xref: /linux/arch/x86/kernel/alternative.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/mmu_context.h>
5 #include <linux/perf_event.h>
6 #include <linux/vmalloc.h>
7 #include <linux/memory.h>
8 #include <linux/execmem.h>
9 
10 #include <asm/text-patching.h>
11 #include <asm/insn.h>
12 #include <asm/insn-eval.h>
13 #include <asm/ibt.h>
14 #include <asm/set_memory.h>
15 #include <asm/nmi.h>
16 
17 int __read_mostly alternatives_patched;
18 
19 EXPORT_SYMBOL_GPL(alternatives_patched);
20 
21 #define MAX_PATCH_LEN (255-1)
22 
23 #define DA_ALL		(~0)
24 #define DA_ALT		0x01
25 #define DA_RET		0x02
26 #define DA_RETPOLINE	0x04
27 #define DA_ENDBR	0x08
28 #define DA_SMP		0x10
29 
30 static unsigned int debug_alternative;
31 
32 static int __init debug_alt(char *str)
33 {
34 	if (str && *str == '=')
35 		str++;
36 
37 	if (!str || kstrtouint(str, 0, &debug_alternative))
38 		debug_alternative = DA_ALL;
39 
40 	return 1;
41 }
42 __setup("debug-alternative", debug_alt);
43 
44 static int noreplace_smp;
45 
46 static int __init setup_noreplace_smp(char *str)
47 {
48 	noreplace_smp = 1;
49 	return 1;
50 }
51 __setup("noreplace-smp", setup_noreplace_smp);
52 
53 #define DPRINTK(type, fmt, args...)					\
54 do {									\
55 	if (debug_alternative & DA_##type)				\
56 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
57 } while (0)
58 
59 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
60 do {									\
61 	if (unlikely(debug_alternative & DA_##type)) {			\
62 		int j;							\
63 									\
64 		if (!(len))						\
65 			break;						\
66 									\
67 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
68 		for (j = 0; j < (len) - 1; j++)				\
69 			printk(KERN_CONT "%02hhx ", buf[j]);		\
70 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
71 	}								\
72 } while (0)
73 
74 static const unsigned char x86nops[] =
75 {
76 	BYTES_NOP1,
77 	BYTES_NOP2,
78 	BYTES_NOP3,
79 	BYTES_NOP4,
80 	BYTES_NOP5,
81 	BYTES_NOP6,
82 	BYTES_NOP7,
83 	BYTES_NOP8,
84 #ifdef CONFIG_64BIT
85 	BYTES_NOP9,
86 	BYTES_NOP10,
87 	BYTES_NOP11,
88 #endif
89 };
90 
91 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
92 {
93 	NULL,
94 	x86nops,
95 	x86nops + 1,
96 	x86nops + 1 + 2,
97 	x86nops + 1 + 2 + 3,
98 	x86nops + 1 + 2 + 3 + 4,
99 	x86nops + 1 + 2 + 3 + 4 + 5,
100 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
101 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
102 #ifdef CONFIG_64BIT
103 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
104 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
105 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
106 #endif
107 };
108 
109 #ifdef CONFIG_FINEIBT
110 static bool cfi_paranoid __ro_after_init;
111 #endif
112 
113 #ifdef CONFIG_MITIGATION_ITS
114 
115 #ifdef CONFIG_MODULES
116 static struct module *its_mod;
117 #endif
118 static void *its_page;
119 static unsigned int its_offset;
120 struct its_array its_pages;
121 
122 static void *__its_alloc(struct its_array *pages)
123 {
124 	void *page __free(execmem) = execmem_alloc_rw(EXECMEM_MODULE_TEXT, PAGE_SIZE);
125 	if (!page)
126 		return NULL;
127 
128 	void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *),
129 			     GFP_KERNEL);
130 	if (!tmp)
131 		return NULL;
132 
133 	pages->pages = tmp;
134 	pages->pages[pages->num++] = page;
135 
136 	return no_free_ptr(page);
137 }
138 
139 /* Initialize a thunk with the "jmp *reg; int3" instructions. */
140 static void *its_init_thunk(void *thunk, int reg)
141 {
142 	u8 *bytes = thunk;
143 	int offset = 0;
144 	int i = 0;
145 
146 #ifdef CONFIG_FINEIBT
147 	if (cfi_paranoid) {
148 		/*
149 		 * When ITS uses indirect branch thunk the fineibt_paranoid
150 		 * caller sequence doesn't fit in the caller site. So put the
151 		 * remaining part of the sequence (UDB + JNE) into the ITS
152 		 * thunk.
153 		 */
154 		bytes[i++] = 0xd6; /* UDB */
155 		bytes[i++] = 0x75; /* JNE */
156 		bytes[i++] = 0xfd;
157 
158 		offset = 1;
159 	}
160 #endif
161 
162 	if (reg >= 8) {
163 		bytes[i++] = 0x41; /* REX.B prefix */
164 		reg -= 8;
165 	}
166 	bytes[i++] = 0xff;
167 	bytes[i++] = 0xe0 + reg; /* JMP *reg */
168 	bytes[i++] = 0xcc;
169 
170 	return thunk + offset;
171 }
172 
173 static void its_pages_protect(struct its_array *pages)
174 {
175 	for (int i = 0; i < pages->num; i++) {
176 		void *page = pages->pages[i];
177 		execmem_restore_rox(page, PAGE_SIZE);
178 	}
179 }
180 
181 static void its_fini_core(void)
182 {
183 	if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
184 		its_pages_protect(&its_pages);
185 	kfree(its_pages.pages);
186 }
187 
188 #ifdef CONFIG_MODULES
189 void its_init_mod(struct module *mod)
190 {
191 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
192 		return;
193 
194 	mutex_lock(&text_mutex);
195 	its_mod = mod;
196 	its_page = NULL;
197 }
198 
199 void its_fini_mod(struct module *mod)
200 {
201 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
202 		return;
203 
204 	WARN_ON_ONCE(its_mod != mod);
205 
206 	its_mod = NULL;
207 	its_page = NULL;
208 	mutex_unlock(&text_mutex);
209 
210 	if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX))
211 		its_pages_protect(&mod->arch.its_pages);
212 }
213 
214 void its_free_mod(struct module *mod)
215 {
216 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
217 		return;
218 
219 	for (int i = 0; i < mod->arch.its_pages.num; i++) {
220 		void *page = mod->arch.its_pages.pages[i];
221 		execmem_free(page);
222 	}
223 	kfree(mod->arch.its_pages.pages);
224 }
225 #endif /* CONFIG_MODULES */
226 
227 static void *its_alloc(void)
228 {
229 	struct its_array *pages = &its_pages;
230 	void *page;
231 
232 #ifdef CONFIG_MODULES
233 	if (its_mod)
234 		pages = &its_mod->arch.its_pages;
235 #endif
236 
237 	page = __its_alloc(pages);
238 	if (!page)
239 		return NULL;
240 
241 	if (pages == &its_pages)
242 		set_memory_x((unsigned long)page, 1);
243 
244 	return page;
245 }
246 
247 static void *its_allocate_thunk(int reg)
248 {
249 	int size = 3 + (reg / 8);
250 	void *thunk;
251 
252 #ifdef CONFIG_FINEIBT
253 	/*
254 	 * The ITS thunk contains an indirect jump and an int3 instruction so
255 	 * its size is 3 or 4 bytes depending on the register used. If CFI
256 	 * paranoid is used then 3 extra bytes are added in the ITS thunk to
257 	 * complete the fineibt_paranoid caller sequence.
258 	 */
259 	if (cfi_paranoid)
260 		size += 3;
261 #endif
262 
263 	if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) {
264 		its_page = its_alloc();
265 		if (!its_page) {
266 			pr_err("ITS page allocation failed\n");
267 			return NULL;
268 		}
269 		memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE);
270 		its_offset = 32;
271 	}
272 
273 	/*
274 	 * If the indirect branch instruction will be in the lower half
275 	 * of a cacheline, then update the offset to reach the upper half.
276 	 */
277 	if ((its_offset + size - 1) % 64 < 32)
278 		its_offset = ((its_offset - 1) | 0x3F) + 33;
279 
280 	thunk = its_page + its_offset;
281 	its_offset += size;
282 
283 	return its_init_thunk(thunk, reg);
284 }
285 
286 u8 *its_static_thunk(int reg)
287 {
288 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
289 
290 #ifdef CONFIG_FINEIBT
291 	/* Paranoid thunk starts 2 bytes before */
292 	if (cfi_paranoid)
293 		return thunk - 2;
294 #endif
295 	return thunk;
296 }
297 
298 #else
299 static inline void its_fini_core(void) {}
300 #endif /* CONFIG_MITIGATION_ITS */
301 
302 /*
303  * Nomenclature for variable names to simplify and clarify this code and ease
304  * any potential staring at it:
305  *
306  * @instr: source address of the original instructions in the kernel text as
307  * generated by the compiler.
308  *
309  * @buf: temporary buffer on which the patching operates. This buffer is
310  * eventually text-poked into the kernel image.
311  *
312  * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
313  * in the .altinstr_replacement section.
314  */
315 
316 /*
317  * Fill the buffer with a single effective instruction of size @len.
318  *
319  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
320  * for every single-byte NOP, try to generate the maximally available NOP of
321  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
322  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
323  * *jump* over instead of executing long and daft NOPs.
324  */
325 static void add_nop(u8 *buf, unsigned int len)
326 {
327 	u8 *target = buf + len;
328 
329 	if (!len)
330 		return;
331 
332 	if (len <= ASM_NOP_MAX) {
333 		memcpy(buf, x86_nops[len], len);
334 		return;
335 	}
336 
337 	if (len < 128) {
338 		__text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
339 		buf += JMP8_INSN_SIZE;
340 	} else {
341 		__text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
342 		buf += JMP32_INSN_SIZE;
343 	}
344 
345 	for (;buf < target; buf++)
346 		*buf = INT3_INSN_OPCODE;
347 }
348 
349 /*
350  * Find the offset of the first non-NOP instruction starting at @offset
351  * but no further than @len.
352  */
353 static int skip_nops(u8 *buf, int offset, int len)
354 {
355 	struct insn insn;
356 
357 	for (; offset < len; offset += insn.length) {
358 		if (insn_decode_kernel(&insn, &buf[offset]))
359 			break;
360 
361 		if (!insn_is_nop(&insn))
362 			break;
363 	}
364 
365 	return offset;
366 }
367 
368 /*
369  * "noinline" to cause control flow change and thus invalidate I$ and
370  * cause refetch after modification.
371  */
372 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
373 {
374 	for (int next, i = 0; i < len; i = next) {
375 		struct insn insn;
376 
377 		if (insn_decode_kernel(&insn, &buf[i]))
378 			return;
379 
380 		next = i + insn.length;
381 
382 		if (insn_is_nop(&insn)) {
383 			int nop = i;
384 
385 			/* Has the NOP already been optimized? */
386 			if (i + insn.length == len)
387 				return;
388 
389 			next = skip_nops(buf, next, len);
390 
391 			add_nop(buf + nop, next - nop);
392 			DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
393 		}
394 	}
395 }
396 
397 /*
398  * In this context, "source" is where the instructions are placed in the
399  * section .altinstr_replacement, for example during kernel build by the
400  * toolchain.
401  * "Destination" is where the instructions are being patched in by this
402  * machinery.
403  *
404  * The source offset is:
405  *
406  *   src_imm = target - src_next_ip                  (1)
407  *
408  * and the target offset is:
409  *
410  *   dst_imm = target - dst_next_ip                  (2)
411  *
412  * so rework (1) as an expression for target like:
413  *
414  *   target = src_imm + src_next_ip                  (1a)
415  *
416  * and substitute in (2) to get:
417  *
418  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
419  *
420  * Now, since the instruction stream is 'identical' at src and dst (it
421  * is being copied after all) it can be stated that:
422  *
423  *   src_next_ip = src + ip_offset
424  *   dst_next_ip = dst + ip_offset                   (4)
425  *
426  * Substitute (4) in (3) and observe ip_offset being cancelled out to
427  * obtain:
428  *
429  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
430  *           = src_imm + src - dst + ip_offset - ip_offset
431  *           = src_imm + src - dst                   (5)
432  *
433  * IOW, only the relative displacement of the code block matters.
434  */
435 
436 #define apply_reloc_n(n_, p_, d_)				\
437 	do {							\
438 		s32 v = *(s##n_ *)(p_);				\
439 		v += (d_);					\
440 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
441 		*(s##n_ *)(p_) = (s##n_)v;			\
442 	} while (0)
443 
444 
445 static __always_inline
446 void apply_reloc(int n, void *ptr, uintptr_t diff)
447 {
448 	switch (n) {
449 	case 1: apply_reloc_n(8, ptr, diff); break;
450 	case 2: apply_reloc_n(16, ptr, diff); break;
451 	case 4: apply_reloc_n(32, ptr, diff); break;
452 	default: BUG();
453 	}
454 }
455 
456 static __always_inline
457 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
458 {
459 	u8 *target = src + offset;
460 	/*
461 	 * If the target is inside the patched block, it's relative to the
462 	 * block itself and does not need relocation.
463 	 */
464 	return (target < src || target > src + src_len);
465 }
466 
467 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
468 {
469 	for (int next, i = 0; i < instrlen; i = next) {
470 		struct insn insn;
471 
472 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
473 			return;
474 
475 		next = i + insn.length;
476 
477 		switch (insn.opcode.bytes[0]) {
478 		case 0x0f:
479 			if (insn.opcode.bytes[1] < 0x80 ||
480 			    insn.opcode.bytes[1] > 0x8f)
481 				break;
482 
483 			fallthrough;	/* Jcc.d32 */
484 		case 0x70 ... 0x7f:	/* Jcc.d8 */
485 		case JMP8_INSN_OPCODE:
486 		case JMP32_INSN_OPCODE:
487 		case CALL_INSN_OPCODE:
488 			if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
489 				apply_reloc(insn.immediate.nbytes,
490 					    buf + i + insn_offset_immediate(&insn),
491 					    repl - instr);
492 			}
493 
494 			/*
495 			 * Where possible, convert JMP.d32 into JMP.d8.
496 			 */
497 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
498 				s32 imm = insn.immediate.value;
499 				imm += repl - instr;
500 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
501 				if ((imm >> 31) == (imm >> 7)) {
502 					buf[i+0] = JMP8_INSN_OPCODE;
503 					buf[i+1] = (s8)imm;
504 
505 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
506 				}
507 			}
508 			break;
509 		}
510 
511 		if (insn_rip_relative(&insn)) {
512 			if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
513 				apply_reloc(insn.displacement.nbytes,
514 					    buf + i + insn_offset_displacement(&insn),
515 					    repl - instr);
516 			}
517 		}
518 	}
519 }
520 
521 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
522 {
523 	__apply_relocation(buf, instr, instrlen, repl, repl_len);
524 	optimize_nops(instr, buf, instrlen);
525 }
526 
527 /* Low-level backend functions usable from alternative code replacements. */
528 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
529 EXPORT_SYMBOL_GPL(nop_func);
530 
531 noinstr void BUG_func(void)
532 {
533 	BUG();
534 }
535 EXPORT_SYMBOL(BUG_func);
536 
537 #define CALL_RIP_REL_OPCODE	0xff
538 #define CALL_RIP_REL_MODRM	0x15
539 
540 /*
541  * Rewrite the "call BUG_func" replacement to point to the target of the
542  * indirect pv_ops call "call *disp(%ip)".
543  */
544 static unsigned int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
545 {
546 	void *target, *bug = &BUG_func;
547 	s32 disp;
548 
549 	if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
550 		pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
551 		BUG();
552 	}
553 
554 	if (a->instrlen != 6 ||
555 	    instr[0] != CALL_RIP_REL_OPCODE ||
556 	    instr[1] != CALL_RIP_REL_MODRM) {
557 		pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
558 		BUG();
559 	}
560 
561 	/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
562 	disp = *(s32 *)(instr + 2);
563 #ifdef CONFIG_X86_64
564 	/* ff 15 00 00 00 00   call   *0x0(%rip) */
565 	/* target address is stored at "next instruction + disp". */
566 	target = *(void **)(instr + a->instrlen + disp);
567 #else
568 	/* ff 15 00 00 00 00   call   *0x0 */
569 	/* target address is stored at disp. */
570 	target = *(void **)disp;
571 #endif
572 	if (!target)
573 		target = bug;
574 
575 	/* (BUG_func - .) + (target - BUG_func) := target - . */
576 	*(s32 *)(insn_buff + 1) += target - bug;
577 
578 	if (target == &nop_func)
579 		return 0;
580 
581 	return 5;
582 }
583 
584 static inline u8 * instr_va(struct alt_instr *i)
585 {
586 	return (u8 *)&i->instr_offset + i->instr_offset;
587 }
588 
589 struct patch_site {
590 	u8 *instr;
591 	struct alt_instr *alt;
592 	u8 buff[MAX_PATCH_LEN];
593 	u8 len;
594 };
595 
596 static struct alt_instr * __init_or_module analyze_patch_site(struct patch_site *ps,
597 							     struct alt_instr *start,
598 							     struct alt_instr *end)
599 {
600 	struct alt_instr *alt = start;
601 
602 	ps->instr = instr_va(start);
603 
604 	/*
605 	 * In case of nested ALTERNATIVE()s the outer alternative might add
606 	 * more padding. To ensure consistent patching find the max padding for
607 	 * all alt_instr entries for this site (nested alternatives result in
608 	 * consecutive entries).
609 	 * Find the last alt_instr eligible for patching at the site.
610 	 */
611 	for (; alt < end && instr_va(alt) == ps->instr; alt++) {
612 		ps->len = max(ps->len, alt->instrlen);
613 
614 		BUG_ON(alt->cpuid >= (NCAPINTS + NBUGINTS) * 32);
615 		/*
616 		 * Patch if either:
617 		 * - feature is present
618 		 * - feature not present but ALT_FLAG_NOT is set to mean,
619 		 *   patch if feature is *NOT* present.
620 		 */
621 		if (!boot_cpu_has(alt->cpuid) != !(alt->flags & ALT_FLAG_NOT))
622 			ps->alt = alt;
623 	}
624 
625 	BUG_ON(ps->len > sizeof(ps->buff));
626 
627 	return alt;
628 }
629 
630 static void __init_or_module prep_patch_site(struct patch_site *ps)
631 {
632 	struct alt_instr *alt = ps->alt;
633 	u8 buff_sz;
634 	u8 *repl;
635 
636 	if (!alt) {
637 		/* Nothing to patch, use original instruction. */
638 		memcpy(ps->buff, ps->instr, ps->len);
639 		return;
640 	}
641 
642 	repl = (u8 *)&alt->repl_offset + alt->repl_offset;
643 	DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
644 		alt->cpuid >> 5, alt->cpuid & 0x1f,
645 		ps->instr, ps->instr, ps->len,
646 		repl, alt->replacementlen, alt->flags);
647 
648 	memcpy(ps->buff, repl, alt->replacementlen);
649 	buff_sz = alt->replacementlen;
650 
651 	if (alt->flags & ALT_FLAG_DIRECT_CALL)
652 		buff_sz = alt_replace_call(ps->instr, ps->buff, alt);
653 
654 	for (; buff_sz < ps->len; buff_sz++)
655 		ps->buff[buff_sz] = 0x90;
656 
657 	__apply_relocation(ps->buff, ps->instr, ps->len, repl, alt->replacementlen);
658 
659 	DUMP_BYTES(ALT, ps->instr, ps->len, "%px:   old_insn: ", ps->instr);
660 	DUMP_BYTES(ALT, repl, alt->replacementlen, "%px:   rpl_insn: ", repl);
661 	DUMP_BYTES(ALT, ps->buff, ps->len, "%px: final_insn: ", ps->instr);
662 }
663 
664 static void __init_or_module patch_site(struct patch_site *ps)
665 {
666 	optimize_nops(ps->instr, ps->buff, ps->len);
667 	text_poke_early(ps->instr, ps->buff, ps->len);
668 }
669 
670 /*
671  * Replace instructions with better alternatives for this CPU type. This runs
672  * before SMP is initialized to avoid SMP problems with self modifying code.
673  * This implies that asymmetric systems where APs have less capabilities than
674  * the boot processor are not handled. Tough. Make sure you disable such
675  * features by hand.
676  *
677  * Marked "noinline" to cause control flow change and thus insn cache
678  * to refetch changed I$ lines.
679  */
680 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
681 						  struct alt_instr *end)
682 {
683 	struct alt_instr *a;
684 
685 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
686 
687 	/*
688 	 * KASAN_SHADOW_START is defined using
689 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
690 	 * During the process, KASAN becomes confused seeing partial LA57
691 	 * conversion and triggers a false-positive out-of-bound report.
692 	 *
693 	 * Disable KASAN until the patching is complete.
694 	 */
695 	kasan_disable_current();
696 
697 	/*
698 	 * The scan order should be from start to end. A later scanned
699 	 * alternative code can overwrite previously scanned alternative code.
700 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
701 	 * patch code.
702 	 *
703 	 * So be careful if you want to change the scan order to any other
704 	 * order.
705 	 */
706 	a = start;
707 	while (a < end) {
708 		struct patch_site ps = {
709 			.alt = NULL,
710 			.len = 0
711 		};
712 
713 		a = analyze_patch_site(&ps, a, end);
714 		prep_patch_site(&ps);
715 		patch_site(&ps);
716 	}
717 
718 	kasan_enable_current();
719 }
720 
721 static inline bool is_jcc32(struct insn *insn)
722 {
723 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
724 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
725 }
726 
727 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
728 
729 /*
730  * [CS]{,3} CALL/JMP *%\reg [INT3]*
731  */
732 static int emit_indirect(int op, int reg, u8 *bytes, int len)
733 {
734 	int cs = 0, bp = 0;
735 	int i = 0;
736 	u8 modrm;
737 
738 	/*
739 	 * Set @len to the excess bytes after writing the instruction.
740 	 */
741 	len -= 2 + (reg >= 8);
742 	WARN_ON_ONCE(len < 0);
743 
744 	switch (op) {
745 	case CALL_INSN_OPCODE:
746 		modrm = 0x10; /* Reg = 2; CALL r/m */
747 		/*
748 		 * Additional NOP is better than prefix decode penalty.
749 		 */
750 		if (len <= 3)
751 			cs = len;
752 		break;
753 
754 	case JMP32_INSN_OPCODE:
755 		modrm = 0x20; /* Reg = 4; JMP r/m */
756 		bp = len;
757 		break;
758 
759 	default:
760 		WARN_ON_ONCE(1);
761 		return -1;
762 	}
763 
764 	while (cs--)
765 		bytes[i++] = 0x2e; /* CS-prefix */
766 
767 	if (reg >= 8) {
768 		bytes[i++] = 0x41; /* REX.B prefix */
769 		reg -= 8;
770 	}
771 
772 	modrm |= 0xc0; /* Mod = 3 */
773 	modrm += reg;
774 
775 	bytes[i++] = 0xff; /* opcode */
776 	bytes[i++] = modrm;
777 
778 	while (bp--)
779 		bytes[i++] = 0xcc; /* INT3 */
780 
781 	return i;
782 }
783 
784 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes,
785 			     void *call_dest, void *jmp_dest)
786 {
787 	u8 op = insn->opcode.bytes[0];
788 	int i = 0;
789 
790 	/*
791 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
792 	 * tail-calls. Deal with them.
793 	 */
794 	if (is_jcc32(insn)) {
795 		bytes[i++] = op;
796 		op = insn->opcode.bytes[1];
797 		goto clang_jcc;
798 	}
799 
800 	if (insn->length == 6)
801 		bytes[i++] = 0x2e; /* CS-prefix */
802 
803 	switch (op) {
804 	case CALL_INSN_OPCODE:
805 		__text_gen_insn(bytes+i, op, addr+i,
806 				call_dest,
807 				CALL_INSN_SIZE);
808 		i += CALL_INSN_SIZE;
809 		break;
810 
811 	case JMP32_INSN_OPCODE:
812 clang_jcc:
813 		__text_gen_insn(bytes+i, op, addr+i,
814 				jmp_dest,
815 				JMP32_INSN_SIZE);
816 		i += JMP32_INSN_SIZE;
817 		break;
818 
819 	default:
820 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
821 		return -1;
822 	}
823 
824 	WARN_ON_ONCE(i != insn->length);
825 
826 	return i;
827 }
828 
829 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
830 {
831 	return __emit_trampoline(addr, insn, bytes,
832 				 __x86_indirect_call_thunk_array[reg],
833 				 __x86_indirect_jump_thunk_array[reg]);
834 }
835 
836 #ifdef CONFIG_MITIGATION_ITS
837 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
838 {
839 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
840 	u8 *tmp = its_allocate_thunk(reg);
841 
842 	if (tmp)
843 		thunk = tmp;
844 
845 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
846 }
847 
848 /* Check if an indirect branch is at ITS-unsafe address */
849 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
850 {
851 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
852 		return false;
853 
854 	/* Indirect branch opcode is 2 or 3 bytes depending on reg */
855 	addr += 1 + reg / 8;
856 
857 	/* Lower-half of the cacheline? */
858 	return !(addr & 0x20);
859 }
860 #else /* CONFIG_MITIGATION_ITS */
861 
862 #ifdef CONFIG_FINEIBT
863 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
864 {
865 	return false;
866 }
867 #endif
868 
869 #endif /* CONFIG_MITIGATION_ITS */
870 
871 /*
872  * Rewrite the compiler generated retpoline thunk calls.
873  *
874  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
875  * indirect instructions, avoiding the extra indirection.
876  *
877  * For example, convert:
878  *
879  *   CALL __x86_indirect_thunk_\reg
880  *
881  * into:
882  *
883  *   CALL *%\reg
884  *
885  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
886  */
887 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
888 {
889 	retpoline_thunk_t *target;
890 	int reg, ret, i = 0;
891 	u8 op, cc;
892 
893 	target = addr + insn->length + insn->immediate.value;
894 	reg = target - __x86_indirect_thunk_array;
895 
896 	if (WARN_ON_ONCE(reg & ~0xf))
897 		return -1;
898 
899 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
900 	BUG_ON(reg == 4);
901 
902 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
903 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
904 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
905 			return emit_call_track_retpoline(addr, insn, reg, bytes);
906 
907 		return -1;
908 	}
909 
910 	op = insn->opcode.bytes[0];
911 
912 	/*
913 	 * Convert:
914 	 *
915 	 *   Jcc.d32 __x86_indirect_thunk_\reg
916 	 *
917 	 * into:
918 	 *
919 	 *   Jncc.d8 1f
920 	 *   [ LFENCE ]
921 	 *   JMP *%\reg
922 	 *   [ NOP ]
923 	 * 1:
924 	 */
925 	if (is_jcc32(insn)) {
926 		cc = insn->opcode.bytes[1] & 0xf;
927 		cc ^= 1; /* invert condition */
928 
929 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
930 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
931 
932 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
933 		op = JMP32_INSN_OPCODE;
934 	}
935 
936 	/*
937 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
938 	 */
939 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
940 		bytes[i++] = 0x0f;
941 		bytes[i++] = 0xae;
942 		bytes[i++] = 0xe8; /* LFENCE */
943 	}
944 
945 #ifdef CONFIG_MITIGATION_ITS
946 	/*
947 	 * Check if the address of last byte of emitted-indirect is in
948 	 * lower-half of the cacheline. Such branches need ITS mitigation.
949 	 */
950 	if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg))
951 		return emit_its_trampoline(addr, insn, reg, bytes);
952 #endif
953 
954 	ret = emit_indirect(op, reg, bytes + i, insn->length - i);
955 	if (ret < 0)
956 		return ret;
957 	i += ret;
958 
959 	for (; i < insn->length;)
960 		bytes[i++] = BYTES_NOP1;
961 
962 	return i;
963 }
964 
965 /*
966  * Generated by 'objtool --retpoline'.
967  */
968 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
969 {
970 	s32 *s;
971 
972 	for (s = start; s < end; s++) {
973 		void *addr = (void *)s + *s;
974 		struct insn insn;
975 		int len, ret;
976 		u8 bytes[16];
977 		u8 op1, op2;
978 		u8 *dest;
979 
980 		ret = insn_decode_kernel(&insn, addr);
981 		if (WARN_ON_ONCE(ret < 0))
982 			continue;
983 
984 		op1 = insn.opcode.bytes[0];
985 		op2 = insn.opcode.bytes[1];
986 
987 		switch (op1) {
988 		case 0x70 ... 0x7f:	/* Jcc.d8 */
989 			/* See cfi_paranoid. */
990 			WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
991 			continue;
992 
993 		case CALL_INSN_OPCODE:
994 		case JMP32_INSN_OPCODE:
995 			/* Check for cfi_paranoid + ITS */
996 			dest = addr + insn.length + insn.immediate.value;
997 			if (dest[-1] == 0xd6 && (dest[0] & 0xf0) == 0x70) {
998 				WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
999 				continue;
1000 			}
1001 			break;
1002 
1003 		case 0x0f: /* escape */
1004 			if (op2 >= 0x80 && op2 <= 0x8f)
1005 				break;
1006 			fallthrough;
1007 		default:
1008 			WARN_ON_ONCE(1);
1009 			continue;
1010 		}
1011 
1012 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
1013 			addr, addr, insn.length,
1014 			addr + insn.length + insn.immediate.value);
1015 
1016 		len = patch_retpoline(addr, &insn, bytes);
1017 		if (len == insn.length) {
1018 			optimize_nops(addr, bytes, len);
1019 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
1020 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
1021 			text_poke_early(addr, bytes, len);
1022 		}
1023 	}
1024 }
1025 
1026 #ifdef CONFIG_MITIGATION_RETHUNK
1027 
1028 bool cpu_wants_rethunk(void)
1029 {
1030 	return cpu_feature_enabled(X86_FEATURE_RETHUNK);
1031 }
1032 
1033 bool cpu_wants_rethunk_at(void *addr)
1034 {
1035 	if (!cpu_feature_enabled(X86_FEATURE_RETHUNK))
1036 		return false;
1037 	if (x86_return_thunk != its_return_thunk)
1038 		return true;
1039 
1040 	return !((unsigned long)addr & 0x20);
1041 }
1042 
1043 /*
1044  * Rewrite the compiler generated return thunk tail-calls.
1045  *
1046  * For example, convert:
1047  *
1048  *   JMP __x86_return_thunk
1049  *
1050  * into:
1051  *
1052  *   RET
1053  */
1054 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
1055 {
1056 	int i = 0;
1057 
1058 	/* Patch the custom return thunks... */
1059 	if (cpu_wants_rethunk_at(addr)) {
1060 		i = JMP32_INSN_SIZE;
1061 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
1062 	} else {
1063 		/* ... or patch them out if not needed. */
1064 		bytes[i++] = RET_INSN_OPCODE;
1065 	}
1066 
1067 	for (; i < insn->length;)
1068 		bytes[i++] = INT3_INSN_OPCODE;
1069 	return i;
1070 }
1071 
1072 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
1073 {
1074 	s32 *s;
1075 
1076 	if (cpu_wants_rethunk())
1077 		static_call_force_reinit();
1078 
1079 	for (s = start; s < end; s++) {
1080 		void *dest = NULL, *addr = (void *)s + *s;
1081 		struct insn insn;
1082 		int len, ret;
1083 		u8 bytes[16];
1084 		u8 op;
1085 
1086 		ret = insn_decode_kernel(&insn, addr);
1087 		if (WARN_ON_ONCE(ret < 0))
1088 			continue;
1089 
1090 		op = insn.opcode.bytes[0];
1091 		if (op == JMP32_INSN_OPCODE)
1092 			dest = addr + insn.length + insn.immediate.value;
1093 
1094 		if (__static_call_fixup(addr, op, dest) ||
1095 		    WARN_ONCE(dest != &__x86_return_thunk,
1096 			      "missing return thunk: %pS-%pS: %*ph",
1097 			      addr, dest, 5, addr))
1098 			continue;
1099 
1100 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
1101 			addr, addr, insn.length,
1102 			addr + insn.length + insn.immediate.value);
1103 
1104 		len = patch_return(addr, &insn, bytes);
1105 		if (len == insn.length) {
1106 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
1107 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
1108 			text_poke_early(addr, bytes, len);
1109 		}
1110 	}
1111 }
1112 #else /* !CONFIG_MITIGATION_RETHUNK: */
1113 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1114 #endif /* !CONFIG_MITIGATION_RETHUNK */
1115 
1116 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1117 
1118 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
1119 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1120 
1121 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1122 
1123 #ifdef CONFIG_X86_KERNEL_IBT
1124 
1125 __noendbr bool is_endbr(u32 *val)
1126 {
1127 	u32 endbr;
1128 
1129 	__get_kernel_nofault(&endbr, val, u32, Efault);
1130 	return __is_endbr(endbr);
1131 
1132 Efault:
1133 	return false;
1134 }
1135 
1136 #ifdef CONFIG_FINEIBT
1137 
1138 static __noendbr bool exact_endbr(u32 *val)
1139 {
1140 	u32 endbr;
1141 
1142 	__get_kernel_nofault(&endbr, val, u32, Efault);
1143 	return endbr == gen_endbr();
1144 
1145 Efault:
1146 	return false;
1147 }
1148 
1149 #endif
1150 
1151 static void poison_cfi(void *addr);
1152 
1153 static void __init_or_module poison_endbr(void *addr)
1154 {
1155 	u32 poison = gen_endbr_poison();
1156 
1157 	if (WARN_ON_ONCE(!is_endbr(addr)))
1158 		return;
1159 
1160 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
1161 
1162 	/*
1163 	 * When we have IBT, the lack of ENDBR will trigger #CP
1164 	 */
1165 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
1166 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
1167 	text_poke_early(addr, &poison, 4);
1168 }
1169 
1170 /*
1171  * Generated by: objtool --ibt
1172  *
1173  * Seal the functions for indirect calls by clobbering the ENDBR instructions
1174  * and the kCFI hash value.
1175  */
1176 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
1177 {
1178 	s32 *s;
1179 
1180 	for (s = start; s < end; s++) {
1181 		void *addr = (void *)s + *s;
1182 
1183 		poison_endbr(addr);
1184 		if (IS_ENABLED(CONFIG_FINEIBT))
1185 			poison_cfi(addr - 16);
1186 	}
1187 }
1188 
1189 #else /* !CONFIG_X86_KERNEL_IBT: */
1190 
1191 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
1192 
1193 #endif /* !CONFIG_X86_KERNEL_IBT */
1194 
1195 #ifdef CONFIG_CFI_AUTO_DEFAULT
1196 # define __CFI_DEFAULT CFI_AUTO
1197 #elif defined(CONFIG_CFI)
1198 # define __CFI_DEFAULT CFI_KCFI
1199 #else
1200 # define __CFI_DEFAULT CFI_OFF
1201 #endif
1202 
1203 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
1204 static bool cfi_debug __ro_after_init;
1205 
1206 #ifdef CONFIG_FINEIBT_BHI
1207 bool cfi_bhi __ro_after_init = false;
1208 #endif
1209 
1210 #ifdef CONFIG_CFI
1211 u32 cfi_get_func_hash(void *func)
1212 {
1213 	u32 hash;
1214 
1215 	func -= cfi_get_offset();
1216 	switch (cfi_mode) {
1217 	case CFI_FINEIBT:
1218 		func += 7;
1219 		break;
1220 	case CFI_KCFI:
1221 		func += 1;
1222 		break;
1223 	default:
1224 		return 0;
1225 	}
1226 
1227 	if (get_kernel_nofault(hash, func))
1228 		return 0;
1229 
1230 	return hash;
1231 }
1232 
1233 int cfi_get_func_arity(void *func)
1234 {
1235 	bhi_thunk *target;
1236 	s32 disp;
1237 
1238 	if (cfi_mode != CFI_FINEIBT && !cfi_bhi)
1239 		return 0;
1240 
1241 	if (get_kernel_nofault(disp, func - 4))
1242 		return 0;
1243 
1244 	target = func + disp;
1245 	return target - __bhi_args;
1246 }
1247 #endif
1248 
1249 #ifdef CONFIG_FINEIBT
1250 
1251 static bool cfi_rand __ro_after_init = true;
1252 static u32  cfi_seed __ro_after_init;
1253 
1254 /*
1255  * Re-hash the CFI hash with a boot-time seed while making sure the result is
1256  * not a valid ENDBR instruction.
1257  */
1258 static u32 cfi_rehash(u32 hash)
1259 {
1260 	hash ^= cfi_seed;
1261 	while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) {
1262 		bool lsb = hash & 1;
1263 		hash >>= 1;
1264 		if (lsb)
1265 			hash ^= 0x80200003;
1266 	}
1267 	return hash;
1268 }
1269 
1270 static __init int cfi_parse_cmdline(char *str)
1271 {
1272 	if (!str)
1273 		return -EINVAL;
1274 
1275 	while (str) {
1276 		char *next = strchr(str, ',');
1277 		if (next) {
1278 			*next = 0;
1279 			next++;
1280 		}
1281 
1282 		if (!strcmp(str, "auto")) {
1283 			cfi_mode = CFI_AUTO;
1284 		} else if (!strcmp(str, "off")) {
1285 			cfi_mode = CFI_OFF;
1286 			cfi_rand = false;
1287 		} else if (!strcmp(str, "debug")) {
1288 			cfi_debug = true;
1289 		} else if (!strcmp(str, "kcfi")) {
1290 			cfi_mode = CFI_KCFI;
1291 		} else if (!strcmp(str, "fineibt")) {
1292 			cfi_mode = CFI_FINEIBT;
1293 		} else if (!strcmp(str, "norand")) {
1294 			cfi_rand = false;
1295 		} else if (!strcmp(str, "warn")) {
1296 			pr_alert("CFI: mismatch non-fatal!\n");
1297 			cfi_warn = true;
1298 		} else if (!strcmp(str, "paranoid")) {
1299 			if (cfi_mode == CFI_FINEIBT) {
1300 				cfi_paranoid = true;
1301 			} else {
1302 				pr_err("CFI: ignoring paranoid; depends on fineibt.\n");
1303 			}
1304 		} else if (!strcmp(str, "bhi")) {
1305 #ifdef CONFIG_FINEIBT_BHI
1306 			if (cfi_mode == CFI_FINEIBT) {
1307 				cfi_bhi = true;
1308 			} else {
1309 				pr_err("CFI: ignoring bhi; depends on fineibt.\n");
1310 			}
1311 #else
1312 			pr_err("CFI: ignoring bhi; depends on FINEIBT_BHI=y.\n");
1313 #endif
1314 		} else {
1315 			pr_err("CFI: Ignoring unknown option (%s).", str);
1316 		}
1317 
1318 		str = next;
1319 	}
1320 
1321 	return 0;
1322 }
1323 early_param("cfi", cfi_parse_cmdline);
1324 
1325 /*
1326  * kCFI						FineIBT
1327  *
1328  * __cfi_\func:					__cfi_\func:
1329  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
1330  *	nop					     subl   $0x12345678,%eax    // 5
1331  *	nop					     jne.d32,pn \func+3		// 7
1332  *	nop
1333  *	nop
1334  *	nop
1335  *	nop
1336  *	nop
1337  *	nop
1338  *	nop
1339  *	nop
1340  *	nop
1341  * \func:					\func:
1342  *	endbr64					     nopl -42(%rax)
1343  *
1344  *
1345  * caller:					caller:
1346  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%eax	// 5
1347  *	addl	$-15(%r11),%r10d	 // 4	     lea    -0x10(%r11),%r11	// 4
1348  *	je	1f			 // 2	     nop5			// 5
1349  *	ud2				 // 2
1350  * 1:	cs call	__x86_indirect_thunk_r11 // 6	     call   *%r11; nop3;	// 6
1351  *
1352  *
1353  * Notably, the FineIBT sequences are crafted such that branches are presumed
1354  * non-taken. This is based on Agner Fog's optimization manual, which states:
1355  *
1356  *  "Make conditional jumps most often not taken: The efficiency and throughput
1357  *   for not-taken branches is better than for taken branches on most
1358  *   processors. Therefore, it is good to place the most frequent branch first"
1359  */
1360 
1361 /*
1362  * <fineibt_preamble_start>:
1363  *  0:   f3 0f 1e fa             endbr64
1364  *  4:   2d 78 56 34 12          sub    $0x12345678, %eax
1365  *  9:   2e 0f 85 03 00 00 00    jne,pn 13 <fineibt_preamble_start+0x13>
1366  * 10:   0f 1f 40 d6             nopl   -0x2a(%rax)
1367  *
1368  * Note that the JNE target is the 0xD6 byte inside the NOPL, this decodes as
1369  * UDB on x86_64 and raises #UD.
1370  */
1371 asm(	".pushsection .rodata				\n"
1372 	"fineibt_preamble_start:			\n"
1373 	"	endbr64					\n"
1374 	"	subl	$0x12345678, %eax		\n"
1375 	"fineibt_preamble_bhi:				\n"
1376 	"	cs jne.d32 fineibt_preamble_start+0x13	\n"
1377 	"#fineibt_func:					\n"
1378 	"	nopl	-42(%rax)			\n"
1379 	"fineibt_preamble_end:				\n"
1380 	".popsection\n"
1381 );
1382 
1383 extern u8 fineibt_preamble_start[];
1384 extern u8 fineibt_preamble_bhi[];
1385 extern u8 fineibt_preamble_end[];
1386 
1387 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1388 #define fineibt_preamble_bhi  (fineibt_preamble_bhi - fineibt_preamble_start)
1389 #define fineibt_preamble_ud   0x13
1390 #define fineibt_preamble_hash 5
1391 
1392 /*
1393  * <fineibt_caller_start>:
1394  *  0:   b8 78 56 34 12          mov    $0x12345678, %eax
1395  *  5:   4d 8d 5b f0             lea    -0x10(%r11), %r11
1396  *  9:   0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)
1397  */
1398 asm(	".pushsection .rodata			\n"
1399 	"fineibt_caller_start:			\n"
1400 	"	movl	$0x12345678, %eax	\n"
1401 	"	lea	-0x10(%r11), %r11	\n"
1402 	ASM_NOP5
1403 	"fineibt_caller_end:			\n"
1404 	".popsection				\n"
1405 );
1406 
1407 extern u8 fineibt_caller_start[];
1408 extern u8 fineibt_caller_end[];
1409 
1410 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1411 #define fineibt_caller_hash 1
1412 
1413 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1414 
1415 /*
1416  * Since FineIBT does hash validation on the callee side it is prone to
1417  * circumvention attacks where a 'naked' ENDBR instruction exists that
1418  * is not part of the fineibt_preamble sequence.
1419  *
1420  * Notably the x86 entry points must be ENDBR and equally cannot be
1421  * fineibt_preamble.
1422  *
1423  * The fineibt_paranoid caller sequence adds additional caller side
1424  * hash validation. This stops such circumvention attacks dead, but at the cost
1425  * of adding a load.
1426  *
1427  * <fineibt_paranoid_start>:
1428  *  0:   b8 78 56 34 12          mov    $0x12345678, %eax
1429  *  5:   41 3b 43 f5             cmp    -0x11(%r11), %eax
1430  *  9:   2e 4d 8d 5b <f0>        cs lea -0x10(%r11), %r11
1431  *  e:   75 fd                   jne    d <fineibt_paranoid_start+0xd>
1432  * 10:   41 ff d3                call   *%r11
1433  * 13:   90                      nop
1434  *
1435  * Notably LEA does not modify flags and can be reordered with the CMP,
1436  * avoiding a dependency. Again, using a non-taken (backwards) branch
1437  * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the
1438  * Jcc.d8, causing #UD.
1439  */
1440 asm(	".pushsection .rodata				\n"
1441 	"fineibt_paranoid_start:			\n"
1442 	"	mov	$0x12345678, %eax		\n"
1443 	"	cmpl	-11(%r11), %eax			\n"
1444 	"	cs lea	-0x10(%r11), %r11		\n"
1445 	"#fineibt_caller_size:                          \n"
1446 	"	jne	fineibt_paranoid_start+0xd	\n"
1447 	"fineibt_paranoid_ind:				\n"
1448 	"	cs call	*%r11				\n"
1449 	"fineibt_paranoid_end:				\n"
1450 	".popsection					\n"
1451 );
1452 
1453 extern u8 fineibt_paranoid_start[];
1454 extern u8 fineibt_paranoid_ind[];
1455 extern u8 fineibt_paranoid_end[];
1456 
1457 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start)
1458 #define fineibt_paranoid_ind  (fineibt_paranoid_ind - fineibt_paranoid_start)
1459 #define fineibt_paranoid_ud   0xd
1460 
1461 static u32 decode_preamble_hash(void *addr, int *reg)
1462 {
1463 	u8 *p = addr;
1464 
1465 	/* b8+reg 78 56 34 12          movl    $0x12345678,\reg */
1466 	if (p[0] >= 0xb8 && p[0] < 0xc0) {
1467 		if (reg)
1468 			*reg = p[0] - 0xb8;
1469 		return *(u32 *)(addr + 1);
1470 	}
1471 
1472 	return 0; /* invalid hash value */
1473 }
1474 
1475 static u32 decode_caller_hash(void *addr)
1476 {
1477 	u8 *p = addr;
1478 
1479 	/* 41 ba 88 a9 cb ed       mov    $(-0x12345678),%r10d */
1480 	if (p[0] == 0x41 && p[1] == 0xba)
1481 		return -*(u32 *)(addr + 2);
1482 
1483 	/* e8 0c 88 a9 cb ed	   jmp.d8  +12 */
1484 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1485 		return -*(u32 *)(addr + 2);
1486 
1487 	return 0; /* invalid hash value */
1488 }
1489 
1490 /* .retpoline_sites */
1491 static int cfi_disable_callers(s32 *start, s32 *end)
1492 {
1493 	/*
1494 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1495 	 * in tact for later usage. Also see decode_caller_hash() and
1496 	 * cfi_rewrite_callers().
1497 	 */
1498 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1499 	s32 *s;
1500 
1501 	for (s = start; s < end; s++) {
1502 		void *addr = (void *)s + *s;
1503 		u32 hash;
1504 
1505 		addr -= fineibt_caller_size;
1506 		hash = decode_caller_hash(addr);
1507 		if (!hash) /* nocfi callers */
1508 			continue;
1509 
1510 		text_poke_early(addr, jmp, 2);
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 static int cfi_enable_callers(s32 *start, s32 *end)
1517 {
1518 	/*
1519 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1520 	 */
1521 	const u8 mov[] = { 0x41, 0xba };
1522 	s32 *s;
1523 
1524 	for (s = start; s < end; s++) {
1525 		void *addr = (void *)s + *s;
1526 		u32 hash;
1527 
1528 		addr -= fineibt_caller_size;
1529 		hash = decode_caller_hash(addr);
1530 		if (!hash) /* nocfi callers */
1531 			continue;
1532 
1533 		text_poke_early(addr, mov, 2);
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 /* .cfi_sites */
1540 static int cfi_rand_preamble(s32 *start, s32 *end)
1541 {
1542 	s32 *s;
1543 
1544 	for (s = start; s < end; s++) {
1545 		void *addr = (void *)s + *s;
1546 		u32 hash;
1547 
1548 		hash = decode_preamble_hash(addr, NULL);
1549 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1550 			 addr, addr, 5, addr))
1551 			return -EINVAL;
1552 
1553 		hash = cfi_rehash(hash);
1554 		text_poke_early(addr + 1, &hash, 4);
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 /*
1561  * Inline the bhi-arity 1 case:
1562  *
1563  * __cfi_foo:
1564  *  0: f3 0f 1e fa             endbr64
1565  *  4: 2d 78 56 34 12          sub    $0x12345678, %eax
1566  *  9: 49 0f 45 fa             cmovne %rax, %rdi
1567  *  d: 2e 75 03                jne,pn    foo+0x3
1568  *
1569  * foo:
1570  * 10: 0f 1f 40 <d6>           nopl -42(%rax)
1571  *
1572  * Notably, this scheme is incompatible with permissive CFI
1573  * because the CMOVcc is unconditional and RDI will have been
1574  * clobbered.
1575  */
1576 asm(	".pushsection .rodata				\n"
1577 	"fineibt_bhi1_start:				\n"
1578 	"	cmovne %rax, %rdi			\n"
1579 	"	cs jne fineibt_bhi1_func + 0x3		\n"
1580 	"fineibt_bhi1_func:				\n"
1581 	"	nopl -42(%rax)				\n"
1582 	"fineibt_bhi1_end:				\n"
1583 	".popsection					\n"
1584 );
1585 
1586 extern u8 fineibt_bhi1_start[];
1587 extern u8 fineibt_bhi1_end[];
1588 
1589 #define fineibt_bhi1_size (fineibt_bhi1_end - fineibt_bhi1_start)
1590 
1591 static void cfi_fineibt_bhi_preamble(void *addr, int arity)
1592 {
1593 	u8 bytes[MAX_INSN_SIZE];
1594 
1595 	if (!arity)
1596 		return;
1597 
1598 	if (!cfi_warn && arity == 1) {
1599 		text_poke_early(addr + fineibt_preamble_bhi,
1600 				fineibt_bhi1_start, fineibt_bhi1_size);
1601 		return;
1602 	}
1603 
1604 	/*
1605 	 * Replace the bytes at fineibt_preamble_bhi with a CALL instruction
1606 	 * that lines up exactly with the end of the preamble, such that the
1607 	 * return address will be foo+0.
1608 	 *
1609 	 * __cfi_foo:
1610 	 *  0: f3 0f 1e fa             endbr64
1611 	 *  4: 2d 78 56 34 12          sub    $0x12345678, %eax
1612 	 *  9: 2e 2e e8 DD DD DD DD    cs cs call __bhi_args[arity]
1613 	 */
1614 	bytes[0] = 0x2e;
1615 	bytes[1] = 0x2e;
1616 	__text_gen_insn(bytes + 2, CALL_INSN_OPCODE,
1617 			addr + fineibt_preamble_bhi + 2,
1618 			__bhi_args[arity], CALL_INSN_SIZE);
1619 
1620 	text_poke_early(addr + fineibt_preamble_bhi, bytes, 7);
1621 }
1622 
1623 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1624 {
1625 	s32 *s;
1626 
1627 	for (s = start; s < end; s++) {
1628 		void *addr = (void *)s + *s;
1629 		int arity;
1630 		u32 hash;
1631 
1632 		/*
1633 		 * When the function doesn't start with ENDBR the compiler will
1634 		 * have determined there are no indirect calls to it and we
1635 		 * don't need no CFI either.
1636 		 */
1637 		if (!is_endbr(addr + 16))
1638 			continue;
1639 
1640 		hash = decode_preamble_hash(addr, &arity);
1641 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1642 			 addr, addr, 5, addr))
1643 			return -EINVAL;
1644 
1645 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1646 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1647 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1648 
1649 		WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity,
1650 			  "kCFI preamble has wrong register at: %pS %*ph\n",
1651 			  addr, 5, addr);
1652 
1653 		if (cfi_bhi)
1654 			cfi_fineibt_bhi_preamble(addr, arity);
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1661 {
1662 	s32 *s;
1663 
1664 	for (s = start; s < end; s++) {
1665 		void *addr = (void *)s + *s;
1666 
1667 		if (!exact_endbr(addr + 16))
1668 			continue;
1669 
1670 		poison_endbr(addr + 16);
1671 	}
1672 }
1673 
1674 /* .retpoline_sites */
1675 static int cfi_rand_callers(s32 *start, s32 *end)
1676 {
1677 	s32 *s;
1678 
1679 	for (s = start; s < end; s++) {
1680 		void *addr = (void *)s + *s;
1681 		u32 hash;
1682 
1683 		addr -= fineibt_caller_size;
1684 		hash = decode_caller_hash(addr);
1685 		if (hash) {
1686 			hash = -cfi_rehash(hash);
1687 			text_poke_early(addr + 2, &hash, 4);
1688 		}
1689 	}
1690 
1691 	return 0;
1692 }
1693 
1694 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
1695 {
1696 	u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2;
1697 
1698 #ifdef CONFIG_MITIGATION_ITS
1699 	u8 *tmp = its_allocate_thunk(reg);
1700 	if (tmp)
1701 		thunk = tmp;
1702 #endif
1703 
1704 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
1705 }
1706 
1707 static int cfi_rewrite_callers(s32 *start, s32 *end)
1708 {
1709 	s32 *s;
1710 
1711 	for (s = start; s < end; s++) {
1712 		void *addr = (void *)s + *s;
1713 		struct insn insn;
1714 		u8 bytes[20];
1715 		u32 hash;
1716 		int ret;
1717 		u8 op;
1718 
1719 		addr -= fineibt_caller_size;
1720 		hash = decode_caller_hash(addr);
1721 		if (!hash)
1722 			continue;
1723 
1724 		if (!cfi_paranoid) {
1725 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1726 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1727 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1728 			/* rely on apply_retpolines() */
1729 			continue;
1730 		}
1731 
1732 		/* cfi_paranoid */
1733 		ret = insn_decode_kernel(&insn, addr + fineibt_caller_size);
1734 		if (WARN_ON_ONCE(ret < 0))
1735 			continue;
1736 
1737 		op = insn.opcode.bytes[0];
1738 		if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) {
1739 			WARN_ON_ONCE(1);
1740 			continue;
1741 		}
1742 
1743 		memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size);
1744 		memcpy(bytes + fineibt_caller_hash, &hash, 4);
1745 
1746 		if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) {
1747 			emit_paranoid_trampoline(addr + fineibt_caller_size,
1748 						 &insn, 11, bytes + fineibt_caller_size);
1749 		} else {
1750 			int len = fineibt_paranoid_size - fineibt_paranoid_ind;
1751 			ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind, len);
1752 			if (WARN_ON_ONCE(ret != len))
1753 				continue;
1754 		}
1755 
1756 		text_poke_early(addr, bytes, fineibt_paranoid_size);
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 #define pr_cfi_debug(X...) if (cfi_debug) pr_info(X)
1763 
1764 #define FINEIBT_WARN(_f, _v) \
1765 	WARN_ONCE((_f) != (_v), "FineIBT: " #_f " %ld != %d\n", _f, _v)
1766 
1767 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1768 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1769 {
1770 	int ret;
1771 
1772 	if (FINEIBT_WARN(fineibt_preamble_size, 20)			||
1773 	    FINEIBT_WARN(fineibt_preamble_bhi + fineibt_bhi1_size, 20)	||
1774 	    FINEIBT_WARN(fineibt_caller_size, 14)			||
1775 	    FINEIBT_WARN(fineibt_paranoid_size, 20))
1776 		return;
1777 
1778 	if (cfi_mode == CFI_AUTO) {
1779 		cfi_mode = CFI_KCFI;
1780 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) {
1781 			/*
1782 			 * FRED has much saner context on exception entry and
1783 			 * is less easy to take advantage of.
1784 			 */
1785 			if (!cpu_feature_enabled(X86_FEATURE_FRED))
1786 				cfi_paranoid = true;
1787 			cfi_mode = CFI_FINEIBT;
1788 		}
1789 	}
1790 
1791 	/*
1792 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1793 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1794 	 * later stages fails, we're without CFI.
1795 	 */
1796 	pr_cfi_debug("CFI: disabling all indirect call checking\n");
1797 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1798 	if (ret)
1799 		goto err;
1800 
1801 	if (cfi_rand) {
1802 		if (builtin) {
1803 			cfi_seed = get_random_u32();
1804 			cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1805 			cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1806 		}
1807 		pr_cfi_debug("CFI: cfi_seed: 0x%08x\n", cfi_seed);
1808 
1809 		pr_cfi_debug("CFI: rehashing all preambles\n");
1810 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1811 		if (ret)
1812 			goto err;
1813 
1814 		pr_cfi_debug("CFI: rehashing all indirect calls\n");
1815 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1816 		if (ret)
1817 			goto err;
1818 	} else {
1819 		pr_cfi_debug("CFI: rehashing disabled\n");
1820 	}
1821 
1822 	switch (cfi_mode) {
1823 	case CFI_OFF:
1824 		if (builtin)
1825 			pr_info("CFI: disabled\n");
1826 		return;
1827 
1828 	case CFI_KCFI:
1829 		pr_cfi_debug("CFI: re-enabling all indirect call checking\n");
1830 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1831 		if (ret)
1832 			goto err;
1833 
1834 		if (builtin)
1835 			pr_info("CFI: Using %sretpoline kCFI\n",
1836 				cfi_rand ? "rehashed " : "");
1837 		return;
1838 
1839 	case CFI_FINEIBT:
1840 		pr_cfi_debug("CFI: adding FineIBT to all preambles\n");
1841 		/* place the FineIBT preamble at func()-16 */
1842 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1843 		if (ret)
1844 			goto err;
1845 
1846 		/* rewrite the callers to target func()-16 */
1847 		pr_cfi_debug("CFI: rewriting indirect call sites to use FineIBT\n");
1848 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1849 		if (ret)
1850 			goto err;
1851 
1852 		/* now that nobody targets func()+0, remove ENDBR there */
1853 		pr_cfi_debug("CFI: removing old endbr insns\n");
1854 		cfi_rewrite_endbr(start_cfi, end_cfi);
1855 
1856 		if (builtin) {
1857 			pr_info("Using %sFineIBT%s CFI\n",
1858 				cfi_paranoid ? "paranoid " : "",
1859 				cfi_bhi ? "+BHI" : "");
1860 		}
1861 		return;
1862 
1863 	default:
1864 		break;
1865 	}
1866 
1867 err:
1868 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1869 }
1870 
1871 static inline void poison_hash(void *addr)
1872 {
1873 	*(u32 *)addr = 0;
1874 }
1875 
1876 static void poison_cfi(void *addr)
1877 {
1878 	/*
1879 	 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes,
1880 	 * some (static) functions for which they can determine the address
1881 	 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR.
1882 	 *
1883 	 * As such, these functions will get sealed, but we need to be careful
1884 	 * to not unconditionally scribble the previous function.
1885 	 */
1886 	switch (cfi_mode) {
1887 	case CFI_FINEIBT:
1888 		/*
1889 		 * FineIBT prefix should start with an ENDBR.
1890 		 */
1891 		if (!is_endbr(addr))
1892 			break;
1893 
1894 		/*
1895 		 * __cfi_\func:
1896 		 *	nopl	-42(%rax)
1897 		 *	sub	$0, %eax
1898 		 *	jne	\func+3
1899 		 * \func:
1900 		 *	nopl	-42(%rax)
1901 		 */
1902 		poison_endbr(addr);
1903 		poison_hash(addr + fineibt_preamble_hash);
1904 		break;
1905 
1906 	case CFI_KCFI:
1907 		/*
1908 		 * kCFI prefix should start with a valid hash.
1909 		 */
1910 		if (!decode_preamble_hash(addr, NULL))
1911 			break;
1912 
1913 		/*
1914 		 * __cfi_\func:
1915 		 *	movl	$0, %eax
1916 		 *	.skip	11, 0x90
1917 		 */
1918 		poison_hash(addr + 1);
1919 		break;
1920 
1921 	default:
1922 		break;
1923 	}
1924 }
1925 
1926 #define fineibt_prefix_size (fineibt_preamble_size - ENDBR_INSN_SIZE)
1927 
1928 /*
1929  * When regs->ip points to a 0xD6 byte in the FineIBT preamble,
1930  * return true and fill out target and type.
1931  *
1932  * We check the preamble by checking for the ENDBR instruction relative to the
1933  * UDB instruction.
1934  */
1935 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type)
1936 {
1937 	unsigned long addr = regs->ip - fineibt_preamble_ud;
1938 	u32 hash;
1939 
1940 	if (!exact_endbr((void *)addr))
1941 		return false;
1942 
1943 	*target = addr + fineibt_prefix_size;
1944 
1945 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1946 	*type = (u32)regs->ax + hash;
1947 
1948 	/*
1949 	 * Since regs->ip points to the middle of an instruction; it cannot
1950 	 * continue with the normal fixup.
1951 	 */
1952 	regs->ip = *target;
1953 
1954 	return true;
1955 
1956 Efault:
1957 	return false;
1958 }
1959 
1960 /*
1961  * regs->ip points to one of the UD2 in __bhi_args[].
1962  */
1963 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type)
1964 {
1965 	unsigned long addr;
1966 	u32 hash;
1967 
1968 	if (!cfi_bhi)
1969 		return false;
1970 
1971 	if (regs->ip < (unsigned long)__bhi_args ||
1972 	    regs->ip >= (unsigned long)__bhi_args_end)
1973 		return false;
1974 
1975 	/*
1976 	 * Fetch the return address from the stack, this points to the
1977 	 * FineIBT preamble. Since the CALL instruction is in the 5 last
1978 	 * bytes of the preamble, the return address is in fact the target
1979 	 * address.
1980 	 */
1981 	__get_kernel_nofault(&addr, regs->sp, unsigned long, Efault);
1982 	*target = addr;
1983 
1984 	addr -= fineibt_prefix_size;
1985 	if (!exact_endbr((void *)addr))
1986 		return false;
1987 
1988 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1989 	*type = (u32)regs->ax + hash;
1990 
1991 	/*
1992 	 * The UD2 sites are constructed with a RET immediately following,
1993 	 * as such the non-fatal case can use the regular fixup.
1994 	 */
1995 	return true;
1996 
1997 Efault:
1998 	return false;
1999 }
2000 
2001 static bool is_paranoid_thunk(unsigned long addr)
2002 {
2003 	u32 thunk;
2004 
2005 	__get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault);
2006 	return (thunk & 0x00FFFFFF) == 0xfd75d6;
2007 
2008 Efault:
2009 	return false;
2010 }
2011 
2012 /*
2013  * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[]
2014  * sequence, or to UDB + Jcc.d8 for cfi_paranoid + ITS thunk.
2015  */
2016 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type)
2017 {
2018 	unsigned long addr = regs->ip - fineibt_paranoid_ud;
2019 
2020 	if (!cfi_paranoid)
2021 		return false;
2022 
2023 	if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) {
2024 		*target = regs->r11 + fineibt_prefix_size;
2025 		*type = regs->ax;
2026 
2027 		/*
2028 		 * Since the trapping instruction is the exact, but LOCK prefixed,
2029 		 * Jcc.d8 that got us here, the normal fixup will work.
2030 		 */
2031 		return true;
2032 	}
2033 
2034 	/*
2035 	 * The cfi_paranoid + ITS thunk combination results in:
2036 	 *
2037 	 *  0:   b8 78 56 34 12          mov    $0x12345678, %eax
2038 	 *  5:   41 3b 43 f7             cmp    -11(%r11), %eax
2039 	 *  a:   2e 3d 8d 5b f0          cs lea -0x10(%r11), %r11
2040 	 *  e:   2e e8 XX XX XX XX	 cs call __x86_indirect_paranoid_thunk_r11
2041 	 *
2042 	 * Where the paranoid_thunk looks like:
2043 	 *
2044 	 *  1d:  <d6>                    udb
2045 	 *  __x86_indirect_paranoid_thunk_r11:
2046 	 *  1e:  75 fd                   jne 1d
2047 	 *  __x86_indirect_its_thunk_r11:
2048 	 *  20:  41 ff eb                jmp *%r11
2049 	 *  23:  cc                      int3
2050 	 *
2051 	 */
2052 	if (is_paranoid_thunk(regs->ip)) {
2053 		*target = regs->r11 + fineibt_prefix_size;
2054 		*type = regs->ax;
2055 
2056 		regs->ip = *target;
2057 		return true;
2058 	}
2059 
2060 	return false;
2061 }
2062 
2063 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type)
2064 {
2065 	if (decode_fineibt_paranoid(regs, target, type))
2066 		return true;
2067 
2068 	if (decode_fineibt_bhi(regs, target, type))
2069 		return true;
2070 
2071 	return decode_fineibt_preamble(regs, target, type);
2072 }
2073 
2074 #else /* !CONFIG_FINEIBT: */
2075 
2076 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2077 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
2078 {
2079 	if (IS_ENABLED(CONFIG_CFI) && builtin)
2080 		pr_info("CFI: Using standard kCFI\n");
2081 }
2082 
2083 #ifdef CONFIG_X86_KERNEL_IBT
2084 static void poison_cfi(void *addr) { }
2085 #endif
2086 
2087 #endif /* !CONFIG_FINEIBT */
2088 
2089 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2090 		   s32 *start_cfi, s32 *end_cfi)
2091 {
2092 	return __apply_fineibt(start_retpoline, end_retpoline,
2093 			       start_cfi, end_cfi,
2094 			       /* .builtin = */ false);
2095 }
2096 
2097 #ifdef CONFIG_SMP
2098 static void alternatives_smp_lock(const s32 *start, const s32 *end,
2099 				  u8 *text, u8 *text_end)
2100 {
2101 	const s32 *poff;
2102 
2103 	for (poff = start; poff < end; poff++) {
2104 		u8 *ptr = (u8 *)poff + *poff;
2105 
2106 		if (!*poff || ptr < text || ptr >= text_end)
2107 			continue;
2108 		/* turn DS segment override prefix into lock prefix */
2109 		if (*ptr == 0x3e)
2110 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
2111 	}
2112 }
2113 
2114 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
2115 				    u8 *text, u8 *text_end)
2116 {
2117 	const s32 *poff;
2118 
2119 	for (poff = start; poff < end; poff++) {
2120 		u8 *ptr = (u8 *)poff + *poff;
2121 
2122 		if (!*poff || ptr < text || ptr >= text_end)
2123 			continue;
2124 		/* turn lock prefix into DS segment override prefix */
2125 		if (*ptr == 0xf0)
2126 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
2127 	}
2128 }
2129 
2130 struct smp_alt_module {
2131 	/* what is this ??? */
2132 	struct module	*mod;
2133 	char		*name;
2134 
2135 	/* ptrs to lock prefixes */
2136 	const s32	*locks;
2137 	const s32	*locks_end;
2138 
2139 	/* .text segment, needed to avoid patching init code ;) */
2140 	u8		*text;
2141 	u8		*text_end;
2142 
2143 	struct list_head next;
2144 };
2145 static LIST_HEAD(smp_alt_modules);
2146 static bool uniproc_patched = false;	/* protected by text_mutex */
2147 
2148 void __init_or_module alternatives_smp_module_add(struct module *mod,
2149 						  char *name,
2150 						  void *locks, void *locks_end,
2151 						  void *text,  void *text_end)
2152 {
2153 	struct smp_alt_module *smp;
2154 
2155 	mutex_lock(&text_mutex);
2156 	if (!uniproc_patched)
2157 		goto unlock;
2158 
2159 	if (num_possible_cpus() == 1)
2160 		/* Don't bother remembering, we'll never have to undo it. */
2161 		goto smp_unlock;
2162 
2163 	smp = kzalloc_obj(*smp, GFP_KERNEL);
2164 	if (NULL == smp)
2165 		/* we'll run the (safe but slow) SMP code then ... */
2166 		goto unlock;
2167 
2168 	smp->mod	= mod;
2169 	smp->name	= name;
2170 	smp->locks	= locks;
2171 	smp->locks_end	= locks_end;
2172 	smp->text	= text;
2173 	smp->text_end	= text_end;
2174 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
2175 		smp->locks, smp->locks_end,
2176 		smp->text, smp->text_end, smp->name);
2177 
2178 	list_add_tail(&smp->next, &smp_alt_modules);
2179 smp_unlock:
2180 	alternatives_smp_unlock(locks, locks_end, text, text_end);
2181 unlock:
2182 	mutex_unlock(&text_mutex);
2183 }
2184 
2185 void __init_or_module alternatives_smp_module_del(struct module *mod)
2186 {
2187 	struct smp_alt_module *item;
2188 
2189 	mutex_lock(&text_mutex);
2190 	list_for_each_entry(item, &smp_alt_modules, next) {
2191 		if (mod != item->mod)
2192 			continue;
2193 		list_del(&item->next);
2194 		kfree(item);
2195 		break;
2196 	}
2197 	mutex_unlock(&text_mutex);
2198 }
2199 
2200 void alternatives_enable_smp(void)
2201 {
2202 	struct smp_alt_module *mod;
2203 
2204 	/* Why bother if there are no other CPUs? */
2205 	BUG_ON(num_possible_cpus() == 1);
2206 
2207 	mutex_lock(&text_mutex);
2208 
2209 	if (uniproc_patched) {
2210 		pr_info("switching to SMP code\n");
2211 		BUG_ON(num_online_cpus() != 1);
2212 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
2213 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
2214 		list_for_each_entry(mod, &smp_alt_modules, next)
2215 			alternatives_smp_lock(mod->locks, mod->locks_end,
2216 					      mod->text, mod->text_end);
2217 		uniproc_patched = false;
2218 	}
2219 	mutex_unlock(&text_mutex);
2220 }
2221 
2222 /*
2223  * Return 1 if the address range is reserved for SMP-alternatives.
2224  * Must hold text_mutex.
2225  */
2226 int alternatives_text_reserved(void *start, void *end)
2227 {
2228 	struct smp_alt_module *mod;
2229 	const s32 *poff;
2230 	u8 *text_start = start;
2231 	u8 *text_end = end;
2232 
2233 	lockdep_assert_held(&text_mutex);
2234 
2235 	list_for_each_entry(mod, &smp_alt_modules, next) {
2236 		if (mod->text > text_end || mod->text_end < text_start)
2237 			continue;
2238 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
2239 			const u8 *ptr = (const u8 *)poff + *poff;
2240 
2241 			if (text_start <= ptr && text_end > ptr)
2242 				return 1;
2243 		}
2244 	}
2245 
2246 	return 0;
2247 }
2248 #endif /* CONFIG_SMP */
2249 
2250 /*
2251  * Self-test for the INT3 based CALL emulation code.
2252  *
2253  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
2254  * properly and that there is a stack gap between the INT3 frame and the
2255  * previous context. Without this gap doing a virtual PUSH on the interrupted
2256  * stack would corrupt the INT3 IRET frame.
2257  *
2258  * See entry_{32,64}.S for more details.
2259  */
2260 
2261 extern void int3_selftest_asm(unsigned int *ptr);
2262 
2263 asm (
2264 "	.pushsection	.init.text, \"ax\", @progbits\n"
2265 "	.type		int3_selftest_asm, @function\n"
2266 "int3_selftest_asm:\n"
2267 	ANNOTATE_NOENDBR "\n"
2268 	/*
2269 	 * INT3 padded with NOP to CALL_INSN_SIZE. The INT3 triggers an
2270 	 * exception, then the int3_exception_nb notifier emulates a call to
2271 	 * int3_selftest_callee().
2272 	 */
2273 "	int3; nop; nop; nop; nop\n"
2274 	ASM_RET
2275 "	.size		int3_selftest_asm, . - int3_selftest_asm\n"
2276 "	.popsection\n"
2277 );
2278 
2279 extern void int3_selftest_callee(unsigned int *ptr);
2280 
2281 asm (
2282 "	.pushsection	.init.text, \"ax\", @progbits\n"
2283 "	.type		int3_selftest_callee, @function\n"
2284 "int3_selftest_callee:\n"
2285 	ANNOTATE_NOENDBR "\n"
2286 "	movl	$0x1234, (%" _ASM_ARG1 ")\n"
2287 	ASM_RET
2288 "	.size		int3_selftest_callee, . - int3_selftest_callee\n"
2289 "	.popsection\n"
2290 );
2291 
2292 extern void int3_selftest_ip(void); /* defined in asm below */
2293 
2294 static int __init
2295 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
2296 {
2297 	unsigned long selftest = (unsigned long)&int3_selftest_asm;
2298 	struct die_args *args = data;
2299 	struct pt_regs *regs = args->regs;
2300 
2301 	OPTIMIZER_HIDE_VAR(selftest);
2302 
2303 	if (!regs || user_mode(regs))
2304 		return NOTIFY_DONE;
2305 
2306 	if (val != DIE_INT3)
2307 		return NOTIFY_DONE;
2308 
2309 	if (regs->ip - INT3_INSN_SIZE != selftest)
2310 		return NOTIFY_DONE;
2311 
2312 	int3_emulate_call(regs, (unsigned long)&int3_selftest_callee);
2313 	return NOTIFY_STOP;
2314 }
2315 
2316 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
2317 static noinline void __init int3_selftest(void)
2318 {
2319 	static __initdata struct notifier_block int3_exception_nb = {
2320 		.notifier_call	= int3_exception_notify,
2321 		.priority	= INT_MAX-1, /* last */
2322 	};
2323 	unsigned int val = 0;
2324 
2325 	BUG_ON(register_die_notifier(&int3_exception_nb));
2326 
2327 	/*
2328 	 * Basically: int3_selftest_callee(&val); but really complicated :-)
2329 	 */
2330 	int3_selftest_asm(&val);
2331 
2332 	BUG_ON(val != 0x1234);
2333 
2334 	unregister_die_notifier(&int3_exception_nb);
2335 }
2336 
2337 static __initdata int __alt_reloc_selftest_addr;
2338 
2339 extern void __init __alt_reloc_selftest(void *arg);
2340 __visible noinline void __init __alt_reloc_selftest(void *arg)
2341 {
2342 	WARN_ON(arg != &__alt_reloc_selftest_addr);
2343 }
2344 
2345 static noinline void __init alt_reloc_selftest(void)
2346 {
2347 	/*
2348 	 * Tests text_poke_apply_relocation().
2349 	 *
2350 	 * This has a relative immediate (CALL) in a place other than the first
2351 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
2352 	 *
2353 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
2354 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
2355 	 *
2356 	 * Getting this wrong will either crash and burn or tickle the WARN
2357 	 * above.
2358 	 */
2359 	asm_inline volatile (
2360 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
2361 		: ASM_CALL_CONSTRAINT
2362 		: [mem] "m" (__alt_reloc_selftest_addr)
2363 		: _ASM_ARG1
2364 	);
2365 }
2366 
2367 void __init alternative_instructions(void)
2368 {
2369 	u64 ibt;
2370 
2371 	int3_selftest();
2372 
2373 	/*
2374 	 * The patching is not fully atomic, so try to avoid local
2375 	 * interruptions that might execute the to be patched code.
2376 	 * Other CPUs are not running.
2377 	 */
2378 	stop_nmi();
2379 
2380 	/*
2381 	 * Don't stop machine check exceptions while patching.
2382 	 * MCEs only happen when something got corrupted and in this
2383 	 * case we must do something about the corruption.
2384 	 * Ignoring it is worse than an unlikely patching race.
2385 	 * Also machine checks tend to be broadcast and if one CPU
2386 	 * goes into machine check the others follow quickly, so we don't
2387 	 * expect a machine check to cause undue problems during to code
2388 	 * patching.
2389 	 */
2390 
2391 	/*
2392 	 * Make sure to set (artificial) features depending on used paravirt
2393 	 * functions which can later influence alternative patching.
2394 	 */
2395 	paravirt_set_cap();
2396 
2397 	/* Keep CET-IBT disabled until caller/callee are patched */
2398 	ibt = ibt_save(/*disable*/ true);
2399 
2400 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
2401 			__cfi_sites, __cfi_sites_end, true);
2402 	cfi_debug = false;
2403 
2404 	/*
2405 	 * Rewrite the retpolines, must be done before alternatives since
2406 	 * those can rewrite the retpoline thunks.
2407 	 */
2408 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
2409 	apply_returns(__return_sites, __return_sites_end);
2410 
2411 	its_fini_core();
2412 
2413 	/*
2414 	 * Adjust all CALL instructions to point to func()-10, including
2415 	 * those in .altinstr_replacement.
2416 	 */
2417 	callthunks_patch_builtin_calls();
2418 
2419 	apply_alternatives(__alt_instructions, __alt_instructions_end);
2420 
2421 	/*
2422 	 * Seal all functions that do not have their address taken.
2423 	 */
2424 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
2425 
2426 	ibt_restore(ibt);
2427 
2428 #ifdef CONFIG_SMP
2429 	/* Patch to UP if other cpus not imminent. */
2430 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
2431 		uniproc_patched = true;
2432 		alternatives_smp_module_add(NULL, "core kernel",
2433 					    __smp_locks, __smp_locks_end,
2434 					    _text, _etext);
2435 	}
2436 
2437 	if (!uniproc_patched || num_possible_cpus() == 1) {
2438 		free_init_pages("SMP alternatives",
2439 				(unsigned long)__smp_locks,
2440 				(unsigned long)__smp_locks_end);
2441 	}
2442 #endif
2443 
2444 	restart_nmi();
2445 	alternatives_patched = 1;
2446 
2447 	alt_reloc_selftest();
2448 }
2449 
2450 /**
2451  * text_poke_early - Update instructions on a live kernel at boot time
2452  * @addr: address to modify
2453  * @opcode: source of the copy
2454  * @len: length to copy
2455  *
2456  * When you use this code to patch more than one byte of an instruction
2457  * you need to make sure that other CPUs cannot execute this code in parallel.
2458  * Also no thread must be currently preempted in the middle of these
2459  * instructions. And on the local CPU you need to be protected against NMI or
2460  * MCE handlers seeing an inconsistent instruction while you patch.
2461  */
2462 void __init_or_module text_poke_early(void *addr, const void *opcode,
2463 				      size_t len)
2464 {
2465 	unsigned long flags;
2466 
2467 	if (boot_cpu_has(X86_FEATURE_NX) &&
2468 	    is_module_text_address((unsigned long)addr)) {
2469 		/*
2470 		 * Modules text is marked initially as non-executable, so the
2471 		 * code cannot be running and speculative code-fetches are
2472 		 * prevented. Just change the code.
2473 		 */
2474 		memcpy(addr, opcode, len);
2475 	} else {
2476 		local_irq_save(flags);
2477 		memcpy(addr, opcode, len);
2478 		sync_core();
2479 		local_irq_restore(flags);
2480 
2481 		/*
2482 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
2483 		 * that causes hangs on some VIA CPUs.
2484 		 */
2485 	}
2486 }
2487 
2488 __ro_after_init struct mm_struct *text_poke_mm;
2489 __ro_after_init unsigned long text_poke_mm_addr;
2490 
2491 /*
2492  * Text poking creates and uses a mapping in the lower half of the
2493  * address space. Relax LASS enforcement when accessing the poking
2494  * address.
2495  *
2496  * objtool enforces a strict policy of "no function calls within AC=1
2497  * regions". Adhere to the policy by using inline versions of
2498  * memcpy()/memset() that will never result in a function call.
2499  */
2500 
2501 static void text_poke_memcpy(void *dst, const void *src, size_t len)
2502 {
2503 	lass_stac();
2504 	__inline_memcpy(dst, src, len);
2505 	lass_clac();
2506 }
2507 
2508 static void text_poke_memset(void *dst, const void *src, size_t len)
2509 {
2510 	int c = *(const int *)src;
2511 
2512 	lass_stac();
2513 	__inline_memset(dst, c, len);
2514 	lass_clac();
2515 }
2516 
2517 typedef void text_poke_f(void *dst, const void *src, size_t len);
2518 
2519 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
2520 {
2521 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
2522 	struct page *pages[2] = {NULL};
2523 	struct mm_struct *prev_mm;
2524 	unsigned long flags;
2525 	pte_t pte, *ptep;
2526 	spinlock_t *ptl;
2527 	pgprot_t pgprot;
2528 
2529 	/*
2530 	 * While boot memory allocator is running we cannot use struct pages as
2531 	 * they are not yet initialized. There is no way to recover.
2532 	 */
2533 	BUG_ON(!after_bootmem);
2534 
2535 	if (!core_kernel_text((unsigned long)addr)) {
2536 		pages[0] = vmalloc_to_page(addr);
2537 		if (cross_page_boundary)
2538 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2539 	} else {
2540 		pages[0] = virt_to_page(addr);
2541 		WARN_ON(!PageReserved(pages[0]));
2542 		if (cross_page_boundary)
2543 			pages[1] = virt_to_page(addr + PAGE_SIZE);
2544 	}
2545 	/*
2546 	 * If something went wrong, crash and burn since recovery paths are not
2547 	 * implemented.
2548 	 */
2549 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2550 
2551 	/*
2552 	 * Map the page without the global bit, as TLB flushing is done with
2553 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
2554 	 */
2555 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2556 
2557 	/*
2558 	 * The lock is not really needed, but this allows to avoid open-coding.
2559 	 */
2560 	ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
2561 
2562 	/*
2563 	 * This must not fail; preallocated in poking_init().
2564 	 */
2565 	VM_BUG_ON(!ptep);
2566 
2567 	local_irq_save(flags);
2568 
2569 	pte = mk_pte(pages[0], pgprot);
2570 	set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte);
2571 
2572 	if (cross_page_boundary) {
2573 		pte = mk_pte(pages[1], pgprot);
2574 		set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte);
2575 	}
2576 
2577 	/*
2578 	 * Loading the temporary mm behaves as a compiler barrier, which
2579 	 * guarantees that the PTE will be set at the time memcpy() is done.
2580 	 */
2581 	prev_mm = use_temporary_mm(text_poke_mm);
2582 
2583 	kasan_disable_current();
2584 	func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len);
2585 	kasan_enable_current();
2586 
2587 	/*
2588 	 * Ensure that the PTE is only cleared after the instructions of memcpy
2589 	 * were issued by using a compiler barrier.
2590 	 */
2591 	barrier();
2592 
2593 	pte_clear(text_poke_mm, text_poke_mm_addr, ptep);
2594 	if (cross_page_boundary)
2595 		pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1);
2596 
2597 	/*
2598 	 * Loading the previous page-table hierarchy requires a serializing
2599 	 * instruction that already allows the core to see the updated version.
2600 	 * Xen-PV is assumed to serialize execution in a similar manner.
2601 	 */
2602 	unuse_temporary_mm(prev_mm);
2603 
2604 	/*
2605 	 * Flushing the TLB might involve IPIs, which would require enabled
2606 	 * IRQs, but not if the mm is not used, as it is in this point.
2607 	 */
2608 	flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr +
2609 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2610 			   PAGE_SHIFT, false);
2611 
2612 	if (func == text_poke_memcpy) {
2613 		/*
2614 		 * If the text does not match what we just wrote then something is
2615 		 * fundamentally screwy; there's nothing we can really do about that.
2616 		 */
2617 		BUG_ON(memcmp(addr, src, len));
2618 	}
2619 
2620 	local_irq_restore(flags);
2621 	pte_unmap_unlock(ptep, ptl);
2622 	return addr;
2623 }
2624 
2625 /**
2626  * text_poke - Update instructions on a live kernel
2627  * @addr: address to modify
2628  * @opcode: source of the copy
2629  * @len: length to copy
2630  *
2631  * Only atomic text poke/set should be allowed when not doing early patching.
2632  * It means the size must be writable atomically and the address must be aligned
2633  * in a way that permits an atomic write. It also makes sure we fit on a single
2634  * page.
2635  *
2636  * Note that the caller must ensure that if the modified code is part of a
2637  * module, the module would not be removed during poking. This can be achieved
2638  * by registering a module notifier, and ordering module removal and patching
2639  * through a mutex.
2640  */
2641 void *text_poke(void *addr, const void *opcode, size_t len)
2642 {
2643 	lockdep_assert_held(&text_mutex);
2644 
2645 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2646 }
2647 
2648 /**
2649  * text_poke_kgdb - Update instructions on a live kernel by kgdb
2650  * @addr: address to modify
2651  * @opcode: source of the copy
2652  * @len: length to copy
2653  *
2654  * Only atomic text poke/set should be allowed when not doing early patching.
2655  * It means the size must be writable atomically and the address must be aligned
2656  * in a way that permits an atomic write. It also makes sure we fit on a single
2657  * page.
2658  *
2659  * Context: should only be used by kgdb, which ensures no other core is running,
2660  *	    despite the fact it does not hold the text_mutex.
2661  */
2662 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2663 {
2664 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2665 }
2666 
2667 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2668 			    bool core_ok)
2669 {
2670 	unsigned long start = (unsigned long)addr;
2671 	size_t patched = 0;
2672 
2673 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2674 		return NULL;
2675 
2676 	while (patched < len) {
2677 		unsigned long ptr = start + patched;
2678 		size_t s;
2679 
2680 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2681 
2682 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2683 		patched += s;
2684 	}
2685 	return addr;
2686 }
2687 
2688 /**
2689  * text_poke_copy - Copy instructions into (an unused part of) RX memory
2690  * @addr: address to modify
2691  * @opcode: source of the copy
2692  * @len: length to copy, could be more than 2x PAGE_SIZE
2693  *
2694  * Not safe against concurrent execution; useful for JITs to dump
2695  * new code blocks into unused regions of RX memory. Can be used in
2696  * conjunction with synchronize_rcu_tasks() to wait for existing
2697  * execution to quiesce after having made sure no existing functions
2698  * pointers are live.
2699  */
2700 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2701 {
2702 	mutex_lock(&text_mutex);
2703 	addr = text_poke_copy_locked(addr, opcode, len, false);
2704 	mutex_unlock(&text_mutex);
2705 	return addr;
2706 }
2707 
2708 /**
2709  * text_poke_set - memset into (an unused part of) RX memory
2710  * @addr: address to modify
2711  * @c: the byte to fill the area with
2712  * @len: length to copy, could be more than 2x PAGE_SIZE
2713  *
2714  * This is useful to overwrite unused regions of RX memory with illegal
2715  * instructions.
2716  */
2717 void *text_poke_set(void *addr, int c, size_t len)
2718 {
2719 	unsigned long start = (unsigned long)addr;
2720 	size_t patched = 0;
2721 
2722 	if (WARN_ON_ONCE(core_kernel_text(start)))
2723 		return NULL;
2724 
2725 	mutex_lock(&text_mutex);
2726 	while (patched < len) {
2727 		unsigned long ptr = start + patched;
2728 		size_t s;
2729 
2730 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2731 
2732 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2733 		patched += s;
2734 	}
2735 	mutex_unlock(&text_mutex);
2736 	return addr;
2737 }
2738 
2739 static void do_sync_core(void *info)
2740 {
2741 	sync_core();
2742 }
2743 
2744 void smp_text_poke_sync_each_cpu(void)
2745 {
2746 	on_each_cpu(do_sync_core, NULL, 1);
2747 }
2748 
2749 /*
2750  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2751  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2752  * opcode to Jcc.d8, using len to distinguish.
2753  */
2754 struct smp_text_poke_loc {
2755 	/* addr := _stext + rel_addr */
2756 	s32 rel_addr;
2757 	s32 disp;
2758 	u8 len;
2759 	u8 opcode;
2760 	const u8 text[TEXT_POKE_MAX_OPCODE_SIZE];
2761 	/* see smp_text_poke_batch_finish() */
2762 	u8 old;
2763 };
2764 
2765 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc))
2766 
2767 static struct smp_text_poke_array {
2768 	struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX];
2769 	int nr_entries;
2770 } text_poke_array;
2771 
2772 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs);
2773 
2774 /*
2775  * These four __always_inline annotations imply noinstr, necessary
2776  * due to smp_text_poke_int3_handler() being noinstr:
2777  */
2778 
2779 static __always_inline bool try_get_text_poke_array(void)
2780 {
2781 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2782 
2783 	if (!raw_atomic_inc_not_zero(refs))
2784 		return false;
2785 
2786 	return true;
2787 }
2788 
2789 static __always_inline void put_text_poke_array(void)
2790 {
2791 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2792 
2793 	smp_mb__before_atomic();
2794 	raw_atomic_dec(refs);
2795 }
2796 
2797 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl)
2798 {
2799 	return _stext + tpl->rel_addr;
2800 }
2801 
2802 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b)
2803 {
2804 	if (tpl_a < text_poke_addr(tpl_b))
2805 		return -1;
2806 	if (tpl_a > text_poke_addr(tpl_b))
2807 		return 1;
2808 	return 0;
2809 }
2810 
2811 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs)
2812 {
2813 	struct smp_text_poke_loc *tpl;
2814 	int ret = 0;
2815 	void *ip;
2816 
2817 	if (user_mode(regs))
2818 		return 0;
2819 
2820 	/*
2821 	 * Having observed our INT3 instruction, we now must observe
2822 	 * text_poke_array with non-zero refcount:
2823 	 *
2824 	 *	text_poke_array_refs = 1		INT3
2825 	 *	WMB			RMB
2826 	 *	write INT3		if (text_poke_array_refs != 0)
2827 	 */
2828 	smp_rmb();
2829 
2830 	if (!try_get_text_poke_array())
2831 		return 0;
2832 
2833 	/*
2834 	 * Discount the INT3. See smp_text_poke_batch_finish().
2835 	 */
2836 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2837 
2838 	/*
2839 	 * Skip the binary search if there is a single member in the vector.
2840 	 */
2841 	if (unlikely(text_poke_array.nr_entries > 1)) {
2842 		tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries,
2843 				      sizeof(struct smp_text_poke_loc),
2844 				      patch_cmp);
2845 		if (!tpl)
2846 			goto out_put;
2847 	} else {
2848 		tpl = text_poke_array.vec;
2849 		if (text_poke_addr(tpl) != ip)
2850 			goto out_put;
2851 	}
2852 
2853 	ip += tpl->len;
2854 
2855 	switch (tpl->opcode) {
2856 	case INT3_INSN_OPCODE:
2857 		/*
2858 		 * Someone poked an explicit INT3, they'll want to handle it,
2859 		 * do not consume.
2860 		 */
2861 		goto out_put;
2862 
2863 	case RET_INSN_OPCODE:
2864 		int3_emulate_ret(regs);
2865 		break;
2866 
2867 	case CALL_INSN_OPCODE:
2868 		int3_emulate_call(regs, (long)ip + tpl->disp);
2869 		break;
2870 
2871 	case JMP32_INSN_OPCODE:
2872 	case JMP8_INSN_OPCODE:
2873 		int3_emulate_jmp(regs, (long)ip + tpl->disp);
2874 		break;
2875 
2876 	case 0x70 ... 0x7f: /* Jcc */
2877 		int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp);
2878 		break;
2879 
2880 	default:
2881 		BUG();
2882 	}
2883 
2884 	ret = 1;
2885 
2886 out_put:
2887 	put_text_poke_array();
2888 	return ret;
2889 }
2890 
2891 /**
2892  * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP
2893  *
2894  * Input state:
2895  *  text_poke_array.vec: vector of instructions to patch
2896  *  text_poke_array.nr_entries: number of entries in the vector
2897  *
2898  * Modify multi-byte instructions by using INT3 breakpoints on SMP.
2899  * We completely avoid using stop_machine() here, and achieve the
2900  * synchronization using INT3 breakpoints and SMP cross-calls.
2901  *
2902  * The way it is done:
2903  *	- For each entry in the vector:
2904  *		- add an INT3 trap to the address that will be patched
2905  *	- SMP sync all CPUs
2906  *	- For each entry in the vector:
2907  *		- update all but the first byte of the patched range
2908  *	- SMP sync all CPUs
2909  *	- For each entry in the vector:
2910  *		- replace the first byte (INT3) by the first byte of the
2911  *		  replacing opcode
2912  *	- SMP sync all CPUs
2913  */
2914 void smp_text_poke_batch_finish(void)
2915 {
2916 	unsigned char int3 = INT3_INSN_OPCODE;
2917 	unsigned int i;
2918 	int do_sync;
2919 
2920 	if (!text_poke_array.nr_entries)
2921 		return;
2922 
2923 	lockdep_assert_held(&text_mutex);
2924 
2925 	/*
2926 	 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to
2927 	 * ensure reading a non-zero refcount provides up to date text_poke_array data.
2928 	 */
2929 	for_each_possible_cpu(i)
2930 		atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1);
2931 
2932 	/*
2933 	 * Function tracing can enable thousands of places that need to be
2934 	 * updated. This can take quite some time, and with full kernel debugging
2935 	 * enabled, this could cause the softlockup watchdog to trigger.
2936 	 * This function gets called every 256 entries added to be patched.
2937 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2938 	 * while processing all the functions being patched.
2939 	 */
2940 	cond_resched();
2941 
2942 	/*
2943 	 * Corresponding read barrier in INT3 notifier for making sure the
2944 	 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching.
2945 	 */
2946 	smp_wmb();
2947 
2948 	/*
2949 	 * First step: add a INT3 trap to the address that will be patched.
2950 	 */
2951 	for (i = 0; i < text_poke_array.nr_entries; i++) {
2952 		text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]);
2953 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE);
2954 	}
2955 
2956 	smp_text_poke_sync_each_cpu();
2957 
2958 	/*
2959 	 * Second step: update all but the first byte of the patched range.
2960 	 */
2961 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2962 		u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, };
2963 		u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1];
2964 		const u8 *new = text_poke_array.vec[i].text;
2965 		int len = text_poke_array.vec[i].len;
2966 
2967 		if (len - INT3_INSN_SIZE > 0) {
2968 			memcpy(old + INT3_INSN_SIZE,
2969 			       text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2970 			       len - INT3_INSN_SIZE);
2971 
2972 			if (len == 6) {
2973 				_new[0] = 0x0f;
2974 				memcpy(_new + 1, new, 5);
2975 				new = _new;
2976 			}
2977 
2978 			text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2979 				  new + INT3_INSN_SIZE,
2980 				  len - INT3_INSN_SIZE);
2981 
2982 			do_sync++;
2983 		}
2984 
2985 		/*
2986 		 * Emit a perf event to record the text poke, primarily to
2987 		 * support Intel PT decoding which must walk the executable code
2988 		 * to reconstruct the trace. The flow up to here is:
2989 		 *   - write INT3 byte
2990 		 *   - IPI-SYNC
2991 		 *   - write instruction tail
2992 		 * At this point the actual control flow will be through the
2993 		 * INT3 and handler and not hit the old or new instruction.
2994 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2995 		 * can still be decoded. Subsequently:
2996 		 *   - emit RECORD_TEXT_POKE with the new instruction
2997 		 *   - IPI-SYNC
2998 		 *   - write first byte
2999 		 *   - IPI-SYNC
3000 		 * So before the text poke event timestamp, the decoder will see
3001 		 * either the old instruction flow or FUP/TIP of INT3. After the
3002 		 * text poke event timestamp, the decoder will see either the
3003 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
3004 		 * use the timestamp as the point at which to modify the
3005 		 * executable code.
3006 		 * The old instruction is recorded so that the event can be
3007 		 * processed forwards or backwards.
3008 		 */
3009 		perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len);
3010 	}
3011 
3012 	if (do_sync) {
3013 		/*
3014 		 * According to Intel, this core syncing is very likely
3015 		 * not necessary and we'd be safe even without it. But
3016 		 * better safe than sorry (plus there's not only Intel).
3017 		 */
3018 		smp_text_poke_sync_each_cpu();
3019 	}
3020 
3021 	/*
3022 	 * Third step: replace the first byte (INT3) by the first byte of the
3023 	 * replacing opcode.
3024 	 */
3025 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
3026 		u8 byte = text_poke_array.vec[i].text[0];
3027 
3028 		if (text_poke_array.vec[i].len == 6)
3029 			byte = 0x0f;
3030 
3031 		if (byte == INT3_INSN_OPCODE)
3032 			continue;
3033 
3034 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE);
3035 		do_sync++;
3036 	}
3037 
3038 	if (do_sync)
3039 		smp_text_poke_sync_each_cpu();
3040 
3041 	/*
3042 	 * Remove and wait for refs to be zero.
3043 	 *
3044 	 * Notably, if after step-3 above the INT3 got removed, then the
3045 	 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3
3046 	 * handlers and the below spin-wait will not happen.
3047 	 *
3048 	 * IOW. unless the replacement instruction is INT3, this case goes
3049 	 * unused.
3050 	 */
3051 	for_each_possible_cpu(i) {
3052 		atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i);
3053 
3054 		if (unlikely(!atomic_dec_and_test(refs)))
3055 			atomic_cond_read_acquire(refs, !VAL);
3056 	}
3057 
3058 	/* They are all completed: */
3059 	text_poke_array.nr_entries = 0;
3060 }
3061 
3062 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3063 {
3064 	struct smp_text_poke_loc *tpl;
3065 	struct insn insn;
3066 	int ret, i = 0;
3067 
3068 	tpl = &text_poke_array.vec[text_poke_array.nr_entries++];
3069 
3070 	if (len == 6)
3071 		i = 1;
3072 	memcpy((void *)tpl->text, opcode+i, len-i);
3073 	if (!emulate)
3074 		emulate = opcode;
3075 
3076 	ret = insn_decode_kernel(&insn, emulate);
3077 	BUG_ON(ret < 0);
3078 
3079 	tpl->rel_addr = addr - (void *)_stext;
3080 	tpl->len = len;
3081 	tpl->opcode = insn.opcode.bytes[0];
3082 
3083 	if (is_jcc32(&insn)) {
3084 		/*
3085 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
3086 		 */
3087 		tpl->opcode = insn.opcode.bytes[1] - 0x10;
3088 	}
3089 
3090 	switch (tpl->opcode) {
3091 	case RET_INSN_OPCODE:
3092 	case JMP32_INSN_OPCODE:
3093 	case JMP8_INSN_OPCODE:
3094 		/*
3095 		 * Control flow instructions without implied execution of the
3096 		 * next instruction can be padded with INT3.
3097 		 */
3098 		for (i = insn.length; i < len; i++)
3099 			BUG_ON(tpl->text[i] != INT3_INSN_OPCODE);
3100 		break;
3101 
3102 	default:
3103 		BUG_ON(len != insn.length);
3104 	}
3105 
3106 	switch (tpl->opcode) {
3107 	case INT3_INSN_OPCODE:
3108 	case RET_INSN_OPCODE:
3109 		break;
3110 
3111 	case CALL_INSN_OPCODE:
3112 	case JMP32_INSN_OPCODE:
3113 	case JMP8_INSN_OPCODE:
3114 	case 0x70 ... 0x7f: /* Jcc */
3115 		tpl->disp = insn.immediate.value;
3116 		break;
3117 
3118 	default: /* assume NOP */
3119 		switch (len) {
3120 		case 2: /* NOP2 -- emulate as JMP8+0 */
3121 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3122 			tpl->opcode = JMP8_INSN_OPCODE;
3123 			tpl->disp = 0;
3124 			break;
3125 
3126 		case 5: /* NOP5 -- emulate as JMP32+0 */
3127 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3128 			tpl->opcode = JMP32_INSN_OPCODE;
3129 			tpl->disp = 0;
3130 			break;
3131 
3132 		default: /* unknown instruction */
3133 			BUG();
3134 		}
3135 		break;
3136 	}
3137 }
3138 
3139 /*
3140  * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing
3141  * early if needed.
3142  */
3143 static bool text_poke_addr_ordered(void *addr)
3144 {
3145 	WARN_ON_ONCE(!addr);
3146 
3147 	if (!text_poke_array.nr_entries)
3148 		return true;
3149 
3150 	/*
3151 	 * If the last current entry's address is higher than the
3152 	 * new entry's address we'd like to add, then ordering
3153 	 * is violated and we must first flush all pending patching
3154 	 * requests:
3155 	 */
3156 	if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr)
3157 		return false;
3158 
3159 	return true;
3160 }
3161 
3162 /**
3163  * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched
3164  * @addr:	address to patch
3165  * @opcode:	opcode of new instruction
3166  * @len:	length to copy
3167  * @emulate:	instruction to be emulated
3168  *
3169  * Add a new instruction to the current queue of to-be-patched instructions
3170  * the kernel maintains. The patching request will not be executed immediately,
3171  * but becomes part of an array of patching requests, optimized for batched
3172  * execution. All pending patching requests will be executed on the next
3173  * smp_text_poke_batch_finish() call.
3174  */
3175 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3176 {
3177 	if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr))
3178 		smp_text_poke_batch_finish();
3179 	__smp_text_poke_batch_add(addr, opcode, len, emulate);
3180 }
3181 
3182 /**
3183  * smp_text_poke_single() -- update instruction on live kernel on SMP immediately
3184  * @addr:	address to patch
3185  * @opcode:	opcode of new instruction
3186  * @len:	length to copy
3187  * @emulate:	instruction to be emulated
3188  *
3189  * Update a single instruction with the vector in the stack, avoiding
3190  * dynamically allocated memory. This function should be used when it is
3191  * not possible to allocate memory for a vector. The single instruction
3192  * is patched in immediately.
3193  */
3194 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate)
3195 {
3196 	smp_text_poke_batch_add(addr, opcode, len, emulate);
3197 	smp_text_poke_batch_finish();
3198 }
3199