 116 x86nops + 1 + 2 + 3 + 4, 117 x86nops + 1 + 2 + 3 + 4 + 5, 118 x86nops + 1 + 2 + 3 + 4 + 5 + 6, 119 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 120 #ifdef CONFIG_64BIT 121 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 122 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, 123 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, 124 #endif 125 }; 126 127 /* 128 * Fill the buffer with a single effective instruction of size @len. 129 * 130 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info) 131 * for every single-byte NOP, try to generate the maximally available NOP of 132 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for 133 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and 134 * *jump* over instead of executing long and daft NOPs. 135 */ 136 static void add_nop(u8 *instr, unsigned int len) 137 { 138 u8 *target = instr + len; 139 140 if (!len) 141 return; 142 143 if (len <= ASM_NOP_MAX) { 144 memcpy(instr, x86_nops[len], len); 145 return; 146 } 147 148 if (len < 128) { 149 __text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE); 150 instr += JMP8_INSN_SIZE; 151 } else { 152 __text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE); 153 instr += JMP32_INSN_SIZE; 154 } 155 156 for (;instr < target; instr++) 157 *instr = INT3_INSN_OPCODE; 158 } 159 160 extern s32 __retpoline_sites[], __retpoline_sites_end[]; 161 extern s32 __return_sites[], __return_sites_end[]; 162 extern s32 __cfi_sites[], __cfi_sites_end[]; 163 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[]; 164 extern s32 __smp_locks[], __smp_locks_end[]; 165 void text_poke_early(void *addr, const void *opcode, size_t len); 166 167 /* 168 * Matches NOP and NOPL, not any of the other possible NOPs. 169 */ 170 static bool insn_is_nop(struct insn *insn) 171 { 172 /* Anything NOP, but no REP NOP */ 173 if (insn->opcode.bytes[0] == 0x90 && 174 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3)) 175 return true; 176 177 /* NOPL */ 178 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F) 179 return true; 180 181 /* TODO: more nops */ 182 183 return false; 184 } 185 186 /* 187 * Find the offset of the first non-NOP instruction starting at @offset 188 * but no further than @len. 189 */ 190 static int skip_nops(u8 *instr, int offset, int len) 191 { 192 struct insn insn; 193 194 for (; offset < len; offset += insn.length) { 195 if (insn_decode_kernel(&insn, &instr[offset])) 196 break; 197 198 if (!insn_is_nop(&insn)) 199 break; 200 } 201 202 return offset; 203 } 204 205 /* 206 * Optimize a sequence of NOPs, possibly preceded by an unconditional jump 207 * to the end of the NOP sequence into a single NOP. 208 */ 209 static bool 210 __optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target) 211 { 212 int i = *next - insn->length; 213 214 switch (insn->opcode.bytes[0]) { 215 case JMP8_INSN_OPCODE: 216 case JMP32_INSN_OPCODE: 217 *prev = i; 218 *target = *next + insn->immediate.value; 219 return false; 220 } 221 222 if (insn_is_nop(insn)) { 223 int nop = i; 224 225 *next = skip_nops(instr, *next, len); 226 if (*target && *next == *target) 227 nop = *prev; 228 229 add_nop(instr + nop, *next - nop); 230 DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next); 231 return true; 232 } 233 234 *target = 0; 235 return false; 236 } 237 238 /* 239 * "noinline" to cause control flow change and thus invalidate I$ and 240 * cause refetch after modification. 241 */ 242 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len) 243 { 244 int prev, target = 0; 245 246 for (int next, i = 0; i < len; i = next) { 247 struct insn insn; 248 249 if (insn_decode_kernel(&insn, &instr[i])) 250 return; 251 252 next = i + insn.length; 253 254 __optimize_nops(instr, len, &insn, &next, &prev, &target); 255 } 256 } 257 258 static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len) 259 { 260 unsigned long flags; 261 262 local_irq_save(flags); 263 optimize_nops(instr, len); 264 sync_core(); 265 local_irq_restore(flags); 266 } 267 268 /* 269 * In this context, "source" is where the instructions are placed in the 270 * section .altinstr_replacement, for example during kernel build by the 271 * toolchain. 272 * "Destination" is where the instructions are being patched in by this 273 * machinery. 274 * 275 * The source offset is: 276 * 277 * src_imm = target - src_next_ip (1) 278 * 279 * and the target offset is: 280 * 281 * dst_imm = target - dst_next_ip (2) 282 * 283 * so rework (1) as an expression for target like: 284 * 285 * target = src_imm + src_next_ip (1a) 286 * 287 * and substitute in (2) to get: 288 * 289 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3) 290 * 291 * Now, since the instruction stream is 'identical' at src and dst (it 292 * is being copied after all) it can be stated that: 293 * 294 * src_next_ip = src + ip_offset 295 * dst_next_ip = dst + ip_offset (4) 296 * 297 * Substitute (4) in (3) and observe ip_offset being cancelled out to 298 * obtain: 299 * 300 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset) 301 * = src_imm + src - dst + ip_offset - ip_offset 302 * = src_imm + src - dst (5) 303 * 304 * IOW, only the relative displacement of the code block matters. 305 */ 306 307 #define apply_reloc_n(n_, p_, d_) \ 308 do { \ 309 s32 v = *(s##n_ *)(p_); \ 310 v += (d_); \ 311 BUG_ON((v >> 31) != (v >> (n_-1))); \ 312 *(s##n_ *)(p_) = (s##n_)v; \ 313 } while (0) 314 315 316 static __always_inline 317 void apply_reloc(int n, void *ptr, uintptr_t diff) 318 { 319 switch (n) { 320 case 1: apply_reloc_n(8, ptr, diff); break; 321 case 2: apply_reloc_n(16, ptr, diff); break; 322 case 4: apply_reloc_n(32, ptr, diff); break; 323 default: BUG(); 324 } 325 } 326 327 static __always_inline 328 bool need_reloc(unsigned long offset, u8 *src, size_t src_len) 329 { 330 u8 *target = src + offset; 331 /* 332 * If the target is inside the patched block, it's relative to the 333 * block itself and does not need relocation. 334 */ 335 return (target < src || target > src + src_len); 336 } 337 338 void apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len) 339 { 340 int prev, target = 0; 341 342 for (int next, i = 0; i < len; i = next) { 343 struct insn insn; 344 345 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i]))) 346 return; 347 348 next = i + insn.length; 349 350 if (__optimize_nops(buf, len, &insn, &next, &prev, &target)) 351 continue; 352 353 switch (insn.opcode.bytes[0]) { 354 case 0x0f: 355 if (insn.opcode.bytes[1] < 0x80 || 356 insn.opcode.bytes[1] > 0x8f) 357 break; 358 359 fallthrough; /* Jcc.d32 */ 360 case 0x70 ... 0x7f: /* Jcc.d8 */ 361 case JMP8_INSN_OPCODE: 362 case JMP32_INSN_OPCODE: 363 case CALL_INSN_OPCODE: 364 if (need_reloc(next + insn.immediate.value, src, src_len)) { 365 apply_reloc(insn.immediate.nbytes, 366 buf + i + insn_offset_immediate(&insn), 367 src - dest); 368 } 369 370 /* 371 * Where possible, convert JMP.d32 into JMP.d8. 372 */ 373 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) { 374 s32 imm = insn.immediate.value; 375 imm += src - dest; 376 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE; 377 if ((imm >> 31) == (imm >> 7)) { 378 buf[i+0] = JMP8_INSN_OPCODE; 379 buf[i+1] = (s8)imm; 380 381 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2); 382 } 383 } 384 break; 385 } 386 387 if (insn_rip_relative(&insn)) { 388 if (need_reloc(next + insn.displacement.value, src, src_len)) { 389 apply_reloc(insn.displacement.nbytes, 390 buf + i + insn_offset_displacement(&insn), 391 src - dest); 392 } 393 } 394 } 395 } 396 397 /* Low-level backend functions usable from alternative code replacements. */ 398 DEFINE_ASM_FUNC(nop_func, "", .entry.text); 399 EXPORT_SYMBOL_GPL(nop_func); 400 401 noinstr void BUG_func(void) 402 { 403 BUG(); 404 } 405 EXPORT_SYMBOL(BUG_func); 406 407 #define CALL_RIP_REL_OPCODE 0xff 408 #define CALL_RIP_REL_MODRM 0x15 409 410 /* 411 * Rewrite the "call BUG_func" replacement to point to the target of the 412 * indirect pv_ops call "call *disp(%ip)". 413 */ 414 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a) 415 { 416 void *target, *bug = &BUG_func; 417 s32 disp; 418 419 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) { 420 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n"); 421 BUG(); 422 } 423 424 if (a->instrlen != 6 || 425 instr[0] != CALL_RIP_REL_OPCODE || 426 instr[1] != CALL_RIP_REL_MODRM) { 427 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n"); 428 BUG(); 429 } 430 431 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */ 432 disp = *(s32 *)(instr + 2); 433 #ifdef CONFIG_X86_64 434 /* ff 15 00 00 00 00 call *0x0(%rip) */ 435 /* target address is stored at "next instruction + disp". */ 436 target = *(void **)(instr + a->instrlen + disp); 437 #else 438 /* ff 15 00 00 00 00 call *0x0 */ 439 /* target address is stored at disp. */ 440 target = *(void **)disp; 441 #endif 442 if (!target) 443 target = bug; 444 445 /* (BUG_func - .) + (target - BUG_func) := target - . */ 446 *(s32 *)(insn_buff + 1) += target - bug; 447 448 if (target == &nop_func) 449 return 0; 450 451 return 5; 452 } 453 454 /* 455 * Replace instructions with better alternatives for this CPU type. This runs 456 * before SMP is initialized to avoid SMP problems with self modifying code. 457 * This implies that asymmetric systems where APs have less capabilities than 458 * the boot processor are not handled. Tough. Make sure you disable such 459 * features by hand. 460 * 461 * Marked "noinline" to cause control flow change and thus insn cache 462 * to refetch changed I$ lines. 463 */ 464 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 465 struct alt_instr *end) 466 { 467 struct alt_instr *a; 468 u8 *instr, *replacement; 469 u8 insn_buff[MAX_PATCH_LEN]; 470 471 DPRINTK(ALT, "alt table %px, -> %px", start, end); 472 473 /* 474 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using 475 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here. 476 * During the process, KASAN becomes confused seeing partial LA57 477 * conversion and triggers a false-positive out-of-bound report. 478 * 479 * Disable KASAN until the patching is complete. 480 */ 481 kasan_disable_current(); 482 483 /* 484 * The scan order should be from start to end. A later scanned 485 * alternative code can overwrite previously scanned alternative code. 486 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 487 * patch code. 488 * 489 * So be careful if you want to change the scan order to any other 490 * order. 491 */ 492 for (a = start; a < end; a++) { 493 int insn_buff_sz = 0; 494 495 instr = (u8 *)&a->instr_offset + a->instr_offset; 496 replacement = (u8 *)&a->repl_offset + a->repl_offset; 497 BUG_ON(a->instrlen > sizeof(insn_buff)); 498 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); 499 500 /* 501 * Patch if either: 502 * - feature is present 503 * - feature not present but ALT_FLAG_NOT is set to mean, 504 * patch if feature is *NOT* present. 505 */ 506 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) { 507 optimize_nops_inplace(instr, a->instrlen); 508 continue; 509 } 510 511 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x", 512 a->cpuid >> 5, 513 a->cpuid & 0x1f, 514 instr, instr, a->instrlen, 515 replacement, a->replacementlen, a->flags); 516 517 memcpy(insn_buff, replacement, a->replacementlen); 518 insn_buff_sz = a->replacementlen; 519 520 if (a->flags & ALT_FLAG_DIRECT_CALL) { 521 insn_buff_sz = alt_replace_call(instr, insn_buff, a); 522 if (insn_buff_sz < 0) 523 continue; 524 } 525 526 for (; insn_buff_sz < a->instrlen; insn_buff_sz++) 527 insn_buff[insn_buff_sz] = 0x90; 528 529 apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen); 530 531 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr); 532 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement); 533 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr); 534 535 text_poke_early(instr, insn_buff, insn_buff_sz); 536 } 537 538 kasan_enable_current(); 539 } 540 541 static inline bool is_jcc32(struct insn *insn) 542 { 543 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ 544 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80; 545 } 546 547 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL) 548 549 /* 550 * CALL/JMP *%\reg 551 */ 552 static int emit_indirect(int op, int reg, u8 *bytes) 553 { 554 int i = 0; 555 u8 modrm; 556 557 switch (op) { 558 case CALL_INSN_OPCODE: 559 modrm = 0x10; /* Reg = 2; CALL r/m */ 560 break; 561 562 case JMP32_INSN_OPCODE: 563 modrm = 0x20; /* Reg = 4; JMP r/m */ 564 break; 565 566 default: 567 WARN_ON_ONCE(1); 568 return -1; 569 } 570 571 if (reg >= 8) { 572 bytes[i++] = 0x41; /* REX.B prefix */ 573 reg -= 8; 574 } 575 576 modrm |= 0xc0; /* Mod = 3 */ 577 modrm += reg; 578 579 bytes[i++] = 0xff; /* opcode */ 580 bytes[i++] = modrm; 581 582 return i; 583 } 584 585 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes) 586 { 587 u8 op = insn->opcode.bytes[0]; 588 int i = 0; 589 590 /* 591 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional 592 * tail-calls. Deal with them. 593 */ 594 if (is_jcc32(insn)) { 595 bytes[i++] = op; 596 op = insn->opcode.bytes[1]; 597 goto clang_jcc; 598 } 599 600 if (insn->length == 6) 601 bytes[i++] = 0x2e; /* CS-prefix */ 602 603 switch (op) { 604 case CALL_INSN_OPCODE: 605 __text_gen_insn(bytes+i, op, addr+i, 606 __x86_indirect_call_thunk_array[reg], 607 CALL_INSN_SIZE); 608 i += CALL_INSN_SIZE; 609 break; 610 611 case JMP32_INSN_OPCODE: 612 clang_jcc: 613 __text_gen_insn(bytes+i, op, addr+i, 614 __x86_indirect_jump_thunk_array[reg], 615 JMP32_INSN_SIZE); 616 i += JMP32_INSN_SIZE; 617 break; 618 619 default: 620 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr); 621 return -1; 622 } 623 624 WARN_ON_ONCE(i != insn->length); 625 626 return i; 627 } 628 629 /* 630 * Rewrite the compiler generated retpoline thunk calls. 631 * 632 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate 633 * indirect instructions, avoiding the extra indirection. 634 * 635 * For example, convert: 636 * 637 * CALL __x86_indirect_thunk_\reg 638 * 639 * into: 640 * 641 * CALL *%\reg 642 * 643 * It also tries to inline spectre_v2=retpoline,lfence when size permits. 644 */ 645 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) 646 { 647 retpoline_thunk_t *target; 648 int reg, ret, i = 0; 649 u8 op, cc; 650 651 target = addr + insn->length + insn->immediate.value; 652 reg = target - __x86_indirect_thunk_array; 653 654 if (WARN_ON_ONCE(reg & ~0xf)) 655 return -1; 656 657 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ 658 BUG_ON(reg == 4); 659 660 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && 661 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 662 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 663 return emit_call_track_retpoline(addr, insn, reg, bytes); 664 665 return -1; 666 } 667 668 op = insn->opcode.bytes[0]; 669 670 /* 671 * Convert: 672 * 673 * Jcc.d32 __x86_indirect_thunk_\reg 674 * 675 * into: 676 * 677 * Jncc.d8 1f 678 * [ LFENCE ] 679 * JMP *%\reg 680 * [ NOP ] 681 * 1: 682 */ 683 if (is_jcc32(insn)) { 684 cc = insn->opcode.bytes[1] & 0xf; 685 cc ^= 1; /* invert condition */ 686 687 bytes[i++] = 0x70 + cc; /* Jcc.d8 */ 688 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ 689 690 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ 691 op = JMP32_INSN_OPCODE; 692 } 693 694 /* 695 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. 696 */ 697 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 698 bytes[i++] = 0x0f; 699 bytes[i++] = 0xae; 700 bytes[i++] = 0xe8; /* LFENCE */ 701 } 702 703 ret = emit_indirect(op, reg, bytes + i); 704 if (ret < 0) 705 return ret; 706 i += ret; 707 708 /* 709 * The compiler is supposed to EMIT an INT3 after every unconditional 710 * JMP instruction due to AMD BTC. However, if the compiler is too old 711 * or MITIGATION_SLS isn't enabled, we still need an INT3 after 712 * indirect JMPs even on Intel. 713 */ 714 if (op == JMP32_INSN_OPCODE && i < insn->length) 715 bytes[i++] = INT3_INSN_OPCODE; 716 717 for (; i < insn->length;) 718 bytes[i++] = BYTES_NOP1; 719 720 return i; 721 } 722 723 /* 724 * Generated by 'objtool --retpoline'. 725 */ 726 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) 727 { 728 s32 *s; 729 730 for (s = start; s < end; s++) { 731 void *addr = (void *)s + *s; 732 struct insn insn; 733 int len, ret; 734 u8 bytes[16]; 735 u8 op1, op2; 736 737 ret = insn_decode_kernel(&insn, addr); 738 if (WARN_ON_ONCE(ret < 0)) 739 continue; 740 741 op1 = insn.opcode.bytes[0]; 742 op2 = insn.opcode.bytes[1]; 743 744 switch (op1) { 745 case CALL_INSN_OPCODE: 746 case JMP32_INSN_OPCODE: 747 break; 748 749 case 0x0f: /* escape */ 750 if (op2 >= 0x80 && op2 <= 0x8f) 751 break; 752 fallthrough; 753 default: 754 WARN_ON_ONCE(1); 755 continue; 756 } 757 758 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS", 759 addr, addr, insn.length, 760 addr + insn.length + insn.immediate.value); 761 762 len = patch_retpoline(addr, &insn, bytes); 763 if (len == insn.length) { 764 optimize_nops(bytes, len); 765 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr); 766 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr); 767 text_poke_early(addr, bytes, len); 768 } 769 } 770 } 771 772 #ifdef CONFIG_MITIGATION_RETHUNK 773 774 /* 775 * Rewrite the compiler generated return thunk tail-calls. 776 * 777 * For example, convert: 778 * 779 * JMP __x86_return_thunk 780 * 781 * into: 782 * 783 * RET 784 */ 785 static int patch_return(void *addr, struct insn *insn, u8 *bytes) 786 { 787 int i = 0; 788 789 /* Patch the custom return thunks... */ 790 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) { 791 i = JMP32_INSN_SIZE; 792 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i); 793 } else { 794 /* ... or patch them out if not needed. */ 795 bytes[i++] = RET_INSN_OPCODE; 796 } 797 798 for (; i < insn->length;) 799 bytes[i++] = INT3_INSN_OPCODE; 800 return i; 801 } 802 803 void __init_or_module noinline apply_returns(s32 *start, s32 *end) 804 { 805 s32 *s; 806 807 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) 808 static_call_force_reinit(); 809 810 for (s = start; s < end; s++) { 811 void *dest = NULL, *addr = (void *)s + *s; 812 struct insn insn; 813 int len, ret; 814 u8 bytes[16]; 815 u8 op; 816 817 ret = insn_decode_kernel(&insn, addr); 818 if (WARN_ON_ONCE(ret < 0)) 819 continue; 820 821 op = insn.opcode.bytes[0]; 822 if (op == JMP32_INSN_OPCODE) 823 dest = addr + insn.length + insn.immediate.value; 824 825 if (__static_call_fixup(addr, op, dest) || 826 WARN_ONCE(dest != &__x86_return_thunk, 827 "missing return thunk: %pS-%pS: %*ph", 828 addr, dest, 5, addr)) 829 continue; 830 831 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS", 832 addr, addr, insn.length, 833 addr + insn.length + insn.immediate.value); 834 835 len = patch_return(addr, &insn, bytes); 836 if (len == insn.length) { 837 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr); 838 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr); 839 text_poke_early(addr, bytes, len); 840 } 841 } 842 } 843 #else 844 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 845 #endif /* CONFIG_MITIGATION_RETHUNK */ 846 847 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ 848 849 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } 850 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 851 852 #endif /* CONFIG_MITIGATION_RETPOLINE && CONFIG_OBJTOOL */ 853 854 #ifdef CONFIG_X86_KERNEL_IBT 855 856 static void poison_cfi(void *addr); 857 858 static void __init_or_module poison_endbr(void *addr, bool warn) 859 { 860 u32 endbr, poison = gen_endbr_poison(); 861 862 if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr))) 863 return; 864 865 if (!is_endbr(endbr)) { 866 WARN_ON_ONCE(warn); 867 return; 868 } 869 870 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr); 871 872 /* 873 * When we have IBT, the lack of ENDBR will trigger #CP 874 */ 875 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr); 876 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr); 877 text_poke_early(addr, &poison, 4); 878 } 879 880 /* 881 * Generated by: objtool --ibt 882 * 883 * Seal the functions for indirect calls by clobbering the ENDBR instructions 884 * and the kCFI hash value. 885 */ 886 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end) 887 { 888 s32 *s; 889 890 for (s = start; s < end; s++) { 891 void *addr = (void *)s + *s; 892 893 poison_endbr(addr, true); 894 if (IS_ENABLED(CONFIG_FINEIBT)) 895 poison_cfi(addr - 16); 896 } 897 } 898 899 #else 900 901 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { } 902 903 #endif /* CONFIG_X86_KERNEL_IBT */ 904 905 #ifdef CONFIG_FINEIBT 906 #define __CFI_DEFAULT CFI_DEFAULT 907 #elif defined(CONFIG_CFI_CLANG) 908 #define __CFI_DEFAULT CFI_KCFI 909 #else 910 #define __CFI_DEFAULT CFI_OFF 911 #endif 912 913 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT; 914 915 #ifdef CONFIG_CFI_CLANG 916 struct bpf_insn; 917 918 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */ 919 extern unsigned int __bpf_prog_runX(const void *ctx, 920 const struct bpf_insn *insn); 921 922 /* 923 * Force a reference to the external symbol so the compiler generates 924 * __kcfi_typid. 925 */ 926 __ADDRESSABLE(__bpf_prog_runX); 927 928 /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */ 929 asm ( 930 " .pushsection .data..ro_after_init,\"aw\",@progbits \n" 931 " .type cfi_bpf_hash,@object \n" 932 " .globl cfi_bpf_hash \n" 933 " .p2align 2, 0x0 \n" 934 "cfi_bpf_hash: \n" 935 " .long __kcfi_typeid___bpf_prog_runX \n" 936 " .size cfi_bpf_hash, 4 \n" 937 " .popsection \n" 938 ); 939 940 /* Must match bpf_callback_t */ 941 extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64); 942 943 __ADDRESSABLE(__bpf_callback_fn); 944 945 /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */ 946 asm ( 947 " .pushsection .data..ro_after_init,\"aw\",@progbits \n" 948 " .type cfi_bpf_subprog_hash,@object \n" 949 " .globl cfi_bpf_subprog_hash \n" 950 " .p2align 2, 0x0 \n" 951 "cfi_bpf_subprog_hash: \n" 952 " .long __kcfi_typeid___bpf_callback_fn \n" 953 " .size cfi_bpf_subprog_hash, 4 \n" 954 " .popsection \n" 955 ); 956 957 u32 cfi_get_func_hash(void *func) 958 { 959 u32 hash; 960 961 func -= cfi_get_offset(); 962 switch (cfi_mode) { 963 case CFI_FINEIBT: 964 func += 7; 965 break; 966 case CFI_KCFI: 967 func += 1; 968 break; 969 default: 970 return 0; 971 } 972 973 if (get_kernel_nofault(hash, func)) 974 return 0; 975 976 return hash; 977 } 978 #endif 979 980 #ifdef CONFIG_FINEIBT 981 982 static bool cfi_rand __ro_after_init = true; 983 static u32 cfi_seed __ro_after_init; 984 985 /* 986 * Re-hash the CFI hash with a boot-time seed while making sure the result is 987 * not a valid ENDBR instruction. 988 */ 989 static u32 cfi_rehash(u32 hash) 990 { 991 hash ^= cfi_seed; 992 while (unlikely(is_endbr(hash) || is_endbr(-hash))) { 993 bool lsb = hash & 1; 994 hash >>= 1; 995 if (lsb) 996 hash ^= 0x80200003; 997 } 998 return hash; 999 } 1000 1001 static __init int cfi_parse_cmdline(char *str) 1002 { 1003 if (!str) 1004 return -EINVAL; 1005 1006 while (str) { 1007 char *next = strchr(str, ','); 1008 if (next) { 1009 *next = 0; 1010 next++; 1011 } 1012 1013 if (!strcmp(str, "auto")) { 1014 cfi_mode = CFI_DEFAULT; 1015 } else if (!strcmp(str, "off")) { 1016 cfi_mode = CFI_OFF; 1017 cfi_rand = false; 1018 } else if (!strcmp(str, "kcfi")) { 1019 cfi_mode = CFI_KCFI; 1020 } else if (!strcmp(str, "fineibt")) { 1021 cfi_mode = CFI_FINEIBT; 1022 } else if (!strcmp(str, "norand")) { 1023 cfi_rand = false; 1024 } else { 1025 pr_err("Ignoring unknown cfi option (%s).", str); 1026 } 1027 1028 str = next; 1029 } 1030 1031 return 0; 1032 } 1033 early_param("cfi", cfi_parse_cmdline); 1034 1035 /* 1036 * kCFI FineIBT 1037 * 1038 * __cfi_\func: __cfi_\func: 1039 * movl $0x12345678,%eax // 5 endbr64 // 4 1040 * nop subl $0x12345678,%r10d // 7 1041 * nop jz 1f // 2 1042 * nop ud2 // 2 1043 * nop 1: nop // 1 1044 * nop 1045 * nop 1046 * nop 1047 * nop 1048 * nop 1049 * nop 1050 * nop 1051 * 1052 * 1053 * caller: caller: 1054 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6 1055 * addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4 1056 * je 1f // 2 nop4 // 4 1057 * ud2 // 2 1058 * 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5 1059 * 1060 */ 1061 1062 asm( ".pushsection .rodata \n" 1063 "fineibt_preamble_start: \n" 1064 " endbr64 \n" 1065 " subl $0x12345678, %r10d \n" 1066 " je fineibt_preamble_end \n" 1067 " ud2 \n" 1068 " nop \n" 1069 "fineibt_preamble_end: \n" 1070 ".popsection\n" 1071 ); 1072 1073 extern u8 fineibt_preamble_start[]; 1074 extern u8 fineibt_preamble_end[]; 1075 1076 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start) 1077 #define fineibt_preamble_hash 7 1078 1079 asm( ".pushsection .rodata \n" 1080 "fineibt_caller_start: \n" 1081 " movl $0x12345678, %r10d \n" 1082 " sub $16, %r11 \n" 1083 ASM_NOP4 1084 "fineibt_caller_end: \n" 1085 ".popsection \n" 1086 ); 1087 1088 extern u8 fineibt_caller_start[]; 1089 extern u8 fineibt_caller_end[]; 1090 1091 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start) 1092 #define fineibt_caller_hash 2 1093 1094 #define fineibt_caller_jmp (fineibt_caller_size - 2) 1095 1096 static u32 decode_preamble_hash(void *addr) 1097 { 1098 u8 *p = addr; 1099 1100 /* b8 78 56 34 12 mov $0x12345678,%eax */ 1101 if (p[0] == 0xb8) 1102 return *(u32 *)(addr + 1); 1103 1104 return 0; /* invalid hash value */ 1105 } 1106 1107 static u32 decode_caller_hash(void *addr) 1108 { 1109 u8 *p = addr; 1110 1111 /* 41 ba 78 56 34 12 mov $0x12345678,%r10d */ 1112 if (p[0] == 0x41 && p[1] == 0xba) 1113 return -*(u32 *)(addr + 2); 1114 1115 /* e8 0c 78 56 34 12 jmp.d8 +12 */ 1116 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp) 1117 return -*(u32 *)(addr + 2); 1118 1119 return 0; /* invalid hash value */ 1120 } 1121 1122 /* .retpoline_sites */ 1123 static int cfi_disable_callers(s32 *start, s32 *end) 1124 { 1125 /* 1126 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate 1127 * in tact for later usage. Also see decode_caller_hash() and 1128 * cfi_rewrite_callers(). 1129 */ 1130 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp }; 1131 s32 *s; 1132 1133 for (s = start; s < end; s++) { 1134 void *addr = (void *)s + *s; 1135 u32 hash; 1136 1137 addr -= fineibt_caller_size; 1138 hash = decode_caller_hash(addr); 1139 if (!hash) /* nocfi callers */ 1140 continue; 1141 1142 text_poke_early(addr, jmp, 2); 1143 } 1144 1145 return 0; 1146 } 1147 1148 static int cfi_enable_callers(s32 *start, s32 *end) 1149 { 1150 /* 1151 * Re-enable kCFI, undo what cfi_disable_callers() did. 1152 */ 1153 const u8 mov[] = { 0x41, 0xba }; 1154 s32 *s; 1155 1156 for (s = start; s < end; s++) { 1157 void *addr = (void *)s + *s; 1158 u32 hash; 1159 1160 addr -= fineibt_caller_size; 1161 hash = decode_caller_hash(addr); 1162 if (!hash) /* nocfi callers */ 1163 continue; 1164 1165 text_poke_early(addr, mov, 2); 1166 } 1167 1168 return 0; 1169 } 1170 1171 /* .cfi_sites */ 1172 static int cfi_rand_preamble(s32 *start, s32 *end) 1173 { 1174 s32 *s; 1175 1176 for (s = start; s < end; s++) { 1177 void *addr = (void *)s + *s; 1178 u32 hash; 1179 1180 hash = decode_preamble_hash(addr); 1181 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1182 addr, addr, 5, addr)) 1183 return -EINVAL; 1184 1185 hash = cfi_rehash(hash); 1186 text_poke_early(addr + 1, &hash, 4); 1187 } 1188 1189 return 0; 1190 } 1191 1192 static int cfi_rewrite_preamble(s32 *start, s32 *end) 1193 { 1194 s32 *s; 1195 1196 for (s = start; s < end; s++) { 1197 void *addr = (void *)s + *s; 1198 u32 hash; 1199 1200 hash = decode_preamble_hash(addr); 1201 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1202 addr, addr, 5, addr)) 1203 return -EINVAL; 1204 1205 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size); 1206 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678); 1207 text_poke_early(addr + fineibt_preamble_hash, &hash, 4); 1208 } 1209 1210 return 0; 1211 } 1212 1213 static void cfi_rewrite_endbr(s32 *start, s32 *end) 1214 { 1215 s32 *s; 1216 1217 for (s = start; s < end; s++) { 1218 void *addr = (void *)s + *s; 1219 1220 poison_endbr(addr+16, false); 1221 } 1222 } 1223 1224 /* .retpoline_sites */ 1225 static int cfi_rand_callers(s32 *start, s32 *end) 1226 { 1227 s32 *s; 1228 1229 for (s = start; s < end; s++) { 1230 void *addr = (void *)s + *s; 1231 u32 hash; 1232 1233 addr -= fineibt_caller_size; 1234 hash = decode_caller_hash(addr); 1235 if (hash) { 1236 hash = -cfi_rehash(hash); 1237 text_poke_early(addr + 2, &hash, 4); 1238 } 1239 } 1240 1241 return 0; 1242 } 1243 1244 static int cfi_rewrite_callers(s32 *start, s32 *end) 1245 { 1246 s32 *s; 1247 1248 for (s = start; s < end; s++) { 1249 void *addr = (void *)s + *s; 1250 u32 hash; 1251 1252 addr -= fineibt_caller_size; 1253 hash = decode_caller_hash(addr); 1254 if (hash) { 1255 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size); 1256 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678); 1257 text_poke_early(addr + fineibt_caller_hash, &hash, 4); 1258 } 1259 /* rely on apply_retpolines() */ 1260 } 1261 1262 return 0; 1263 } 1264 1265 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1266 s32 *start_cfi, s32 *end_cfi, bool builtin) 1267 { 1268 int ret; 1269 1270 if (WARN_ONCE(fineibt_preamble_size != 16, 1271 "FineIBT preamble wrong size: %ld", fineibt_preamble_size)) 1272 return; 1273 1274 if (cfi_mode == CFI_DEFAULT) { 1275 cfi_mode = CFI_KCFI; 1276 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) 1277 cfi_mode = CFI_FINEIBT; 1278 } 1279 1280 /* 1281 * Rewrite the callers to not use the __cfi_ stubs, such that we might 1282 * rewrite them. This disables all CFI. If this succeeds but any of the 1283 * later stages fails, we're without CFI. 1284 */ 1285 ret = cfi_disable_callers(start_retpoline, end_retpoline); 1286 if (ret) 1287 goto err; 1288 1289 if (cfi_rand) { 1290 if (builtin) { 1291 cfi_seed = get_random_u32(); 1292 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash); 1293 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash); 1294 } 1295 1296 ret = cfi_rand_preamble(start_cfi, end_cfi); 1297 if (ret) 1298 goto err; 1299 1300 ret = cfi_rand_callers(start_retpoline, end_retpoline); 1301 if (ret) 1302 goto err; 1303 } 1304 1305 switch (cfi_mode) { 1306 case CFI_OFF: 1307 if (builtin) 1308 pr_info("Disabling CFI\n"); 1309 return; 1310 1311 case CFI_KCFI: 1312 ret = cfi_enable_callers(start_retpoline, end_retpoline); 1313 if (ret) 1314 goto err; 1315 1316 if (builtin) 1317 pr_info("Using kCFI\n"); 1318 return; 1319 1320 case CFI_FINEIBT: 1321 /* place the FineIBT preamble at func()-16 */ 1322 ret = cfi_rewrite_preamble(start_cfi, end_cfi); 1323 if (ret) 1324 goto err; 1325 1326 /* rewrite the callers to target func()-16 */ 1327 ret = cfi_rewrite_callers(start_retpoline, end_retpoline); 1328 if (ret) 1329 goto err; 1330 1331 /* now that nobody targets func()+0, remove ENDBR there */ 1332 cfi_rewrite_endbr(start_cfi, end_cfi); 1333 1334 if (builtin) 1335 pr_info("Using FineIBT CFI\n"); 1336 return; 1337 1338 default: 1339 break; 1340 } 1341 1342 err: 1343 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n"); 1344 } 1345 1346 static inline void poison_hash(void *addr) 1347 { 1348 *(u32 *)addr = 0; 1349 } 1350 1351 static void poison_cfi(void *addr) 1352 { 1353 switch (cfi_mode) { 1354 case CFI_FINEIBT: 1355 /* 1356 * __cfi_\func: 1357 * osp nopl (%rax) 1358 * subl $0, %r10d 1359 * jz 1f 1360 * ud2 1361 * 1: nop 1362 */ 1363 poison_endbr(addr, false); 1364 poison_hash(addr + fineibt_preamble_hash); 1365 break; 1366 1367 case CFI_KCFI: 1368 /* 1369 * __cfi_\func: 1370 * movl $0, %eax 1371 * .skip 11, 0x90 1372 */ 1373 poison_hash(addr + 1); 1374 break; 1375 1376 default: 1377 break; 1378 } 1379 } 1380 1381 #else 1382 1383 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1384 s32 *start_cfi, s32 *end_cfi, bool builtin) 1385 { 1386 } 1387 1388 #ifdef CONFIG_X86_KERNEL_IBT 1389 static void poison_cfi(void *addr) { } 1390 #endif 1391 1392 #endif 1393 1394 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1395 s32 *start_cfi, s32 *end_cfi) 1396 { 1397 return __apply_fineibt(start_retpoline, end_retpoline, 1398 start_cfi, end_cfi, 1399 /* .builtin = */ false); 1400 } 1401 1402 #ifdef CONFIG_SMP 1403 static void alternatives_smp_lock(const s32 *start, const s32 *end, 1404 u8 *text, u8 *text_end) 1405 { 1406 const s32 *poff; 1407 1408 for (poff = start; poff < end; poff++) { 1409 u8 *ptr = (u8 *)poff + *poff; 1410 1411 if (!*poff || ptr < text || ptr >= text_end) 1412 continue; 1413 /* turn DS segment override prefix into lock prefix */ 1414 if (*ptr == 0x3e) 1415 text_poke(ptr, ((unsigned char []){0xf0}), 1); 1416 } 1417 } 1418 1419 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 1420 u8 *text, u8 *text_end) 1421 { 1422 const s32 *poff; 1423 1424 for (poff = start; poff < end; poff++) { 1425 u8 *ptr = (u8 *)poff + *poff; 1426 1427 if (!*poff || ptr < text || ptr >= text_end) 1428 continue; 1429 /* turn lock prefix into DS segment override prefix */ 1430 if (*ptr == 0xf0) 1431 text_poke(ptr, ((unsigned char []){0x3E}), 1); 1432 } 1433 } 1434 1435 struct smp_alt_module { 1436 /* what is this ??? */ 1437 struct module *mod; 1438 char *name; 1439 1440 /* ptrs to lock prefixes */ 1441 const s32 *locks; 1442 const s32 *locks_end; 1443 1444 /* .text segment, needed to avoid patching init code ;) */ 1445 u8 *text; 1446 u8 *text_end; 1447 1448 struct list_head next; 1449 }; 1450 static LIST_HEAD(smp_alt_modules); 1451 static bool uniproc_patched = false; /* protected by text_mutex */ 1452 1453 void __init_or_module alternatives_smp_module_add(struct module *mod, 1454 char *name, 1455 void *locks, void *locks_end, 1456 void *text, void *text_end) 1457 { 1458 struct smp_alt_module *smp; 1459 1460 mutex_lock(&text_mutex); 1461 if (!uniproc_patched) 1462 goto unlock; 1463 1464 if (num_possible_cpus() == 1) 1465 /* Don't bother remembering, we'll never have to undo it. */ 1466 goto smp_unlock; 1467 1468 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 1469 if (NULL == smp) 1470 /* we'll run the (safe but slow) SMP code then ... */ 1471 goto unlock; 1472 1473 smp->mod = mod; 1474 smp->name = name; 1475 smp->locks = locks; 1476 smp->locks_end = locks_end; 1477 smp->text = text; 1478 smp->text_end = text_end; 1479 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n", 1480 smp->locks, smp->locks_end, 1481 smp->text, smp->text_end, smp->name); 1482 1483 list_add_tail(&smp->next, &smp_alt_modules); 1484 smp_unlock: 1485 alternatives_smp_unlock(locks, locks_end, text, text_end); 1486 unlock: 1487 mutex_unlock(&text_mutex); 1488 } 1489 1490 void __init_or_module alternatives_smp_module_del(struct module *mod) 1491 { 1492 struct smp_alt_module *item; 1493 1494 mutex_lock(&text_mutex); 1495 list_for_each_entry(item, &smp_alt_modules, next) { 1496 if (mod != item->mod) 1497 continue; 1498 list_del(&item->next); 1499 kfree(item); 1500 break; 1501 } 1502 mutex_unlock(&text_mutex); 1503 } 1504 1505 void alternatives_enable_smp(void) 1506 { 1507 struct smp_alt_module *mod; 1508 1509 /* Why bother if there are no other CPUs? */ 1510 BUG_ON(num_possible_cpus() == 1); 1511 1512 mutex_lock(&text_mutex); 1513 1514 if (uniproc_patched) { 1515 pr_info("switching to SMP code\n"); 1516 BUG_ON(num_online_cpus() != 1); 1517 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 1518 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 1519 list_for_each_entry(mod, &smp_alt_modules, next) 1520 alternatives_smp_lock(mod->locks, mod->locks_end, 1521 mod->text, mod->text_end); 1522 uniproc_patched = false; 1523 } 1524 mutex_unlock(&text_mutex); 1525 } 1526 1527 /* 1528 * Return 1 if the address range is reserved for SMP-alternatives. 1529 * Must hold text_mutex. 1530 */ 1531 int alternatives_text_reserved(void *start, void *end) 1532 { 1533 struct smp_alt_module *mod; 1534 const s32 *poff; 1535 u8 *text_start = start; 1536 u8 *text_end = end; 1537 1538 lockdep_assert_held(&text_mutex); 1539 1540 list_for_each_entry(mod, &smp_alt_modules, next) { 1541 if (mod->text > text_end || mod->text_end < text_start) 1542 continue; 1543 for (poff = mod->locks; poff < mod->locks_end; poff++) { 1544 const u8 *ptr = (const u8 *)poff + *poff; 1545 1546 if (text_start <= ptr && text_end > ptr) 1547 return 1; 1548 } 1549 } 1550 1551 return 0; 1552 } 1553 #endif /* CONFIG_SMP */ 1554 1555 /* 1556 * Self-test for the INT3 based CALL emulation code. 1557 * 1558 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up 1559 * properly and that there is a stack gap between the INT3 frame and the 1560 * previous context. Without this gap doing a virtual PUSH on the interrupted 1561 * stack would corrupt the INT3 IRET frame. 1562 * 1563 * See entry_{32,64}.S for more details. 1564 */ 1565 1566 /* 1567 * We define the int3_magic() function in assembly to control the calling 1568 * convention such that we can 'call' it from assembly. 1569 */ 1570 1571 extern void int3_magic(unsigned int *ptr); /* defined in asm */ 1572 1573 asm ( 1574 " .pushsection .init.text, \"ax\", @progbits\n" 1575 " .type int3_magic, @function\n" 1576 "int3_magic:\n" 1577 ANNOTATE_NOENDBR 1578 " movl $1, (%" _ASM_ARG1 ")\n" 1579 ASM_RET 1580 " .size int3_magic, .-int3_magic\n" 1581 " .popsection\n" 1582 ); 1583 1584 extern void int3_selftest_ip(void); /* defined in asm below */ 1585 1586 static int __init 1587 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) 1588 { 1589 unsigned long selftest = (unsigned long)&int3_selftest_ip; 1590 struct die_args *args = data; 1591 struct pt_regs *regs = args->regs; 1592 1593 OPTIMIZER_HIDE_VAR(selftest); 1594 1595 if (!regs || user_mode(regs)) 1596 return NOTIFY_DONE; 1597 1598 if (val != DIE_INT3) 1599 return NOTIFY_DONE; 1600 1601 if (regs->ip - INT3_INSN_SIZE != selftest) 1602 return NOTIFY_DONE; 1603 1604 int3_emulate_call(regs, (unsigned long)&int3_magic); 1605 return NOTIFY_STOP; 1606 } 1607 1608 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */ 1609 static noinline void __init int3_selftest(void) 1610 { 1611 static __initdata struct notifier_block int3_exception_nb = { 1612 .notifier_call = int3_exception_notify, 1613 .priority = INT_MAX-1, /* last */ 1614 }; 1615 unsigned int val = 0; 1616 1617 BUG_ON(register_die_notifier(&int3_exception_nb)); 1618 1619 /* 1620 * Basically: int3_magic(&val); but really complicated :-) 1621 * 1622 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb 1623 * notifier above will emulate CALL for us. 1624 */ 1625 asm volatile ("int3_selftest_ip:\n\t" 1626 ANNOTATE_NOENDBR 1627 " int3; nop; nop; nop; nop\n\t" 1628 : ASM_CALL_CONSTRAINT 1629 : __ASM_SEL_RAW(a, D) (&val) 1630 : "memory"); 1631 1632 BUG_ON(val != 1); 1633 1634 unregister_die_notifier(&int3_exception_nb); 1635 } 1636 1637 static __initdata int __alt_reloc_selftest_addr; 1638 1639 extern void __init __alt_reloc_selftest(void *arg); 1640 __visible noinline void __init __alt_reloc_selftest(void *arg) 1641 { 1642 WARN_ON(arg != &__alt_reloc_selftest_addr); 1643 } 1644 1645 static noinline void __init alt_reloc_selftest(void) 1646 { 1647 /* 1648 * Tests apply_relocation(). 1649 * 1650 * This has a relative immediate (CALL) in a place other than the first 1651 * instruction and additionally on x86_64 we get a RIP-relative LEA: 1652 * 1653 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c 1654 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4 1655 * 1656 * Getting this wrong will either crash and burn or tickle the WARN 1657 * above. 1658 */ 1659 asm_inline volatile ( 1660 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS) 1661 : /* output */ 1662 : [mem] "m" (__alt_reloc_selftest_addr) 1663 : _ASM_ARG1 1664 ); 1665 } 1666 1667 void __init alternative_instructions(void) 1668 { 1669 int3_selftest(); 1670 1671 /* 1672 * The patching is not fully atomic, so try to avoid local 1673 * interruptions that might execute the to be patched code. 1674 * Other CPUs are not running. 1675 */ 1676 stop_nmi(); 1677 1678 /* 1679 * Don't stop machine check exceptions while patching. 1680 * MCEs only happen when something got corrupted and in this 1681 * case we must do something about the corruption. 1682 * Ignoring it is worse than an unlikely patching race. 1683 * Also machine checks tend to be broadcast and if one CPU 1684 * goes into machine check the others follow quickly, so we don't 1685 * expect a machine check to cause undue problems during to code 1686 * patching. 1687 */ 1688 1689 /* 1690 * Make sure to set (artificial) features depending on used paravirt 1691 * functions which can later influence alternative patching. 1692 */ 1693 paravirt_set_cap(); 1694 1695 __apply_fineibt(__retpoline_sites, __retpoline_sites_end, 1696 __cfi_sites, __cfi_sites_end, true); 1697 1698 /* 1699 * Rewrite the retpolines, must be done before alternatives since 1700 * those can rewrite the retpoline thunks. 1701 */ 1702 apply_retpolines(__retpoline_sites, __retpoline_sites_end); 1703 apply_returns(__return_sites, __return_sites_end); 1704 1705 apply_alternatives(__alt_instructions, __alt_instructions_end); 1706 1707 /* 1708 * Now all calls are established. Apply the call thunks if 1709 * required. 1710 */ 1711 callthunks_patch_builtin_calls(); 1712 1713 /* 1714 * Seal all functions that do not have their address taken. 1715 */ 1716 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end); 1717 1718 #ifdef CONFIG_SMP 1719 /* Patch to UP if other cpus not imminent. */ 1720 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 1721 uniproc_patched = true; 1722 alternatives_smp_module_add(NULL, "core kernel", 1723 __smp_locks, __smp_locks_end, 1724 _text, _etext); 1725 } 1726 1727 if (!uniproc_patched || num_possible_cpus() == 1) { 1728 free_init_pages("SMP alternatives", 1729 (unsigned long)__smp_locks, 1730 (unsigned long)__smp_locks_end); 1731 } 1732 #endif 1733 1734 restart_nmi(); 1735 alternatives_patched = 1; 1736 1737 alt_reloc_selftest(); 1738 } 1739 1740 /** 1741 * text_poke_early - Update instructions on a live kernel at boot time 1742 * @addr: address to modify 1743 * @opcode: source of the copy 1744 * @len: length to copy 1745 * 1746 * When you use this code to patch more than one byte of an instruction 1747 * you need to make sure that other CPUs cannot execute this code in parallel. 1748 * Also no thread must be currently preempted in the middle of these 1749 * instructions. And on the local CPU you need to be protected against NMI or 1750 * MCE handlers seeing an inconsistent instruction while you patch. 1751 */ 1752 void __init_or_module text_poke_early(void *addr, const void *opcode, 1753 size_t len) 1754 { 1755 unsigned long flags; 1756 1757 if (boot_cpu_has(X86_FEATURE_NX) && 1758 is_module_text_address((unsigned long)addr)) { 1759 /* 1760 * Modules text is marked initially as non-executable, so the 1761 * code cannot be running and speculative code-fetches are 1762 * prevented. Just change the code. 1763 */ 1764 memcpy(addr, opcode, len); 1765 } else { 1766 local_irq_save(flags); 1767 memcpy(addr, opcode, len); 1768 sync_core(); 1769 local_irq_restore(flags); 1770 1771 /* 1772 * Could also do a CLFLUSH here to speed up CPU recovery; but 1773 * that causes hangs on some VIA CPUs. 1774 */ 1775 } 1776 } 1777 1778 typedef struct { 1779 struct mm_struct *mm; 1780 } temp_mm_state_t; 1781 1782 /* 1783 * Using a temporary mm allows to set temporary mappings that are not accessible 1784 * by other CPUs. Such mappings are needed to perform sensitive memory writes 1785 * that override the kernel memory protections (e.g., W^X), without exposing the 1786 * temporary page-table mappings that are required for these write operations to 1787 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the 1788 * mapping is torn down. 1789 * 1790 * Context: The temporary mm needs to be used exclusively by a single core. To 1791 * harden security IRQs must be disabled while the temporary mm is 1792 * loaded, thereby preventing interrupt handler bugs from overriding 1793 * the kernel memory protection. 1794 */ 1795 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) 1796 { 1797 temp_mm_state_t temp_state; 1798 1799 lockdep_assert_irqs_disabled(); 1800 1801 /* 1802 * Make sure not to be in TLB lazy mode, as otherwise we'll end up 1803 * with a stale address space WITHOUT being in lazy mode after 1804 * restoring the previous mm. 1805 */ 1806 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) 1807 leave_mm(); 1808 1809 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1810 switch_mm_irqs_off(NULL, mm, current); 1811 1812 /* 1813 * If breakpoints are enabled, disable them while the temporary mm is 1814 * used. Userspace might set up watchpoints on addresses that are used 1815 * in the temporary mm, which would lead to wrong signals being sent or 1816 * crashes. 1817 * 1818 * Note that breakpoints are not disabled selectively, which also causes 1819 * kernel breakpoints (e.g., perf's) to be disabled. This might be 1820 * undesirable, but still seems reasonable as the code that runs in the 1821 * temporary mm should be short. 1822 */ 1823 if (hw_breakpoint_active()) 1824 hw_breakpoint_disable(); 1825 1826 return temp_state; 1827 } 1828 1829 static inline void unuse_temporary_mm(temp_mm_state_t prev_state) 1830 { 1831 lockdep_assert_irqs_disabled(); 1832 switch_mm_irqs_off(NULL, prev_state.mm, current); 1833 1834 /* 1835 * Restore the breakpoints if they were disabled before the temporary mm 1836 * was loaded. 1837 */ 1838 if (hw_breakpoint_active()) 1839 hw_breakpoint_restore(); 1840 } 1841 1842 __ro_after_init struct mm_struct *poking_mm; 1843 __ro_after_init unsigned long poking_addr; 1844 1845 static void text_poke_memcpy(void *dst, const void *src, size_t len) 1846 { 1847 memcpy(dst, src, len); 1848 } 1849 1850 static void text_poke_memset(void *dst, const void *src, size_t len) 1851 { 1852 int c = *(const int *)src; 1853 1854 memset(dst, c, len); 1855 } 1856 1857 typedef void text_poke_f(void *dst, const void *src, size_t len); 1858 1859 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len) 1860 { 1861 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; 1862 struct page *pages[2] = {NULL}; 1863 temp_mm_state_t prev; 1864 unsigned long flags; 1865 pte_t pte, *ptep; 1866 spinlock_t *ptl; 1867 pgprot_t pgprot; 1868 1869 /* 1870 * While boot memory allocator is running we cannot use struct pages as 1871 * they are not yet initialized. There is no way to recover. 1872 */ 1873 BUG_ON(!after_bootmem); 1874 1875 if (!core_kernel_text((unsigned long)addr)) { 1876 pages[0] = vmalloc_to_page(addr); 1877 if (cross_page_boundary) 1878 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 1879 } else { 1880 pages[0] = virt_to_page(addr); 1881 WARN_ON(!PageReserved(pages[0])); 1882 if (cross_page_boundary) 1883 pages[1] = virt_to_page(addr + PAGE_SIZE); 1884 } 1885 /* 1886 * If something went wrong, crash and burn since recovery paths are not 1887 * implemented. 1888 */ 1889 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); 1890 1891 /* 1892 * Map the page without the global bit, as TLB flushing is done with 1893 * flush_tlb_mm_range(), which is intended for non-global PTEs. 1894 */ 1895 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); 1896 1897 /* 1898 * The lock is not really needed, but this allows to avoid open-coding. 1899 */ 1900 ptep = get_locked_pte(poking_mm, poking_addr, &ptl); 1901 1902 /* 1903 * This must not fail; preallocated in poking_init(). 1904 */ 1905 VM_BUG_ON(!ptep); 1906 1907 local_irq_save(flags); 1908 1909 pte = mk_pte(pages[0], pgprot); 1910 set_pte_at(poking_mm, poking_addr, ptep, pte); 1911 1912 if (cross_page_boundary) { 1913 pte = mk_pte(pages[1], pgprot); 1914 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte); 1915 } 1916 1917 /* 1918 * Loading the temporary mm behaves as a compiler barrier, which 1919 * guarantees that the PTE will be set at the time memcpy() is done. 1920 */ 1921 prev = use_temporary_mm(poking_mm); 1922 1923 kasan_disable_current(); 1924 func((u8 *)poking_addr + offset_in_page(addr), src, len); 1925 kasan_enable_current(); 1926 1927 /* 1928 * Ensure that the PTE is only cleared after the instructions of memcpy 1929 * were issued by using a compiler barrier. 1930 */ 1931 barrier(); 1932 1933 pte_clear(poking_mm, poking_addr, ptep); 1934 if (cross_page_boundary) 1935 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1); 1936 1937 /* 1938 * Loading the previous page-table hierarchy requires a serializing 1939 * instruction that already allows the core to see the updated version. 1940 * Xen-PV is assumed to serialize execution in a similar manner. 1941 */ 1942 unuse_temporary_mm(prev); 1943 1944 /* 1945 * Flushing the TLB might involve IPIs, which would require enabled 1946 * IRQs, but not if the mm is not used, as it is in this point. 1947 */ 1948 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr + 1949 (cross_page_boundary ? 2 : 1) * PAGE_SIZE, 1950 PAGE_SHIFT, false); 1951 1952 if (func == text_poke_memcpy) { 1953 /* 1954 * If the text does not match what we just wrote then something is 1955 * fundamentally screwy; there's nothing we can really do about that. 1956 */ 1957 BUG_ON(memcmp(addr, src, len)); 1958 } 1959 1960 local_irq_restore(flags); 1961 pte_unmap_unlock(ptep, ptl); 1962 return addr; 1963 } 1964 1965 /** 1966 * text_poke - Update instructions on a live kernel 1967 * @addr: address to modify 1968 * @opcode: source of the copy 1969 * @len: length to copy 1970 * 1971 * Only atomic text poke/set should be allowed when not doing early patching. 1972 * It means the size must be writable atomically and the address must be aligned 1973 * in a way that permits an atomic write. It also makes sure we fit on a single 1974 * page. 1975 * 1976 * Note that the caller must ensure that if the modified code is part of a 1977 * module, the module would not be removed during poking. This can be achieved 1978 * by registering a module notifier, and ordering module removal and patching 1979 * through a mutex. 1980 */ 1981 void *text_poke(void *addr, const void *opcode, size_t len) 1982 { 1983 lockdep_assert_held(&text_mutex); 1984 1985 return __text_poke(text_poke_memcpy, addr, opcode, len); 1986 } 1987 1988 /** 1989 * text_poke_kgdb - Update instructions on a live kernel by kgdb 1990 * @addr: address to modify 1991 * @opcode: source of the copy 1992 * @len: length to copy 1993 * 1994 * Only atomic text poke/set should be allowed when not doing early patching. 1995 * It means the size must be writable atomically and the address must be aligned 1996 * in a way that permits an atomic write. It also makes sure we fit on a single 1997 * page. 1998 * 1999 * Context: should only be used by kgdb, which ensures no other core is running, 2000 * despite the fact it does not hold the text_mutex. 2001 */ 2002 void *text_poke_kgdb(void *addr, const void *opcode, size_t len) 2003 { 2004 return __text_poke(text_poke_memcpy, addr, opcode, len); 2005 } 2006 2007 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, 2008 bool core_ok) 2009 { 2010 unsigned long start = (unsigned long)addr; 2011 size_t patched = 0; 2012 2013 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start))) 2014 return NULL; 2015 2016 while (patched < len) { 2017 unsigned long ptr = start + patched; 2018 size_t s; 2019 2020 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2021 2022 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s); 2023 patched += s; 2024 } 2025 return addr; 2026 } 2027 2028 /** 2029 * text_poke_copy - Copy instructions into (an unused part of) RX memory 2030 * @addr: address to modify 2031 * @opcode: source of the copy 2032 * @len: length to copy, could be more than 2x PAGE_SIZE 2033 * 2034 * Not safe against concurrent execution; useful for JITs to dump 2035 * new code blocks into unused regions of RX memory. Can be used in 2036 * conjunction with synchronize_rcu_tasks() to wait for existing 2037 * execution to quiesce after having made sure no existing functions 2038 * pointers are live. 2039 */ 2040 void *text_poke_copy(void *addr, const void *opcode, size_t len) 2041 { 2042 mutex_lock(&text_mutex); 2043 addr = text_poke_copy_locked(addr, opcode, len, false); 2044 mutex_unlock(&text_mutex); 2045 return addr; 2046 } 2047 2048 /** 2049 * text_poke_set - memset into (an unused part of) RX memory 2050 * @addr: address to modify 2051 * @c: the byte to fill the area with 2052 * @len: length to copy, could be more than 2x PAGE_SIZE 2053 * 2054 * This is useful to overwrite unused regions of RX memory with illegal 2055 * instructions. 2056 */ 2057 void *text_poke_set(void *addr, int c, size_t len) 2058 { 2059 unsigned long start = (unsigned long)addr; 2060 size_t patched = 0; 2061 2062 if (WARN_ON_ONCE(core_kernel_text(start))) 2063 return NULL; 2064 2065 mutex_lock(&text_mutex); 2066 while (patched < len) { 2067 unsigned long ptr = start + patched; 2068 size_t s; 2069 2070 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2071 2072 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s); 2073 patched += s; 2074 } 2075 mutex_unlock(&text_mutex); 2076 return addr; 2077 } 2078 2079 static void do_sync_core(void *info) 2080 { 2081 sync_core(); 2082 } 2083 2084 void text_poke_sync(void) 2085 { 2086 on_each_cpu(do_sync_core, NULL, 1); 2087 } 2088 2089 /* 2090 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of 2091 * this thing. When len == 6 everything is prefixed with 0x0f and we map 2092 * opcode to Jcc.d8, using len to distinguish. 2093 */ 2094 struct text_poke_loc { 2095 /* addr := _stext + rel_addr */ 2096 s32 rel_addr; 2097 s32 disp; 2098 u8 len; 2099 u8 opcode; 2100 const u8 text[POKE_MAX_OPCODE_SIZE]; 2101 /* see text_poke_bp_batch() */ 2102 u8 old; 2103 }; 2104 2105 struct bp_patching_desc { 2106 struct text_poke_loc *vec; 2107 int nr_entries; 2108 atomic_t refs; 2109 }; 2110 2111 static struct bp_patching_desc bp_desc; 2112 2113 static __always_inline 2114 struct bp_patching_desc *try_get_desc(void) 2115 { 2116 struct bp_patching_desc *desc = &bp_desc; 2117 2118 if (!raw_atomic_inc_not_zero(&desc->refs)) 2119 return NULL; 2120 2121 return desc; 2122 } 2123 2124 static __always_inline void put_desc(void) 2125 { 2126 struct bp_patching_desc *desc = &bp_desc; 2127 2128 smp_mb__before_atomic(); 2129 raw_atomic_dec(&desc->refs); 2130 } 2131 2132 static __always_inline void *text_poke_addr(struct text_poke_loc *tp) 2133 { 2134 return _stext + tp->rel_addr; 2135 } 2136 2137 static __always_inline int patch_cmp(const void *key, const void *elt) 2138 { 2139 struct text_poke_loc *tp = (struct text_poke_loc *) elt; 2140 2141 if (key < text_poke_addr(tp)) 2142 return -1; 2143 if (key > text_poke_addr(tp)) 2144 return 1; 2145 return 0; 2146 } 2147 2148 noinstr int poke_int3_handler(struct pt_regs *regs) 2149 { 2150 struct bp_patching_desc *desc; 2151 struct text_poke_loc *tp; 2152 int ret = 0; 2153 void *ip; 2154 2155 if (user_mode(regs)) 2156 return 0; 2157 2158 /* 2159 * Having observed our INT3 instruction, we now must observe 2160 * bp_desc with non-zero refcount: 2161 * 2162 * bp_desc.refs = 1 INT3 2163 * WMB RMB 2164 * write INT3 if (bp_desc.refs != 0) 2165 */ 2166 smp_rmb(); 2167 2168 desc = try_get_desc(); 2169 if (!desc) 2170 return 0; 2171 2172 /* 2173 * Discount the INT3. See text_poke_bp_batch(). 2174 */ 2175 ip = (void *) regs->ip - INT3_INSN_SIZE; 2176 2177 /* 2178 * Skip the binary search if there is a single member in the vector. 2179 */ 2180 if (unlikely(desc->nr_entries > 1)) { 2181 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries, 2182 sizeof(struct text_poke_loc), 2183 patch_cmp); 2184 if (!tp) 2185 goto out_put; 2186 } else { 2187 tp = desc->vec; 2188 if (text_poke_addr(tp) != ip) 2189 goto out_put; 2190 } 2191 2192 ip += tp->len; 2193 2194 switch (tp->opcode) { 2195 case INT3_INSN_OPCODE: 2196 /* 2197 * Someone poked an explicit INT3, they'll want to handle it, 2198 * do not consume. 2199 */ 2200 goto out_put; 2201 2202 case RET_INSN_OPCODE: 2203 int3_emulate_ret(regs); 2204 break; 2205 2206 case CALL_INSN_OPCODE: 2207 int3_emulate_call(regs, (long)ip + tp->disp); 2208 break; 2209 2210 case JMP32_INSN_OPCODE: 2211 case JMP8_INSN_OPCODE: 2212 int3_emulate_jmp(regs, (long)ip + tp->disp); 2213 break; 2214 2215 case 0x70 ... 0x7f: /* Jcc */ 2216 int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp); 2217 break; 2218 2219 default: 2220 BUG(); 2221 } 2222 2223 ret = 1; 2224 2225 out_put: 2226 put_desc(); 2227 return ret; 2228 } 2229 2230 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc)) 2231 static struct text_poke_loc tp_vec[TP_VEC_MAX]; 2232 static int tp_vec_nr; 2233 2234 /** 2235 * text_poke_bp_batch() -- update instructions on live kernel on SMP 2236 * @tp: vector of instructions to patch 2237 * @nr_entries: number of entries in the vector 2238 * 2239 * Modify multi-byte instruction by using int3 breakpoint on SMP. 2240 * We completely avoid stop_machine() here, and achieve the 2241 * synchronization using int3 breakpoint. 2242 * 2243 * The way it is done: 2244 * - For each entry in the vector: 2245 * - add a int3 trap to the address that will be patched 2246 * - sync cores 2247 * - For each entry in the vector: 2248 * - update all but the first byte of the patched range 2249 * - sync cores 2250 * - For each entry in the vector: 2251 * - replace the first byte (int3) by the first byte of 2252 * replacing opcode 2253 * - sync cores 2254 */ 2255 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries) 2256 { 2257 unsigned char int3 = INT3_INSN_OPCODE; 2258 unsigned int i; 2259 int do_sync; 2260 2261 lockdep_assert_held(&text_mutex); 2262 2263 bp_desc.vec = tp; 2264 bp_desc.nr_entries = nr_entries; 2265 2266 /* 2267 * Corresponds to the implicit memory barrier in try_get_desc() to 2268 * ensure reading a non-zero refcount provides up to date bp_desc data. 2269 */ 2270 atomic_set_release(&bp_desc.refs, 1); 2271 2272 /* 2273 * Function tracing can enable thousands of places that need to be 2274 * updated. This can take quite some time, and with full kernel debugging 2275 * enabled, this could cause the softlockup watchdog to trigger. 2276 * This function gets called every 256 entries added to be patched. 2277 * Call cond_resched() here to make sure that other tasks can get scheduled 2278 * while processing all the functions being patched. 2279 */ 2280 cond_resched(); 2281 2282 /* 2283 * Corresponding read barrier in int3 notifier for making sure the 2284 * nr_entries and handler are correctly ordered wrt. patching. 2285 */ 2286 smp_wmb(); 2287 2288 /* 2289 * First step: add a int3 trap to the address that will be patched. 2290 */ 2291 for (i = 0; i < nr_entries; i++) { 2292 tp[i].old = *(u8 *)text_poke_addr(&tp[i]); 2293 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE); 2294 } 2295 2296 text_poke_sync(); 2297 2298 /* 2299 * Second step: update all but the first byte of the patched range. 2300 */ 2301 for (do_sync = 0, i = 0; i < nr_entries; i++) { 2302 u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, }; 2303 u8 _new[POKE_MAX_OPCODE_SIZE+1]; 2304 const u8 *new = tp[i].text; 2305 int len = tp[i].len; 2306 2307 if (len - INT3_INSN_SIZE > 0) { 2308 memcpy(old + INT3_INSN_SIZE, 2309 text_poke_addr(&tp[i]) + INT3_INSN_SIZE, 2310 len - INT3_INSN_SIZE); 2311 2312 if (len == 6) { 2313 _new[0] = 0x0f; 2314 memcpy(_new + 1, new, 5); 2315 new = _new; 2316 } 2317 2318 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE, 2319 new + INT3_INSN_SIZE, 2320 len - INT3_INSN_SIZE); 2321 2322 do_sync++; 2323 } 2324 2325 /* 2326 * Emit a perf event to record the text poke, primarily to 2327 * support Intel PT decoding which must walk the executable code 2328 * to reconstruct the trace. The flow up to here is: 2329 * - write INT3 byte 2330 * - IPI-SYNC 2331 * - write instruction tail 2332 * At this point the actual control flow will be through the 2333 * INT3 and handler and not hit the old or new instruction. 2334 * Intel PT outputs FUP/TIP packets for the INT3, so the flow 2335 * can still be decoded. Subsequently: 2336 * - emit RECORD_TEXT_POKE with the new instruction 2337 * - IPI-SYNC 2338 * - write first byte 2339 * - IPI-SYNC 2340 * So before the text poke event timestamp, the decoder will see 2341 * either the old instruction flow or FUP/TIP of INT3. After the 2342 * text poke event timestamp, the decoder will see either the 2343 * new instruction flow or FUP/TIP of INT3. Thus decoders can 2344 * use the timestamp as the point at which to modify the 2345 * executable code. 2346 * The old instruction is recorded so that the event can be 2347 * processed forwards or backwards. 2348 */ 2349 perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len); 2350 } 2351 2352 if (do_sync) { 2353 /* 2354 * According to Intel, this core syncing is very likely 2355 * not necessary and we'd be safe even without it. But 2356 * better safe than sorry (plus there's not only Intel). 2357 */ 2358 text_poke_sync(); 2359 } 2360 2361 /* 2362 * Third step: replace the first byte (int3) by the first byte of 2363 * replacing opcode. 2364 */ 2365 for (do_sync = 0, i = 0; i < nr_entries; i++) { 2366 u8 byte = tp[i].text[0]; 2367 2368 if (tp[i].len == 6) 2369 byte = 0x0f; 2370 2371 if (byte == INT3_INSN_OPCODE) 2372 continue; 2373 2374 text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE); 2375 do_sync++; 2376 } 2377 2378 if (do_sync) 2379 text_poke_sync(); 2380 2381 /* 2382 * Remove and wait for refs to be zero. 2383 */ 2384 if (!atomic_dec_and_test(&bp_desc.refs)) 2385 atomic_cond_read_acquire(&bp_desc.refs, !VAL); 2386 } 2387 2388 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr, 2389 const void *opcode, size_t len, const void *emulate) 2390 { 2391 struct insn insn; 2392 int ret, i = 0; 2393 2394 if (len == 6) 2395 i = 1; 2396 memcpy((void *)tp->text, opcode+i, len-i); 2397 if (!emulate) 2398 emulate = opcode; 2399 2400 ret = insn_decode_kernel(&insn, emulate); 2401 BUG_ON(ret < 0); 2402 2403 tp->rel_addr = addr - (void *)_stext; 2404 tp->len = len; 2405 tp->opcode = insn.opcode.bytes[0]; 2406 2407 if (is_jcc32(&insn)) { 2408 /* 2409 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish. 2410 */ 2411 tp->opcode = insn.opcode.bytes[1] - 0x10; 2412 } 2413 2414 switch (tp->opcode) { 2415 case RET_INSN_OPCODE: 2416 case JMP32_INSN_OPCODE: 2417 case JMP8_INSN_OPCODE: 2418 /* 2419 * Control flow instructions without implied execution of the 2420 * next instruction can be padded with INT3. 2421 */ 2422 for (i = insn.length; i < len; i++) 2423 BUG_ON(tp->text[i] != INT3_INSN_OPCODE); 2424 break; 2425 2426 default: 2427 BUG_ON(len != insn.length); 2428 } 2429 2430 switch (tp->opcode) { 2431 case INT3_INSN_OPCODE: 2432 case RET_INSN_OPCODE: 2433 break; 2434 2435 case CALL_INSN_OPCODE: 2436 case JMP32_INSN_OPCODE: 2437 case JMP8_INSN_OPCODE: 2438 case 0x70 ... 0x7f: /* Jcc */ 2439 tp->disp = insn.immediate.value; 2440 break; 2441 2442 default: /* assume NOP */ 2443 switch (len) { 2444 case 2: /* NOP2 -- emulate as JMP8+0 */ 2445 BUG_ON(memcmp(emulate, x86_nops[len], len)); 2446 tp->opcode = JMP8_INSN_OPCODE; 2447 tp->disp = 0; 2448 break; 2449 2450 case 5: /* NOP5 -- emulate as JMP32+0 */ 2451 BUG_ON(memcmp(emulate, x86_nops[len], len)); 2452 tp->opcode = JMP32_INSN_OPCODE; 2453 tp->disp = 0; 2454 break; 2455 2456 default: /* unknown instruction */ 2457 BUG(); 2458 } 2459 break; 2460 } 2461 } 2462 2463 /* 2464 * We hard rely on the tp_vec being ordered; ensure this is so by flushing 2465 * early if needed. 2466 */ 2467 static bool tp_order_fail(void *addr) 2468 { 2469 struct text_poke_loc *tp; 2470 2471 if (!tp_vec_nr) 2472 return false; 2473 2474 if (!addr) /* force */ 2475 return true; 2476 2477 tp = &tp_vec[tp_vec_nr - 1]; 2478 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr) 2479 return true; 2480 2481 return false; 2482 } 2483 2484 static void text_poke_flush(void *addr) 2485 { 2486 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) { 2487 text_poke_bp_batch(tp_vec, tp_vec_nr); 2488 tp_vec_nr = 0; 2489 } 2490 } 2491 2492 void text_poke_finish(void) 2493 { 2494 text_poke_flush(NULL); 2495 } 2496 2497 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate) 2498 { 2499 struct text_poke_loc *tp; 2500 2501 text_poke_flush(addr); 2502 2503 tp = &tp_vec[tp_vec_nr++]; 2504 text_poke_loc_init(tp, addr, opcode, len, emulate); 2505 } 2506 2507 /** 2508 * text_poke_bp() -- update instructions on live kernel on SMP 2509 * @addr: address to patch 2510 * @opcode: opcode of new instruction 2511 * @len: length to copy 2512 * @emulate: instruction to be emulated 2513 * 2514 * Update a single instruction with the vector in the stack, avoiding 2515 * dynamically allocated memory. This function should be used when it is 2516 * not possible to allocate memory. 2517 */ 2518 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate) 2519 { 2520 struct text_poke_loc tp; 2521 2522 text_poke_loc_init(&tp, addr, opcode, len, emulate); 2523 text_poke_bp_batch(&tp, 1); 2524 } 2525