1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "SMP alternatives: " fmt 3 4 #include <linux/mmu_context.h> 5 #include <linux/perf_event.h> 6 #include <linux/vmalloc.h> 7 #include <linux/memory.h> 8 #include <linux/execmem.h> 9 10 #include <asm/text-patching.h> 11 #include <asm/insn.h> 12 #include <asm/insn-eval.h> 13 #include <asm/ibt.h> 14 #include <asm/set_memory.h> 15 #include <asm/nmi.h> 16 17 int __read_mostly alternatives_patched; 18 19 EXPORT_SYMBOL_GPL(alternatives_patched); 20 21 #define MAX_PATCH_LEN (255-1) 22 23 #define DA_ALL (~0) 24 #define DA_ALT 0x01 25 #define DA_RET 0x02 26 #define DA_RETPOLINE 0x04 27 #define DA_ENDBR 0x08 28 #define DA_SMP 0x10 29 30 static unsigned int debug_alternative; 31 32 static int __init debug_alt(char *str) 33 { 34 if (str && *str == '=') 35 str++; 36 37 if (!str || kstrtouint(str, 0, &debug_alternative)) 38 debug_alternative = DA_ALL; 39 40 return 1; 41 } 42 __setup("debug-alternative", debug_alt); 43 44 static int noreplace_smp; 45 46 static int __init setup_noreplace_smp(char *str) 47 { 48 noreplace_smp = 1; 49 return 1; 50 } 51 __setup("noreplace-smp", setup_noreplace_smp); 52 53 #define DPRINTK(type, fmt, args...) \ 54 do { \ 55 if (debug_alternative & DA_##type) \ 56 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ 57 } while (0) 58 59 #define DUMP_BYTES(type, buf, len, fmt, args...) \ 60 do { \ 61 if (unlikely(debug_alternative & DA_##type)) { \ 62 int j; \ 63 \ 64 if (!(len)) \ 65 break; \ 66 \ 67 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 68 for (j = 0; j < (len) - 1; j++) \ 69 printk(KERN_CONT "%02hhx ", buf[j]); \ 70 printk(KERN_CONT "%02hhx\n", buf[j]); \ 71 } \ 72 } while (0) 73 74 static const unsigned char x86nops[] = 75 { 76 BYTES_NOP1, 77 BYTES_NOP2, 78 BYTES_NOP3, 79 BYTES_NOP4, 80 BYTES_NOP5, 81 BYTES_NOP6, 82 BYTES_NOP7, 83 BYTES_NOP8, 84 #ifdef CONFIG_64BIT 85 BYTES_NOP9, 86 BYTES_NOP10, 87 BYTES_NOP11, 88 #endif 89 }; 90 91 const unsigned char * const x86_nops[ASM_NOP_MAX+1] = 92 { 93 NULL, 94 x86nops, 95 x86nops + 1, 96 x86nops + 1 + 2, 97 x86nops + 1 + 2 + 3, 98 x86nops + 1 + 2 + 3 + 4, 99 x86nops + 1 + 2 + 3 + 4 + 5, 100 x86nops + 1 + 2 + 3 + 4 + 5 + 6, 101 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 102 #ifdef CONFIG_64BIT 103 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 104 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, 105 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, 106 #endif 107 }; 108 109 #ifdef CONFIG_FINEIBT 110 static bool cfi_paranoid __ro_after_init; 111 #endif 112 113 #ifdef CONFIG_MITIGATION_ITS 114 115 #ifdef CONFIG_MODULES 116 static struct module *its_mod; 117 #endif 118 static void *its_page; 119 static unsigned int its_offset; 120 struct its_array its_pages; 121 122 static void *__its_alloc(struct its_array *pages) 123 { 124 void *page __free(execmem) = execmem_alloc_rw(EXECMEM_MODULE_TEXT, PAGE_SIZE); 125 if (!page) 126 return NULL; 127 128 void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *), 129 GFP_KERNEL); 130 if (!tmp) 131 return NULL; 132 133 pages->pages = tmp; 134 pages->pages[pages->num++] = page; 135 136 return no_free_ptr(page); 137 } 138 139 /* Initialize a thunk with the "jmp *reg; int3" instructions. */ 140 static void *its_init_thunk(void *thunk, int reg) 141 { 142 u8 *bytes = thunk; 143 int offset = 0; 144 int i = 0; 145 146 #ifdef CONFIG_FINEIBT 147 if (cfi_paranoid) { 148 /* 149 * When ITS uses indirect branch thunk the fineibt_paranoid 150 * caller sequence doesn't fit in the caller site. So put the 151 * remaining part of the sequence (UDB + JNE) into the ITS 152 * thunk. 153 */ 154 bytes[i++] = 0xd6; /* UDB */ 155 bytes[i++] = 0x75; /* JNE */ 156 bytes[i++] = 0xfd; 157 158 offset = 1; 159 } 160 #endif 161 162 if (reg >= 8) { 163 bytes[i++] = 0x41; /* REX.B prefix */ 164 reg -= 8; 165 } 166 bytes[i++] = 0xff; 167 bytes[i++] = 0xe0 + reg; /* JMP *reg */ 168 bytes[i++] = 0xcc; 169 170 return thunk + offset; 171 } 172 173 static void its_pages_protect(struct its_array *pages) 174 { 175 for (int i = 0; i < pages->num; i++) { 176 void *page = pages->pages[i]; 177 execmem_restore_rox(page, PAGE_SIZE); 178 } 179 } 180 181 static void its_fini_core(void) 182 { 183 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) 184 its_pages_protect(&its_pages); 185 kfree(its_pages.pages); 186 } 187 188 #ifdef CONFIG_MODULES 189 void its_init_mod(struct module *mod) 190 { 191 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 192 return; 193 194 mutex_lock(&text_mutex); 195 its_mod = mod; 196 its_page = NULL; 197 } 198 199 void its_fini_mod(struct module *mod) 200 { 201 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 202 return; 203 204 WARN_ON_ONCE(its_mod != mod); 205 206 its_mod = NULL; 207 its_page = NULL; 208 mutex_unlock(&text_mutex); 209 210 if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX)) 211 its_pages_protect(&mod->arch.its_pages); 212 } 213 214 void its_free_mod(struct module *mod) 215 { 216 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 217 return; 218 219 for (int i = 0; i < mod->arch.its_pages.num; i++) { 220 void *page = mod->arch.its_pages.pages[i]; 221 execmem_free(page); 222 } 223 kfree(mod->arch.its_pages.pages); 224 } 225 #endif /* CONFIG_MODULES */ 226 227 static void *its_alloc(void) 228 { 229 struct its_array *pages = &its_pages; 230 void *page; 231 232 #ifdef CONFIG_MODULES 233 if (its_mod) 234 pages = &its_mod->arch.its_pages; 235 #endif 236 237 page = __its_alloc(pages); 238 if (!page) 239 return NULL; 240 241 if (pages == &its_pages) 242 set_memory_x((unsigned long)page, 1); 243 244 return page; 245 } 246 247 static void *its_allocate_thunk(int reg) 248 { 249 int size = 3 + (reg / 8); 250 void *thunk; 251 252 #ifdef CONFIG_FINEIBT 253 /* 254 * The ITS thunk contains an indirect jump and an int3 instruction so 255 * its size is 3 or 4 bytes depending on the register used. If CFI 256 * paranoid is used then 3 extra bytes are added in the ITS thunk to 257 * complete the fineibt_paranoid caller sequence. 258 */ 259 if (cfi_paranoid) 260 size += 3; 261 #endif 262 263 if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) { 264 its_page = its_alloc(); 265 if (!its_page) { 266 pr_err("ITS page allocation failed\n"); 267 return NULL; 268 } 269 memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE); 270 its_offset = 32; 271 } 272 273 /* 274 * If the indirect branch instruction will be in the lower half 275 * of a cacheline, then update the offset to reach the upper half. 276 */ 277 if ((its_offset + size - 1) % 64 < 32) 278 its_offset = ((its_offset - 1) | 0x3F) + 33; 279 280 thunk = its_page + its_offset; 281 its_offset += size; 282 283 return its_init_thunk(thunk, reg); 284 } 285 286 u8 *its_static_thunk(int reg) 287 { 288 u8 *thunk = __x86_indirect_its_thunk_array[reg]; 289 290 #ifdef CONFIG_FINEIBT 291 /* Paranoid thunk starts 2 bytes before */ 292 if (cfi_paranoid) 293 return thunk - 2; 294 #endif 295 return thunk; 296 } 297 298 #else 299 static inline void its_fini_core(void) {} 300 #endif /* CONFIG_MITIGATION_ITS */ 301 302 /* 303 * Nomenclature for variable names to simplify and clarify this code and ease 304 * any potential staring at it: 305 * 306 * @instr: source address of the original instructions in the kernel text as 307 * generated by the compiler. 308 * 309 * @buf: temporary buffer on which the patching operates. This buffer is 310 * eventually text-poked into the kernel image. 311 * 312 * @replacement/@repl: pointer to the opcodes which are replacing @instr, located 313 * in the .altinstr_replacement section. 314 */ 315 316 /* 317 * Fill the buffer with a single effective instruction of size @len. 318 * 319 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info) 320 * for every single-byte NOP, try to generate the maximally available NOP of 321 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for 322 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and 323 * *jump* over instead of executing long and daft NOPs. 324 */ 325 static void add_nop(u8 *buf, unsigned int len) 326 { 327 u8 *target = buf + len; 328 329 if (!len) 330 return; 331 332 if (len <= ASM_NOP_MAX) { 333 memcpy(buf, x86_nops[len], len); 334 return; 335 } 336 337 if (len < 128) { 338 __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE); 339 buf += JMP8_INSN_SIZE; 340 } else { 341 __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE); 342 buf += JMP32_INSN_SIZE; 343 } 344 345 for (;buf < target; buf++) 346 *buf = INT3_INSN_OPCODE; 347 } 348 349 /* 350 * Find the offset of the first non-NOP instruction starting at @offset 351 * but no further than @len. 352 */ 353 static int skip_nops(u8 *buf, int offset, int len) 354 { 355 struct insn insn; 356 357 for (; offset < len; offset += insn.length) { 358 if (insn_decode_kernel(&insn, &buf[offset])) 359 break; 360 361 if (!insn_is_nop(&insn)) 362 break; 363 } 364 365 return offset; 366 } 367 368 /* 369 * "noinline" to cause control flow change and thus invalidate I$ and 370 * cause refetch after modification. 371 */ 372 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len) 373 { 374 for (int next, i = 0; i < len; i = next) { 375 struct insn insn; 376 377 if (insn_decode_kernel(&insn, &buf[i])) 378 return; 379 380 next = i + insn.length; 381 382 if (insn_is_nop(&insn)) { 383 int nop = i; 384 385 /* Has the NOP already been optimized? */ 386 if (i + insn.length == len) 387 return; 388 389 next = skip_nops(buf, next, len); 390 391 add_nop(buf + nop, next - nop); 392 DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next); 393 } 394 } 395 } 396 397 /* 398 * In this context, "source" is where the instructions are placed in the 399 * section .altinstr_replacement, for example during kernel build by the 400 * toolchain. 401 * "Destination" is where the instructions are being patched in by this 402 * machinery. 403 * 404 * The source offset is: 405 * 406 * src_imm = target - src_next_ip (1) 407 * 408 * and the target offset is: 409 * 410 * dst_imm = target - dst_next_ip (2) 411 * 412 * so rework (1) as an expression for target like: 413 * 414 * target = src_imm + src_next_ip (1a) 415 * 416 * and substitute in (2) to get: 417 * 418 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3) 419 * 420 * Now, since the instruction stream is 'identical' at src and dst (it 421 * is being copied after all) it can be stated that: 422 * 423 * src_next_ip = src + ip_offset 424 * dst_next_ip = dst + ip_offset (4) 425 * 426 * Substitute (4) in (3) and observe ip_offset being cancelled out to 427 * obtain: 428 * 429 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset) 430 * = src_imm + src - dst + ip_offset - ip_offset 431 * = src_imm + src - dst (5) 432 * 433 * IOW, only the relative displacement of the code block matters. 434 */ 435 436 #define apply_reloc_n(n_, p_, d_) \ 437 do { \ 438 s32 v = *(s##n_ *)(p_); \ 439 v += (d_); \ 440 BUG_ON((v >> 31) != (v >> (n_-1))); \ 441 *(s##n_ *)(p_) = (s##n_)v; \ 442 } while (0) 443 444 445 static __always_inline 446 void apply_reloc(int n, void *ptr, uintptr_t diff) 447 { 448 switch (n) { 449 case 1: apply_reloc_n(8, ptr, diff); break; 450 case 2: apply_reloc_n(16, ptr, diff); break; 451 case 4: apply_reloc_n(32, ptr, diff); break; 452 default: BUG(); 453 } 454 } 455 456 static __always_inline 457 bool need_reloc(unsigned long offset, u8 *src, size_t src_len) 458 { 459 u8 *target = src + offset; 460 /* 461 * If the target is inside the patched block, it's relative to the 462 * block itself and does not need relocation. 463 */ 464 return (target < src || target > src + src_len); 465 } 466 467 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) 468 { 469 for (int next, i = 0; i < instrlen; i = next) { 470 struct insn insn; 471 472 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i]))) 473 return; 474 475 next = i + insn.length; 476 477 switch (insn.opcode.bytes[0]) { 478 case 0x0f: 479 if (insn.opcode.bytes[1] < 0x80 || 480 insn.opcode.bytes[1] > 0x8f) 481 break; 482 483 fallthrough; /* Jcc.d32 */ 484 case 0x70 ... 0x7f: /* Jcc.d8 */ 485 case JMP8_INSN_OPCODE: 486 case JMP32_INSN_OPCODE: 487 case CALL_INSN_OPCODE: 488 if (need_reloc(next + insn.immediate.value, repl, repl_len)) { 489 apply_reloc(insn.immediate.nbytes, 490 buf + i + insn_offset_immediate(&insn), 491 repl - instr); 492 } 493 494 /* 495 * Where possible, convert JMP.d32 into JMP.d8. 496 */ 497 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) { 498 s32 imm = insn.immediate.value; 499 imm += repl - instr; 500 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE; 501 if ((imm >> 31) == (imm >> 7)) { 502 buf[i+0] = JMP8_INSN_OPCODE; 503 buf[i+1] = (s8)imm; 504 505 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2); 506 } 507 } 508 break; 509 } 510 511 if (insn_rip_relative(&insn)) { 512 if (need_reloc(next + insn.displacement.value, repl, repl_len)) { 513 apply_reloc(insn.displacement.nbytes, 514 buf + i + insn_offset_displacement(&insn), 515 repl - instr); 516 } 517 } 518 } 519 } 520 521 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) 522 { 523 __apply_relocation(buf, instr, instrlen, repl, repl_len); 524 optimize_nops(instr, buf, instrlen); 525 } 526 527 /* Low-level backend functions usable from alternative code replacements. */ 528 DEFINE_ASM_FUNC(nop_func, "", .entry.text); 529 EXPORT_SYMBOL_GPL(nop_func); 530 531 noinstr void BUG_func(void) 532 { 533 BUG(); 534 } 535 EXPORT_SYMBOL(BUG_func); 536 537 #define CALL_RIP_REL_OPCODE 0xff 538 #define CALL_RIP_REL_MODRM 0x15 539 540 /* 541 * Rewrite the "call BUG_func" replacement to point to the target of the 542 * indirect pv_ops call "call *disp(%ip)". 543 */ 544 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a) 545 { 546 void *target, *bug = &BUG_func; 547 s32 disp; 548 549 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) { 550 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n"); 551 BUG(); 552 } 553 554 if (a->instrlen != 6 || 555 instr[0] != CALL_RIP_REL_OPCODE || 556 instr[1] != CALL_RIP_REL_MODRM) { 557 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n"); 558 BUG(); 559 } 560 561 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */ 562 disp = *(s32 *)(instr + 2); 563 #ifdef CONFIG_X86_64 564 /* ff 15 00 00 00 00 call *0x0(%rip) */ 565 /* target address is stored at "next instruction + disp". */ 566 target = *(void **)(instr + a->instrlen + disp); 567 #else 568 /* ff 15 00 00 00 00 call *0x0 */ 569 /* target address is stored at disp. */ 570 target = *(void **)disp; 571 #endif 572 if (!target) 573 target = bug; 574 575 /* (BUG_func - .) + (target - BUG_func) := target - . */ 576 *(s32 *)(insn_buff + 1) += target - bug; 577 578 if (target == &nop_func) 579 return 0; 580 581 return 5; 582 } 583 584 static inline u8 * instr_va(struct alt_instr *i) 585 { 586 return (u8 *)&i->instr_offset + i->instr_offset; 587 } 588 589 /* 590 * Replace instructions with better alternatives for this CPU type. This runs 591 * before SMP is initialized to avoid SMP problems with self modifying code. 592 * This implies that asymmetric systems where APs have less capabilities than 593 * the boot processor are not handled. Tough. Make sure you disable such 594 * features by hand. 595 * 596 * Marked "noinline" to cause control flow change and thus insn cache 597 * to refetch changed I$ lines. 598 */ 599 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 600 struct alt_instr *end) 601 { 602 u8 insn_buff[MAX_PATCH_LEN]; 603 u8 *instr, *replacement; 604 struct alt_instr *a, *b; 605 606 DPRINTK(ALT, "alt table %px, -> %px", start, end); 607 608 /* 609 * KASAN_SHADOW_START is defined using 610 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here. 611 * During the process, KASAN becomes confused seeing partial LA57 612 * conversion and triggers a false-positive out-of-bound report. 613 * 614 * Disable KASAN until the patching is complete. 615 */ 616 kasan_disable_current(); 617 618 /* 619 * The scan order should be from start to end. A later scanned 620 * alternative code can overwrite previously scanned alternative code. 621 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 622 * patch code. 623 * 624 * So be careful if you want to change the scan order to any other 625 * order. 626 */ 627 for (a = start; a < end; a++) { 628 int insn_buff_sz = 0; 629 630 /* 631 * In case of nested ALTERNATIVE()s the outer alternative might 632 * add more padding. To ensure consistent patching find the max 633 * padding for all alt_instr entries for this site (nested 634 * alternatives result in consecutive entries). 635 */ 636 for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) { 637 u8 len = max(a->instrlen, b->instrlen); 638 a->instrlen = b->instrlen = len; 639 } 640 641 instr = instr_va(a); 642 replacement = (u8 *)&a->repl_offset + a->repl_offset; 643 BUG_ON(a->instrlen > sizeof(insn_buff)); 644 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); 645 646 /* 647 * Patch if either: 648 * - feature is present 649 * - feature not present but ALT_FLAG_NOT is set to mean, 650 * patch if feature is *NOT* present. 651 */ 652 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) { 653 memcpy(insn_buff, instr, a->instrlen); 654 optimize_nops(instr, insn_buff, a->instrlen); 655 text_poke_early(instr, insn_buff, a->instrlen); 656 continue; 657 } 658 659 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x", 660 a->cpuid >> 5, 661 a->cpuid & 0x1f, 662 instr, instr, a->instrlen, 663 replacement, a->replacementlen, a->flags); 664 665 memcpy(insn_buff, replacement, a->replacementlen); 666 insn_buff_sz = a->replacementlen; 667 668 if (a->flags & ALT_FLAG_DIRECT_CALL) { 669 insn_buff_sz = alt_replace_call(instr, insn_buff, a); 670 if (insn_buff_sz < 0) 671 continue; 672 } 673 674 for (; insn_buff_sz < a->instrlen; insn_buff_sz++) 675 insn_buff[insn_buff_sz] = 0x90; 676 677 text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen); 678 679 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr); 680 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement); 681 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr); 682 683 text_poke_early(instr, insn_buff, insn_buff_sz); 684 } 685 686 kasan_enable_current(); 687 } 688 689 static inline bool is_jcc32(struct insn *insn) 690 { 691 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ 692 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80; 693 } 694 695 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL) 696 697 /* 698 * [CS]{,3} CALL/JMP *%\reg [INT3]* 699 */ 700 static int emit_indirect(int op, int reg, u8 *bytes, int len) 701 { 702 int cs = 0, bp = 0; 703 int i = 0; 704 u8 modrm; 705 706 /* 707 * Set @len to the excess bytes after writing the instruction. 708 */ 709 len -= 2 + (reg >= 8); 710 WARN_ON_ONCE(len < 0); 711 712 switch (op) { 713 case CALL_INSN_OPCODE: 714 modrm = 0x10; /* Reg = 2; CALL r/m */ 715 /* 716 * Additional NOP is better than prefix decode penalty. 717 */ 718 if (len <= 3) 719 cs = len; 720 break; 721 722 case JMP32_INSN_OPCODE: 723 modrm = 0x20; /* Reg = 4; JMP r/m */ 724 bp = len; 725 break; 726 727 default: 728 WARN_ON_ONCE(1); 729 return -1; 730 } 731 732 while (cs--) 733 bytes[i++] = 0x2e; /* CS-prefix */ 734 735 if (reg >= 8) { 736 bytes[i++] = 0x41; /* REX.B prefix */ 737 reg -= 8; 738 } 739 740 modrm |= 0xc0; /* Mod = 3 */ 741 modrm += reg; 742 743 bytes[i++] = 0xff; /* opcode */ 744 bytes[i++] = modrm; 745 746 while (bp--) 747 bytes[i++] = 0xcc; /* INT3 */ 748 749 return i; 750 } 751 752 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes, 753 void *call_dest, void *jmp_dest) 754 { 755 u8 op = insn->opcode.bytes[0]; 756 int i = 0; 757 758 /* 759 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional 760 * tail-calls. Deal with them. 761 */ 762 if (is_jcc32(insn)) { 763 bytes[i++] = op; 764 op = insn->opcode.bytes[1]; 765 goto clang_jcc; 766 } 767 768 if (insn->length == 6) 769 bytes[i++] = 0x2e; /* CS-prefix */ 770 771 switch (op) { 772 case CALL_INSN_OPCODE: 773 __text_gen_insn(bytes+i, op, addr+i, 774 call_dest, 775 CALL_INSN_SIZE); 776 i += CALL_INSN_SIZE; 777 break; 778 779 case JMP32_INSN_OPCODE: 780 clang_jcc: 781 __text_gen_insn(bytes+i, op, addr+i, 782 jmp_dest, 783 JMP32_INSN_SIZE); 784 i += JMP32_INSN_SIZE; 785 break; 786 787 default: 788 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr); 789 return -1; 790 } 791 792 WARN_ON_ONCE(i != insn->length); 793 794 return i; 795 } 796 797 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes) 798 { 799 return __emit_trampoline(addr, insn, bytes, 800 __x86_indirect_call_thunk_array[reg], 801 __x86_indirect_jump_thunk_array[reg]); 802 } 803 804 #ifdef CONFIG_MITIGATION_ITS 805 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) 806 { 807 u8 *thunk = __x86_indirect_its_thunk_array[reg]; 808 u8 *tmp = its_allocate_thunk(reg); 809 810 if (tmp) 811 thunk = tmp; 812 813 return __emit_trampoline(addr, insn, bytes, thunk, thunk); 814 } 815 816 /* Check if an indirect branch is at ITS-unsafe address */ 817 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) 818 { 819 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 820 return false; 821 822 /* Indirect branch opcode is 2 or 3 bytes depending on reg */ 823 addr += 1 + reg / 8; 824 825 /* Lower-half of the cacheline? */ 826 return !(addr & 0x20); 827 } 828 #else /* CONFIG_MITIGATION_ITS */ 829 830 #ifdef CONFIG_FINEIBT 831 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) 832 { 833 return false; 834 } 835 #endif 836 837 #endif /* CONFIG_MITIGATION_ITS */ 838 839 /* 840 * Rewrite the compiler generated retpoline thunk calls. 841 * 842 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate 843 * indirect instructions, avoiding the extra indirection. 844 * 845 * For example, convert: 846 * 847 * CALL __x86_indirect_thunk_\reg 848 * 849 * into: 850 * 851 * CALL *%\reg 852 * 853 * It also tries to inline spectre_v2=retpoline,lfence when size permits. 854 */ 855 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) 856 { 857 retpoline_thunk_t *target; 858 int reg, ret, i = 0; 859 u8 op, cc; 860 861 target = addr + insn->length + insn->immediate.value; 862 reg = target - __x86_indirect_thunk_array; 863 864 if (WARN_ON_ONCE(reg & ~0xf)) 865 return -1; 866 867 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ 868 BUG_ON(reg == 4); 869 870 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && 871 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 872 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 873 return emit_call_track_retpoline(addr, insn, reg, bytes); 874 875 return -1; 876 } 877 878 op = insn->opcode.bytes[0]; 879 880 /* 881 * Convert: 882 * 883 * Jcc.d32 __x86_indirect_thunk_\reg 884 * 885 * into: 886 * 887 * Jncc.d8 1f 888 * [ LFENCE ] 889 * JMP *%\reg 890 * [ NOP ] 891 * 1: 892 */ 893 if (is_jcc32(insn)) { 894 cc = insn->opcode.bytes[1] & 0xf; 895 cc ^= 1; /* invert condition */ 896 897 bytes[i++] = 0x70 + cc; /* Jcc.d8 */ 898 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ 899 900 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ 901 op = JMP32_INSN_OPCODE; 902 } 903 904 /* 905 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. 906 */ 907 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 908 bytes[i++] = 0x0f; 909 bytes[i++] = 0xae; 910 bytes[i++] = 0xe8; /* LFENCE */ 911 } 912 913 #ifdef CONFIG_MITIGATION_ITS 914 /* 915 * Check if the address of last byte of emitted-indirect is in 916 * lower-half of the cacheline. Such branches need ITS mitigation. 917 */ 918 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg)) 919 return emit_its_trampoline(addr, insn, reg, bytes); 920 #endif 921 922 ret = emit_indirect(op, reg, bytes + i, insn->length - i); 923 if (ret < 0) 924 return ret; 925 i += ret; 926 927 for (; i < insn->length;) 928 bytes[i++] = BYTES_NOP1; 929 930 return i; 931 } 932 933 /* 934 * Generated by 'objtool --retpoline'. 935 */ 936 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) 937 { 938 s32 *s; 939 940 for (s = start; s < end; s++) { 941 void *addr = (void *)s + *s; 942 struct insn insn; 943 int len, ret; 944 u8 bytes[16]; 945 u8 op1, op2; 946 u8 *dest; 947 948 ret = insn_decode_kernel(&insn, addr); 949 if (WARN_ON_ONCE(ret < 0)) 950 continue; 951 952 op1 = insn.opcode.bytes[0]; 953 op2 = insn.opcode.bytes[1]; 954 955 switch (op1) { 956 case 0x70 ... 0x7f: /* Jcc.d8 */ 957 /* See cfi_paranoid. */ 958 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); 959 continue; 960 961 case CALL_INSN_OPCODE: 962 case JMP32_INSN_OPCODE: 963 /* Check for cfi_paranoid + ITS */ 964 dest = addr + insn.length + insn.immediate.value; 965 if (dest[-1] == 0xd6 && (dest[0] & 0xf0) == 0x70) { 966 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); 967 continue; 968 } 969 break; 970 971 case 0x0f: /* escape */ 972 if (op2 >= 0x80 && op2 <= 0x8f) 973 break; 974 fallthrough; 975 default: 976 WARN_ON_ONCE(1); 977 continue; 978 } 979 980 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS", 981 addr, addr, insn.length, 982 addr + insn.length + insn.immediate.value); 983 984 len = patch_retpoline(addr, &insn, bytes); 985 if (len == insn.length) { 986 optimize_nops(addr, bytes, len); 987 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr); 988 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr); 989 text_poke_early(addr, bytes, len); 990 } 991 } 992 } 993 994 #ifdef CONFIG_MITIGATION_RETHUNK 995 996 bool cpu_wants_rethunk(void) 997 { 998 return cpu_feature_enabled(X86_FEATURE_RETHUNK); 999 } 1000 1001 bool cpu_wants_rethunk_at(void *addr) 1002 { 1003 if (!cpu_feature_enabled(X86_FEATURE_RETHUNK)) 1004 return false; 1005 if (x86_return_thunk != its_return_thunk) 1006 return true; 1007 1008 return !((unsigned long)addr & 0x20); 1009 } 1010 1011 /* 1012 * Rewrite the compiler generated return thunk tail-calls. 1013 * 1014 * For example, convert: 1015 * 1016 * JMP __x86_return_thunk 1017 * 1018 * into: 1019 * 1020 * RET 1021 */ 1022 static int patch_return(void *addr, struct insn *insn, u8 *bytes) 1023 { 1024 int i = 0; 1025 1026 /* Patch the custom return thunks... */ 1027 if (cpu_wants_rethunk_at(addr)) { 1028 i = JMP32_INSN_SIZE; 1029 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i); 1030 } else { 1031 /* ... or patch them out if not needed. */ 1032 bytes[i++] = RET_INSN_OPCODE; 1033 } 1034 1035 for (; i < insn->length;) 1036 bytes[i++] = INT3_INSN_OPCODE; 1037 return i; 1038 } 1039 1040 void __init_or_module noinline apply_returns(s32 *start, s32 *end) 1041 { 1042 s32 *s; 1043 1044 if (cpu_wants_rethunk()) 1045 static_call_force_reinit(); 1046 1047 for (s = start; s < end; s++) { 1048 void *dest = NULL, *addr = (void *)s + *s; 1049 struct insn insn; 1050 int len, ret; 1051 u8 bytes[16]; 1052 u8 op; 1053 1054 ret = insn_decode_kernel(&insn, addr); 1055 if (WARN_ON_ONCE(ret < 0)) 1056 continue; 1057 1058 op = insn.opcode.bytes[0]; 1059 if (op == JMP32_INSN_OPCODE) 1060 dest = addr + insn.length + insn.immediate.value; 1061 1062 if (__static_call_fixup(addr, op, dest) || 1063 WARN_ONCE(dest != &__x86_return_thunk, 1064 "missing return thunk: %pS-%pS: %*ph", 1065 addr, dest, 5, addr)) 1066 continue; 1067 1068 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS", 1069 addr, addr, insn.length, 1070 addr + insn.length + insn.immediate.value); 1071 1072 len = patch_return(addr, &insn, bytes); 1073 if (len == insn.length) { 1074 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr); 1075 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr); 1076 text_poke_early(addr, bytes, len); 1077 } 1078 } 1079 } 1080 #else /* !CONFIG_MITIGATION_RETHUNK: */ 1081 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 1082 #endif /* !CONFIG_MITIGATION_RETHUNK */ 1083 1084 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ 1085 1086 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } 1087 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 1088 1089 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ 1090 1091 #ifdef CONFIG_X86_KERNEL_IBT 1092 1093 __noendbr bool is_endbr(u32 *val) 1094 { 1095 u32 endbr; 1096 1097 __get_kernel_nofault(&endbr, val, u32, Efault); 1098 return __is_endbr(endbr); 1099 1100 Efault: 1101 return false; 1102 } 1103 1104 #ifdef CONFIG_FINEIBT 1105 1106 static __noendbr bool exact_endbr(u32 *val) 1107 { 1108 u32 endbr; 1109 1110 __get_kernel_nofault(&endbr, val, u32, Efault); 1111 return endbr == gen_endbr(); 1112 1113 Efault: 1114 return false; 1115 } 1116 1117 #endif 1118 1119 static void poison_cfi(void *addr); 1120 1121 static void __init_or_module poison_endbr(void *addr) 1122 { 1123 u32 poison = gen_endbr_poison(); 1124 1125 if (WARN_ON_ONCE(!is_endbr(addr))) 1126 return; 1127 1128 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr); 1129 1130 /* 1131 * When we have IBT, the lack of ENDBR will trigger #CP 1132 */ 1133 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr); 1134 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr); 1135 text_poke_early(addr, &poison, 4); 1136 } 1137 1138 /* 1139 * Generated by: objtool --ibt 1140 * 1141 * Seal the functions for indirect calls by clobbering the ENDBR instructions 1142 * and the kCFI hash value. 1143 */ 1144 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end) 1145 { 1146 s32 *s; 1147 1148 for (s = start; s < end; s++) { 1149 void *addr = (void *)s + *s; 1150 1151 poison_endbr(addr); 1152 if (IS_ENABLED(CONFIG_FINEIBT)) 1153 poison_cfi(addr - 16); 1154 } 1155 } 1156 1157 #else /* !CONFIG_X86_KERNEL_IBT: */ 1158 1159 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { } 1160 1161 #endif /* !CONFIG_X86_KERNEL_IBT */ 1162 1163 #ifdef CONFIG_CFI_AUTO_DEFAULT 1164 # define __CFI_DEFAULT CFI_AUTO 1165 #elif defined(CONFIG_CFI) 1166 # define __CFI_DEFAULT CFI_KCFI 1167 #else 1168 # define __CFI_DEFAULT CFI_OFF 1169 #endif 1170 1171 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT; 1172 static bool cfi_debug __ro_after_init; 1173 1174 #ifdef CONFIG_FINEIBT_BHI 1175 bool cfi_bhi __ro_after_init = false; 1176 #endif 1177 1178 #ifdef CONFIG_CFI 1179 u32 cfi_get_func_hash(void *func) 1180 { 1181 u32 hash; 1182 1183 func -= cfi_get_offset(); 1184 switch (cfi_mode) { 1185 case CFI_FINEIBT: 1186 func += 7; 1187 break; 1188 case CFI_KCFI: 1189 func += 1; 1190 break; 1191 default: 1192 return 0; 1193 } 1194 1195 if (get_kernel_nofault(hash, func)) 1196 return 0; 1197 1198 return hash; 1199 } 1200 1201 int cfi_get_func_arity(void *func) 1202 { 1203 bhi_thunk *target; 1204 s32 disp; 1205 1206 if (cfi_mode != CFI_FINEIBT && !cfi_bhi) 1207 return 0; 1208 1209 if (get_kernel_nofault(disp, func - 4)) 1210 return 0; 1211 1212 target = func + disp; 1213 return target - __bhi_args; 1214 } 1215 #endif 1216 1217 #ifdef CONFIG_FINEIBT 1218 1219 static bool cfi_rand __ro_after_init = true; 1220 static u32 cfi_seed __ro_after_init; 1221 1222 /* 1223 * Re-hash the CFI hash with a boot-time seed while making sure the result is 1224 * not a valid ENDBR instruction. 1225 */ 1226 static u32 cfi_rehash(u32 hash) 1227 { 1228 hash ^= cfi_seed; 1229 while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) { 1230 bool lsb = hash & 1; 1231 hash >>= 1; 1232 if (lsb) 1233 hash ^= 0x80200003; 1234 } 1235 return hash; 1236 } 1237 1238 static __init int cfi_parse_cmdline(char *str) 1239 { 1240 if (!str) 1241 return -EINVAL; 1242 1243 while (str) { 1244 char *next = strchr(str, ','); 1245 if (next) { 1246 *next = 0; 1247 next++; 1248 } 1249 1250 if (!strcmp(str, "auto")) { 1251 cfi_mode = CFI_AUTO; 1252 } else if (!strcmp(str, "off")) { 1253 cfi_mode = CFI_OFF; 1254 cfi_rand = false; 1255 } else if (!strcmp(str, "debug")) { 1256 cfi_debug = true; 1257 } else if (!strcmp(str, "kcfi")) { 1258 cfi_mode = CFI_KCFI; 1259 } else if (!strcmp(str, "fineibt")) { 1260 cfi_mode = CFI_FINEIBT; 1261 } else if (!strcmp(str, "norand")) { 1262 cfi_rand = false; 1263 } else if (!strcmp(str, "warn")) { 1264 pr_alert("CFI: mismatch non-fatal!\n"); 1265 cfi_warn = true; 1266 } else if (!strcmp(str, "paranoid")) { 1267 if (cfi_mode == CFI_FINEIBT) { 1268 cfi_paranoid = true; 1269 } else { 1270 pr_err("CFI: ignoring paranoid; depends on fineibt.\n"); 1271 } 1272 } else if (!strcmp(str, "bhi")) { 1273 #ifdef CONFIG_FINEIBT_BHI 1274 if (cfi_mode == CFI_FINEIBT) { 1275 cfi_bhi = true; 1276 } else { 1277 pr_err("CFI: ignoring bhi; depends on fineibt.\n"); 1278 } 1279 #else 1280 pr_err("CFI: ignoring bhi; depends on FINEIBT_BHI=y.\n"); 1281 #endif 1282 } else { 1283 pr_err("CFI: Ignoring unknown option (%s).", str); 1284 } 1285 1286 str = next; 1287 } 1288 1289 return 0; 1290 } 1291 early_param("cfi", cfi_parse_cmdline); 1292 1293 /* 1294 * kCFI FineIBT 1295 * 1296 * __cfi_\func: __cfi_\func: 1297 * movl $0x12345678,%eax // 5 endbr64 // 4 1298 * nop subl $0x12345678,%eax // 5 1299 * nop jne.d32,pn \func+3 // 7 1300 * nop 1301 * nop 1302 * nop 1303 * nop 1304 * nop 1305 * nop 1306 * nop 1307 * nop 1308 * nop 1309 * \func: \func: 1310 * endbr64 nopl -42(%rax) 1311 * 1312 * 1313 * caller: caller: 1314 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%eax // 5 1315 * addl $-15(%r11),%r10d // 4 lea -0x10(%r11),%r11 // 4 1316 * je 1f // 2 nop5 // 5 1317 * ud2 // 2 1318 * 1: cs call __x86_indirect_thunk_r11 // 6 call *%r11; nop3; // 6 1319 * 1320 * 1321 * Notably, the FineIBT sequences are crafted such that branches are presumed 1322 * non-taken. This is based on Agner Fog's optimization manual, which states: 1323 * 1324 * "Make conditional jumps most often not taken: The efficiency and throughput 1325 * for not-taken branches is better than for taken branches on most 1326 * processors. Therefore, it is good to place the most frequent branch first" 1327 */ 1328 1329 /* 1330 * <fineibt_preamble_start>: 1331 * 0: f3 0f 1e fa endbr64 1332 * 4: 2d 78 56 34 12 sub $0x12345678, %eax 1333 * 9: 2e 0f 85 03 00 00 00 jne,pn 13 <fineibt_preamble_start+0x13> 1334 * 10: 0f 1f 40 d6 nopl -0x2a(%rax) 1335 * 1336 * Note that the JNE target is the 0xD6 byte inside the NOPL, this decodes as 1337 * UDB on x86_64 and raises #UD. 1338 */ 1339 asm( ".pushsection .rodata \n" 1340 "fineibt_preamble_start: \n" 1341 " endbr64 \n" 1342 " subl $0x12345678, %eax \n" 1343 "fineibt_preamble_bhi: \n" 1344 " cs jne.d32 fineibt_preamble_start+0x13 \n" 1345 "#fineibt_func: \n" 1346 " nopl -42(%rax) \n" 1347 "fineibt_preamble_end: \n" 1348 ".popsection\n" 1349 ); 1350 1351 extern u8 fineibt_preamble_start[]; 1352 extern u8 fineibt_preamble_bhi[]; 1353 extern u8 fineibt_preamble_end[]; 1354 1355 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start) 1356 #define fineibt_preamble_bhi (fineibt_preamble_bhi - fineibt_preamble_start) 1357 #define fineibt_preamble_ud 0x13 1358 #define fineibt_preamble_hash 5 1359 1360 /* 1361 * <fineibt_caller_start>: 1362 * 0: b8 78 56 34 12 mov $0x12345678, %eax 1363 * 5: 4d 8d 5b f0 lea -0x10(%r11), %r11 1364 * 9: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1) 1365 */ 1366 asm( ".pushsection .rodata \n" 1367 "fineibt_caller_start: \n" 1368 " movl $0x12345678, %eax \n" 1369 " lea -0x10(%r11), %r11 \n" 1370 ASM_NOP5 1371 "fineibt_caller_end: \n" 1372 ".popsection \n" 1373 ); 1374 1375 extern u8 fineibt_caller_start[]; 1376 extern u8 fineibt_caller_end[]; 1377 1378 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start) 1379 #define fineibt_caller_hash 1 1380 1381 #define fineibt_caller_jmp (fineibt_caller_size - 2) 1382 1383 /* 1384 * Since FineIBT does hash validation on the callee side it is prone to 1385 * circumvention attacks where a 'naked' ENDBR instruction exists that 1386 * is not part of the fineibt_preamble sequence. 1387 * 1388 * Notably the x86 entry points must be ENDBR and equally cannot be 1389 * fineibt_preamble. 1390 * 1391 * The fineibt_paranoid caller sequence adds additional caller side 1392 * hash validation. This stops such circumvention attacks dead, but at the cost 1393 * of adding a load. 1394 * 1395 * <fineibt_paranoid_start>: 1396 * 0: b8 78 56 34 12 mov $0x12345678, %eax 1397 * 5: 41 3b 43 f5 cmp -0x11(%r11), %eax 1398 * 9: 2e 4d 8d 5b <f0> cs lea -0x10(%r11), %r11 1399 * e: 75 fd jne d <fineibt_paranoid_start+0xd> 1400 * 10: 41 ff d3 call *%r11 1401 * 13: 90 nop 1402 * 1403 * Notably LEA does not modify flags and can be reordered with the CMP, 1404 * avoiding a dependency. Again, using a non-taken (backwards) branch 1405 * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the 1406 * Jcc.d8, causing #UD. 1407 */ 1408 asm( ".pushsection .rodata \n" 1409 "fineibt_paranoid_start: \n" 1410 " mov $0x12345678, %eax \n" 1411 " cmpl -11(%r11), %eax \n" 1412 " cs lea -0x10(%r11), %r11 \n" 1413 "#fineibt_caller_size: \n" 1414 " jne fineibt_paranoid_start+0xd \n" 1415 "fineibt_paranoid_ind: \n" 1416 " cs call *%r11 \n" 1417 "fineibt_paranoid_end: \n" 1418 ".popsection \n" 1419 ); 1420 1421 extern u8 fineibt_paranoid_start[]; 1422 extern u8 fineibt_paranoid_ind[]; 1423 extern u8 fineibt_paranoid_end[]; 1424 1425 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start) 1426 #define fineibt_paranoid_ind (fineibt_paranoid_ind - fineibt_paranoid_start) 1427 #define fineibt_paranoid_ud 0xd 1428 1429 static u32 decode_preamble_hash(void *addr, int *reg) 1430 { 1431 u8 *p = addr; 1432 1433 /* b8+reg 78 56 34 12 movl $0x12345678,\reg */ 1434 if (p[0] >= 0xb8 && p[0] < 0xc0) { 1435 if (reg) 1436 *reg = p[0] - 0xb8; 1437 return *(u32 *)(addr + 1); 1438 } 1439 1440 return 0; /* invalid hash value */ 1441 } 1442 1443 static u32 decode_caller_hash(void *addr) 1444 { 1445 u8 *p = addr; 1446 1447 /* 41 ba 88 a9 cb ed mov $(-0x12345678),%r10d */ 1448 if (p[0] == 0x41 && p[1] == 0xba) 1449 return -*(u32 *)(addr + 2); 1450 1451 /* e8 0c 88 a9 cb ed jmp.d8 +12 */ 1452 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp) 1453 return -*(u32 *)(addr + 2); 1454 1455 return 0; /* invalid hash value */ 1456 } 1457 1458 /* .retpoline_sites */ 1459 static int cfi_disable_callers(s32 *start, s32 *end) 1460 { 1461 /* 1462 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate 1463 * in tact for later usage. Also see decode_caller_hash() and 1464 * cfi_rewrite_callers(). 1465 */ 1466 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp }; 1467 s32 *s; 1468 1469 for (s = start; s < end; s++) { 1470 void *addr = (void *)s + *s; 1471 u32 hash; 1472 1473 addr -= fineibt_caller_size; 1474 hash = decode_caller_hash(addr); 1475 if (!hash) /* nocfi callers */ 1476 continue; 1477 1478 text_poke_early(addr, jmp, 2); 1479 } 1480 1481 return 0; 1482 } 1483 1484 static int cfi_enable_callers(s32 *start, s32 *end) 1485 { 1486 /* 1487 * Re-enable kCFI, undo what cfi_disable_callers() did. 1488 */ 1489 const u8 mov[] = { 0x41, 0xba }; 1490 s32 *s; 1491 1492 for (s = start; s < end; s++) { 1493 void *addr = (void *)s + *s; 1494 u32 hash; 1495 1496 addr -= fineibt_caller_size; 1497 hash = decode_caller_hash(addr); 1498 if (!hash) /* nocfi callers */ 1499 continue; 1500 1501 text_poke_early(addr, mov, 2); 1502 } 1503 1504 return 0; 1505 } 1506 1507 /* .cfi_sites */ 1508 static int cfi_rand_preamble(s32 *start, s32 *end) 1509 { 1510 s32 *s; 1511 1512 for (s = start; s < end; s++) { 1513 void *addr = (void *)s + *s; 1514 u32 hash; 1515 1516 hash = decode_preamble_hash(addr, NULL); 1517 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1518 addr, addr, 5, addr)) 1519 return -EINVAL; 1520 1521 hash = cfi_rehash(hash); 1522 text_poke_early(addr + 1, &hash, 4); 1523 } 1524 1525 return 0; 1526 } 1527 1528 /* 1529 * Inline the bhi-arity 1 case: 1530 * 1531 * __cfi_foo: 1532 * 0: f3 0f 1e fa endbr64 1533 * 4: 2d 78 56 34 12 sub $0x12345678, %eax 1534 * 9: 49 0f 45 fa cmovne %rax, %rdi 1535 * d: 2e 75 03 jne,pn foo+0x3 1536 * 1537 * foo: 1538 * 10: 0f 1f 40 <d6> nopl -42(%rax) 1539 * 1540 * Notably, this scheme is incompatible with permissive CFI 1541 * because the CMOVcc is unconditional and RDI will have been 1542 * clobbered. 1543 */ 1544 asm( ".pushsection .rodata \n" 1545 "fineibt_bhi1_start: \n" 1546 " cmovne %rax, %rdi \n" 1547 " cs jne fineibt_bhi1_func + 0x3 \n" 1548 "fineibt_bhi1_func: \n" 1549 " nopl -42(%rax) \n" 1550 "fineibt_bhi1_end: \n" 1551 ".popsection \n" 1552 ); 1553 1554 extern u8 fineibt_bhi1_start[]; 1555 extern u8 fineibt_bhi1_end[]; 1556 1557 #define fineibt_bhi1_size (fineibt_bhi1_end - fineibt_bhi1_start) 1558 1559 static void cfi_fineibt_bhi_preamble(void *addr, int arity) 1560 { 1561 u8 bytes[MAX_INSN_SIZE]; 1562 1563 if (!arity) 1564 return; 1565 1566 if (!cfi_warn && arity == 1) { 1567 text_poke_early(addr + fineibt_preamble_bhi, 1568 fineibt_bhi1_start, fineibt_bhi1_size); 1569 return; 1570 } 1571 1572 /* 1573 * Replace the bytes at fineibt_preamble_bhi with a CALL instruction 1574 * that lines up exactly with the end of the preamble, such that the 1575 * return address will be foo+0. 1576 * 1577 * __cfi_foo: 1578 * 0: f3 0f 1e fa endbr64 1579 * 4: 2d 78 56 34 12 sub $0x12345678, %eax 1580 * 9: 2e 2e e8 DD DD DD DD cs cs call __bhi_args[arity] 1581 */ 1582 bytes[0] = 0x2e; 1583 bytes[1] = 0x2e; 1584 __text_gen_insn(bytes + 2, CALL_INSN_OPCODE, 1585 addr + fineibt_preamble_bhi + 2, 1586 __bhi_args[arity], CALL_INSN_SIZE); 1587 1588 text_poke_early(addr + fineibt_preamble_bhi, bytes, 7); 1589 } 1590 1591 static int cfi_rewrite_preamble(s32 *start, s32 *end) 1592 { 1593 s32 *s; 1594 1595 for (s = start; s < end; s++) { 1596 void *addr = (void *)s + *s; 1597 int arity; 1598 u32 hash; 1599 1600 /* 1601 * When the function doesn't start with ENDBR the compiler will 1602 * have determined there are no indirect calls to it and we 1603 * don't need no CFI either. 1604 */ 1605 if (!is_endbr(addr + 16)) 1606 continue; 1607 1608 hash = decode_preamble_hash(addr, &arity); 1609 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1610 addr, addr, 5, addr)) 1611 return -EINVAL; 1612 1613 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size); 1614 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678); 1615 text_poke_early(addr + fineibt_preamble_hash, &hash, 4); 1616 1617 WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity, 1618 "kCFI preamble has wrong register at: %pS %*ph\n", 1619 addr, 5, addr); 1620 1621 if (cfi_bhi) 1622 cfi_fineibt_bhi_preamble(addr, arity); 1623 } 1624 1625 return 0; 1626 } 1627 1628 static void cfi_rewrite_endbr(s32 *start, s32 *end) 1629 { 1630 s32 *s; 1631 1632 for (s = start; s < end; s++) { 1633 void *addr = (void *)s + *s; 1634 1635 if (!exact_endbr(addr + 16)) 1636 continue; 1637 1638 poison_endbr(addr + 16); 1639 } 1640 } 1641 1642 /* .retpoline_sites */ 1643 static int cfi_rand_callers(s32 *start, s32 *end) 1644 { 1645 s32 *s; 1646 1647 for (s = start; s < end; s++) { 1648 void *addr = (void *)s + *s; 1649 u32 hash; 1650 1651 addr -= fineibt_caller_size; 1652 hash = decode_caller_hash(addr); 1653 if (hash) { 1654 hash = -cfi_rehash(hash); 1655 text_poke_early(addr + 2, &hash, 4); 1656 } 1657 } 1658 1659 return 0; 1660 } 1661 1662 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) 1663 { 1664 u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2; 1665 1666 #ifdef CONFIG_MITIGATION_ITS 1667 u8 *tmp = its_allocate_thunk(reg); 1668 if (tmp) 1669 thunk = tmp; 1670 #endif 1671 1672 return __emit_trampoline(addr, insn, bytes, thunk, thunk); 1673 } 1674 1675 static int cfi_rewrite_callers(s32 *start, s32 *end) 1676 { 1677 s32 *s; 1678 1679 for (s = start; s < end; s++) { 1680 void *addr = (void *)s + *s; 1681 struct insn insn; 1682 u8 bytes[20]; 1683 u32 hash; 1684 int ret; 1685 u8 op; 1686 1687 addr -= fineibt_caller_size; 1688 hash = decode_caller_hash(addr); 1689 if (!hash) 1690 continue; 1691 1692 if (!cfi_paranoid) { 1693 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size); 1694 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678); 1695 text_poke_early(addr + fineibt_caller_hash, &hash, 4); 1696 /* rely on apply_retpolines() */ 1697 continue; 1698 } 1699 1700 /* cfi_paranoid */ 1701 ret = insn_decode_kernel(&insn, addr + fineibt_caller_size); 1702 if (WARN_ON_ONCE(ret < 0)) 1703 continue; 1704 1705 op = insn.opcode.bytes[0]; 1706 if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) { 1707 WARN_ON_ONCE(1); 1708 continue; 1709 } 1710 1711 memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size); 1712 memcpy(bytes + fineibt_caller_hash, &hash, 4); 1713 1714 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) { 1715 emit_paranoid_trampoline(addr + fineibt_caller_size, 1716 &insn, 11, bytes + fineibt_caller_size); 1717 } else { 1718 int len = fineibt_paranoid_size - fineibt_paranoid_ind; 1719 ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind, len); 1720 if (WARN_ON_ONCE(ret != len)) 1721 continue; 1722 } 1723 1724 text_poke_early(addr, bytes, fineibt_paranoid_size); 1725 } 1726 1727 return 0; 1728 } 1729 1730 #define pr_cfi_debug(X...) if (cfi_debug) pr_info(X) 1731 1732 #define FINEIBT_WARN(_f, _v) \ 1733 WARN_ONCE((_f) != (_v), "FineIBT: " #_f " %ld != %d\n", _f, _v) 1734 1735 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1736 s32 *start_cfi, s32 *end_cfi, bool builtin) 1737 { 1738 int ret; 1739 1740 if (FINEIBT_WARN(fineibt_preamble_size, 20) || 1741 FINEIBT_WARN(fineibt_preamble_bhi + fineibt_bhi1_size, 20) || 1742 FINEIBT_WARN(fineibt_caller_size, 14) || 1743 FINEIBT_WARN(fineibt_paranoid_size, 20)) 1744 return; 1745 1746 if (cfi_mode == CFI_AUTO) { 1747 cfi_mode = CFI_KCFI; 1748 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) { 1749 /* 1750 * FRED has much saner context on exception entry and 1751 * is less easy to take advantage of. 1752 */ 1753 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 1754 cfi_paranoid = true; 1755 cfi_mode = CFI_FINEIBT; 1756 } 1757 } 1758 1759 /* 1760 * Rewrite the callers to not use the __cfi_ stubs, such that we might 1761 * rewrite them. This disables all CFI. If this succeeds but any of the 1762 * later stages fails, we're without CFI. 1763 */ 1764 pr_cfi_debug("CFI: disabling all indirect call checking\n"); 1765 ret = cfi_disable_callers(start_retpoline, end_retpoline); 1766 if (ret) 1767 goto err; 1768 1769 if (cfi_rand) { 1770 if (builtin) { 1771 cfi_seed = get_random_u32(); 1772 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash); 1773 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash); 1774 } 1775 pr_cfi_debug("CFI: cfi_seed: 0x%08x\n", cfi_seed); 1776 1777 pr_cfi_debug("CFI: rehashing all preambles\n"); 1778 ret = cfi_rand_preamble(start_cfi, end_cfi); 1779 if (ret) 1780 goto err; 1781 1782 pr_cfi_debug("CFI: rehashing all indirect calls\n"); 1783 ret = cfi_rand_callers(start_retpoline, end_retpoline); 1784 if (ret) 1785 goto err; 1786 } else { 1787 pr_cfi_debug("CFI: rehashing disabled\n"); 1788 } 1789 1790 switch (cfi_mode) { 1791 case CFI_OFF: 1792 if (builtin) 1793 pr_info("CFI: disabled\n"); 1794 return; 1795 1796 case CFI_KCFI: 1797 pr_cfi_debug("CFI: re-enabling all indirect call checking\n"); 1798 ret = cfi_enable_callers(start_retpoline, end_retpoline); 1799 if (ret) 1800 goto err; 1801 1802 if (builtin) 1803 pr_info("CFI: Using %sretpoline kCFI\n", 1804 cfi_rand ? "rehashed " : ""); 1805 return; 1806 1807 case CFI_FINEIBT: 1808 pr_cfi_debug("CFI: adding FineIBT to all preambles\n"); 1809 /* place the FineIBT preamble at func()-16 */ 1810 ret = cfi_rewrite_preamble(start_cfi, end_cfi); 1811 if (ret) 1812 goto err; 1813 1814 /* rewrite the callers to target func()-16 */ 1815 pr_cfi_debug("CFI: rewriting indirect call sites to use FineIBT\n"); 1816 ret = cfi_rewrite_callers(start_retpoline, end_retpoline); 1817 if (ret) 1818 goto err; 1819 1820 /* now that nobody targets func()+0, remove ENDBR there */ 1821 pr_cfi_debug("CFI: removing old endbr insns\n"); 1822 cfi_rewrite_endbr(start_cfi, end_cfi); 1823 1824 if (builtin) { 1825 pr_info("Using %sFineIBT%s CFI\n", 1826 cfi_paranoid ? "paranoid " : "", 1827 cfi_bhi ? "+BHI" : ""); 1828 } 1829 return; 1830 1831 default: 1832 break; 1833 } 1834 1835 err: 1836 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n"); 1837 } 1838 1839 static inline void poison_hash(void *addr) 1840 { 1841 *(u32 *)addr = 0; 1842 } 1843 1844 static void poison_cfi(void *addr) 1845 { 1846 /* 1847 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes, 1848 * some (static) functions for which they can determine the address 1849 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR. 1850 * 1851 * As such, these functions will get sealed, but we need to be careful 1852 * to not unconditionally scribble the previous function. 1853 */ 1854 switch (cfi_mode) { 1855 case CFI_FINEIBT: 1856 /* 1857 * FineIBT prefix should start with an ENDBR. 1858 */ 1859 if (!is_endbr(addr)) 1860 break; 1861 1862 /* 1863 * __cfi_\func: 1864 * nopl -42(%rax) 1865 * sub $0, %eax 1866 * jne \func+3 1867 * \func: 1868 * nopl -42(%rax) 1869 */ 1870 poison_endbr(addr); 1871 poison_hash(addr + fineibt_preamble_hash); 1872 break; 1873 1874 case CFI_KCFI: 1875 /* 1876 * kCFI prefix should start with a valid hash. 1877 */ 1878 if (!decode_preamble_hash(addr, NULL)) 1879 break; 1880 1881 /* 1882 * __cfi_\func: 1883 * movl $0, %eax 1884 * .skip 11, 0x90 1885 */ 1886 poison_hash(addr + 1); 1887 break; 1888 1889 default: 1890 break; 1891 } 1892 } 1893 1894 #define fineibt_prefix_size (fineibt_preamble_size - ENDBR_INSN_SIZE) 1895 1896 /* 1897 * When regs->ip points to a 0xD6 byte in the FineIBT preamble, 1898 * return true and fill out target and type. 1899 * 1900 * We check the preamble by checking for the ENDBR instruction relative to the 1901 * UDB instruction. 1902 */ 1903 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type) 1904 { 1905 unsigned long addr = regs->ip - fineibt_preamble_ud; 1906 u32 hash; 1907 1908 if (!exact_endbr((void *)addr)) 1909 return false; 1910 1911 *target = addr + fineibt_prefix_size; 1912 1913 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); 1914 *type = (u32)regs->ax + hash; 1915 1916 /* 1917 * Since regs->ip points to the middle of an instruction; it cannot 1918 * continue with the normal fixup. 1919 */ 1920 regs->ip = *target; 1921 1922 return true; 1923 1924 Efault: 1925 return false; 1926 } 1927 1928 /* 1929 * regs->ip points to one of the UD2 in __bhi_args[]. 1930 */ 1931 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type) 1932 { 1933 unsigned long addr; 1934 u32 hash; 1935 1936 if (!cfi_bhi) 1937 return false; 1938 1939 if (regs->ip < (unsigned long)__bhi_args || 1940 regs->ip >= (unsigned long)__bhi_args_end) 1941 return false; 1942 1943 /* 1944 * Fetch the return address from the stack, this points to the 1945 * FineIBT preamble. Since the CALL instruction is in the 5 last 1946 * bytes of the preamble, the return address is in fact the target 1947 * address. 1948 */ 1949 __get_kernel_nofault(&addr, regs->sp, unsigned long, Efault); 1950 *target = addr; 1951 1952 addr -= fineibt_prefix_size; 1953 if (!exact_endbr((void *)addr)) 1954 return false; 1955 1956 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); 1957 *type = (u32)regs->ax + hash; 1958 1959 /* 1960 * The UD2 sites are constructed with a RET immediately following, 1961 * as such the non-fatal case can use the regular fixup. 1962 */ 1963 return true; 1964 1965 Efault: 1966 return false; 1967 } 1968 1969 static bool is_paranoid_thunk(unsigned long addr) 1970 { 1971 u32 thunk; 1972 1973 __get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault); 1974 return (thunk & 0x00FFFFFF) == 0xfd75d6; 1975 1976 Efault: 1977 return false; 1978 } 1979 1980 /* 1981 * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[] 1982 * sequence, or to UDB + Jcc.d8 for cfi_paranoid + ITS thunk. 1983 */ 1984 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type) 1985 { 1986 unsigned long addr = regs->ip - fineibt_paranoid_ud; 1987 1988 if (!cfi_paranoid) 1989 return false; 1990 1991 if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) { 1992 *target = regs->r11 + fineibt_prefix_size; 1993 *type = regs->ax; 1994 1995 /* 1996 * Since the trapping instruction is the exact, but LOCK prefixed, 1997 * Jcc.d8 that got us here, the normal fixup will work. 1998 */ 1999 return true; 2000 } 2001 2002 /* 2003 * The cfi_paranoid + ITS thunk combination results in: 2004 * 2005 * 0: b8 78 56 34 12 mov $0x12345678, %eax 2006 * 5: 41 3b 43 f7 cmp -11(%r11), %eax 2007 * a: 2e 3d 8d 5b f0 cs lea -0x10(%r11), %r11 2008 * e: 2e e8 XX XX XX XX cs call __x86_indirect_paranoid_thunk_r11 2009 * 2010 * Where the paranoid_thunk looks like: 2011 * 2012 * 1d: <d6> udb 2013 * __x86_indirect_paranoid_thunk_r11: 2014 * 1e: 75 fd jne 1d 2015 * __x86_indirect_its_thunk_r11: 2016 * 20: 41 ff eb jmp *%r11 2017 * 23: cc int3 2018 * 2019 */ 2020 if (is_paranoid_thunk(regs->ip)) { 2021 *target = regs->r11 + fineibt_prefix_size; 2022 *type = regs->ax; 2023 2024 regs->ip = *target; 2025 return true; 2026 } 2027 2028 return false; 2029 } 2030 2031 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type) 2032 { 2033 if (decode_fineibt_paranoid(regs, target, type)) 2034 return true; 2035 2036 if (decode_fineibt_bhi(regs, target, type)) 2037 return true; 2038 2039 return decode_fineibt_preamble(regs, target, type); 2040 } 2041 2042 #else /* !CONFIG_FINEIBT: */ 2043 2044 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 2045 s32 *start_cfi, s32 *end_cfi, bool builtin) 2046 { 2047 if (IS_ENABLED(CONFIG_CFI) && builtin) 2048 pr_info("CFI: Using standard kCFI\n"); 2049 } 2050 2051 #ifdef CONFIG_X86_KERNEL_IBT 2052 static void poison_cfi(void *addr) { } 2053 #endif 2054 2055 #endif /* !CONFIG_FINEIBT */ 2056 2057 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 2058 s32 *start_cfi, s32 *end_cfi) 2059 { 2060 return __apply_fineibt(start_retpoline, end_retpoline, 2061 start_cfi, end_cfi, 2062 /* .builtin = */ false); 2063 } 2064 2065 #ifdef CONFIG_SMP 2066 static void alternatives_smp_lock(const s32 *start, const s32 *end, 2067 u8 *text, u8 *text_end) 2068 { 2069 const s32 *poff; 2070 2071 for (poff = start; poff < end; poff++) { 2072 u8 *ptr = (u8 *)poff + *poff; 2073 2074 if (!*poff || ptr < text || ptr >= text_end) 2075 continue; 2076 /* turn DS segment override prefix into lock prefix */ 2077 if (*ptr == 0x3e) 2078 text_poke(ptr, ((unsigned char []){0xf0}), 1); 2079 } 2080 } 2081 2082 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 2083 u8 *text, u8 *text_end) 2084 { 2085 const s32 *poff; 2086 2087 for (poff = start; poff < end; poff++) { 2088 u8 *ptr = (u8 *)poff + *poff; 2089 2090 if (!*poff || ptr < text || ptr >= text_end) 2091 continue; 2092 /* turn lock prefix into DS segment override prefix */ 2093 if (*ptr == 0xf0) 2094 text_poke(ptr, ((unsigned char []){0x3E}), 1); 2095 } 2096 } 2097 2098 struct smp_alt_module { 2099 /* what is this ??? */ 2100 struct module *mod; 2101 char *name; 2102 2103 /* ptrs to lock prefixes */ 2104 const s32 *locks; 2105 const s32 *locks_end; 2106 2107 /* .text segment, needed to avoid patching init code ;) */ 2108 u8 *text; 2109 u8 *text_end; 2110 2111 struct list_head next; 2112 }; 2113 static LIST_HEAD(smp_alt_modules); 2114 static bool uniproc_patched = false; /* protected by text_mutex */ 2115 2116 void __init_or_module alternatives_smp_module_add(struct module *mod, 2117 char *name, 2118 void *locks, void *locks_end, 2119 void *text, void *text_end) 2120 { 2121 struct smp_alt_module *smp; 2122 2123 mutex_lock(&text_mutex); 2124 if (!uniproc_patched) 2125 goto unlock; 2126 2127 if (num_possible_cpus() == 1) 2128 /* Don't bother remembering, we'll never have to undo it. */ 2129 goto smp_unlock; 2130 2131 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 2132 if (NULL == smp) 2133 /* we'll run the (safe but slow) SMP code then ... */ 2134 goto unlock; 2135 2136 smp->mod = mod; 2137 smp->name = name; 2138 smp->locks = locks; 2139 smp->locks_end = locks_end; 2140 smp->text = text; 2141 smp->text_end = text_end; 2142 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n", 2143 smp->locks, smp->locks_end, 2144 smp->text, smp->text_end, smp->name); 2145 2146 list_add_tail(&smp->next, &smp_alt_modules); 2147 smp_unlock: 2148 alternatives_smp_unlock(locks, locks_end, text, text_end); 2149 unlock: 2150 mutex_unlock(&text_mutex); 2151 } 2152 2153 void __init_or_module alternatives_smp_module_del(struct module *mod) 2154 { 2155 struct smp_alt_module *item; 2156 2157 mutex_lock(&text_mutex); 2158 list_for_each_entry(item, &smp_alt_modules, next) { 2159 if (mod != item->mod) 2160 continue; 2161 list_del(&item->next); 2162 kfree(item); 2163 break; 2164 } 2165 mutex_unlock(&text_mutex); 2166 } 2167 2168 void alternatives_enable_smp(void) 2169 { 2170 struct smp_alt_module *mod; 2171 2172 /* Why bother if there are no other CPUs? */ 2173 BUG_ON(num_possible_cpus() == 1); 2174 2175 mutex_lock(&text_mutex); 2176 2177 if (uniproc_patched) { 2178 pr_info("switching to SMP code\n"); 2179 BUG_ON(num_online_cpus() != 1); 2180 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 2181 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 2182 list_for_each_entry(mod, &smp_alt_modules, next) 2183 alternatives_smp_lock(mod->locks, mod->locks_end, 2184 mod->text, mod->text_end); 2185 uniproc_patched = false; 2186 } 2187 mutex_unlock(&text_mutex); 2188 } 2189 2190 /* 2191 * Return 1 if the address range is reserved for SMP-alternatives. 2192 * Must hold text_mutex. 2193 */ 2194 int alternatives_text_reserved(void *start, void *end) 2195 { 2196 struct smp_alt_module *mod; 2197 const s32 *poff; 2198 u8 *text_start = start; 2199 u8 *text_end = end; 2200 2201 lockdep_assert_held(&text_mutex); 2202 2203 list_for_each_entry(mod, &smp_alt_modules, next) { 2204 if (mod->text > text_end || mod->text_end < text_start) 2205 continue; 2206 for (poff = mod->locks; poff < mod->locks_end; poff++) { 2207 const u8 *ptr = (const u8 *)poff + *poff; 2208 2209 if (text_start <= ptr && text_end > ptr) 2210 return 1; 2211 } 2212 } 2213 2214 return 0; 2215 } 2216 #endif /* CONFIG_SMP */ 2217 2218 /* 2219 * Self-test for the INT3 based CALL emulation code. 2220 * 2221 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up 2222 * properly and that there is a stack gap between the INT3 frame and the 2223 * previous context. Without this gap doing a virtual PUSH on the interrupted 2224 * stack would corrupt the INT3 IRET frame. 2225 * 2226 * See entry_{32,64}.S for more details. 2227 */ 2228 2229 /* 2230 * We define the int3_magic() function in assembly to control the calling 2231 * convention such that we can 'call' it from assembly. 2232 */ 2233 2234 extern void int3_magic(unsigned int *ptr); /* defined in asm */ 2235 2236 asm ( 2237 " .pushsection .init.text, \"ax\", @progbits\n" 2238 " .type int3_magic, @function\n" 2239 "int3_magic:\n" 2240 ANNOTATE_NOENDBR 2241 " movl $1, (%" _ASM_ARG1 ")\n" 2242 ASM_RET 2243 " .size int3_magic, .-int3_magic\n" 2244 " .popsection\n" 2245 ); 2246 2247 extern void int3_selftest_ip(void); /* defined in asm below */ 2248 2249 static int __init 2250 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) 2251 { 2252 unsigned long selftest = (unsigned long)&int3_selftest_ip; 2253 struct die_args *args = data; 2254 struct pt_regs *regs = args->regs; 2255 2256 OPTIMIZER_HIDE_VAR(selftest); 2257 2258 if (!regs || user_mode(regs)) 2259 return NOTIFY_DONE; 2260 2261 if (val != DIE_INT3) 2262 return NOTIFY_DONE; 2263 2264 if (regs->ip - INT3_INSN_SIZE != selftest) 2265 return NOTIFY_DONE; 2266 2267 int3_emulate_call(regs, (unsigned long)&int3_magic); 2268 return NOTIFY_STOP; 2269 } 2270 2271 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */ 2272 static noinline void __init int3_selftest(void) 2273 { 2274 static __initdata struct notifier_block int3_exception_nb = { 2275 .notifier_call = int3_exception_notify, 2276 .priority = INT_MAX-1, /* last */ 2277 }; 2278 unsigned int val = 0; 2279 2280 BUG_ON(register_die_notifier(&int3_exception_nb)); 2281 2282 /* 2283 * Basically: int3_magic(&val); but really complicated :-) 2284 * 2285 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb 2286 * notifier above will emulate CALL for us. 2287 */ 2288 asm volatile ("int3_selftest_ip:\n\t" 2289 ANNOTATE_NOENDBR 2290 " int3; nop; nop; nop; nop\n\t" 2291 : ASM_CALL_CONSTRAINT 2292 : __ASM_SEL_RAW(a, D) (&val) 2293 : "memory"); 2294 2295 BUG_ON(val != 1); 2296 2297 unregister_die_notifier(&int3_exception_nb); 2298 } 2299 2300 static __initdata int __alt_reloc_selftest_addr; 2301 2302 extern void __init __alt_reloc_selftest(void *arg); 2303 __visible noinline void __init __alt_reloc_selftest(void *arg) 2304 { 2305 WARN_ON(arg != &__alt_reloc_selftest_addr); 2306 } 2307 2308 static noinline void __init alt_reloc_selftest(void) 2309 { 2310 /* 2311 * Tests text_poke_apply_relocation(). 2312 * 2313 * This has a relative immediate (CALL) in a place other than the first 2314 * instruction and additionally on x86_64 we get a RIP-relative LEA: 2315 * 2316 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c 2317 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4 2318 * 2319 * Getting this wrong will either crash and burn or tickle the WARN 2320 * above. 2321 */ 2322 asm_inline volatile ( 2323 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS) 2324 : ASM_CALL_CONSTRAINT 2325 : [mem] "m" (__alt_reloc_selftest_addr) 2326 : _ASM_ARG1 2327 ); 2328 } 2329 2330 void __init alternative_instructions(void) 2331 { 2332 u64 ibt; 2333 2334 int3_selftest(); 2335 2336 /* 2337 * The patching is not fully atomic, so try to avoid local 2338 * interruptions that might execute the to be patched code. 2339 * Other CPUs are not running. 2340 */ 2341 stop_nmi(); 2342 2343 /* 2344 * Don't stop machine check exceptions while patching. 2345 * MCEs only happen when something got corrupted and in this 2346 * case we must do something about the corruption. 2347 * Ignoring it is worse than an unlikely patching race. 2348 * Also machine checks tend to be broadcast and if one CPU 2349 * goes into machine check the others follow quickly, so we don't 2350 * expect a machine check to cause undue problems during to code 2351 * patching. 2352 */ 2353 2354 /* 2355 * Make sure to set (artificial) features depending on used paravirt 2356 * functions which can later influence alternative patching. 2357 */ 2358 paravirt_set_cap(); 2359 2360 /* Keep CET-IBT disabled until caller/callee are patched */ 2361 ibt = ibt_save(/*disable*/ true); 2362 2363 __apply_fineibt(__retpoline_sites, __retpoline_sites_end, 2364 __cfi_sites, __cfi_sites_end, true); 2365 cfi_debug = false; 2366 2367 /* 2368 * Rewrite the retpolines, must be done before alternatives since 2369 * those can rewrite the retpoline thunks. 2370 */ 2371 apply_retpolines(__retpoline_sites, __retpoline_sites_end); 2372 apply_returns(__return_sites, __return_sites_end); 2373 2374 its_fini_core(); 2375 2376 /* 2377 * Adjust all CALL instructions to point to func()-10, including 2378 * those in .altinstr_replacement. 2379 */ 2380 callthunks_patch_builtin_calls(); 2381 2382 apply_alternatives(__alt_instructions, __alt_instructions_end); 2383 2384 /* 2385 * Seal all functions that do not have their address taken. 2386 */ 2387 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end); 2388 2389 ibt_restore(ibt); 2390 2391 #ifdef CONFIG_SMP 2392 /* Patch to UP if other cpus not imminent. */ 2393 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 2394 uniproc_patched = true; 2395 alternatives_smp_module_add(NULL, "core kernel", 2396 __smp_locks, __smp_locks_end, 2397 _text, _etext); 2398 } 2399 2400 if (!uniproc_patched || num_possible_cpus() == 1) { 2401 free_init_pages("SMP alternatives", 2402 (unsigned long)__smp_locks, 2403 (unsigned long)__smp_locks_end); 2404 } 2405 #endif 2406 2407 restart_nmi(); 2408 alternatives_patched = 1; 2409 2410 alt_reloc_selftest(); 2411 } 2412 2413 /** 2414 * text_poke_early - Update instructions on a live kernel at boot time 2415 * @addr: address to modify 2416 * @opcode: source of the copy 2417 * @len: length to copy 2418 * 2419 * When you use this code to patch more than one byte of an instruction 2420 * you need to make sure that other CPUs cannot execute this code in parallel. 2421 * Also no thread must be currently preempted in the middle of these 2422 * instructions. And on the local CPU you need to be protected against NMI or 2423 * MCE handlers seeing an inconsistent instruction while you patch. 2424 */ 2425 void __init_or_module text_poke_early(void *addr, const void *opcode, 2426 size_t len) 2427 { 2428 unsigned long flags; 2429 2430 if (boot_cpu_has(X86_FEATURE_NX) && 2431 is_module_text_address((unsigned long)addr)) { 2432 /* 2433 * Modules text is marked initially as non-executable, so the 2434 * code cannot be running and speculative code-fetches are 2435 * prevented. Just change the code. 2436 */ 2437 memcpy(addr, opcode, len); 2438 } else { 2439 local_irq_save(flags); 2440 memcpy(addr, opcode, len); 2441 sync_core(); 2442 local_irq_restore(flags); 2443 2444 /* 2445 * Could also do a CLFLUSH here to speed up CPU recovery; but 2446 * that causes hangs on some VIA CPUs. 2447 */ 2448 } 2449 } 2450 2451 __ro_after_init struct mm_struct *text_poke_mm; 2452 __ro_after_init unsigned long text_poke_mm_addr; 2453 2454 static void text_poke_memcpy(void *dst, const void *src, size_t len) 2455 { 2456 memcpy(dst, src, len); 2457 } 2458 2459 static void text_poke_memset(void *dst, const void *src, size_t len) 2460 { 2461 int c = *(const int *)src; 2462 2463 memset(dst, c, len); 2464 } 2465 2466 typedef void text_poke_f(void *dst, const void *src, size_t len); 2467 2468 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len) 2469 { 2470 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; 2471 struct page *pages[2] = {NULL}; 2472 struct mm_struct *prev_mm; 2473 unsigned long flags; 2474 pte_t pte, *ptep; 2475 spinlock_t *ptl; 2476 pgprot_t pgprot; 2477 2478 /* 2479 * While boot memory allocator is running we cannot use struct pages as 2480 * they are not yet initialized. There is no way to recover. 2481 */ 2482 BUG_ON(!after_bootmem); 2483 2484 if (!core_kernel_text((unsigned long)addr)) { 2485 pages[0] = vmalloc_to_page(addr); 2486 if (cross_page_boundary) 2487 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 2488 } else { 2489 pages[0] = virt_to_page(addr); 2490 WARN_ON(!PageReserved(pages[0])); 2491 if (cross_page_boundary) 2492 pages[1] = virt_to_page(addr + PAGE_SIZE); 2493 } 2494 /* 2495 * If something went wrong, crash and burn since recovery paths are not 2496 * implemented. 2497 */ 2498 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); 2499 2500 /* 2501 * Map the page without the global bit, as TLB flushing is done with 2502 * flush_tlb_mm_range(), which is intended for non-global PTEs. 2503 */ 2504 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); 2505 2506 /* 2507 * The lock is not really needed, but this allows to avoid open-coding. 2508 */ 2509 ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl); 2510 2511 /* 2512 * This must not fail; preallocated in poking_init(). 2513 */ 2514 VM_BUG_ON(!ptep); 2515 2516 local_irq_save(flags); 2517 2518 pte = mk_pte(pages[0], pgprot); 2519 set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte); 2520 2521 if (cross_page_boundary) { 2522 pte = mk_pte(pages[1], pgprot); 2523 set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte); 2524 } 2525 2526 /* 2527 * Loading the temporary mm behaves as a compiler barrier, which 2528 * guarantees that the PTE will be set at the time memcpy() is done. 2529 */ 2530 prev_mm = use_temporary_mm(text_poke_mm); 2531 2532 kasan_disable_current(); 2533 func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len); 2534 kasan_enable_current(); 2535 2536 /* 2537 * Ensure that the PTE is only cleared after the instructions of memcpy 2538 * were issued by using a compiler barrier. 2539 */ 2540 barrier(); 2541 2542 pte_clear(text_poke_mm, text_poke_mm_addr, ptep); 2543 if (cross_page_boundary) 2544 pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1); 2545 2546 /* 2547 * Loading the previous page-table hierarchy requires a serializing 2548 * instruction that already allows the core to see the updated version. 2549 * Xen-PV is assumed to serialize execution in a similar manner. 2550 */ 2551 unuse_temporary_mm(prev_mm); 2552 2553 /* 2554 * Flushing the TLB might involve IPIs, which would require enabled 2555 * IRQs, but not if the mm is not used, as it is in this point. 2556 */ 2557 flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr + 2558 (cross_page_boundary ? 2 : 1) * PAGE_SIZE, 2559 PAGE_SHIFT, false); 2560 2561 if (func == text_poke_memcpy) { 2562 /* 2563 * If the text does not match what we just wrote then something is 2564 * fundamentally screwy; there's nothing we can really do about that. 2565 */ 2566 BUG_ON(memcmp(addr, src, len)); 2567 } 2568 2569 local_irq_restore(flags); 2570 pte_unmap_unlock(ptep, ptl); 2571 return addr; 2572 } 2573 2574 /** 2575 * text_poke - Update instructions on a live kernel 2576 * @addr: address to modify 2577 * @opcode: source of the copy 2578 * @len: length to copy 2579 * 2580 * Only atomic text poke/set should be allowed when not doing early patching. 2581 * It means the size must be writable atomically and the address must be aligned 2582 * in a way that permits an atomic write. It also makes sure we fit on a single 2583 * page. 2584 * 2585 * Note that the caller must ensure that if the modified code is part of a 2586 * module, the module would not be removed during poking. This can be achieved 2587 * by registering a module notifier, and ordering module removal and patching 2588 * through a mutex. 2589 */ 2590 void *text_poke(void *addr, const void *opcode, size_t len) 2591 { 2592 lockdep_assert_held(&text_mutex); 2593 2594 return __text_poke(text_poke_memcpy, addr, opcode, len); 2595 } 2596 2597 /** 2598 * text_poke_kgdb - Update instructions on a live kernel by kgdb 2599 * @addr: address to modify 2600 * @opcode: source of the copy 2601 * @len: length to copy 2602 * 2603 * Only atomic text poke/set should be allowed when not doing early patching. 2604 * It means the size must be writable atomically and the address must be aligned 2605 * in a way that permits an atomic write. It also makes sure we fit on a single 2606 * page. 2607 * 2608 * Context: should only be used by kgdb, which ensures no other core is running, 2609 * despite the fact it does not hold the text_mutex. 2610 */ 2611 void *text_poke_kgdb(void *addr, const void *opcode, size_t len) 2612 { 2613 return __text_poke(text_poke_memcpy, addr, opcode, len); 2614 } 2615 2616 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, 2617 bool core_ok) 2618 { 2619 unsigned long start = (unsigned long)addr; 2620 size_t patched = 0; 2621 2622 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start))) 2623 return NULL; 2624 2625 while (patched < len) { 2626 unsigned long ptr = start + patched; 2627 size_t s; 2628 2629 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2630 2631 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s); 2632 patched += s; 2633 } 2634 return addr; 2635 } 2636 2637 /** 2638 * text_poke_copy - Copy instructions into (an unused part of) RX memory 2639 * @addr: address to modify 2640 * @opcode: source of the copy 2641 * @len: length to copy, could be more than 2x PAGE_SIZE 2642 * 2643 * Not safe against concurrent execution; useful for JITs to dump 2644 * new code blocks into unused regions of RX memory. Can be used in 2645 * conjunction with synchronize_rcu_tasks() to wait for existing 2646 * execution to quiesce after having made sure no existing functions 2647 * pointers are live. 2648 */ 2649 void *text_poke_copy(void *addr, const void *opcode, size_t len) 2650 { 2651 mutex_lock(&text_mutex); 2652 addr = text_poke_copy_locked(addr, opcode, len, false); 2653 mutex_unlock(&text_mutex); 2654 return addr; 2655 } 2656 2657 /** 2658 * text_poke_set - memset into (an unused part of) RX memory 2659 * @addr: address to modify 2660 * @c: the byte to fill the area with 2661 * @len: length to copy, could be more than 2x PAGE_SIZE 2662 * 2663 * This is useful to overwrite unused regions of RX memory with illegal 2664 * instructions. 2665 */ 2666 void *text_poke_set(void *addr, int c, size_t len) 2667 { 2668 unsigned long start = (unsigned long)addr; 2669 size_t patched = 0; 2670 2671 if (WARN_ON_ONCE(core_kernel_text(start))) 2672 return NULL; 2673 2674 mutex_lock(&text_mutex); 2675 while (patched < len) { 2676 unsigned long ptr = start + patched; 2677 size_t s; 2678 2679 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2680 2681 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s); 2682 patched += s; 2683 } 2684 mutex_unlock(&text_mutex); 2685 return addr; 2686 } 2687 2688 static void do_sync_core(void *info) 2689 { 2690 sync_core(); 2691 } 2692 2693 void smp_text_poke_sync_each_cpu(void) 2694 { 2695 on_each_cpu(do_sync_core, NULL, 1); 2696 } 2697 2698 /* 2699 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of 2700 * this thing. When len == 6 everything is prefixed with 0x0f and we map 2701 * opcode to Jcc.d8, using len to distinguish. 2702 */ 2703 struct smp_text_poke_loc { 2704 /* addr := _stext + rel_addr */ 2705 s32 rel_addr; 2706 s32 disp; 2707 u8 len; 2708 u8 opcode; 2709 const u8 text[TEXT_POKE_MAX_OPCODE_SIZE]; 2710 /* see smp_text_poke_batch_finish() */ 2711 u8 old; 2712 }; 2713 2714 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc)) 2715 2716 static struct smp_text_poke_array { 2717 struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX]; 2718 int nr_entries; 2719 } text_poke_array; 2720 2721 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs); 2722 2723 /* 2724 * These four __always_inline annotations imply noinstr, necessary 2725 * due to smp_text_poke_int3_handler() being noinstr: 2726 */ 2727 2728 static __always_inline bool try_get_text_poke_array(void) 2729 { 2730 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); 2731 2732 if (!raw_atomic_inc_not_zero(refs)) 2733 return false; 2734 2735 return true; 2736 } 2737 2738 static __always_inline void put_text_poke_array(void) 2739 { 2740 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); 2741 2742 smp_mb__before_atomic(); 2743 raw_atomic_dec(refs); 2744 } 2745 2746 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl) 2747 { 2748 return _stext + tpl->rel_addr; 2749 } 2750 2751 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b) 2752 { 2753 if (tpl_a < text_poke_addr(tpl_b)) 2754 return -1; 2755 if (tpl_a > text_poke_addr(tpl_b)) 2756 return 1; 2757 return 0; 2758 } 2759 2760 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs) 2761 { 2762 struct smp_text_poke_loc *tpl; 2763 int ret = 0; 2764 void *ip; 2765 2766 if (user_mode(regs)) 2767 return 0; 2768 2769 /* 2770 * Having observed our INT3 instruction, we now must observe 2771 * text_poke_array with non-zero refcount: 2772 * 2773 * text_poke_array_refs = 1 INT3 2774 * WMB RMB 2775 * write INT3 if (text_poke_array_refs != 0) 2776 */ 2777 smp_rmb(); 2778 2779 if (!try_get_text_poke_array()) 2780 return 0; 2781 2782 /* 2783 * Discount the INT3. See smp_text_poke_batch_finish(). 2784 */ 2785 ip = (void *) regs->ip - INT3_INSN_SIZE; 2786 2787 /* 2788 * Skip the binary search if there is a single member in the vector. 2789 */ 2790 if (unlikely(text_poke_array.nr_entries > 1)) { 2791 tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries, 2792 sizeof(struct smp_text_poke_loc), 2793 patch_cmp); 2794 if (!tpl) 2795 goto out_put; 2796 } else { 2797 tpl = text_poke_array.vec; 2798 if (text_poke_addr(tpl) != ip) 2799 goto out_put; 2800 } 2801 2802 ip += tpl->len; 2803 2804 switch (tpl->opcode) { 2805 case INT3_INSN_OPCODE: 2806 /* 2807 * Someone poked an explicit INT3, they'll want to handle it, 2808 * do not consume. 2809 */ 2810 goto out_put; 2811 2812 case RET_INSN_OPCODE: 2813 int3_emulate_ret(regs); 2814 break; 2815 2816 case CALL_INSN_OPCODE: 2817 int3_emulate_call(regs, (long)ip + tpl->disp); 2818 break; 2819 2820 case JMP32_INSN_OPCODE: 2821 case JMP8_INSN_OPCODE: 2822 int3_emulate_jmp(regs, (long)ip + tpl->disp); 2823 break; 2824 2825 case 0x70 ... 0x7f: /* Jcc */ 2826 int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp); 2827 break; 2828 2829 default: 2830 BUG(); 2831 } 2832 2833 ret = 1; 2834 2835 out_put: 2836 put_text_poke_array(); 2837 return ret; 2838 } 2839 2840 /** 2841 * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP 2842 * 2843 * Input state: 2844 * text_poke_array.vec: vector of instructions to patch 2845 * text_poke_array.nr_entries: number of entries in the vector 2846 * 2847 * Modify multi-byte instructions by using INT3 breakpoints on SMP. 2848 * We completely avoid using stop_machine() here, and achieve the 2849 * synchronization using INT3 breakpoints and SMP cross-calls. 2850 * 2851 * The way it is done: 2852 * - For each entry in the vector: 2853 * - add an INT3 trap to the address that will be patched 2854 * - SMP sync all CPUs 2855 * - For each entry in the vector: 2856 * - update all but the first byte of the patched range 2857 * - SMP sync all CPUs 2858 * - For each entry in the vector: 2859 * - replace the first byte (INT3) by the first byte of the 2860 * replacing opcode 2861 * - SMP sync all CPUs 2862 */ 2863 void smp_text_poke_batch_finish(void) 2864 { 2865 unsigned char int3 = INT3_INSN_OPCODE; 2866 unsigned int i; 2867 int do_sync; 2868 2869 if (!text_poke_array.nr_entries) 2870 return; 2871 2872 lockdep_assert_held(&text_mutex); 2873 2874 /* 2875 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to 2876 * ensure reading a non-zero refcount provides up to date text_poke_array data. 2877 */ 2878 for_each_possible_cpu(i) 2879 atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1); 2880 2881 /* 2882 * Function tracing can enable thousands of places that need to be 2883 * updated. This can take quite some time, and with full kernel debugging 2884 * enabled, this could cause the softlockup watchdog to trigger. 2885 * This function gets called every 256 entries added to be patched. 2886 * Call cond_resched() here to make sure that other tasks can get scheduled 2887 * while processing all the functions being patched. 2888 */ 2889 cond_resched(); 2890 2891 /* 2892 * Corresponding read barrier in INT3 notifier for making sure the 2893 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching. 2894 */ 2895 smp_wmb(); 2896 2897 /* 2898 * First step: add a INT3 trap to the address that will be patched. 2899 */ 2900 for (i = 0; i < text_poke_array.nr_entries; i++) { 2901 text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]); 2902 text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE); 2903 } 2904 2905 smp_text_poke_sync_each_cpu(); 2906 2907 /* 2908 * Second step: update all but the first byte of the patched range. 2909 */ 2910 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { 2911 u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, }; 2912 u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1]; 2913 const u8 *new = text_poke_array.vec[i].text; 2914 int len = text_poke_array.vec[i].len; 2915 2916 if (len - INT3_INSN_SIZE > 0) { 2917 memcpy(old + INT3_INSN_SIZE, 2918 text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, 2919 len - INT3_INSN_SIZE); 2920 2921 if (len == 6) { 2922 _new[0] = 0x0f; 2923 memcpy(_new + 1, new, 5); 2924 new = _new; 2925 } 2926 2927 text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, 2928 new + INT3_INSN_SIZE, 2929 len - INT3_INSN_SIZE); 2930 2931 do_sync++; 2932 } 2933 2934 /* 2935 * Emit a perf event to record the text poke, primarily to 2936 * support Intel PT decoding which must walk the executable code 2937 * to reconstruct the trace. The flow up to here is: 2938 * - write INT3 byte 2939 * - IPI-SYNC 2940 * - write instruction tail 2941 * At this point the actual control flow will be through the 2942 * INT3 and handler and not hit the old or new instruction. 2943 * Intel PT outputs FUP/TIP packets for the INT3, so the flow 2944 * can still be decoded. Subsequently: 2945 * - emit RECORD_TEXT_POKE with the new instruction 2946 * - IPI-SYNC 2947 * - write first byte 2948 * - IPI-SYNC 2949 * So before the text poke event timestamp, the decoder will see 2950 * either the old instruction flow or FUP/TIP of INT3. After the 2951 * text poke event timestamp, the decoder will see either the 2952 * new instruction flow or FUP/TIP of INT3. Thus decoders can 2953 * use the timestamp as the point at which to modify the 2954 * executable code. 2955 * The old instruction is recorded so that the event can be 2956 * processed forwards or backwards. 2957 */ 2958 perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len); 2959 } 2960 2961 if (do_sync) { 2962 /* 2963 * According to Intel, this core syncing is very likely 2964 * not necessary and we'd be safe even without it. But 2965 * better safe than sorry (plus there's not only Intel). 2966 */ 2967 smp_text_poke_sync_each_cpu(); 2968 } 2969 2970 /* 2971 * Third step: replace the first byte (INT3) by the first byte of the 2972 * replacing opcode. 2973 */ 2974 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { 2975 u8 byte = text_poke_array.vec[i].text[0]; 2976 2977 if (text_poke_array.vec[i].len == 6) 2978 byte = 0x0f; 2979 2980 if (byte == INT3_INSN_OPCODE) 2981 continue; 2982 2983 text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE); 2984 do_sync++; 2985 } 2986 2987 if (do_sync) 2988 smp_text_poke_sync_each_cpu(); 2989 2990 /* 2991 * Remove and wait for refs to be zero. 2992 * 2993 * Notably, if after step-3 above the INT3 got removed, then the 2994 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3 2995 * handlers and the below spin-wait will not happen. 2996 * 2997 * IOW. unless the replacement instruction is INT3, this case goes 2998 * unused. 2999 */ 3000 for_each_possible_cpu(i) { 3001 atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i); 3002 3003 if (unlikely(!atomic_dec_and_test(refs))) 3004 atomic_cond_read_acquire(refs, !VAL); 3005 } 3006 3007 /* They are all completed: */ 3008 text_poke_array.nr_entries = 0; 3009 } 3010 3011 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) 3012 { 3013 struct smp_text_poke_loc *tpl; 3014 struct insn insn; 3015 int ret, i = 0; 3016 3017 tpl = &text_poke_array.vec[text_poke_array.nr_entries++]; 3018 3019 if (len == 6) 3020 i = 1; 3021 memcpy((void *)tpl->text, opcode+i, len-i); 3022 if (!emulate) 3023 emulate = opcode; 3024 3025 ret = insn_decode_kernel(&insn, emulate); 3026 BUG_ON(ret < 0); 3027 3028 tpl->rel_addr = addr - (void *)_stext; 3029 tpl->len = len; 3030 tpl->opcode = insn.opcode.bytes[0]; 3031 3032 if (is_jcc32(&insn)) { 3033 /* 3034 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish. 3035 */ 3036 tpl->opcode = insn.opcode.bytes[1] - 0x10; 3037 } 3038 3039 switch (tpl->opcode) { 3040 case RET_INSN_OPCODE: 3041 case JMP32_INSN_OPCODE: 3042 case JMP8_INSN_OPCODE: 3043 /* 3044 * Control flow instructions without implied execution of the 3045 * next instruction can be padded with INT3. 3046 */ 3047 for (i = insn.length; i < len; i++) 3048 BUG_ON(tpl->text[i] != INT3_INSN_OPCODE); 3049 break; 3050 3051 default: 3052 BUG_ON(len != insn.length); 3053 } 3054 3055 switch (tpl->opcode) { 3056 case INT3_INSN_OPCODE: 3057 case RET_INSN_OPCODE: 3058 break; 3059 3060 case CALL_INSN_OPCODE: 3061 case JMP32_INSN_OPCODE: 3062 case JMP8_INSN_OPCODE: 3063 case 0x70 ... 0x7f: /* Jcc */ 3064 tpl->disp = insn.immediate.value; 3065 break; 3066 3067 default: /* assume NOP */ 3068 switch (len) { 3069 case 2: /* NOP2 -- emulate as JMP8+0 */ 3070 BUG_ON(memcmp(emulate, x86_nops[len], len)); 3071 tpl->opcode = JMP8_INSN_OPCODE; 3072 tpl->disp = 0; 3073 break; 3074 3075 case 5: /* NOP5 -- emulate as JMP32+0 */ 3076 BUG_ON(memcmp(emulate, x86_nops[len], len)); 3077 tpl->opcode = JMP32_INSN_OPCODE; 3078 tpl->disp = 0; 3079 break; 3080 3081 default: /* unknown instruction */ 3082 BUG(); 3083 } 3084 break; 3085 } 3086 } 3087 3088 /* 3089 * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing 3090 * early if needed. 3091 */ 3092 static bool text_poke_addr_ordered(void *addr) 3093 { 3094 WARN_ON_ONCE(!addr); 3095 3096 if (!text_poke_array.nr_entries) 3097 return true; 3098 3099 /* 3100 * If the last current entry's address is higher than the 3101 * new entry's address we'd like to add, then ordering 3102 * is violated and we must first flush all pending patching 3103 * requests: 3104 */ 3105 if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr) 3106 return false; 3107 3108 return true; 3109 } 3110 3111 /** 3112 * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched 3113 * @addr: address to patch 3114 * @opcode: opcode of new instruction 3115 * @len: length to copy 3116 * @emulate: instruction to be emulated 3117 * 3118 * Add a new instruction to the current queue of to-be-patched instructions 3119 * the kernel maintains. The patching request will not be executed immediately, 3120 * but becomes part of an array of patching requests, optimized for batched 3121 * execution. All pending patching requests will be executed on the next 3122 * smp_text_poke_batch_finish() call. 3123 */ 3124 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) 3125 { 3126 if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr)) 3127 smp_text_poke_batch_finish(); 3128 __smp_text_poke_batch_add(addr, opcode, len, emulate); 3129 } 3130 3131 /** 3132 * smp_text_poke_single() -- update instruction on live kernel on SMP immediately 3133 * @addr: address to patch 3134 * @opcode: opcode of new instruction 3135 * @len: length to copy 3136 * @emulate: instruction to be emulated 3137 * 3138 * Update a single instruction with the vector in the stack, avoiding 3139 * dynamically allocated memory. This function should be used when it is 3140 * not possible to allocate memory for a vector. The single instruction 3141 * is patched in immediately. 3142 */ 3143 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate) 3144 { 3145 smp_text_poke_batch_add(addr, opcode, len, emulate); 3146 smp_text_poke_batch_finish(); 3147 } 3148