xref: /linux/arch/x86/kernel/alternative.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 #define pr_fmt(fmt) "SMP alternatives: " fmt
2 
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 #include <linux/list.h>
7 #include <linux/stringify.h>
8 #include <linux/kprobes.h>
9 #include <linux/mm.h>
10 #include <linux/vmalloc.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <linux/slab.h>
14 #include <linux/kdebug.h>
15 #include <asm/alternative.h>
16 #include <asm/sections.h>
17 #include <asm/pgtable.h>
18 #include <asm/mce.h>
19 #include <asm/nmi.h>
20 #include <asm/cacheflush.h>
21 #include <asm/tlbflush.h>
22 #include <asm/io.h>
23 #include <asm/fixmap.h>
24 
25 #define MAX_PATCH_LEN (255-1)
26 
27 static int __initdata_or_module debug_alternative;
28 
29 static int __init debug_alt(char *str)
30 {
31 	debug_alternative = 1;
32 	return 1;
33 }
34 __setup("debug-alternative", debug_alt);
35 
36 static int noreplace_smp;
37 
38 static int __init setup_noreplace_smp(char *str)
39 {
40 	noreplace_smp = 1;
41 	return 1;
42 }
43 __setup("noreplace-smp", setup_noreplace_smp);
44 
45 #ifdef CONFIG_PARAVIRT
46 static int __initdata_or_module noreplace_paravirt = 0;
47 
48 static int __init setup_noreplace_paravirt(char *str)
49 {
50 	noreplace_paravirt = 1;
51 	return 1;
52 }
53 __setup("noreplace-paravirt", setup_noreplace_paravirt);
54 #endif
55 
56 #define DPRINTK(fmt, ...)				\
57 do {							\
58 	if (debug_alternative)				\
59 		printk(KERN_DEBUG fmt, ##__VA_ARGS__);	\
60 } while (0)
61 
62 /*
63  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
64  * that correspond to that nop. Getting from one nop to the next, we
65  * add to the array the offset that is equal to the sum of all sizes of
66  * nops preceding the one we are after.
67  *
68  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
69  * nice symmetry of sizes of the previous nops.
70  */
71 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
72 static const unsigned char intelnops[] =
73 {
74 	GENERIC_NOP1,
75 	GENERIC_NOP2,
76 	GENERIC_NOP3,
77 	GENERIC_NOP4,
78 	GENERIC_NOP5,
79 	GENERIC_NOP6,
80 	GENERIC_NOP7,
81 	GENERIC_NOP8,
82 	GENERIC_NOP5_ATOMIC
83 };
84 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
85 {
86 	NULL,
87 	intelnops,
88 	intelnops + 1,
89 	intelnops + 1 + 2,
90 	intelnops + 1 + 2 + 3,
91 	intelnops + 1 + 2 + 3 + 4,
92 	intelnops + 1 + 2 + 3 + 4 + 5,
93 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
94 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
95 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
96 };
97 #endif
98 
99 #ifdef K8_NOP1
100 static const unsigned char k8nops[] =
101 {
102 	K8_NOP1,
103 	K8_NOP2,
104 	K8_NOP3,
105 	K8_NOP4,
106 	K8_NOP5,
107 	K8_NOP6,
108 	K8_NOP7,
109 	K8_NOP8,
110 	K8_NOP5_ATOMIC
111 };
112 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
113 {
114 	NULL,
115 	k8nops,
116 	k8nops + 1,
117 	k8nops + 1 + 2,
118 	k8nops + 1 + 2 + 3,
119 	k8nops + 1 + 2 + 3 + 4,
120 	k8nops + 1 + 2 + 3 + 4 + 5,
121 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
122 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
123 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
124 };
125 #endif
126 
127 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
128 static const unsigned char k7nops[] =
129 {
130 	K7_NOP1,
131 	K7_NOP2,
132 	K7_NOP3,
133 	K7_NOP4,
134 	K7_NOP5,
135 	K7_NOP6,
136 	K7_NOP7,
137 	K7_NOP8,
138 	K7_NOP5_ATOMIC
139 };
140 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
141 {
142 	NULL,
143 	k7nops,
144 	k7nops + 1,
145 	k7nops + 1 + 2,
146 	k7nops + 1 + 2 + 3,
147 	k7nops + 1 + 2 + 3 + 4,
148 	k7nops + 1 + 2 + 3 + 4 + 5,
149 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
150 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
151 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
152 };
153 #endif
154 
155 #ifdef P6_NOP1
156 static const unsigned char p6nops[] =
157 {
158 	P6_NOP1,
159 	P6_NOP2,
160 	P6_NOP3,
161 	P6_NOP4,
162 	P6_NOP5,
163 	P6_NOP6,
164 	P6_NOP7,
165 	P6_NOP8,
166 	P6_NOP5_ATOMIC
167 };
168 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
169 {
170 	NULL,
171 	p6nops,
172 	p6nops + 1,
173 	p6nops + 1 + 2,
174 	p6nops + 1 + 2 + 3,
175 	p6nops + 1 + 2 + 3 + 4,
176 	p6nops + 1 + 2 + 3 + 4 + 5,
177 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
178 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
179 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
180 };
181 #endif
182 
183 /* Initialize these to a safe default */
184 #ifdef CONFIG_X86_64
185 const unsigned char * const *ideal_nops = p6_nops;
186 #else
187 const unsigned char * const *ideal_nops = intel_nops;
188 #endif
189 
190 void __init arch_init_ideal_nops(void)
191 {
192 	switch (boot_cpu_data.x86_vendor) {
193 	case X86_VENDOR_INTEL:
194 		/*
195 		 * Due to a decoder implementation quirk, some
196 		 * specific Intel CPUs actually perform better with
197 		 * the "k8_nops" than with the SDM-recommended NOPs.
198 		 */
199 		if (boot_cpu_data.x86 == 6 &&
200 		    boot_cpu_data.x86_model >= 0x0f &&
201 		    boot_cpu_data.x86_model != 0x1c &&
202 		    boot_cpu_data.x86_model != 0x26 &&
203 		    boot_cpu_data.x86_model != 0x27 &&
204 		    boot_cpu_data.x86_model < 0x30) {
205 			ideal_nops = k8_nops;
206 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
207 			   ideal_nops = p6_nops;
208 		} else {
209 #ifdef CONFIG_X86_64
210 			ideal_nops = k8_nops;
211 #else
212 			ideal_nops = intel_nops;
213 #endif
214 		}
215 		break;
216 	default:
217 #ifdef CONFIG_X86_64
218 		ideal_nops = k8_nops;
219 #else
220 		if (boot_cpu_has(X86_FEATURE_K8))
221 			ideal_nops = k8_nops;
222 		else if (boot_cpu_has(X86_FEATURE_K7))
223 			ideal_nops = k7_nops;
224 		else
225 			ideal_nops = intel_nops;
226 #endif
227 	}
228 }
229 
230 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
231 static void __init_or_module add_nops(void *insns, unsigned int len)
232 {
233 	while (len > 0) {
234 		unsigned int noplen = len;
235 		if (noplen > ASM_NOP_MAX)
236 			noplen = ASM_NOP_MAX;
237 		memcpy(insns, ideal_nops[noplen], noplen);
238 		insns += noplen;
239 		len -= noplen;
240 	}
241 }
242 
243 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
244 extern s32 __smp_locks[], __smp_locks_end[];
245 void *text_poke_early(void *addr, const void *opcode, size_t len);
246 
247 /* Replace instructions with better alternatives for this CPU type.
248    This runs before SMP is initialized to avoid SMP problems with
249    self modifying code. This implies that asymmetric systems where
250    APs have less capabilities than the boot processor are not handled.
251    Tough. Make sure you disable such features by hand. */
252 
253 void __init_or_module apply_alternatives(struct alt_instr *start,
254 					 struct alt_instr *end)
255 {
256 	struct alt_instr *a;
257 	u8 *instr, *replacement;
258 	u8 insnbuf[MAX_PATCH_LEN];
259 
260 	DPRINTK("%s: alt table %p -> %p\n", __func__, start, end);
261 	/*
262 	 * The scan order should be from start to end. A later scanned
263 	 * alternative code can overwrite a previous scanned alternative code.
264 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
265 	 * patch code.
266 	 *
267 	 * So be careful if you want to change the scan order to any other
268 	 * order.
269 	 */
270 	for (a = start; a < end; a++) {
271 		instr = (u8 *)&a->instr_offset + a->instr_offset;
272 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
273 		BUG_ON(a->replacementlen > a->instrlen);
274 		BUG_ON(a->instrlen > sizeof(insnbuf));
275 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
276 		if (!boot_cpu_has(a->cpuid))
277 			continue;
278 
279 		memcpy(insnbuf, replacement, a->replacementlen);
280 
281 		/* 0xe8 is a relative jump; fix the offset. */
282 		if (*insnbuf == 0xe8 && a->replacementlen == 5)
283 		    *(s32 *)(insnbuf + 1) += replacement - instr;
284 
285 		add_nops(insnbuf + a->replacementlen,
286 			 a->instrlen - a->replacementlen);
287 
288 		text_poke_early(instr, insnbuf, a->instrlen);
289 	}
290 }
291 
292 #ifdef CONFIG_SMP
293 
294 static void alternatives_smp_lock(const s32 *start, const s32 *end,
295 				  u8 *text, u8 *text_end)
296 {
297 	const s32 *poff;
298 
299 	mutex_lock(&text_mutex);
300 	for (poff = start; poff < end; poff++) {
301 		u8 *ptr = (u8 *)poff + *poff;
302 
303 		if (!*poff || ptr < text || ptr >= text_end)
304 			continue;
305 		/* turn DS segment override prefix into lock prefix */
306 		if (*ptr == 0x3e)
307 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
308 	}
309 	mutex_unlock(&text_mutex);
310 }
311 
312 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
313 				    u8 *text, u8 *text_end)
314 {
315 	const s32 *poff;
316 
317 	mutex_lock(&text_mutex);
318 	for (poff = start; poff < end; poff++) {
319 		u8 *ptr = (u8 *)poff + *poff;
320 
321 		if (!*poff || ptr < text || ptr >= text_end)
322 			continue;
323 		/* turn lock prefix into DS segment override prefix */
324 		if (*ptr == 0xf0)
325 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
326 	}
327 	mutex_unlock(&text_mutex);
328 }
329 
330 struct smp_alt_module {
331 	/* what is this ??? */
332 	struct module	*mod;
333 	char		*name;
334 
335 	/* ptrs to lock prefixes */
336 	const s32	*locks;
337 	const s32	*locks_end;
338 
339 	/* .text segment, needed to avoid patching init code ;) */
340 	u8		*text;
341 	u8		*text_end;
342 
343 	struct list_head next;
344 };
345 static LIST_HEAD(smp_alt_modules);
346 static DEFINE_MUTEX(smp_alt);
347 static bool uniproc_patched = false;	/* protected by smp_alt */
348 
349 void __init_or_module alternatives_smp_module_add(struct module *mod,
350 						  char *name,
351 						  void *locks, void *locks_end,
352 						  void *text,  void *text_end)
353 {
354 	struct smp_alt_module *smp;
355 
356 	mutex_lock(&smp_alt);
357 	if (!uniproc_patched)
358 		goto unlock;
359 
360 	if (num_possible_cpus() == 1)
361 		/* Don't bother remembering, we'll never have to undo it. */
362 		goto smp_unlock;
363 
364 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
365 	if (NULL == smp)
366 		/* we'll run the (safe but slow) SMP code then ... */
367 		goto unlock;
368 
369 	smp->mod	= mod;
370 	smp->name	= name;
371 	smp->locks	= locks;
372 	smp->locks_end	= locks_end;
373 	smp->text	= text;
374 	smp->text_end	= text_end;
375 	DPRINTK("%s: locks %p -> %p, text %p -> %p, name %s\n",
376 		__func__, smp->locks, smp->locks_end,
377 		smp->text, smp->text_end, smp->name);
378 
379 	list_add_tail(&smp->next, &smp_alt_modules);
380 smp_unlock:
381 	alternatives_smp_unlock(locks, locks_end, text, text_end);
382 unlock:
383 	mutex_unlock(&smp_alt);
384 }
385 
386 void __init_or_module alternatives_smp_module_del(struct module *mod)
387 {
388 	struct smp_alt_module *item;
389 
390 	mutex_lock(&smp_alt);
391 	list_for_each_entry(item, &smp_alt_modules, next) {
392 		if (mod != item->mod)
393 			continue;
394 		list_del(&item->next);
395 		kfree(item);
396 		break;
397 	}
398 	mutex_unlock(&smp_alt);
399 }
400 
401 void alternatives_enable_smp(void)
402 {
403 	struct smp_alt_module *mod;
404 
405 	/* Why bother if there are no other CPUs? */
406 	BUG_ON(num_possible_cpus() == 1);
407 
408 	mutex_lock(&smp_alt);
409 
410 	if (uniproc_patched) {
411 		pr_info("switching to SMP code\n");
412 		BUG_ON(num_online_cpus() != 1);
413 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
414 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
415 		list_for_each_entry(mod, &smp_alt_modules, next)
416 			alternatives_smp_lock(mod->locks, mod->locks_end,
417 					      mod->text, mod->text_end);
418 		uniproc_patched = false;
419 	}
420 	mutex_unlock(&smp_alt);
421 }
422 
423 /* Return 1 if the address range is reserved for smp-alternatives */
424 int alternatives_text_reserved(void *start, void *end)
425 {
426 	struct smp_alt_module *mod;
427 	const s32 *poff;
428 	u8 *text_start = start;
429 	u8 *text_end = end;
430 
431 	list_for_each_entry(mod, &smp_alt_modules, next) {
432 		if (mod->text > text_end || mod->text_end < text_start)
433 			continue;
434 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
435 			const u8 *ptr = (const u8 *)poff + *poff;
436 
437 			if (text_start <= ptr && text_end > ptr)
438 				return 1;
439 		}
440 	}
441 
442 	return 0;
443 }
444 #endif
445 
446 #ifdef CONFIG_PARAVIRT
447 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
448 				     struct paravirt_patch_site *end)
449 {
450 	struct paravirt_patch_site *p;
451 	char insnbuf[MAX_PATCH_LEN];
452 
453 	if (noreplace_paravirt)
454 		return;
455 
456 	for (p = start; p < end; p++) {
457 		unsigned int used;
458 
459 		BUG_ON(p->len > MAX_PATCH_LEN);
460 		/* prep the buffer with the original instructions */
461 		memcpy(insnbuf, p->instr, p->len);
462 		used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
463 					 (unsigned long)p->instr, p->len);
464 
465 		BUG_ON(used > p->len);
466 
467 		/* Pad the rest with nops */
468 		add_nops(insnbuf + used, p->len - used);
469 		text_poke_early(p->instr, insnbuf, p->len);
470 	}
471 }
472 extern struct paravirt_patch_site __start_parainstructions[],
473 	__stop_parainstructions[];
474 #endif	/* CONFIG_PARAVIRT */
475 
476 void __init alternative_instructions(void)
477 {
478 	/* The patching is not fully atomic, so try to avoid local interruptions
479 	   that might execute the to be patched code.
480 	   Other CPUs are not running. */
481 	stop_nmi();
482 
483 	/*
484 	 * Don't stop machine check exceptions while patching.
485 	 * MCEs only happen when something got corrupted and in this
486 	 * case we must do something about the corruption.
487 	 * Ignoring it is worse than a unlikely patching race.
488 	 * Also machine checks tend to be broadcast and if one CPU
489 	 * goes into machine check the others follow quickly, so we don't
490 	 * expect a machine check to cause undue problems during to code
491 	 * patching.
492 	 */
493 
494 	apply_alternatives(__alt_instructions, __alt_instructions_end);
495 
496 #ifdef CONFIG_SMP
497 	/* Patch to UP if other cpus not imminent. */
498 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
499 		uniproc_patched = true;
500 		alternatives_smp_module_add(NULL, "core kernel",
501 					    __smp_locks, __smp_locks_end,
502 					    _text, _etext);
503 	}
504 
505 	if (!uniproc_patched || num_possible_cpus() == 1)
506 		free_init_pages("SMP alternatives",
507 				(unsigned long)__smp_locks,
508 				(unsigned long)__smp_locks_end);
509 #endif
510 
511 	apply_paravirt(__parainstructions, __parainstructions_end);
512 
513 	restart_nmi();
514 }
515 
516 /**
517  * text_poke_early - Update instructions on a live kernel at boot time
518  * @addr: address to modify
519  * @opcode: source of the copy
520  * @len: length to copy
521  *
522  * When you use this code to patch more than one byte of an instruction
523  * you need to make sure that other CPUs cannot execute this code in parallel.
524  * Also no thread must be currently preempted in the middle of these
525  * instructions. And on the local CPU you need to be protected again NMI or MCE
526  * handlers seeing an inconsistent instruction while you patch.
527  */
528 void *__init_or_module text_poke_early(void *addr, const void *opcode,
529 					      size_t len)
530 {
531 	unsigned long flags;
532 	local_irq_save(flags);
533 	memcpy(addr, opcode, len);
534 	sync_core();
535 	local_irq_restore(flags);
536 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
537 	   that causes hangs on some VIA CPUs. */
538 	return addr;
539 }
540 
541 /**
542  * text_poke - Update instructions on a live kernel
543  * @addr: address to modify
544  * @opcode: source of the copy
545  * @len: length to copy
546  *
547  * Only atomic text poke/set should be allowed when not doing early patching.
548  * It means the size must be writable atomically and the address must be aligned
549  * in a way that permits an atomic write. It also makes sure we fit on a single
550  * page.
551  *
552  * Note: Must be called under text_mutex.
553  */
554 void *__kprobes text_poke(void *addr, const void *opcode, size_t len)
555 {
556 	unsigned long flags;
557 	char *vaddr;
558 	struct page *pages[2];
559 	int i;
560 
561 	if (!core_kernel_text((unsigned long)addr)) {
562 		pages[0] = vmalloc_to_page(addr);
563 		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
564 	} else {
565 		pages[0] = virt_to_page(addr);
566 		WARN_ON(!PageReserved(pages[0]));
567 		pages[1] = virt_to_page(addr + PAGE_SIZE);
568 	}
569 	BUG_ON(!pages[0]);
570 	local_irq_save(flags);
571 	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
572 	if (pages[1])
573 		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
574 	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
575 	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
576 	clear_fixmap(FIX_TEXT_POKE0);
577 	if (pages[1])
578 		clear_fixmap(FIX_TEXT_POKE1);
579 	local_flush_tlb();
580 	sync_core();
581 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
582 	   that causes hangs on some VIA CPUs. */
583 	for (i = 0; i < len; i++)
584 		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
585 	local_irq_restore(flags);
586 	return addr;
587 }
588 
589 static void do_sync_core(void *info)
590 {
591 	sync_core();
592 }
593 
594 static bool bp_patching_in_progress;
595 static void *bp_int3_handler, *bp_int3_addr;
596 
597 int poke_int3_handler(struct pt_regs *regs)
598 {
599 	/* bp_patching_in_progress */
600 	smp_rmb();
601 
602 	if (likely(!bp_patching_in_progress))
603 		return 0;
604 
605 	if (user_mode_vm(regs) || regs->ip != (unsigned long)bp_int3_addr)
606 		return 0;
607 
608 	/* set up the specified breakpoint handler */
609 	regs->ip = (unsigned long) bp_int3_handler;
610 
611 	return 1;
612 
613 }
614 
615 /**
616  * text_poke_bp() -- update instructions on live kernel on SMP
617  * @addr:	address to patch
618  * @opcode:	opcode of new instruction
619  * @len:	length to copy
620  * @handler:	address to jump to when the temporary breakpoint is hit
621  *
622  * Modify multi-byte instruction by using int3 breakpoint on SMP.
623  * We completely avoid stop_machine() here, and achieve the
624  * synchronization using int3 breakpoint.
625  *
626  * The way it is done:
627  *	- add a int3 trap to the address that will be patched
628  *	- sync cores
629  *	- update all but the first byte of the patched range
630  *	- sync cores
631  *	- replace the first byte (int3) by the first byte of
632  *	  replacing opcode
633  *	- sync cores
634  *
635  * Note: must be called under text_mutex.
636  */
637 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
638 {
639 	unsigned char int3 = 0xcc;
640 
641 	bp_int3_handler = handler;
642 	bp_int3_addr = (u8 *)addr + sizeof(int3);
643 	bp_patching_in_progress = true;
644 	/*
645 	 * Corresponding read barrier in int3 notifier for
646 	 * making sure the in_progress flags is correctly ordered wrt.
647 	 * patching
648 	 */
649 	smp_wmb();
650 
651 	text_poke(addr, &int3, sizeof(int3));
652 
653 	on_each_cpu(do_sync_core, NULL, 1);
654 
655 	if (len - sizeof(int3) > 0) {
656 		/* patch all but the first byte */
657 		text_poke((char *)addr + sizeof(int3),
658 			  (const char *) opcode + sizeof(int3),
659 			  len - sizeof(int3));
660 		/*
661 		 * According to Intel, this core syncing is very likely
662 		 * not necessary and we'd be safe even without it. But
663 		 * better safe than sorry (plus there's not only Intel).
664 		 */
665 		on_each_cpu(do_sync_core, NULL, 1);
666 	}
667 
668 	/* patch the first byte */
669 	text_poke(addr, opcode, sizeof(int3));
670 
671 	on_each_cpu(do_sync_core, NULL, 1);
672 
673 	bp_patching_in_progress = false;
674 	smp_wmb();
675 
676 	return addr;
677 }
678 
679