xref: /linux/arch/x86/kernel/alternative.c (revision 9e56ff53b4115875667760445b028357848b4748)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
33 #include <asm/cfi.h>
34 
35 int __read_mostly alternatives_patched;
36 
37 EXPORT_SYMBOL_GPL(alternatives_patched);
38 
39 #define MAX_PATCH_LEN (255-1)
40 
41 #define DA_ALL		(~0)
42 #define DA_ALT		0x01
43 #define DA_RET		0x02
44 #define DA_RETPOLINE	0x04
45 #define DA_ENDBR	0x08
46 #define DA_SMP		0x10
47 
48 static unsigned int __initdata_or_module debug_alternative;
49 
50 static int __init debug_alt(char *str)
51 {
52 	if (str && *str == '=')
53 		str++;
54 
55 	if (!str || kstrtouint(str, 0, &debug_alternative))
56 		debug_alternative = DA_ALL;
57 
58 	return 1;
59 }
60 __setup("debug-alternative", debug_alt);
61 
62 static int noreplace_smp;
63 
64 static int __init setup_noreplace_smp(char *str)
65 {
66 	noreplace_smp = 1;
67 	return 1;
68 }
69 __setup("noreplace-smp", setup_noreplace_smp);
70 
71 #define DPRINTK(type, fmt, args...)					\
72 do {									\
73 	if (debug_alternative & DA_##type)				\
74 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
75 } while (0)
76 
77 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
78 do {									\
79 	if (unlikely(debug_alternative & DA_##type)) {			\
80 		int j;							\
81 									\
82 		if (!(len))						\
83 			break;						\
84 									\
85 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
86 		for (j = 0; j < (len) - 1; j++)				\
87 			printk(KERN_CONT "%02hhx ", buf[j]);		\
88 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
89 	}								\
90 } while (0)
91 
92 static const unsigned char x86nops[] =
93 {
94 	BYTES_NOP1,
95 	BYTES_NOP2,
96 	BYTES_NOP3,
97 	BYTES_NOP4,
98 	BYTES_NOP5,
99 	BYTES_NOP6,
100 	BYTES_NOP7,
101 	BYTES_NOP8,
102 #ifdef CONFIG_64BIT
103 	BYTES_NOP9,
104 	BYTES_NOP10,
105 	BYTES_NOP11,
106 #endif
107 };
108 
109 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
110 {
111 	NULL,
112 	x86nops,
113 	x86nops + 1,
114 	x86nops + 1 + 2,
115 	x86nops + 1 + 2 + 3,
116 	x86nops + 1 + 2 + 3 + 4,
117 	x86nops + 1 + 2 + 3 + 4 + 5,
118 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
119 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
120 #ifdef CONFIG_64BIT
121 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
122 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
123 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
124 #endif
125 };
126 
127 /*
128  * Fill the buffer with a single effective instruction of size @len.
129  *
130  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
131  * for every single-byte NOP, try to generate the maximally available NOP of
132  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
133  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
134  * *jump* over instead of executing long and daft NOPs.
135  */
136 static void __init_or_module add_nop(u8 *instr, unsigned int len)
137 {
138 	u8 *target = instr + len;
139 
140 	if (!len)
141 		return;
142 
143 	if (len <= ASM_NOP_MAX) {
144 		memcpy(instr, x86_nops[len], len);
145 		return;
146 	}
147 
148 	if (len < 128) {
149 		__text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE);
150 		instr += JMP8_INSN_SIZE;
151 	} else {
152 		__text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE);
153 		instr += JMP32_INSN_SIZE;
154 	}
155 
156 	for (;instr < target; instr++)
157 		*instr = INT3_INSN_OPCODE;
158 }
159 
160 extern s32 __retpoline_sites[], __retpoline_sites_end[];
161 extern s32 __return_sites[], __return_sites_end[];
162 extern s32 __cfi_sites[], __cfi_sites_end[];
163 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
164 extern s32 __smp_locks[], __smp_locks_end[];
165 void text_poke_early(void *addr, const void *opcode, size_t len);
166 
167 /*
168  * Matches NOP and NOPL, not any of the other possible NOPs.
169  */
170 static bool insn_is_nop(struct insn *insn)
171 {
172 	/* Anything NOP, but no REP NOP */
173 	if (insn->opcode.bytes[0] == 0x90 &&
174 	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
175 		return true;
176 
177 	/* NOPL */
178 	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
179 		return true;
180 
181 	/* TODO: more nops */
182 
183 	return false;
184 }
185 
186 /*
187  * Find the offset of the first non-NOP instruction starting at @offset
188  * but no further than @len.
189  */
190 static int skip_nops(u8 *instr, int offset, int len)
191 {
192 	struct insn insn;
193 
194 	for (; offset < len; offset += insn.length) {
195 		if (insn_decode_kernel(&insn, &instr[offset]))
196 			break;
197 
198 		if (!insn_is_nop(&insn))
199 			break;
200 	}
201 
202 	return offset;
203 }
204 
205 /*
206  * Optimize a sequence of NOPs, possibly preceded by an unconditional jump
207  * to the end of the NOP sequence into a single NOP.
208  */
209 static bool __init_or_module
210 __optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target)
211 {
212 	int i = *next - insn->length;
213 
214 	switch (insn->opcode.bytes[0]) {
215 	case JMP8_INSN_OPCODE:
216 	case JMP32_INSN_OPCODE:
217 		*prev = i;
218 		*target = *next + insn->immediate.value;
219 		return false;
220 	}
221 
222 	if (insn_is_nop(insn)) {
223 		int nop = i;
224 
225 		*next = skip_nops(instr, *next, len);
226 		if (*target && *next == *target)
227 			nop = *prev;
228 
229 		add_nop(instr + nop, *next - nop);
230 		DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next);
231 		return true;
232 	}
233 
234 	*target = 0;
235 	return false;
236 }
237 
238 /*
239  * "noinline" to cause control flow change and thus invalidate I$ and
240  * cause refetch after modification.
241  */
242 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
243 {
244 	int prev, target = 0;
245 
246 	for (int next, i = 0; i < len; i = next) {
247 		struct insn insn;
248 
249 		if (insn_decode_kernel(&insn, &instr[i]))
250 			return;
251 
252 		next = i + insn.length;
253 
254 		__optimize_nops(instr, len, &insn, &next, &prev, &target);
255 	}
256 }
257 
258 static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len)
259 {
260 	unsigned long flags;
261 
262 	local_irq_save(flags);
263 	optimize_nops(instr, len);
264 	sync_core();
265 	local_irq_restore(flags);
266 }
267 
268 /*
269  * In this context, "source" is where the instructions are placed in the
270  * section .altinstr_replacement, for example during kernel build by the
271  * toolchain.
272  * "Destination" is where the instructions are being patched in by this
273  * machinery.
274  *
275  * The source offset is:
276  *
277  *   src_imm = target - src_next_ip                  (1)
278  *
279  * and the target offset is:
280  *
281  *   dst_imm = target - dst_next_ip                  (2)
282  *
283  * so rework (1) as an expression for target like:
284  *
285  *   target = src_imm + src_next_ip                  (1a)
286  *
287  * and substitute in (2) to get:
288  *
289  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
290  *
291  * Now, since the instruction stream is 'identical' at src and dst (it
292  * is being copied after all) it can be stated that:
293  *
294  *   src_next_ip = src + ip_offset
295  *   dst_next_ip = dst + ip_offset                   (4)
296  *
297  * Substitute (4) in (3) and observe ip_offset being cancelled out to
298  * obtain:
299  *
300  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
301  *           = src_imm + src - dst + ip_offset - ip_offset
302  *           = src_imm + src - dst                   (5)
303  *
304  * IOW, only the relative displacement of the code block matters.
305  */
306 
307 #define apply_reloc_n(n_, p_, d_)				\
308 	do {							\
309 		s32 v = *(s##n_ *)(p_);				\
310 		v += (d_);					\
311 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
312 		*(s##n_ *)(p_) = (s##n_)v;			\
313 	} while (0)
314 
315 
316 static __always_inline
317 void apply_reloc(int n, void *ptr, uintptr_t diff)
318 {
319 	switch (n) {
320 	case 1: apply_reloc_n(8, ptr, diff); break;
321 	case 2: apply_reloc_n(16, ptr, diff); break;
322 	case 4: apply_reloc_n(32, ptr, diff); break;
323 	default: BUG();
324 	}
325 }
326 
327 static __always_inline
328 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
329 {
330 	u8 *target = src + offset;
331 	/*
332 	 * If the target is inside the patched block, it's relative to the
333 	 * block itself and does not need relocation.
334 	 */
335 	return (target < src || target > src + src_len);
336 }
337 
338 static void __init_or_module noinline
339 apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len)
340 {
341 	int prev, target = 0;
342 
343 	for (int next, i = 0; i < len; i = next) {
344 		struct insn insn;
345 
346 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
347 			return;
348 
349 		next = i + insn.length;
350 
351 		if (__optimize_nops(buf, len, &insn, &next, &prev, &target))
352 			continue;
353 
354 		switch (insn.opcode.bytes[0]) {
355 		case 0x0f:
356 			if (insn.opcode.bytes[1] < 0x80 ||
357 			    insn.opcode.bytes[1] > 0x8f)
358 				break;
359 
360 			fallthrough;	/* Jcc.d32 */
361 		case 0x70 ... 0x7f:	/* Jcc.d8 */
362 		case JMP8_INSN_OPCODE:
363 		case JMP32_INSN_OPCODE:
364 		case CALL_INSN_OPCODE:
365 			if (need_reloc(next + insn.immediate.value, src, src_len)) {
366 				apply_reloc(insn.immediate.nbytes,
367 					    buf + i + insn_offset_immediate(&insn),
368 					    src - dest);
369 			}
370 
371 			/*
372 			 * Where possible, convert JMP.d32 into JMP.d8.
373 			 */
374 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
375 				s32 imm = insn.immediate.value;
376 				imm += src - dest;
377 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
378 				if ((imm >> 31) == (imm >> 7)) {
379 					buf[i+0] = JMP8_INSN_OPCODE;
380 					buf[i+1] = (s8)imm;
381 
382 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
383 				}
384 			}
385 			break;
386 		}
387 
388 		if (insn_rip_relative(&insn)) {
389 			if (need_reloc(next + insn.displacement.value, src, src_len)) {
390 				apply_reloc(insn.displacement.nbytes,
391 					    buf + i + insn_offset_displacement(&insn),
392 					    src - dest);
393 			}
394 		}
395 	}
396 }
397 
398 /* Low-level backend functions usable from alternative code replacements. */
399 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
400 EXPORT_SYMBOL_GPL(nop_func);
401 
402 noinstr void BUG_func(void)
403 {
404 	BUG();
405 }
406 EXPORT_SYMBOL_GPL(BUG_func);
407 
408 #define CALL_RIP_REL_OPCODE	0xff
409 #define CALL_RIP_REL_MODRM	0x15
410 
411 /*
412  * Rewrite the "call BUG_func" replacement to point to the target of the
413  * indirect pv_ops call "call *disp(%ip)".
414  */
415 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
416 {
417 	void *target, *bug = &BUG_func;
418 	s32 disp;
419 
420 	if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
421 		pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
422 		BUG();
423 	}
424 
425 	if (a->instrlen != 6 ||
426 	    instr[0] != CALL_RIP_REL_OPCODE ||
427 	    instr[1] != CALL_RIP_REL_MODRM) {
428 		pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
429 		BUG();
430 	}
431 
432 	/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
433 	disp = *(s32 *)(instr + 2);
434 #ifdef CONFIG_X86_64
435 	/* ff 15 00 00 00 00   call   *0x0(%rip) */
436 	/* target address is stored at "next instruction + disp". */
437 	target = *(void **)(instr + a->instrlen + disp);
438 #else
439 	/* ff 15 00 00 00 00   call   *0x0 */
440 	/* target address is stored at disp. */
441 	target = *(void **)disp;
442 #endif
443 	if (!target)
444 		target = bug;
445 
446 	/* (BUG_func - .) + (target - BUG_func) := target - . */
447 	*(s32 *)(insn_buff + 1) += target - bug;
448 
449 	if (target == &nop_func)
450 		return 0;
451 
452 	return 5;
453 }
454 
455 /*
456  * Replace instructions with better alternatives for this CPU type. This runs
457  * before SMP is initialized to avoid SMP problems with self modifying code.
458  * This implies that asymmetric systems where APs have less capabilities than
459  * the boot processor are not handled. Tough. Make sure you disable such
460  * features by hand.
461  *
462  * Marked "noinline" to cause control flow change and thus insn cache
463  * to refetch changed I$ lines.
464  */
465 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
466 						  struct alt_instr *end)
467 {
468 	struct alt_instr *a;
469 	u8 *instr, *replacement;
470 	u8 insn_buff[MAX_PATCH_LEN];
471 
472 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
473 
474 	/*
475 	 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
476 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
477 	 * During the process, KASAN becomes confused seeing partial LA57
478 	 * conversion and triggers a false-positive out-of-bound report.
479 	 *
480 	 * Disable KASAN until the patching is complete.
481 	 */
482 	kasan_disable_current();
483 
484 	/*
485 	 * The scan order should be from start to end. A later scanned
486 	 * alternative code can overwrite previously scanned alternative code.
487 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
488 	 * patch code.
489 	 *
490 	 * So be careful if you want to change the scan order to any other
491 	 * order.
492 	 */
493 	for (a = start; a < end; a++) {
494 		int insn_buff_sz = 0;
495 
496 		instr = (u8 *)&a->instr_offset + a->instr_offset;
497 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
498 		BUG_ON(a->instrlen > sizeof(insn_buff));
499 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
500 
501 		/*
502 		 * Patch if either:
503 		 * - feature is present
504 		 * - feature not present but ALT_FLAG_NOT is set to mean,
505 		 *   patch if feature is *NOT* present.
506 		 */
507 		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
508 			optimize_nops_inplace(instr, a->instrlen);
509 			continue;
510 		}
511 
512 		DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
513 			a->cpuid >> 5,
514 			a->cpuid & 0x1f,
515 			instr, instr, a->instrlen,
516 			replacement, a->replacementlen, a->flags);
517 
518 		memcpy(insn_buff, replacement, a->replacementlen);
519 		insn_buff_sz = a->replacementlen;
520 
521 		if (a->flags & ALT_FLAG_DIRECT_CALL) {
522 			insn_buff_sz = alt_replace_call(instr, insn_buff, a);
523 			if (insn_buff_sz < 0)
524 				continue;
525 		}
526 
527 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
528 			insn_buff[insn_buff_sz] = 0x90;
529 
530 		apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen);
531 
532 		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
533 		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
534 		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
535 
536 		text_poke_early(instr, insn_buff, insn_buff_sz);
537 	}
538 
539 	kasan_enable_current();
540 }
541 
542 static inline bool is_jcc32(struct insn *insn)
543 {
544 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
545 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
546 }
547 
548 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
549 
550 /*
551  * CALL/JMP *%\reg
552  */
553 static int emit_indirect(int op, int reg, u8 *bytes)
554 {
555 	int i = 0;
556 	u8 modrm;
557 
558 	switch (op) {
559 	case CALL_INSN_OPCODE:
560 		modrm = 0x10; /* Reg = 2; CALL r/m */
561 		break;
562 
563 	case JMP32_INSN_OPCODE:
564 		modrm = 0x20; /* Reg = 4; JMP r/m */
565 		break;
566 
567 	default:
568 		WARN_ON_ONCE(1);
569 		return -1;
570 	}
571 
572 	if (reg >= 8) {
573 		bytes[i++] = 0x41; /* REX.B prefix */
574 		reg -= 8;
575 	}
576 
577 	modrm |= 0xc0; /* Mod = 3 */
578 	modrm += reg;
579 
580 	bytes[i++] = 0xff; /* opcode */
581 	bytes[i++] = modrm;
582 
583 	return i;
584 }
585 
586 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
587 {
588 	u8 op = insn->opcode.bytes[0];
589 	int i = 0;
590 
591 	/*
592 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
593 	 * tail-calls. Deal with them.
594 	 */
595 	if (is_jcc32(insn)) {
596 		bytes[i++] = op;
597 		op = insn->opcode.bytes[1];
598 		goto clang_jcc;
599 	}
600 
601 	if (insn->length == 6)
602 		bytes[i++] = 0x2e; /* CS-prefix */
603 
604 	switch (op) {
605 	case CALL_INSN_OPCODE:
606 		__text_gen_insn(bytes+i, op, addr+i,
607 				__x86_indirect_call_thunk_array[reg],
608 				CALL_INSN_SIZE);
609 		i += CALL_INSN_SIZE;
610 		break;
611 
612 	case JMP32_INSN_OPCODE:
613 clang_jcc:
614 		__text_gen_insn(bytes+i, op, addr+i,
615 				__x86_indirect_jump_thunk_array[reg],
616 				JMP32_INSN_SIZE);
617 		i += JMP32_INSN_SIZE;
618 		break;
619 
620 	default:
621 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
622 		return -1;
623 	}
624 
625 	WARN_ON_ONCE(i != insn->length);
626 
627 	return i;
628 }
629 
630 /*
631  * Rewrite the compiler generated retpoline thunk calls.
632  *
633  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
634  * indirect instructions, avoiding the extra indirection.
635  *
636  * For example, convert:
637  *
638  *   CALL __x86_indirect_thunk_\reg
639  *
640  * into:
641  *
642  *   CALL *%\reg
643  *
644  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
645  */
646 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
647 {
648 	retpoline_thunk_t *target;
649 	int reg, ret, i = 0;
650 	u8 op, cc;
651 
652 	target = addr + insn->length + insn->immediate.value;
653 	reg = target - __x86_indirect_thunk_array;
654 
655 	if (WARN_ON_ONCE(reg & ~0xf))
656 		return -1;
657 
658 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
659 	BUG_ON(reg == 4);
660 
661 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
662 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
663 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
664 			return emit_call_track_retpoline(addr, insn, reg, bytes);
665 
666 		return -1;
667 	}
668 
669 	op = insn->opcode.bytes[0];
670 
671 	/*
672 	 * Convert:
673 	 *
674 	 *   Jcc.d32 __x86_indirect_thunk_\reg
675 	 *
676 	 * into:
677 	 *
678 	 *   Jncc.d8 1f
679 	 *   [ LFENCE ]
680 	 *   JMP *%\reg
681 	 *   [ NOP ]
682 	 * 1:
683 	 */
684 	if (is_jcc32(insn)) {
685 		cc = insn->opcode.bytes[1] & 0xf;
686 		cc ^= 1; /* invert condition */
687 
688 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
689 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
690 
691 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
692 		op = JMP32_INSN_OPCODE;
693 	}
694 
695 	/*
696 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
697 	 */
698 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
699 		bytes[i++] = 0x0f;
700 		bytes[i++] = 0xae;
701 		bytes[i++] = 0xe8; /* LFENCE */
702 	}
703 
704 	ret = emit_indirect(op, reg, bytes + i);
705 	if (ret < 0)
706 		return ret;
707 	i += ret;
708 
709 	/*
710 	 * The compiler is supposed to EMIT an INT3 after every unconditional
711 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
712 	 * or SLS isn't enabled, we still need an INT3 after indirect JMPs
713 	 * even on Intel.
714 	 */
715 	if (op == JMP32_INSN_OPCODE && i < insn->length)
716 		bytes[i++] = INT3_INSN_OPCODE;
717 
718 	for (; i < insn->length;)
719 		bytes[i++] = BYTES_NOP1;
720 
721 	return i;
722 }
723 
724 /*
725  * Generated by 'objtool --retpoline'.
726  */
727 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
728 {
729 	s32 *s;
730 
731 	for (s = start; s < end; s++) {
732 		void *addr = (void *)s + *s;
733 		struct insn insn;
734 		int len, ret;
735 		u8 bytes[16];
736 		u8 op1, op2;
737 
738 		ret = insn_decode_kernel(&insn, addr);
739 		if (WARN_ON_ONCE(ret < 0))
740 			continue;
741 
742 		op1 = insn.opcode.bytes[0];
743 		op2 = insn.opcode.bytes[1];
744 
745 		switch (op1) {
746 		case CALL_INSN_OPCODE:
747 		case JMP32_INSN_OPCODE:
748 			break;
749 
750 		case 0x0f: /* escape */
751 			if (op2 >= 0x80 && op2 <= 0x8f)
752 				break;
753 			fallthrough;
754 		default:
755 			WARN_ON_ONCE(1);
756 			continue;
757 		}
758 
759 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
760 			addr, addr, insn.length,
761 			addr + insn.length + insn.immediate.value);
762 
763 		len = patch_retpoline(addr, &insn, bytes);
764 		if (len == insn.length) {
765 			optimize_nops(bytes, len);
766 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
767 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
768 			text_poke_early(addr, bytes, len);
769 		}
770 	}
771 }
772 
773 #ifdef CONFIG_RETHUNK
774 
775 /*
776  * Rewrite the compiler generated return thunk tail-calls.
777  *
778  * For example, convert:
779  *
780  *   JMP __x86_return_thunk
781  *
782  * into:
783  *
784  *   RET
785  */
786 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
787 {
788 	int i = 0;
789 
790 	/* Patch the custom return thunks... */
791 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
792 		i = JMP32_INSN_SIZE;
793 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
794 	} else {
795 		/* ... or patch them out if not needed. */
796 		bytes[i++] = RET_INSN_OPCODE;
797 	}
798 
799 	for (; i < insn->length;)
800 		bytes[i++] = INT3_INSN_OPCODE;
801 	return i;
802 }
803 
804 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
805 {
806 	s32 *s;
807 
808 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
809 		static_call_force_reinit();
810 
811 	for (s = start; s < end; s++) {
812 		void *dest = NULL, *addr = (void *)s + *s;
813 		struct insn insn;
814 		int len, ret;
815 		u8 bytes[16];
816 		u8 op;
817 
818 		ret = insn_decode_kernel(&insn, addr);
819 		if (WARN_ON_ONCE(ret < 0))
820 			continue;
821 
822 		op = insn.opcode.bytes[0];
823 		if (op == JMP32_INSN_OPCODE)
824 			dest = addr + insn.length + insn.immediate.value;
825 
826 		if (__static_call_fixup(addr, op, dest) ||
827 		    WARN_ONCE(dest != &__x86_return_thunk,
828 			      "missing return thunk: %pS-%pS: %*ph",
829 			      addr, dest, 5, addr))
830 			continue;
831 
832 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
833 			addr, addr, insn.length,
834 			addr + insn.length + insn.immediate.value);
835 
836 		len = patch_return(addr, &insn, bytes);
837 		if (len == insn.length) {
838 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
839 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
840 			text_poke_early(addr, bytes, len);
841 		}
842 	}
843 }
844 #else
845 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
846 #endif /* CONFIG_RETHUNK */
847 
848 #else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
849 
850 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
851 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
852 
853 #endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
854 
855 #ifdef CONFIG_X86_KERNEL_IBT
856 
857 static void poison_cfi(void *addr);
858 
859 static void __init_or_module poison_endbr(void *addr, bool warn)
860 {
861 	u32 endbr, poison = gen_endbr_poison();
862 
863 	if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
864 		return;
865 
866 	if (!is_endbr(endbr)) {
867 		WARN_ON_ONCE(warn);
868 		return;
869 	}
870 
871 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
872 
873 	/*
874 	 * When we have IBT, the lack of ENDBR will trigger #CP
875 	 */
876 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
877 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
878 	text_poke_early(addr, &poison, 4);
879 }
880 
881 /*
882  * Generated by: objtool --ibt
883  *
884  * Seal the functions for indirect calls by clobbering the ENDBR instructions
885  * and the kCFI hash value.
886  */
887 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
888 {
889 	s32 *s;
890 
891 	for (s = start; s < end; s++) {
892 		void *addr = (void *)s + *s;
893 
894 		poison_endbr(addr, true);
895 		if (IS_ENABLED(CONFIG_FINEIBT))
896 			poison_cfi(addr - 16);
897 	}
898 }
899 
900 #else
901 
902 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
903 
904 #endif /* CONFIG_X86_KERNEL_IBT */
905 
906 #ifdef CONFIG_FINEIBT
907 #define __CFI_DEFAULT	CFI_DEFAULT
908 #elif defined(CONFIG_CFI_CLANG)
909 #define __CFI_DEFAULT	CFI_KCFI
910 #else
911 #define __CFI_DEFAULT	CFI_OFF
912 #endif
913 
914 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
915 
916 #ifdef CONFIG_CFI_CLANG
917 struct bpf_insn;
918 
919 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
920 extern unsigned int __bpf_prog_runX(const void *ctx,
921 				    const struct bpf_insn *insn);
922 
923 /*
924  * Force a reference to the external symbol so the compiler generates
925  * __kcfi_typid.
926  */
927 __ADDRESSABLE(__bpf_prog_runX);
928 
929 /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */
930 asm (
931 "	.pushsection	.data..ro_after_init,\"aw\",@progbits	\n"
932 "	.type	cfi_bpf_hash,@object				\n"
933 "	.globl	cfi_bpf_hash					\n"
934 "	.p2align	2, 0x0					\n"
935 "cfi_bpf_hash:							\n"
936 "	.long	__kcfi_typeid___bpf_prog_runX			\n"
937 "	.size	cfi_bpf_hash, 4					\n"
938 "	.popsection						\n"
939 );
940 
941 /* Must match bpf_callback_t */
942 extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64);
943 
944 __ADDRESSABLE(__bpf_callback_fn);
945 
946 /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */
947 asm (
948 "	.pushsection	.data..ro_after_init,\"aw\",@progbits	\n"
949 "	.type	cfi_bpf_subprog_hash,@object			\n"
950 "	.globl	cfi_bpf_subprog_hash				\n"
951 "	.p2align	2, 0x0					\n"
952 "cfi_bpf_subprog_hash:						\n"
953 "	.long	__kcfi_typeid___bpf_callback_fn			\n"
954 "	.size	cfi_bpf_subprog_hash, 4				\n"
955 "	.popsection						\n"
956 );
957 
958 u32 cfi_get_func_hash(void *func)
959 {
960 	u32 hash;
961 
962 	func -= cfi_get_offset();
963 	switch (cfi_mode) {
964 	case CFI_FINEIBT:
965 		func += 7;
966 		break;
967 	case CFI_KCFI:
968 		func += 1;
969 		break;
970 	default:
971 		return 0;
972 	}
973 
974 	if (get_kernel_nofault(hash, func))
975 		return 0;
976 
977 	return hash;
978 }
979 #endif
980 
981 #ifdef CONFIG_FINEIBT
982 
983 static bool cfi_rand __ro_after_init = true;
984 static u32  cfi_seed __ro_after_init;
985 
986 /*
987  * Re-hash the CFI hash with a boot-time seed while making sure the result is
988  * not a valid ENDBR instruction.
989  */
990 static u32 cfi_rehash(u32 hash)
991 {
992 	hash ^= cfi_seed;
993 	while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
994 		bool lsb = hash & 1;
995 		hash >>= 1;
996 		if (lsb)
997 			hash ^= 0x80200003;
998 	}
999 	return hash;
1000 }
1001 
1002 static __init int cfi_parse_cmdline(char *str)
1003 {
1004 	if (!str)
1005 		return -EINVAL;
1006 
1007 	while (str) {
1008 		char *next = strchr(str, ',');
1009 		if (next) {
1010 			*next = 0;
1011 			next++;
1012 		}
1013 
1014 		if (!strcmp(str, "auto")) {
1015 			cfi_mode = CFI_DEFAULT;
1016 		} else if (!strcmp(str, "off")) {
1017 			cfi_mode = CFI_OFF;
1018 			cfi_rand = false;
1019 		} else if (!strcmp(str, "kcfi")) {
1020 			cfi_mode = CFI_KCFI;
1021 		} else if (!strcmp(str, "fineibt")) {
1022 			cfi_mode = CFI_FINEIBT;
1023 		} else if (!strcmp(str, "norand")) {
1024 			cfi_rand = false;
1025 		} else {
1026 			pr_err("Ignoring unknown cfi option (%s).", str);
1027 		}
1028 
1029 		str = next;
1030 	}
1031 
1032 	return 0;
1033 }
1034 early_param("cfi", cfi_parse_cmdline);
1035 
1036 /*
1037  * kCFI						FineIBT
1038  *
1039  * __cfi_\func:					__cfi_\func:
1040  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
1041  *	nop					     subl   $0x12345678,%r10d   // 7
1042  *	nop					     jz     1f			// 2
1043  *	nop					     ud2			// 2
1044  *	nop					1:   nop			// 1
1045  *	nop
1046  *	nop
1047  *	nop
1048  *	nop
1049  *	nop
1050  *	nop
1051  *	nop
1052  *
1053  *
1054  * caller:					caller:
1055  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
1056  *	addl	$-15(%r11),%r10d	 // 4	     sub    $16,%r11		// 4
1057  *	je	1f			 // 2	     nop4			// 4
1058  *	ud2				 // 2
1059  * 1:	call	__x86_indirect_thunk_r11 // 5	     call   *%r11; nop2;	// 5
1060  *
1061  */
1062 
1063 asm(	".pushsection .rodata			\n"
1064 	"fineibt_preamble_start:		\n"
1065 	"	endbr64				\n"
1066 	"	subl	$0x12345678, %r10d	\n"
1067 	"	je	fineibt_preamble_end	\n"
1068 	"	ud2				\n"
1069 	"	nop				\n"
1070 	"fineibt_preamble_end:			\n"
1071 	".popsection\n"
1072 );
1073 
1074 extern u8 fineibt_preamble_start[];
1075 extern u8 fineibt_preamble_end[];
1076 
1077 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1078 #define fineibt_preamble_hash 7
1079 
1080 asm(	".pushsection .rodata			\n"
1081 	"fineibt_caller_start:			\n"
1082 	"	movl	$0x12345678, %r10d	\n"
1083 	"	sub	$16, %r11		\n"
1084 	ASM_NOP4
1085 	"fineibt_caller_end:			\n"
1086 	".popsection				\n"
1087 );
1088 
1089 extern u8 fineibt_caller_start[];
1090 extern u8 fineibt_caller_end[];
1091 
1092 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1093 #define fineibt_caller_hash 2
1094 
1095 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1096 
1097 static u32 decode_preamble_hash(void *addr)
1098 {
1099 	u8 *p = addr;
1100 
1101 	/* b8 78 56 34 12          mov    $0x12345678,%eax */
1102 	if (p[0] == 0xb8)
1103 		return *(u32 *)(addr + 1);
1104 
1105 	return 0; /* invalid hash value */
1106 }
1107 
1108 static u32 decode_caller_hash(void *addr)
1109 {
1110 	u8 *p = addr;
1111 
1112 	/* 41 ba 78 56 34 12       mov    $0x12345678,%r10d */
1113 	if (p[0] == 0x41 && p[1] == 0xba)
1114 		return -*(u32 *)(addr + 2);
1115 
1116 	/* e8 0c 78 56 34 12	   jmp.d8  +12 */
1117 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1118 		return -*(u32 *)(addr + 2);
1119 
1120 	return 0; /* invalid hash value */
1121 }
1122 
1123 /* .retpoline_sites */
1124 static int cfi_disable_callers(s32 *start, s32 *end)
1125 {
1126 	/*
1127 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1128 	 * in tact for later usage. Also see decode_caller_hash() and
1129 	 * cfi_rewrite_callers().
1130 	 */
1131 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1132 	s32 *s;
1133 
1134 	for (s = start; s < end; s++) {
1135 		void *addr = (void *)s + *s;
1136 		u32 hash;
1137 
1138 		addr -= fineibt_caller_size;
1139 		hash = decode_caller_hash(addr);
1140 		if (!hash) /* nocfi callers */
1141 			continue;
1142 
1143 		text_poke_early(addr, jmp, 2);
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 static int cfi_enable_callers(s32 *start, s32 *end)
1150 {
1151 	/*
1152 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1153 	 */
1154 	const u8 mov[] = { 0x41, 0xba };
1155 	s32 *s;
1156 
1157 	for (s = start; s < end; s++) {
1158 		void *addr = (void *)s + *s;
1159 		u32 hash;
1160 
1161 		addr -= fineibt_caller_size;
1162 		hash = decode_caller_hash(addr);
1163 		if (!hash) /* nocfi callers */
1164 			continue;
1165 
1166 		text_poke_early(addr, mov, 2);
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /* .cfi_sites */
1173 static int cfi_rand_preamble(s32 *start, s32 *end)
1174 {
1175 	s32 *s;
1176 
1177 	for (s = start; s < end; s++) {
1178 		void *addr = (void *)s + *s;
1179 		u32 hash;
1180 
1181 		hash = decode_preamble_hash(addr);
1182 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1183 			 addr, addr, 5, addr))
1184 			return -EINVAL;
1185 
1186 		hash = cfi_rehash(hash);
1187 		text_poke_early(addr + 1, &hash, 4);
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1194 {
1195 	s32 *s;
1196 
1197 	for (s = start; s < end; s++) {
1198 		void *addr = (void *)s + *s;
1199 		u32 hash;
1200 
1201 		hash = decode_preamble_hash(addr);
1202 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1203 			 addr, addr, 5, addr))
1204 			return -EINVAL;
1205 
1206 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1207 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1208 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1215 {
1216 	s32 *s;
1217 
1218 	for (s = start; s < end; s++) {
1219 		void *addr = (void *)s + *s;
1220 
1221 		poison_endbr(addr+16, false);
1222 	}
1223 }
1224 
1225 /* .retpoline_sites */
1226 static int cfi_rand_callers(s32 *start, s32 *end)
1227 {
1228 	s32 *s;
1229 
1230 	for (s = start; s < end; s++) {
1231 		void *addr = (void *)s + *s;
1232 		u32 hash;
1233 
1234 		addr -= fineibt_caller_size;
1235 		hash = decode_caller_hash(addr);
1236 		if (hash) {
1237 			hash = -cfi_rehash(hash);
1238 			text_poke_early(addr + 2, &hash, 4);
1239 		}
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 static int cfi_rewrite_callers(s32 *start, s32 *end)
1246 {
1247 	s32 *s;
1248 
1249 	for (s = start; s < end; s++) {
1250 		void *addr = (void *)s + *s;
1251 		u32 hash;
1252 
1253 		addr -= fineibt_caller_size;
1254 		hash = decode_caller_hash(addr);
1255 		if (hash) {
1256 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1257 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1258 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1259 		}
1260 		/* rely on apply_retpolines() */
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1267 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1268 {
1269 	int ret;
1270 
1271 	if (WARN_ONCE(fineibt_preamble_size != 16,
1272 		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1273 		return;
1274 
1275 	if (cfi_mode == CFI_DEFAULT) {
1276 		cfi_mode = CFI_KCFI;
1277 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1278 			cfi_mode = CFI_FINEIBT;
1279 	}
1280 
1281 	/*
1282 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1283 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1284 	 * later stages fails, we're without CFI.
1285 	 */
1286 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1287 	if (ret)
1288 		goto err;
1289 
1290 	if (cfi_rand) {
1291 		if (builtin) {
1292 			cfi_seed = get_random_u32();
1293 			cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1294 			cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1295 		}
1296 
1297 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1298 		if (ret)
1299 			goto err;
1300 
1301 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1302 		if (ret)
1303 			goto err;
1304 	}
1305 
1306 	switch (cfi_mode) {
1307 	case CFI_OFF:
1308 		if (builtin)
1309 			pr_info("Disabling CFI\n");
1310 		return;
1311 
1312 	case CFI_KCFI:
1313 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1314 		if (ret)
1315 			goto err;
1316 
1317 		if (builtin)
1318 			pr_info("Using kCFI\n");
1319 		return;
1320 
1321 	case CFI_FINEIBT:
1322 		/* place the FineIBT preamble at func()-16 */
1323 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1324 		if (ret)
1325 			goto err;
1326 
1327 		/* rewrite the callers to target func()-16 */
1328 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1329 		if (ret)
1330 			goto err;
1331 
1332 		/* now that nobody targets func()+0, remove ENDBR there */
1333 		cfi_rewrite_endbr(start_cfi, end_cfi);
1334 
1335 		if (builtin)
1336 			pr_info("Using FineIBT CFI\n");
1337 		return;
1338 
1339 	default:
1340 		break;
1341 	}
1342 
1343 err:
1344 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1345 }
1346 
1347 static inline void poison_hash(void *addr)
1348 {
1349 	*(u32 *)addr = 0;
1350 }
1351 
1352 static void poison_cfi(void *addr)
1353 {
1354 	switch (cfi_mode) {
1355 	case CFI_FINEIBT:
1356 		/*
1357 		 * __cfi_\func:
1358 		 *	osp nopl (%rax)
1359 		 *	subl	$0, %r10d
1360 		 *	jz	1f
1361 		 *	ud2
1362 		 * 1:	nop
1363 		 */
1364 		poison_endbr(addr, false);
1365 		poison_hash(addr + fineibt_preamble_hash);
1366 		break;
1367 
1368 	case CFI_KCFI:
1369 		/*
1370 		 * __cfi_\func:
1371 		 *	movl	$0, %eax
1372 		 *	.skip	11, 0x90
1373 		 */
1374 		poison_hash(addr + 1);
1375 		break;
1376 
1377 	default:
1378 		break;
1379 	}
1380 }
1381 
1382 #else
1383 
1384 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1385 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1386 {
1387 }
1388 
1389 #ifdef CONFIG_X86_KERNEL_IBT
1390 static void poison_cfi(void *addr) { }
1391 #endif
1392 
1393 #endif
1394 
1395 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1396 		   s32 *start_cfi, s32 *end_cfi)
1397 {
1398 	return __apply_fineibt(start_retpoline, end_retpoline,
1399 			       start_cfi, end_cfi,
1400 			       /* .builtin = */ false);
1401 }
1402 
1403 #ifdef CONFIG_SMP
1404 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1405 				  u8 *text, u8 *text_end)
1406 {
1407 	const s32 *poff;
1408 
1409 	for (poff = start; poff < end; poff++) {
1410 		u8 *ptr = (u8 *)poff + *poff;
1411 
1412 		if (!*poff || ptr < text || ptr >= text_end)
1413 			continue;
1414 		/* turn DS segment override prefix into lock prefix */
1415 		if (*ptr == 0x3e)
1416 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
1417 	}
1418 }
1419 
1420 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1421 				    u8 *text, u8 *text_end)
1422 {
1423 	const s32 *poff;
1424 
1425 	for (poff = start; poff < end; poff++) {
1426 		u8 *ptr = (u8 *)poff + *poff;
1427 
1428 		if (!*poff || ptr < text || ptr >= text_end)
1429 			continue;
1430 		/* turn lock prefix into DS segment override prefix */
1431 		if (*ptr == 0xf0)
1432 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
1433 	}
1434 }
1435 
1436 struct smp_alt_module {
1437 	/* what is this ??? */
1438 	struct module	*mod;
1439 	char		*name;
1440 
1441 	/* ptrs to lock prefixes */
1442 	const s32	*locks;
1443 	const s32	*locks_end;
1444 
1445 	/* .text segment, needed to avoid patching init code ;) */
1446 	u8		*text;
1447 	u8		*text_end;
1448 
1449 	struct list_head next;
1450 };
1451 static LIST_HEAD(smp_alt_modules);
1452 static bool uniproc_patched = false;	/* protected by text_mutex */
1453 
1454 void __init_or_module alternatives_smp_module_add(struct module *mod,
1455 						  char *name,
1456 						  void *locks, void *locks_end,
1457 						  void *text,  void *text_end)
1458 {
1459 	struct smp_alt_module *smp;
1460 
1461 	mutex_lock(&text_mutex);
1462 	if (!uniproc_patched)
1463 		goto unlock;
1464 
1465 	if (num_possible_cpus() == 1)
1466 		/* Don't bother remembering, we'll never have to undo it. */
1467 		goto smp_unlock;
1468 
1469 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1470 	if (NULL == smp)
1471 		/* we'll run the (safe but slow) SMP code then ... */
1472 		goto unlock;
1473 
1474 	smp->mod	= mod;
1475 	smp->name	= name;
1476 	smp->locks	= locks;
1477 	smp->locks_end	= locks_end;
1478 	smp->text	= text;
1479 	smp->text_end	= text_end;
1480 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1481 		smp->locks, smp->locks_end,
1482 		smp->text, smp->text_end, smp->name);
1483 
1484 	list_add_tail(&smp->next, &smp_alt_modules);
1485 smp_unlock:
1486 	alternatives_smp_unlock(locks, locks_end, text, text_end);
1487 unlock:
1488 	mutex_unlock(&text_mutex);
1489 }
1490 
1491 void __init_or_module alternatives_smp_module_del(struct module *mod)
1492 {
1493 	struct smp_alt_module *item;
1494 
1495 	mutex_lock(&text_mutex);
1496 	list_for_each_entry(item, &smp_alt_modules, next) {
1497 		if (mod != item->mod)
1498 			continue;
1499 		list_del(&item->next);
1500 		kfree(item);
1501 		break;
1502 	}
1503 	mutex_unlock(&text_mutex);
1504 }
1505 
1506 void alternatives_enable_smp(void)
1507 {
1508 	struct smp_alt_module *mod;
1509 
1510 	/* Why bother if there are no other CPUs? */
1511 	BUG_ON(num_possible_cpus() == 1);
1512 
1513 	mutex_lock(&text_mutex);
1514 
1515 	if (uniproc_patched) {
1516 		pr_info("switching to SMP code\n");
1517 		BUG_ON(num_online_cpus() != 1);
1518 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1519 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1520 		list_for_each_entry(mod, &smp_alt_modules, next)
1521 			alternatives_smp_lock(mod->locks, mod->locks_end,
1522 					      mod->text, mod->text_end);
1523 		uniproc_patched = false;
1524 	}
1525 	mutex_unlock(&text_mutex);
1526 }
1527 
1528 /*
1529  * Return 1 if the address range is reserved for SMP-alternatives.
1530  * Must hold text_mutex.
1531  */
1532 int alternatives_text_reserved(void *start, void *end)
1533 {
1534 	struct smp_alt_module *mod;
1535 	const s32 *poff;
1536 	u8 *text_start = start;
1537 	u8 *text_end = end;
1538 
1539 	lockdep_assert_held(&text_mutex);
1540 
1541 	list_for_each_entry(mod, &smp_alt_modules, next) {
1542 		if (mod->text > text_end || mod->text_end < text_start)
1543 			continue;
1544 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
1545 			const u8 *ptr = (const u8 *)poff + *poff;
1546 
1547 			if (text_start <= ptr && text_end > ptr)
1548 				return 1;
1549 		}
1550 	}
1551 
1552 	return 0;
1553 }
1554 #endif /* CONFIG_SMP */
1555 
1556 /*
1557  * Self-test for the INT3 based CALL emulation code.
1558  *
1559  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1560  * properly and that there is a stack gap between the INT3 frame and the
1561  * previous context. Without this gap doing a virtual PUSH on the interrupted
1562  * stack would corrupt the INT3 IRET frame.
1563  *
1564  * See entry_{32,64}.S for more details.
1565  */
1566 
1567 /*
1568  * We define the int3_magic() function in assembly to control the calling
1569  * convention such that we can 'call' it from assembly.
1570  */
1571 
1572 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1573 
1574 asm (
1575 "	.pushsection	.init.text, \"ax\", @progbits\n"
1576 "	.type		int3_magic, @function\n"
1577 "int3_magic:\n"
1578 	ANNOTATE_NOENDBR
1579 "	movl	$1, (%" _ASM_ARG1 ")\n"
1580 	ASM_RET
1581 "	.size		int3_magic, .-int3_magic\n"
1582 "	.popsection\n"
1583 );
1584 
1585 extern void int3_selftest_ip(void); /* defined in asm below */
1586 
1587 static int __init
1588 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1589 {
1590 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
1591 	struct die_args *args = data;
1592 	struct pt_regs *regs = args->regs;
1593 
1594 	OPTIMIZER_HIDE_VAR(selftest);
1595 
1596 	if (!regs || user_mode(regs))
1597 		return NOTIFY_DONE;
1598 
1599 	if (val != DIE_INT3)
1600 		return NOTIFY_DONE;
1601 
1602 	if (regs->ip - INT3_INSN_SIZE != selftest)
1603 		return NOTIFY_DONE;
1604 
1605 	int3_emulate_call(regs, (unsigned long)&int3_magic);
1606 	return NOTIFY_STOP;
1607 }
1608 
1609 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1610 static noinline void __init int3_selftest(void)
1611 {
1612 	static __initdata struct notifier_block int3_exception_nb = {
1613 		.notifier_call	= int3_exception_notify,
1614 		.priority	= INT_MAX-1, /* last */
1615 	};
1616 	unsigned int val = 0;
1617 
1618 	BUG_ON(register_die_notifier(&int3_exception_nb));
1619 
1620 	/*
1621 	 * Basically: int3_magic(&val); but really complicated :-)
1622 	 *
1623 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1624 	 * notifier above will emulate CALL for us.
1625 	 */
1626 	asm volatile ("int3_selftest_ip:\n\t"
1627 		      ANNOTATE_NOENDBR
1628 		      "    int3; nop; nop; nop; nop\n\t"
1629 		      : ASM_CALL_CONSTRAINT
1630 		      : __ASM_SEL_RAW(a, D) (&val)
1631 		      : "memory");
1632 
1633 	BUG_ON(val != 1);
1634 
1635 	unregister_die_notifier(&int3_exception_nb);
1636 }
1637 
1638 static __initdata int __alt_reloc_selftest_addr;
1639 
1640 extern void __init __alt_reloc_selftest(void *arg);
1641 __visible noinline void __init __alt_reloc_selftest(void *arg)
1642 {
1643 	WARN_ON(arg != &__alt_reloc_selftest_addr);
1644 }
1645 
1646 static noinline void __init alt_reloc_selftest(void)
1647 {
1648 	/*
1649 	 * Tests apply_relocation().
1650 	 *
1651 	 * This has a relative immediate (CALL) in a place other than the first
1652 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1653 	 *
1654 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
1655 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
1656 	 *
1657 	 * Getting this wrong will either crash and burn or tickle the WARN
1658 	 * above.
1659 	 */
1660 	asm_inline volatile (
1661 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1662 		: /* output */
1663 		: [mem] "m" (__alt_reloc_selftest_addr)
1664 		: _ASM_ARG1
1665 	);
1666 }
1667 
1668 void __init alternative_instructions(void)
1669 {
1670 	int3_selftest();
1671 
1672 	/*
1673 	 * The patching is not fully atomic, so try to avoid local
1674 	 * interruptions that might execute the to be patched code.
1675 	 * Other CPUs are not running.
1676 	 */
1677 	stop_nmi();
1678 
1679 	/*
1680 	 * Don't stop machine check exceptions while patching.
1681 	 * MCEs only happen when something got corrupted and in this
1682 	 * case we must do something about the corruption.
1683 	 * Ignoring it is worse than an unlikely patching race.
1684 	 * Also machine checks tend to be broadcast and if one CPU
1685 	 * goes into machine check the others follow quickly, so we don't
1686 	 * expect a machine check to cause undue problems during to code
1687 	 * patching.
1688 	 */
1689 
1690 	/*
1691 	 * Make sure to set (artificial) features depending on used paravirt
1692 	 * functions which can later influence alternative patching.
1693 	 */
1694 	paravirt_set_cap();
1695 
1696 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1697 			__cfi_sites, __cfi_sites_end, true);
1698 
1699 	/*
1700 	 * Rewrite the retpolines, must be done before alternatives since
1701 	 * those can rewrite the retpoline thunks.
1702 	 */
1703 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1704 	apply_returns(__return_sites, __return_sites_end);
1705 
1706 	apply_alternatives(__alt_instructions, __alt_instructions_end);
1707 
1708 	/*
1709 	 * Now all calls are established. Apply the call thunks if
1710 	 * required.
1711 	 */
1712 	callthunks_patch_builtin_calls();
1713 
1714 	/*
1715 	 * Seal all functions that do not have their address taken.
1716 	 */
1717 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1718 
1719 #ifdef CONFIG_SMP
1720 	/* Patch to UP if other cpus not imminent. */
1721 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1722 		uniproc_patched = true;
1723 		alternatives_smp_module_add(NULL, "core kernel",
1724 					    __smp_locks, __smp_locks_end,
1725 					    _text, _etext);
1726 	}
1727 
1728 	if (!uniproc_patched || num_possible_cpus() == 1) {
1729 		free_init_pages("SMP alternatives",
1730 				(unsigned long)__smp_locks,
1731 				(unsigned long)__smp_locks_end);
1732 	}
1733 #endif
1734 
1735 	restart_nmi();
1736 	alternatives_patched = 1;
1737 
1738 	alt_reloc_selftest();
1739 }
1740 
1741 /**
1742  * text_poke_early - Update instructions on a live kernel at boot time
1743  * @addr: address to modify
1744  * @opcode: source of the copy
1745  * @len: length to copy
1746  *
1747  * When you use this code to patch more than one byte of an instruction
1748  * you need to make sure that other CPUs cannot execute this code in parallel.
1749  * Also no thread must be currently preempted in the middle of these
1750  * instructions. And on the local CPU you need to be protected against NMI or
1751  * MCE handlers seeing an inconsistent instruction while you patch.
1752  */
1753 void __init_or_module text_poke_early(void *addr, const void *opcode,
1754 				      size_t len)
1755 {
1756 	unsigned long flags;
1757 
1758 	if (boot_cpu_has(X86_FEATURE_NX) &&
1759 	    is_module_text_address((unsigned long)addr)) {
1760 		/*
1761 		 * Modules text is marked initially as non-executable, so the
1762 		 * code cannot be running and speculative code-fetches are
1763 		 * prevented. Just change the code.
1764 		 */
1765 		memcpy(addr, opcode, len);
1766 	} else {
1767 		local_irq_save(flags);
1768 		memcpy(addr, opcode, len);
1769 		sync_core();
1770 		local_irq_restore(flags);
1771 
1772 		/*
1773 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
1774 		 * that causes hangs on some VIA CPUs.
1775 		 */
1776 	}
1777 }
1778 
1779 typedef struct {
1780 	struct mm_struct *mm;
1781 } temp_mm_state_t;
1782 
1783 /*
1784  * Using a temporary mm allows to set temporary mappings that are not accessible
1785  * by other CPUs. Such mappings are needed to perform sensitive memory writes
1786  * that override the kernel memory protections (e.g., W^X), without exposing the
1787  * temporary page-table mappings that are required for these write operations to
1788  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1789  * mapping is torn down.
1790  *
1791  * Context: The temporary mm needs to be used exclusively by a single core. To
1792  *          harden security IRQs must be disabled while the temporary mm is
1793  *          loaded, thereby preventing interrupt handler bugs from overriding
1794  *          the kernel memory protection.
1795  */
1796 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1797 {
1798 	temp_mm_state_t temp_state;
1799 
1800 	lockdep_assert_irqs_disabled();
1801 
1802 	/*
1803 	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1804 	 * with a stale address space WITHOUT being in lazy mode after
1805 	 * restoring the previous mm.
1806 	 */
1807 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1808 		leave_mm(smp_processor_id());
1809 
1810 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1811 	switch_mm_irqs_off(NULL, mm, current);
1812 
1813 	/*
1814 	 * If breakpoints are enabled, disable them while the temporary mm is
1815 	 * used. Userspace might set up watchpoints on addresses that are used
1816 	 * in the temporary mm, which would lead to wrong signals being sent or
1817 	 * crashes.
1818 	 *
1819 	 * Note that breakpoints are not disabled selectively, which also causes
1820 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1821 	 * undesirable, but still seems reasonable as the code that runs in the
1822 	 * temporary mm should be short.
1823 	 */
1824 	if (hw_breakpoint_active())
1825 		hw_breakpoint_disable();
1826 
1827 	return temp_state;
1828 }
1829 
1830 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1831 {
1832 	lockdep_assert_irqs_disabled();
1833 	switch_mm_irqs_off(NULL, prev_state.mm, current);
1834 
1835 	/*
1836 	 * Restore the breakpoints if they were disabled before the temporary mm
1837 	 * was loaded.
1838 	 */
1839 	if (hw_breakpoint_active())
1840 		hw_breakpoint_restore();
1841 }
1842 
1843 __ro_after_init struct mm_struct *poking_mm;
1844 __ro_after_init unsigned long poking_addr;
1845 
1846 static void text_poke_memcpy(void *dst, const void *src, size_t len)
1847 {
1848 	memcpy(dst, src, len);
1849 }
1850 
1851 static void text_poke_memset(void *dst, const void *src, size_t len)
1852 {
1853 	int c = *(const int *)src;
1854 
1855 	memset(dst, c, len);
1856 }
1857 
1858 typedef void text_poke_f(void *dst, const void *src, size_t len);
1859 
1860 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1861 {
1862 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1863 	struct page *pages[2] = {NULL};
1864 	temp_mm_state_t prev;
1865 	unsigned long flags;
1866 	pte_t pte, *ptep;
1867 	spinlock_t *ptl;
1868 	pgprot_t pgprot;
1869 
1870 	/*
1871 	 * While boot memory allocator is running we cannot use struct pages as
1872 	 * they are not yet initialized. There is no way to recover.
1873 	 */
1874 	BUG_ON(!after_bootmem);
1875 
1876 	if (!core_kernel_text((unsigned long)addr)) {
1877 		pages[0] = vmalloc_to_page(addr);
1878 		if (cross_page_boundary)
1879 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1880 	} else {
1881 		pages[0] = virt_to_page(addr);
1882 		WARN_ON(!PageReserved(pages[0]));
1883 		if (cross_page_boundary)
1884 			pages[1] = virt_to_page(addr + PAGE_SIZE);
1885 	}
1886 	/*
1887 	 * If something went wrong, crash and burn since recovery paths are not
1888 	 * implemented.
1889 	 */
1890 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1891 
1892 	/*
1893 	 * Map the page without the global bit, as TLB flushing is done with
1894 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1895 	 */
1896 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1897 
1898 	/*
1899 	 * The lock is not really needed, but this allows to avoid open-coding.
1900 	 */
1901 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1902 
1903 	/*
1904 	 * This must not fail; preallocated in poking_init().
1905 	 */
1906 	VM_BUG_ON(!ptep);
1907 
1908 	local_irq_save(flags);
1909 
1910 	pte = mk_pte(pages[0], pgprot);
1911 	set_pte_at(poking_mm, poking_addr, ptep, pte);
1912 
1913 	if (cross_page_boundary) {
1914 		pte = mk_pte(pages[1], pgprot);
1915 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1916 	}
1917 
1918 	/*
1919 	 * Loading the temporary mm behaves as a compiler barrier, which
1920 	 * guarantees that the PTE will be set at the time memcpy() is done.
1921 	 */
1922 	prev = use_temporary_mm(poking_mm);
1923 
1924 	kasan_disable_current();
1925 	func((u8 *)poking_addr + offset_in_page(addr), src, len);
1926 	kasan_enable_current();
1927 
1928 	/*
1929 	 * Ensure that the PTE is only cleared after the instructions of memcpy
1930 	 * were issued by using a compiler barrier.
1931 	 */
1932 	barrier();
1933 
1934 	pte_clear(poking_mm, poking_addr, ptep);
1935 	if (cross_page_boundary)
1936 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1937 
1938 	/*
1939 	 * Loading the previous page-table hierarchy requires a serializing
1940 	 * instruction that already allows the core to see the updated version.
1941 	 * Xen-PV is assumed to serialize execution in a similar manner.
1942 	 */
1943 	unuse_temporary_mm(prev);
1944 
1945 	/*
1946 	 * Flushing the TLB might involve IPIs, which would require enabled
1947 	 * IRQs, but not if the mm is not used, as it is in this point.
1948 	 */
1949 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1950 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1951 			   PAGE_SHIFT, false);
1952 
1953 	if (func == text_poke_memcpy) {
1954 		/*
1955 		 * If the text does not match what we just wrote then something is
1956 		 * fundamentally screwy; there's nothing we can really do about that.
1957 		 */
1958 		BUG_ON(memcmp(addr, src, len));
1959 	}
1960 
1961 	local_irq_restore(flags);
1962 	pte_unmap_unlock(ptep, ptl);
1963 	return addr;
1964 }
1965 
1966 /**
1967  * text_poke - Update instructions on a live kernel
1968  * @addr: address to modify
1969  * @opcode: source of the copy
1970  * @len: length to copy
1971  *
1972  * Only atomic text poke/set should be allowed when not doing early patching.
1973  * It means the size must be writable atomically and the address must be aligned
1974  * in a way that permits an atomic write. It also makes sure we fit on a single
1975  * page.
1976  *
1977  * Note that the caller must ensure that if the modified code is part of a
1978  * module, the module would not be removed during poking. This can be achieved
1979  * by registering a module notifier, and ordering module removal and patching
1980  * through a mutex.
1981  */
1982 void *text_poke(void *addr, const void *opcode, size_t len)
1983 {
1984 	lockdep_assert_held(&text_mutex);
1985 
1986 	return __text_poke(text_poke_memcpy, addr, opcode, len);
1987 }
1988 
1989 /**
1990  * text_poke_kgdb - Update instructions on a live kernel by kgdb
1991  * @addr: address to modify
1992  * @opcode: source of the copy
1993  * @len: length to copy
1994  *
1995  * Only atomic text poke/set should be allowed when not doing early patching.
1996  * It means the size must be writable atomically and the address must be aligned
1997  * in a way that permits an atomic write. It also makes sure we fit on a single
1998  * page.
1999  *
2000  * Context: should only be used by kgdb, which ensures no other core is running,
2001  *	    despite the fact it does not hold the text_mutex.
2002  */
2003 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2004 {
2005 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2006 }
2007 
2008 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2009 			    bool core_ok)
2010 {
2011 	unsigned long start = (unsigned long)addr;
2012 	size_t patched = 0;
2013 
2014 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2015 		return NULL;
2016 
2017 	while (patched < len) {
2018 		unsigned long ptr = start + patched;
2019 		size_t s;
2020 
2021 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2022 
2023 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2024 		patched += s;
2025 	}
2026 	return addr;
2027 }
2028 
2029 /**
2030  * text_poke_copy - Copy instructions into (an unused part of) RX memory
2031  * @addr: address to modify
2032  * @opcode: source of the copy
2033  * @len: length to copy, could be more than 2x PAGE_SIZE
2034  *
2035  * Not safe against concurrent execution; useful for JITs to dump
2036  * new code blocks into unused regions of RX memory. Can be used in
2037  * conjunction with synchronize_rcu_tasks() to wait for existing
2038  * execution to quiesce after having made sure no existing functions
2039  * pointers are live.
2040  */
2041 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2042 {
2043 	mutex_lock(&text_mutex);
2044 	addr = text_poke_copy_locked(addr, opcode, len, false);
2045 	mutex_unlock(&text_mutex);
2046 	return addr;
2047 }
2048 
2049 /**
2050  * text_poke_set - memset into (an unused part of) RX memory
2051  * @addr: address to modify
2052  * @c: the byte to fill the area with
2053  * @len: length to copy, could be more than 2x PAGE_SIZE
2054  *
2055  * This is useful to overwrite unused regions of RX memory with illegal
2056  * instructions.
2057  */
2058 void *text_poke_set(void *addr, int c, size_t len)
2059 {
2060 	unsigned long start = (unsigned long)addr;
2061 	size_t patched = 0;
2062 
2063 	if (WARN_ON_ONCE(core_kernel_text(start)))
2064 		return NULL;
2065 
2066 	mutex_lock(&text_mutex);
2067 	while (patched < len) {
2068 		unsigned long ptr = start + patched;
2069 		size_t s;
2070 
2071 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2072 
2073 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2074 		patched += s;
2075 	}
2076 	mutex_unlock(&text_mutex);
2077 	return addr;
2078 }
2079 
2080 static void do_sync_core(void *info)
2081 {
2082 	sync_core();
2083 }
2084 
2085 void text_poke_sync(void)
2086 {
2087 	on_each_cpu(do_sync_core, NULL, 1);
2088 }
2089 
2090 /*
2091  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2092  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2093  * opcode to Jcc.d8, using len to distinguish.
2094  */
2095 struct text_poke_loc {
2096 	/* addr := _stext + rel_addr */
2097 	s32 rel_addr;
2098 	s32 disp;
2099 	u8 len;
2100 	u8 opcode;
2101 	const u8 text[POKE_MAX_OPCODE_SIZE];
2102 	/* see text_poke_bp_batch() */
2103 	u8 old;
2104 };
2105 
2106 struct bp_patching_desc {
2107 	struct text_poke_loc *vec;
2108 	int nr_entries;
2109 	atomic_t refs;
2110 };
2111 
2112 static struct bp_patching_desc bp_desc;
2113 
2114 static __always_inline
2115 struct bp_patching_desc *try_get_desc(void)
2116 {
2117 	struct bp_patching_desc *desc = &bp_desc;
2118 
2119 	if (!raw_atomic_inc_not_zero(&desc->refs))
2120 		return NULL;
2121 
2122 	return desc;
2123 }
2124 
2125 static __always_inline void put_desc(void)
2126 {
2127 	struct bp_patching_desc *desc = &bp_desc;
2128 
2129 	smp_mb__before_atomic();
2130 	raw_atomic_dec(&desc->refs);
2131 }
2132 
2133 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2134 {
2135 	return _stext + tp->rel_addr;
2136 }
2137 
2138 static __always_inline int patch_cmp(const void *key, const void *elt)
2139 {
2140 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2141 
2142 	if (key < text_poke_addr(tp))
2143 		return -1;
2144 	if (key > text_poke_addr(tp))
2145 		return 1;
2146 	return 0;
2147 }
2148 
2149 noinstr int poke_int3_handler(struct pt_regs *regs)
2150 {
2151 	struct bp_patching_desc *desc;
2152 	struct text_poke_loc *tp;
2153 	int ret = 0;
2154 	void *ip;
2155 
2156 	if (user_mode(regs))
2157 		return 0;
2158 
2159 	/*
2160 	 * Having observed our INT3 instruction, we now must observe
2161 	 * bp_desc with non-zero refcount:
2162 	 *
2163 	 *	bp_desc.refs = 1		INT3
2164 	 *	WMB				RMB
2165 	 *	write INT3			if (bp_desc.refs != 0)
2166 	 */
2167 	smp_rmb();
2168 
2169 	desc = try_get_desc();
2170 	if (!desc)
2171 		return 0;
2172 
2173 	/*
2174 	 * Discount the INT3. See text_poke_bp_batch().
2175 	 */
2176 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2177 
2178 	/*
2179 	 * Skip the binary search if there is a single member in the vector.
2180 	 */
2181 	if (unlikely(desc->nr_entries > 1)) {
2182 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2183 				      sizeof(struct text_poke_loc),
2184 				      patch_cmp);
2185 		if (!tp)
2186 			goto out_put;
2187 	} else {
2188 		tp = desc->vec;
2189 		if (text_poke_addr(tp) != ip)
2190 			goto out_put;
2191 	}
2192 
2193 	ip += tp->len;
2194 
2195 	switch (tp->opcode) {
2196 	case INT3_INSN_OPCODE:
2197 		/*
2198 		 * Someone poked an explicit INT3, they'll want to handle it,
2199 		 * do not consume.
2200 		 */
2201 		goto out_put;
2202 
2203 	case RET_INSN_OPCODE:
2204 		int3_emulate_ret(regs);
2205 		break;
2206 
2207 	case CALL_INSN_OPCODE:
2208 		int3_emulate_call(regs, (long)ip + tp->disp);
2209 		break;
2210 
2211 	case JMP32_INSN_OPCODE:
2212 	case JMP8_INSN_OPCODE:
2213 		int3_emulate_jmp(regs, (long)ip + tp->disp);
2214 		break;
2215 
2216 	case 0x70 ... 0x7f: /* Jcc */
2217 		int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2218 		break;
2219 
2220 	default:
2221 		BUG();
2222 	}
2223 
2224 	ret = 1;
2225 
2226 out_put:
2227 	put_desc();
2228 	return ret;
2229 }
2230 
2231 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2232 static struct text_poke_loc tp_vec[TP_VEC_MAX];
2233 static int tp_vec_nr;
2234 
2235 /**
2236  * text_poke_bp_batch() -- update instructions on live kernel on SMP
2237  * @tp:			vector of instructions to patch
2238  * @nr_entries:		number of entries in the vector
2239  *
2240  * Modify multi-byte instruction by using int3 breakpoint on SMP.
2241  * We completely avoid stop_machine() here, and achieve the
2242  * synchronization using int3 breakpoint.
2243  *
2244  * The way it is done:
2245  *	- For each entry in the vector:
2246  *		- add a int3 trap to the address that will be patched
2247  *	- sync cores
2248  *	- For each entry in the vector:
2249  *		- update all but the first byte of the patched range
2250  *	- sync cores
2251  *	- For each entry in the vector:
2252  *		- replace the first byte (int3) by the first byte of
2253  *		  replacing opcode
2254  *	- sync cores
2255  */
2256 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2257 {
2258 	unsigned char int3 = INT3_INSN_OPCODE;
2259 	unsigned int i;
2260 	int do_sync;
2261 
2262 	lockdep_assert_held(&text_mutex);
2263 
2264 	bp_desc.vec = tp;
2265 	bp_desc.nr_entries = nr_entries;
2266 
2267 	/*
2268 	 * Corresponds to the implicit memory barrier in try_get_desc() to
2269 	 * ensure reading a non-zero refcount provides up to date bp_desc data.
2270 	 */
2271 	atomic_set_release(&bp_desc.refs, 1);
2272 
2273 	/*
2274 	 * Function tracing can enable thousands of places that need to be
2275 	 * updated. This can take quite some time, and with full kernel debugging
2276 	 * enabled, this could cause the softlockup watchdog to trigger.
2277 	 * This function gets called every 256 entries added to be patched.
2278 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2279 	 * while processing all the functions being patched.
2280 	 */
2281 	cond_resched();
2282 
2283 	/*
2284 	 * Corresponding read barrier in int3 notifier for making sure the
2285 	 * nr_entries and handler are correctly ordered wrt. patching.
2286 	 */
2287 	smp_wmb();
2288 
2289 	/*
2290 	 * First step: add a int3 trap to the address that will be patched.
2291 	 */
2292 	for (i = 0; i < nr_entries; i++) {
2293 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2294 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2295 	}
2296 
2297 	text_poke_sync();
2298 
2299 	/*
2300 	 * Second step: update all but the first byte of the patched range.
2301 	 */
2302 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2303 		u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2304 		u8 _new[POKE_MAX_OPCODE_SIZE+1];
2305 		const u8 *new = tp[i].text;
2306 		int len = tp[i].len;
2307 
2308 		if (len - INT3_INSN_SIZE > 0) {
2309 			memcpy(old + INT3_INSN_SIZE,
2310 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2311 			       len - INT3_INSN_SIZE);
2312 
2313 			if (len == 6) {
2314 				_new[0] = 0x0f;
2315 				memcpy(_new + 1, new, 5);
2316 				new = _new;
2317 			}
2318 
2319 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2320 				  new + INT3_INSN_SIZE,
2321 				  len - INT3_INSN_SIZE);
2322 
2323 			do_sync++;
2324 		}
2325 
2326 		/*
2327 		 * Emit a perf event to record the text poke, primarily to
2328 		 * support Intel PT decoding which must walk the executable code
2329 		 * to reconstruct the trace. The flow up to here is:
2330 		 *   - write INT3 byte
2331 		 *   - IPI-SYNC
2332 		 *   - write instruction tail
2333 		 * At this point the actual control flow will be through the
2334 		 * INT3 and handler and not hit the old or new instruction.
2335 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2336 		 * can still be decoded. Subsequently:
2337 		 *   - emit RECORD_TEXT_POKE with the new instruction
2338 		 *   - IPI-SYNC
2339 		 *   - write first byte
2340 		 *   - IPI-SYNC
2341 		 * So before the text poke event timestamp, the decoder will see
2342 		 * either the old instruction flow or FUP/TIP of INT3. After the
2343 		 * text poke event timestamp, the decoder will see either the
2344 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2345 		 * use the timestamp as the point at which to modify the
2346 		 * executable code.
2347 		 * The old instruction is recorded so that the event can be
2348 		 * processed forwards or backwards.
2349 		 */
2350 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2351 	}
2352 
2353 	if (do_sync) {
2354 		/*
2355 		 * According to Intel, this core syncing is very likely
2356 		 * not necessary and we'd be safe even without it. But
2357 		 * better safe than sorry (plus there's not only Intel).
2358 		 */
2359 		text_poke_sync();
2360 	}
2361 
2362 	/*
2363 	 * Third step: replace the first byte (int3) by the first byte of
2364 	 * replacing opcode.
2365 	 */
2366 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2367 		u8 byte = tp[i].text[0];
2368 
2369 		if (tp[i].len == 6)
2370 			byte = 0x0f;
2371 
2372 		if (byte == INT3_INSN_OPCODE)
2373 			continue;
2374 
2375 		text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2376 		do_sync++;
2377 	}
2378 
2379 	if (do_sync)
2380 		text_poke_sync();
2381 
2382 	/*
2383 	 * Remove and wait for refs to be zero.
2384 	 */
2385 	if (!atomic_dec_and_test(&bp_desc.refs))
2386 		atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2387 }
2388 
2389 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2390 			       const void *opcode, size_t len, const void *emulate)
2391 {
2392 	struct insn insn;
2393 	int ret, i = 0;
2394 
2395 	if (len == 6)
2396 		i = 1;
2397 	memcpy((void *)tp->text, opcode+i, len-i);
2398 	if (!emulate)
2399 		emulate = opcode;
2400 
2401 	ret = insn_decode_kernel(&insn, emulate);
2402 	BUG_ON(ret < 0);
2403 
2404 	tp->rel_addr = addr - (void *)_stext;
2405 	tp->len = len;
2406 	tp->opcode = insn.opcode.bytes[0];
2407 
2408 	if (is_jcc32(&insn)) {
2409 		/*
2410 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2411 		 */
2412 		tp->opcode = insn.opcode.bytes[1] - 0x10;
2413 	}
2414 
2415 	switch (tp->opcode) {
2416 	case RET_INSN_OPCODE:
2417 	case JMP32_INSN_OPCODE:
2418 	case JMP8_INSN_OPCODE:
2419 		/*
2420 		 * Control flow instructions without implied execution of the
2421 		 * next instruction can be padded with INT3.
2422 		 */
2423 		for (i = insn.length; i < len; i++)
2424 			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2425 		break;
2426 
2427 	default:
2428 		BUG_ON(len != insn.length);
2429 	}
2430 
2431 	switch (tp->opcode) {
2432 	case INT3_INSN_OPCODE:
2433 	case RET_INSN_OPCODE:
2434 		break;
2435 
2436 	case CALL_INSN_OPCODE:
2437 	case JMP32_INSN_OPCODE:
2438 	case JMP8_INSN_OPCODE:
2439 	case 0x70 ... 0x7f: /* Jcc */
2440 		tp->disp = insn.immediate.value;
2441 		break;
2442 
2443 	default: /* assume NOP */
2444 		switch (len) {
2445 		case 2: /* NOP2 -- emulate as JMP8+0 */
2446 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2447 			tp->opcode = JMP8_INSN_OPCODE;
2448 			tp->disp = 0;
2449 			break;
2450 
2451 		case 5: /* NOP5 -- emulate as JMP32+0 */
2452 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2453 			tp->opcode = JMP32_INSN_OPCODE;
2454 			tp->disp = 0;
2455 			break;
2456 
2457 		default: /* unknown instruction */
2458 			BUG();
2459 		}
2460 		break;
2461 	}
2462 }
2463 
2464 /*
2465  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2466  * early if needed.
2467  */
2468 static bool tp_order_fail(void *addr)
2469 {
2470 	struct text_poke_loc *tp;
2471 
2472 	if (!tp_vec_nr)
2473 		return false;
2474 
2475 	if (!addr) /* force */
2476 		return true;
2477 
2478 	tp = &tp_vec[tp_vec_nr - 1];
2479 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2480 		return true;
2481 
2482 	return false;
2483 }
2484 
2485 static void text_poke_flush(void *addr)
2486 {
2487 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2488 		text_poke_bp_batch(tp_vec, tp_vec_nr);
2489 		tp_vec_nr = 0;
2490 	}
2491 }
2492 
2493 void text_poke_finish(void)
2494 {
2495 	text_poke_flush(NULL);
2496 }
2497 
2498 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2499 {
2500 	struct text_poke_loc *tp;
2501 
2502 	text_poke_flush(addr);
2503 
2504 	tp = &tp_vec[tp_vec_nr++];
2505 	text_poke_loc_init(tp, addr, opcode, len, emulate);
2506 }
2507 
2508 /**
2509  * text_poke_bp() -- update instructions on live kernel on SMP
2510  * @addr:	address to patch
2511  * @opcode:	opcode of new instruction
2512  * @len:	length to copy
2513  * @emulate:	instruction to be emulated
2514  *
2515  * Update a single instruction with the vector in the stack, avoiding
2516  * dynamically allocated memory. This function should be used when it is
2517  * not possible to allocate memory.
2518  */
2519 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2520 {
2521 	struct text_poke_loc tp;
2522 
2523 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
2524 	text_poke_bp_batch(&tp, 1);
2525 }
2526