1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "SMP alternatives: " fmt 3 4 #include <linux/mmu_context.h> 5 #include <linux/perf_event.h> 6 #include <linux/vmalloc.h> 7 #include <linux/memory.h> 8 #include <linux/execmem.h> 9 10 #include <asm/text-patching.h> 11 #include <asm/insn.h> 12 #include <asm/ibt.h> 13 #include <asm/set_memory.h> 14 #include <asm/nmi.h> 15 16 int __read_mostly alternatives_patched; 17 18 EXPORT_SYMBOL_GPL(alternatives_patched); 19 20 #define MAX_PATCH_LEN (255-1) 21 22 #define DA_ALL (~0) 23 #define DA_ALT 0x01 24 #define DA_RET 0x02 25 #define DA_RETPOLINE 0x04 26 #define DA_ENDBR 0x08 27 #define DA_SMP 0x10 28 29 static unsigned int debug_alternative; 30 31 static int __init debug_alt(char *str) 32 { 33 if (str && *str == '=') 34 str++; 35 36 if (!str || kstrtouint(str, 0, &debug_alternative)) 37 debug_alternative = DA_ALL; 38 39 return 1; 40 } 41 __setup("debug-alternative", debug_alt); 42 43 static int noreplace_smp; 44 45 static int __init setup_noreplace_smp(char *str) 46 { 47 noreplace_smp = 1; 48 return 1; 49 } 50 __setup("noreplace-smp", setup_noreplace_smp); 51 52 #define DPRINTK(type, fmt, args...) \ 53 do { \ 54 if (debug_alternative & DA_##type) \ 55 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ 56 } while (0) 57 58 #define DUMP_BYTES(type, buf, len, fmt, args...) \ 59 do { \ 60 if (unlikely(debug_alternative & DA_##type)) { \ 61 int j; \ 62 \ 63 if (!(len)) \ 64 break; \ 65 \ 66 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 67 for (j = 0; j < (len) - 1; j++) \ 68 printk(KERN_CONT "%02hhx ", buf[j]); \ 69 printk(KERN_CONT "%02hhx\n", buf[j]); \ 70 } \ 71 } while (0) 72 73 static const unsigned char x86nops[] = 74 { 75 BYTES_NOP1, 76 BYTES_NOP2, 77 BYTES_NOP3, 78 BYTES_NOP4, 79 BYTES_NOP5, 80 BYTES_NOP6, 81 BYTES_NOP7, 82 BYTES_NOP8, 83 #ifdef CONFIG_64BIT 84 BYTES_NOP9, 85 BYTES_NOP10, 86 BYTES_NOP11, 87 #endif 88 }; 89 90 const unsigned char * const x86_nops[ASM_NOP_MAX+1] = 91 { 92 NULL, 93 x86nops, 94 x86nops + 1, 95 x86nops + 1 + 2, 96 x86nops + 1 + 2 + 3, 97 x86nops + 1 + 2 + 3 + 4, 98 x86nops + 1 + 2 + 3 + 4 + 5, 99 x86nops + 1 + 2 + 3 + 4 + 5 + 6, 100 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 101 #ifdef CONFIG_64BIT 102 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 103 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, 104 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, 105 #endif 106 }; 107 108 #ifdef CONFIG_FINEIBT 109 static bool cfi_paranoid __ro_after_init; 110 #endif 111 112 #ifdef CONFIG_MITIGATION_ITS 113 114 #ifdef CONFIG_MODULES 115 static struct module *its_mod; 116 #endif 117 static void *its_page; 118 static unsigned int its_offset; 119 120 /* Initialize a thunk with the "jmp *reg; int3" instructions. */ 121 static void *its_init_thunk(void *thunk, int reg) 122 { 123 u8 *bytes = thunk; 124 int offset = 0; 125 int i = 0; 126 127 #ifdef CONFIG_FINEIBT 128 if (cfi_paranoid) { 129 /* 130 * When ITS uses indirect branch thunk the fineibt_paranoid 131 * caller sequence doesn't fit in the caller site. So put the 132 * remaining part of the sequence (<ea> + JNE) into the ITS 133 * thunk. 134 */ 135 bytes[i++] = 0xea; /* invalid instruction */ 136 bytes[i++] = 0x75; /* JNE */ 137 bytes[i++] = 0xfd; 138 139 offset = 1; 140 } 141 #endif 142 143 if (reg >= 8) { 144 bytes[i++] = 0x41; /* REX.B prefix */ 145 reg -= 8; 146 } 147 bytes[i++] = 0xff; 148 bytes[i++] = 0xe0 + reg; /* jmp *reg */ 149 bytes[i++] = 0xcc; 150 151 return thunk + offset; 152 } 153 154 #ifdef CONFIG_MODULES 155 void its_init_mod(struct module *mod) 156 { 157 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 158 return; 159 160 mutex_lock(&text_mutex); 161 its_mod = mod; 162 its_page = NULL; 163 } 164 165 void its_fini_mod(struct module *mod) 166 { 167 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 168 return; 169 170 WARN_ON_ONCE(its_mod != mod); 171 172 its_mod = NULL; 173 its_page = NULL; 174 mutex_unlock(&text_mutex); 175 176 for (int i = 0; i < mod->its_num_pages; i++) { 177 void *page = mod->its_page_array[i]; 178 execmem_restore_rox(page, PAGE_SIZE); 179 } 180 } 181 182 void its_free_mod(struct module *mod) 183 { 184 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 185 return; 186 187 for (int i = 0; i < mod->its_num_pages; i++) { 188 void *page = mod->its_page_array[i]; 189 execmem_free(page); 190 } 191 kfree(mod->its_page_array); 192 } 193 #endif /* CONFIG_MODULES */ 194 195 static void *its_alloc(void) 196 { 197 void *page __free(execmem) = execmem_alloc(EXECMEM_MODULE_TEXT, PAGE_SIZE); 198 199 if (!page) 200 return NULL; 201 202 #ifdef CONFIG_MODULES 203 if (its_mod) { 204 void *tmp = krealloc(its_mod->its_page_array, 205 (its_mod->its_num_pages+1) * sizeof(void *), 206 GFP_KERNEL); 207 if (!tmp) 208 return NULL; 209 210 its_mod->its_page_array = tmp; 211 its_mod->its_page_array[its_mod->its_num_pages++] = page; 212 213 execmem_make_temp_rw(page, PAGE_SIZE); 214 } 215 #endif /* CONFIG_MODULES */ 216 217 return no_free_ptr(page); 218 } 219 220 static void *its_allocate_thunk(int reg) 221 { 222 int size = 3 + (reg / 8); 223 void *thunk; 224 225 #ifdef CONFIG_FINEIBT 226 /* 227 * The ITS thunk contains an indirect jump and an int3 instruction so 228 * its size is 3 or 4 bytes depending on the register used. If CFI 229 * paranoid is used then 3 extra bytes are added in the ITS thunk to 230 * complete the fineibt_paranoid caller sequence. 231 */ 232 if (cfi_paranoid) 233 size += 3; 234 #endif 235 236 if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) { 237 its_page = its_alloc(); 238 if (!its_page) { 239 pr_err("ITS page allocation failed\n"); 240 return NULL; 241 } 242 memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE); 243 its_offset = 32; 244 } 245 246 /* 247 * If the indirect branch instruction will be in the lower half 248 * of a cacheline, then update the offset to reach the upper half. 249 */ 250 if ((its_offset + size - 1) % 64 < 32) 251 its_offset = ((its_offset - 1) | 0x3F) + 33; 252 253 thunk = its_page + its_offset; 254 its_offset += size; 255 256 return its_init_thunk(thunk, reg); 257 } 258 259 u8 *its_static_thunk(int reg) 260 { 261 u8 *thunk = __x86_indirect_its_thunk_array[reg]; 262 263 #ifdef CONFIG_FINEIBT 264 /* Paranoid thunk starts 2 bytes before */ 265 if (cfi_paranoid) 266 return thunk - 2; 267 #endif 268 return thunk; 269 } 270 271 #endif 272 273 /* 274 * Nomenclature for variable names to simplify and clarify this code and ease 275 * any potential staring at it: 276 * 277 * @instr: source address of the original instructions in the kernel text as 278 * generated by the compiler. 279 * 280 * @buf: temporary buffer on which the patching operates. This buffer is 281 * eventually text-poked into the kernel image. 282 * 283 * @replacement/@repl: pointer to the opcodes which are replacing @instr, located 284 * in the .altinstr_replacement section. 285 */ 286 287 /* 288 * Fill the buffer with a single effective instruction of size @len. 289 * 290 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info) 291 * for every single-byte NOP, try to generate the maximally available NOP of 292 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for 293 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and 294 * *jump* over instead of executing long and daft NOPs. 295 */ 296 static void add_nop(u8 *buf, unsigned int len) 297 { 298 u8 *target = buf + len; 299 300 if (!len) 301 return; 302 303 if (len <= ASM_NOP_MAX) { 304 memcpy(buf, x86_nops[len], len); 305 return; 306 } 307 308 if (len < 128) { 309 __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE); 310 buf += JMP8_INSN_SIZE; 311 } else { 312 __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE); 313 buf += JMP32_INSN_SIZE; 314 } 315 316 for (;buf < target; buf++) 317 *buf = INT3_INSN_OPCODE; 318 } 319 320 /* 321 * Matches NOP and NOPL, not any of the other possible NOPs. 322 */ 323 static bool insn_is_nop(struct insn *insn) 324 { 325 /* Anything NOP, but no REP NOP */ 326 if (insn->opcode.bytes[0] == 0x90 && 327 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3)) 328 return true; 329 330 /* NOPL */ 331 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F) 332 return true; 333 334 /* TODO: more nops */ 335 336 return false; 337 } 338 339 /* 340 * Find the offset of the first non-NOP instruction starting at @offset 341 * but no further than @len. 342 */ 343 static int skip_nops(u8 *buf, int offset, int len) 344 { 345 struct insn insn; 346 347 for (; offset < len; offset += insn.length) { 348 if (insn_decode_kernel(&insn, &buf[offset])) 349 break; 350 351 if (!insn_is_nop(&insn)) 352 break; 353 } 354 355 return offset; 356 } 357 358 /* 359 * "noinline" to cause control flow change and thus invalidate I$ and 360 * cause refetch after modification. 361 */ 362 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len) 363 { 364 for (int next, i = 0; i < len; i = next) { 365 struct insn insn; 366 367 if (insn_decode_kernel(&insn, &buf[i])) 368 return; 369 370 next = i + insn.length; 371 372 if (insn_is_nop(&insn)) { 373 int nop = i; 374 375 /* Has the NOP already been optimized? */ 376 if (i + insn.length == len) 377 return; 378 379 next = skip_nops(buf, next, len); 380 381 add_nop(buf + nop, next - nop); 382 DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next); 383 } 384 } 385 } 386 387 /* 388 * In this context, "source" is where the instructions are placed in the 389 * section .altinstr_replacement, for example during kernel build by the 390 * toolchain. 391 * "Destination" is where the instructions are being patched in by this 392 * machinery. 393 * 394 * The source offset is: 395 * 396 * src_imm = target - src_next_ip (1) 397 * 398 * and the target offset is: 399 * 400 * dst_imm = target - dst_next_ip (2) 401 * 402 * so rework (1) as an expression for target like: 403 * 404 * target = src_imm + src_next_ip (1a) 405 * 406 * and substitute in (2) to get: 407 * 408 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3) 409 * 410 * Now, since the instruction stream is 'identical' at src and dst (it 411 * is being copied after all) it can be stated that: 412 * 413 * src_next_ip = src + ip_offset 414 * dst_next_ip = dst + ip_offset (4) 415 * 416 * Substitute (4) in (3) and observe ip_offset being cancelled out to 417 * obtain: 418 * 419 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset) 420 * = src_imm + src - dst + ip_offset - ip_offset 421 * = src_imm + src - dst (5) 422 * 423 * IOW, only the relative displacement of the code block matters. 424 */ 425 426 #define apply_reloc_n(n_, p_, d_) \ 427 do { \ 428 s32 v = *(s##n_ *)(p_); \ 429 v += (d_); \ 430 BUG_ON((v >> 31) != (v >> (n_-1))); \ 431 *(s##n_ *)(p_) = (s##n_)v; \ 432 } while (0) 433 434 435 static __always_inline 436 void apply_reloc(int n, void *ptr, uintptr_t diff) 437 { 438 switch (n) { 439 case 1: apply_reloc_n(8, ptr, diff); break; 440 case 2: apply_reloc_n(16, ptr, diff); break; 441 case 4: apply_reloc_n(32, ptr, diff); break; 442 default: BUG(); 443 } 444 } 445 446 static __always_inline 447 bool need_reloc(unsigned long offset, u8 *src, size_t src_len) 448 { 449 u8 *target = src + offset; 450 /* 451 * If the target is inside the patched block, it's relative to the 452 * block itself and does not need relocation. 453 */ 454 return (target < src || target > src + src_len); 455 } 456 457 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) 458 { 459 for (int next, i = 0; i < instrlen; i = next) { 460 struct insn insn; 461 462 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i]))) 463 return; 464 465 next = i + insn.length; 466 467 switch (insn.opcode.bytes[0]) { 468 case 0x0f: 469 if (insn.opcode.bytes[1] < 0x80 || 470 insn.opcode.bytes[1] > 0x8f) 471 break; 472 473 fallthrough; /* Jcc.d32 */ 474 case 0x70 ... 0x7f: /* Jcc.d8 */ 475 case JMP8_INSN_OPCODE: 476 case JMP32_INSN_OPCODE: 477 case CALL_INSN_OPCODE: 478 if (need_reloc(next + insn.immediate.value, repl, repl_len)) { 479 apply_reloc(insn.immediate.nbytes, 480 buf + i + insn_offset_immediate(&insn), 481 repl - instr); 482 } 483 484 /* 485 * Where possible, convert JMP.d32 into JMP.d8. 486 */ 487 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) { 488 s32 imm = insn.immediate.value; 489 imm += repl - instr; 490 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE; 491 if ((imm >> 31) == (imm >> 7)) { 492 buf[i+0] = JMP8_INSN_OPCODE; 493 buf[i+1] = (s8)imm; 494 495 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2); 496 } 497 } 498 break; 499 } 500 501 if (insn_rip_relative(&insn)) { 502 if (need_reloc(next + insn.displacement.value, repl, repl_len)) { 503 apply_reloc(insn.displacement.nbytes, 504 buf + i + insn_offset_displacement(&insn), 505 repl - instr); 506 } 507 } 508 } 509 } 510 511 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) 512 { 513 __apply_relocation(buf, instr, instrlen, repl, repl_len); 514 optimize_nops(instr, buf, instrlen); 515 } 516 517 /* Low-level backend functions usable from alternative code replacements. */ 518 DEFINE_ASM_FUNC(nop_func, "", .entry.text); 519 EXPORT_SYMBOL_GPL(nop_func); 520 521 noinstr void BUG_func(void) 522 { 523 BUG(); 524 } 525 EXPORT_SYMBOL(BUG_func); 526 527 #define CALL_RIP_REL_OPCODE 0xff 528 #define CALL_RIP_REL_MODRM 0x15 529 530 /* 531 * Rewrite the "call BUG_func" replacement to point to the target of the 532 * indirect pv_ops call "call *disp(%ip)". 533 */ 534 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a) 535 { 536 void *target, *bug = &BUG_func; 537 s32 disp; 538 539 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) { 540 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n"); 541 BUG(); 542 } 543 544 if (a->instrlen != 6 || 545 instr[0] != CALL_RIP_REL_OPCODE || 546 instr[1] != CALL_RIP_REL_MODRM) { 547 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n"); 548 BUG(); 549 } 550 551 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */ 552 disp = *(s32 *)(instr + 2); 553 #ifdef CONFIG_X86_64 554 /* ff 15 00 00 00 00 call *0x0(%rip) */ 555 /* target address is stored at "next instruction + disp". */ 556 target = *(void **)(instr + a->instrlen + disp); 557 #else 558 /* ff 15 00 00 00 00 call *0x0 */ 559 /* target address is stored at disp. */ 560 target = *(void **)disp; 561 #endif 562 if (!target) 563 target = bug; 564 565 /* (BUG_func - .) + (target - BUG_func) := target - . */ 566 *(s32 *)(insn_buff + 1) += target - bug; 567 568 if (target == &nop_func) 569 return 0; 570 571 return 5; 572 } 573 574 static inline u8 * instr_va(struct alt_instr *i) 575 { 576 return (u8 *)&i->instr_offset + i->instr_offset; 577 } 578 579 /* 580 * Replace instructions with better alternatives for this CPU type. This runs 581 * before SMP is initialized to avoid SMP problems with self modifying code. 582 * This implies that asymmetric systems where APs have less capabilities than 583 * the boot processor are not handled. Tough. Make sure you disable such 584 * features by hand. 585 * 586 * Marked "noinline" to cause control flow change and thus insn cache 587 * to refetch changed I$ lines. 588 */ 589 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 590 struct alt_instr *end) 591 { 592 u8 insn_buff[MAX_PATCH_LEN]; 593 u8 *instr, *replacement; 594 struct alt_instr *a, *b; 595 596 DPRINTK(ALT, "alt table %px, -> %px", start, end); 597 598 /* 599 * KASAN_SHADOW_START is defined using 600 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here. 601 * During the process, KASAN becomes confused seeing partial LA57 602 * conversion and triggers a false-positive out-of-bound report. 603 * 604 * Disable KASAN until the patching is complete. 605 */ 606 kasan_disable_current(); 607 608 /* 609 * The scan order should be from start to end. A later scanned 610 * alternative code can overwrite previously scanned alternative code. 611 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 612 * patch code. 613 * 614 * So be careful if you want to change the scan order to any other 615 * order. 616 */ 617 for (a = start; a < end; a++) { 618 int insn_buff_sz = 0; 619 620 /* 621 * In case of nested ALTERNATIVE()s the outer alternative might 622 * add more padding. To ensure consistent patching find the max 623 * padding for all alt_instr entries for this site (nested 624 * alternatives result in consecutive entries). 625 */ 626 for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) { 627 u8 len = max(a->instrlen, b->instrlen); 628 a->instrlen = b->instrlen = len; 629 } 630 631 instr = instr_va(a); 632 replacement = (u8 *)&a->repl_offset + a->repl_offset; 633 BUG_ON(a->instrlen > sizeof(insn_buff)); 634 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); 635 636 /* 637 * Patch if either: 638 * - feature is present 639 * - feature not present but ALT_FLAG_NOT is set to mean, 640 * patch if feature is *NOT* present. 641 */ 642 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) { 643 memcpy(insn_buff, instr, a->instrlen); 644 optimize_nops(instr, insn_buff, a->instrlen); 645 text_poke_early(instr, insn_buff, a->instrlen); 646 continue; 647 } 648 649 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x", 650 a->cpuid >> 5, 651 a->cpuid & 0x1f, 652 instr, instr, a->instrlen, 653 replacement, a->replacementlen, a->flags); 654 655 memcpy(insn_buff, replacement, a->replacementlen); 656 insn_buff_sz = a->replacementlen; 657 658 if (a->flags & ALT_FLAG_DIRECT_CALL) { 659 insn_buff_sz = alt_replace_call(instr, insn_buff, a); 660 if (insn_buff_sz < 0) 661 continue; 662 } 663 664 for (; insn_buff_sz < a->instrlen; insn_buff_sz++) 665 insn_buff[insn_buff_sz] = 0x90; 666 667 text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen); 668 669 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr); 670 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement); 671 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr); 672 673 text_poke_early(instr, insn_buff, insn_buff_sz); 674 } 675 676 kasan_enable_current(); 677 } 678 679 static inline bool is_jcc32(struct insn *insn) 680 { 681 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ 682 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80; 683 } 684 685 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL) 686 687 /* 688 * CALL/JMP *%\reg 689 */ 690 static int emit_indirect(int op, int reg, u8 *bytes) 691 { 692 int i = 0; 693 u8 modrm; 694 695 switch (op) { 696 case CALL_INSN_OPCODE: 697 modrm = 0x10; /* Reg = 2; CALL r/m */ 698 break; 699 700 case JMP32_INSN_OPCODE: 701 modrm = 0x20; /* Reg = 4; JMP r/m */ 702 break; 703 704 default: 705 WARN_ON_ONCE(1); 706 return -1; 707 } 708 709 if (reg >= 8) { 710 bytes[i++] = 0x41; /* REX.B prefix */ 711 reg -= 8; 712 } 713 714 modrm |= 0xc0; /* Mod = 3 */ 715 modrm += reg; 716 717 bytes[i++] = 0xff; /* opcode */ 718 bytes[i++] = modrm; 719 720 return i; 721 } 722 723 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes, 724 void *call_dest, void *jmp_dest) 725 { 726 u8 op = insn->opcode.bytes[0]; 727 int i = 0; 728 729 /* 730 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional 731 * tail-calls. Deal with them. 732 */ 733 if (is_jcc32(insn)) { 734 bytes[i++] = op; 735 op = insn->opcode.bytes[1]; 736 goto clang_jcc; 737 } 738 739 if (insn->length == 6) 740 bytes[i++] = 0x2e; /* CS-prefix */ 741 742 switch (op) { 743 case CALL_INSN_OPCODE: 744 __text_gen_insn(bytes+i, op, addr+i, 745 call_dest, 746 CALL_INSN_SIZE); 747 i += CALL_INSN_SIZE; 748 break; 749 750 case JMP32_INSN_OPCODE: 751 clang_jcc: 752 __text_gen_insn(bytes+i, op, addr+i, 753 jmp_dest, 754 JMP32_INSN_SIZE); 755 i += JMP32_INSN_SIZE; 756 break; 757 758 default: 759 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr); 760 return -1; 761 } 762 763 WARN_ON_ONCE(i != insn->length); 764 765 return i; 766 } 767 768 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes) 769 { 770 return __emit_trampoline(addr, insn, bytes, 771 __x86_indirect_call_thunk_array[reg], 772 __x86_indirect_jump_thunk_array[reg]); 773 } 774 775 #ifdef CONFIG_MITIGATION_ITS 776 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) 777 { 778 u8 *thunk = __x86_indirect_its_thunk_array[reg]; 779 u8 *tmp = its_allocate_thunk(reg); 780 781 if (tmp) 782 thunk = tmp; 783 784 return __emit_trampoline(addr, insn, bytes, thunk, thunk); 785 } 786 787 /* Check if an indirect branch is at ITS-unsafe address */ 788 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) 789 { 790 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 791 return false; 792 793 /* Indirect branch opcode is 2 or 3 bytes depending on reg */ 794 addr += 1 + reg / 8; 795 796 /* Lower-half of the cacheline? */ 797 return !(addr & 0x20); 798 } 799 #else /* CONFIG_MITIGATION_ITS */ 800 801 #ifdef CONFIG_FINEIBT 802 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) 803 { 804 return false; 805 } 806 #endif 807 808 #endif /* CONFIG_MITIGATION_ITS */ 809 810 /* 811 * Rewrite the compiler generated retpoline thunk calls. 812 * 813 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate 814 * indirect instructions, avoiding the extra indirection. 815 * 816 * For example, convert: 817 * 818 * CALL __x86_indirect_thunk_\reg 819 * 820 * into: 821 * 822 * CALL *%\reg 823 * 824 * It also tries to inline spectre_v2=retpoline,lfence when size permits. 825 */ 826 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) 827 { 828 retpoline_thunk_t *target; 829 int reg, ret, i = 0; 830 u8 op, cc; 831 832 target = addr + insn->length + insn->immediate.value; 833 reg = target - __x86_indirect_thunk_array; 834 835 if (WARN_ON_ONCE(reg & ~0xf)) 836 return -1; 837 838 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ 839 BUG_ON(reg == 4); 840 841 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && 842 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 843 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 844 return emit_call_track_retpoline(addr, insn, reg, bytes); 845 846 return -1; 847 } 848 849 op = insn->opcode.bytes[0]; 850 851 /* 852 * Convert: 853 * 854 * Jcc.d32 __x86_indirect_thunk_\reg 855 * 856 * into: 857 * 858 * Jncc.d8 1f 859 * [ LFENCE ] 860 * JMP *%\reg 861 * [ NOP ] 862 * 1: 863 */ 864 if (is_jcc32(insn)) { 865 cc = insn->opcode.bytes[1] & 0xf; 866 cc ^= 1; /* invert condition */ 867 868 bytes[i++] = 0x70 + cc; /* Jcc.d8 */ 869 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ 870 871 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ 872 op = JMP32_INSN_OPCODE; 873 } 874 875 /* 876 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. 877 */ 878 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 879 bytes[i++] = 0x0f; 880 bytes[i++] = 0xae; 881 bytes[i++] = 0xe8; /* LFENCE */ 882 } 883 884 #ifdef CONFIG_MITIGATION_ITS 885 /* 886 * Check if the address of last byte of emitted-indirect is in 887 * lower-half of the cacheline. Such branches need ITS mitigation. 888 */ 889 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg)) 890 return emit_its_trampoline(addr, insn, reg, bytes); 891 #endif 892 893 ret = emit_indirect(op, reg, bytes + i); 894 if (ret < 0) 895 return ret; 896 i += ret; 897 898 /* 899 * The compiler is supposed to EMIT an INT3 after every unconditional 900 * JMP instruction due to AMD BTC. However, if the compiler is too old 901 * or MITIGATION_SLS isn't enabled, we still need an INT3 after 902 * indirect JMPs even on Intel. 903 */ 904 if (op == JMP32_INSN_OPCODE && i < insn->length) 905 bytes[i++] = INT3_INSN_OPCODE; 906 907 for (; i < insn->length;) 908 bytes[i++] = BYTES_NOP1; 909 910 return i; 911 } 912 913 /* 914 * Generated by 'objtool --retpoline'. 915 */ 916 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) 917 { 918 s32 *s; 919 920 for (s = start; s < end; s++) { 921 void *addr = (void *)s + *s; 922 struct insn insn; 923 int len, ret; 924 u8 bytes[16]; 925 u8 op1, op2; 926 u8 *dest; 927 928 ret = insn_decode_kernel(&insn, addr); 929 if (WARN_ON_ONCE(ret < 0)) 930 continue; 931 932 op1 = insn.opcode.bytes[0]; 933 op2 = insn.opcode.bytes[1]; 934 935 switch (op1) { 936 case 0x70 ... 0x7f: /* Jcc.d8 */ 937 /* See cfi_paranoid. */ 938 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); 939 continue; 940 941 case CALL_INSN_OPCODE: 942 case JMP32_INSN_OPCODE: 943 /* Check for cfi_paranoid + ITS */ 944 dest = addr + insn.length + insn.immediate.value; 945 if (dest[-1] == 0xea && (dest[0] & 0xf0) == 0x70) { 946 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); 947 continue; 948 } 949 break; 950 951 case 0x0f: /* escape */ 952 if (op2 >= 0x80 && op2 <= 0x8f) 953 break; 954 fallthrough; 955 default: 956 WARN_ON_ONCE(1); 957 continue; 958 } 959 960 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS", 961 addr, addr, insn.length, 962 addr + insn.length + insn.immediate.value); 963 964 len = patch_retpoline(addr, &insn, bytes); 965 if (len == insn.length) { 966 optimize_nops(addr, bytes, len); 967 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr); 968 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr); 969 text_poke_early(addr, bytes, len); 970 } 971 } 972 } 973 974 #ifdef CONFIG_MITIGATION_RETHUNK 975 976 bool cpu_wants_rethunk(void) 977 { 978 return cpu_feature_enabled(X86_FEATURE_RETHUNK); 979 } 980 981 bool cpu_wants_rethunk_at(void *addr) 982 { 983 if (!cpu_feature_enabled(X86_FEATURE_RETHUNK)) 984 return false; 985 if (x86_return_thunk != its_return_thunk) 986 return true; 987 988 return !((unsigned long)addr & 0x20); 989 } 990 991 /* 992 * Rewrite the compiler generated return thunk tail-calls. 993 * 994 * For example, convert: 995 * 996 * JMP __x86_return_thunk 997 * 998 * into: 999 * 1000 * RET 1001 */ 1002 static int patch_return(void *addr, struct insn *insn, u8 *bytes) 1003 { 1004 int i = 0; 1005 1006 /* Patch the custom return thunks... */ 1007 if (cpu_wants_rethunk_at(addr)) { 1008 i = JMP32_INSN_SIZE; 1009 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i); 1010 } else { 1011 /* ... or patch them out if not needed. */ 1012 bytes[i++] = RET_INSN_OPCODE; 1013 } 1014 1015 for (; i < insn->length;) 1016 bytes[i++] = INT3_INSN_OPCODE; 1017 return i; 1018 } 1019 1020 void __init_or_module noinline apply_returns(s32 *start, s32 *end) 1021 { 1022 s32 *s; 1023 1024 if (cpu_wants_rethunk()) 1025 static_call_force_reinit(); 1026 1027 for (s = start; s < end; s++) { 1028 void *dest = NULL, *addr = (void *)s + *s; 1029 struct insn insn; 1030 int len, ret; 1031 u8 bytes[16]; 1032 u8 op; 1033 1034 ret = insn_decode_kernel(&insn, addr); 1035 if (WARN_ON_ONCE(ret < 0)) 1036 continue; 1037 1038 op = insn.opcode.bytes[0]; 1039 if (op == JMP32_INSN_OPCODE) 1040 dest = addr + insn.length + insn.immediate.value; 1041 1042 if (__static_call_fixup(addr, op, dest) || 1043 WARN_ONCE(dest != &__x86_return_thunk, 1044 "missing return thunk: %pS-%pS: %*ph", 1045 addr, dest, 5, addr)) 1046 continue; 1047 1048 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS", 1049 addr, addr, insn.length, 1050 addr + insn.length + insn.immediate.value); 1051 1052 len = patch_return(addr, &insn, bytes); 1053 if (len == insn.length) { 1054 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr); 1055 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr); 1056 text_poke_early(addr, bytes, len); 1057 } 1058 } 1059 } 1060 #else /* !CONFIG_MITIGATION_RETHUNK: */ 1061 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 1062 #endif /* !CONFIG_MITIGATION_RETHUNK */ 1063 1064 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ 1065 1066 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } 1067 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 1068 1069 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ 1070 1071 #ifdef CONFIG_X86_KERNEL_IBT 1072 1073 __noendbr bool is_endbr(u32 *val) 1074 { 1075 u32 endbr; 1076 1077 __get_kernel_nofault(&endbr, val, u32, Efault); 1078 return __is_endbr(endbr); 1079 1080 Efault: 1081 return false; 1082 } 1083 1084 #ifdef CONFIG_FINEIBT 1085 1086 static __noendbr bool exact_endbr(u32 *val) 1087 { 1088 u32 endbr; 1089 1090 __get_kernel_nofault(&endbr, val, u32, Efault); 1091 return endbr == gen_endbr(); 1092 1093 Efault: 1094 return false; 1095 } 1096 1097 #endif 1098 1099 static void poison_cfi(void *addr); 1100 1101 static void __init_or_module poison_endbr(void *addr) 1102 { 1103 u32 poison = gen_endbr_poison(); 1104 1105 if (WARN_ON_ONCE(!is_endbr(addr))) 1106 return; 1107 1108 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr); 1109 1110 /* 1111 * When we have IBT, the lack of ENDBR will trigger #CP 1112 */ 1113 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr); 1114 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr); 1115 text_poke_early(addr, &poison, 4); 1116 } 1117 1118 /* 1119 * Generated by: objtool --ibt 1120 * 1121 * Seal the functions for indirect calls by clobbering the ENDBR instructions 1122 * and the kCFI hash value. 1123 */ 1124 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end) 1125 { 1126 s32 *s; 1127 1128 for (s = start; s < end; s++) { 1129 void *addr = (void *)s + *s; 1130 1131 poison_endbr(addr); 1132 if (IS_ENABLED(CONFIG_FINEIBT)) 1133 poison_cfi(addr - 16); 1134 } 1135 } 1136 1137 #else /* !CONFIG_X86_KERNEL_IBT: */ 1138 1139 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { } 1140 1141 #endif /* !CONFIG_X86_KERNEL_IBT */ 1142 1143 #ifdef CONFIG_CFI_AUTO_DEFAULT 1144 # define __CFI_DEFAULT CFI_AUTO 1145 #elif defined(CONFIG_CFI_CLANG) 1146 # define __CFI_DEFAULT CFI_KCFI 1147 #else 1148 # define __CFI_DEFAULT CFI_OFF 1149 #endif 1150 1151 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT; 1152 1153 #ifdef CONFIG_FINEIBT_BHI 1154 bool cfi_bhi __ro_after_init = false; 1155 #endif 1156 1157 #ifdef CONFIG_CFI_CLANG 1158 struct bpf_insn; 1159 1160 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */ 1161 extern unsigned int __bpf_prog_runX(const void *ctx, 1162 const struct bpf_insn *insn); 1163 1164 KCFI_REFERENCE(__bpf_prog_runX); 1165 1166 /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */ 1167 asm ( 1168 " .pushsection .data..ro_after_init,\"aw\",@progbits \n" 1169 " .type cfi_bpf_hash,@object \n" 1170 " .globl cfi_bpf_hash \n" 1171 " .p2align 2, 0x0 \n" 1172 "cfi_bpf_hash: \n" 1173 " .long __kcfi_typeid___bpf_prog_runX \n" 1174 " .size cfi_bpf_hash, 4 \n" 1175 " .popsection \n" 1176 ); 1177 1178 /* Must match bpf_callback_t */ 1179 extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64); 1180 1181 KCFI_REFERENCE(__bpf_callback_fn); 1182 1183 /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */ 1184 asm ( 1185 " .pushsection .data..ro_after_init,\"aw\",@progbits \n" 1186 " .type cfi_bpf_subprog_hash,@object \n" 1187 " .globl cfi_bpf_subprog_hash \n" 1188 " .p2align 2, 0x0 \n" 1189 "cfi_bpf_subprog_hash: \n" 1190 " .long __kcfi_typeid___bpf_callback_fn \n" 1191 " .size cfi_bpf_subprog_hash, 4 \n" 1192 " .popsection \n" 1193 ); 1194 1195 u32 cfi_get_func_hash(void *func) 1196 { 1197 u32 hash; 1198 1199 func -= cfi_get_offset(); 1200 switch (cfi_mode) { 1201 case CFI_FINEIBT: 1202 func += 7; 1203 break; 1204 case CFI_KCFI: 1205 func += 1; 1206 break; 1207 default: 1208 return 0; 1209 } 1210 1211 if (get_kernel_nofault(hash, func)) 1212 return 0; 1213 1214 return hash; 1215 } 1216 1217 int cfi_get_func_arity(void *func) 1218 { 1219 bhi_thunk *target; 1220 s32 disp; 1221 1222 if (cfi_mode != CFI_FINEIBT && !cfi_bhi) 1223 return 0; 1224 1225 if (get_kernel_nofault(disp, func - 4)) 1226 return 0; 1227 1228 target = func + disp; 1229 return target - __bhi_args; 1230 } 1231 #endif 1232 1233 #ifdef CONFIG_FINEIBT 1234 1235 static bool cfi_rand __ro_after_init = true; 1236 static u32 cfi_seed __ro_after_init; 1237 1238 /* 1239 * Re-hash the CFI hash with a boot-time seed while making sure the result is 1240 * not a valid ENDBR instruction. 1241 */ 1242 static u32 cfi_rehash(u32 hash) 1243 { 1244 hash ^= cfi_seed; 1245 while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) { 1246 bool lsb = hash & 1; 1247 hash >>= 1; 1248 if (lsb) 1249 hash ^= 0x80200003; 1250 } 1251 return hash; 1252 } 1253 1254 static __init int cfi_parse_cmdline(char *str) 1255 { 1256 if (!str) 1257 return -EINVAL; 1258 1259 while (str) { 1260 char *next = strchr(str, ','); 1261 if (next) { 1262 *next = 0; 1263 next++; 1264 } 1265 1266 if (!strcmp(str, "auto")) { 1267 cfi_mode = CFI_AUTO; 1268 } else if (!strcmp(str, "off")) { 1269 cfi_mode = CFI_OFF; 1270 cfi_rand = false; 1271 } else if (!strcmp(str, "kcfi")) { 1272 cfi_mode = CFI_KCFI; 1273 } else if (!strcmp(str, "fineibt")) { 1274 cfi_mode = CFI_FINEIBT; 1275 } else if (!strcmp(str, "norand")) { 1276 cfi_rand = false; 1277 } else if (!strcmp(str, "warn")) { 1278 pr_alert("CFI mismatch non-fatal!\n"); 1279 cfi_warn = true; 1280 } else if (!strcmp(str, "paranoid")) { 1281 if (cfi_mode == CFI_FINEIBT) { 1282 cfi_paranoid = true; 1283 } else { 1284 pr_err("Ignoring paranoid; depends on fineibt.\n"); 1285 } 1286 } else if (!strcmp(str, "bhi")) { 1287 #ifdef CONFIG_FINEIBT_BHI 1288 if (cfi_mode == CFI_FINEIBT) { 1289 cfi_bhi = true; 1290 } else { 1291 pr_err("Ignoring bhi; depends on fineibt.\n"); 1292 } 1293 #else 1294 pr_err("Ignoring bhi; depends on FINEIBT_BHI=y.\n"); 1295 #endif 1296 } else { 1297 pr_err("Ignoring unknown cfi option (%s).", str); 1298 } 1299 1300 str = next; 1301 } 1302 1303 return 0; 1304 } 1305 early_param("cfi", cfi_parse_cmdline); 1306 1307 /* 1308 * kCFI FineIBT 1309 * 1310 * __cfi_\func: __cfi_\func: 1311 * movl $0x12345678,%eax // 5 endbr64 // 4 1312 * nop subl $0x12345678,%r10d // 7 1313 * nop jne __cfi_\func+6 // 2 1314 * nop nop3 // 3 1315 * nop 1316 * nop 1317 * nop 1318 * nop 1319 * nop 1320 * nop 1321 * nop 1322 * nop 1323 * 1324 * 1325 * caller: caller: 1326 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6 1327 * addl $-15(%r11),%r10d // 4 lea -0x10(%r11),%r11 // 4 1328 * je 1f // 2 nop4 // 4 1329 * ud2 // 2 1330 * 1: cs call __x86_indirect_thunk_r11 // 6 call *%r11; nop3; // 6 1331 * 1332 */ 1333 1334 /* 1335 * <fineibt_preamble_start>: 1336 * 0: f3 0f 1e fa endbr64 1337 * 4: 41 81 <ea> 78 56 34 12 sub $0x12345678, %r10d 1338 * b: 75 f9 jne 6 <fineibt_preamble_start+0x6> 1339 * d: 0f 1f 00 nopl (%rax) 1340 * 1341 * Note that the JNE target is the 0xEA byte inside the SUB, this decodes as 1342 * (bad) on x86_64 and raises #UD. 1343 */ 1344 asm( ".pushsection .rodata \n" 1345 "fineibt_preamble_start: \n" 1346 " endbr64 \n" 1347 " subl $0x12345678, %r10d \n" 1348 "fineibt_preamble_bhi: \n" 1349 " jne fineibt_preamble_start+6 \n" 1350 ASM_NOP3 1351 "fineibt_preamble_end: \n" 1352 ".popsection\n" 1353 ); 1354 1355 extern u8 fineibt_preamble_start[]; 1356 extern u8 fineibt_preamble_bhi[]; 1357 extern u8 fineibt_preamble_end[]; 1358 1359 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start) 1360 #define fineibt_preamble_bhi (fineibt_preamble_bhi - fineibt_preamble_start) 1361 #define fineibt_preamble_ud 6 1362 #define fineibt_preamble_hash 7 1363 1364 /* 1365 * <fineibt_caller_start>: 1366 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d 1367 * 6: 4d 8d 5b f0 lea -0x10(%r11), %r11 1368 * a: 0f 1f 40 00 nopl 0x0(%rax) 1369 */ 1370 asm( ".pushsection .rodata \n" 1371 "fineibt_caller_start: \n" 1372 " movl $0x12345678, %r10d \n" 1373 " lea -0x10(%r11), %r11 \n" 1374 ASM_NOP4 1375 "fineibt_caller_end: \n" 1376 ".popsection \n" 1377 ); 1378 1379 extern u8 fineibt_caller_start[]; 1380 extern u8 fineibt_caller_end[]; 1381 1382 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start) 1383 #define fineibt_caller_hash 2 1384 1385 #define fineibt_caller_jmp (fineibt_caller_size - 2) 1386 1387 /* 1388 * Since FineIBT does hash validation on the callee side it is prone to 1389 * circumvention attacks where a 'naked' ENDBR instruction exists that 1390 * is not part of the fineibt_preamble sequence. 1391 * 1392 * Notably the x86 entry points must be ENDBR and equally cannot be 1393 * fineibt_preamble. 1394 * 1395 * The fineibt_paranoid caller sequence adds additional caller side 1396 * hash validation. This stops such circumvention attacks dead, but at the cost 1397 * of adding a load. 1398 * 1399 * <fineibt_paranoid_start>: 1400 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d 1401 * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d 1402 * a: 4d 8d 5b <f0> lea -0x10(%r11), %r11 1403 * e: 75 fd jne d <fineibt_paranoid_start+0xd> 1404 * 10: 41 ff d3 call *%r11 1405 * 13: 90 nop 1406 * 1407 * Notably LEA does not modify flags and can be reordered with the CMP, 1408 * avoiding a dependency. Again, using a non-taken (backwards) branch 1409 * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the 1410 * Jcc.d8, causing #UD. 1411 */ 1412 asm( ".pushsection .rodata \n" 1413 "fineibt_paranoid_start: \n" 1414 " movl $0x12345678, %r10d \n" 1415 " cmpl -9(%r11), %r10d \n" 1416 " lea -0x10(%r11), %r11 \n" 1417 " jne fineibt_paranoid_start+0xd \n" 1418 "fineibt_paranoid_ind: \n" 1419 " call *%r11 \n" 1420 " nop \n" 1421 "fineibt_paranoid_end: \n" 1422 ".popsection \n" 1423 ); 1424 1425 extern u8 fineibt_paranoid_start[]; 1426 extern u8 fineibt_paranoid_ind[]; 1427 extern u8 fineibt_paranoid_end[]; 1428 1429 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start) 1430 #define fineibt_paranoid_ind (fineibt_paranoid_ind - fineibt_paranoid_start) 1431 #define fineibt_paranoid_ud 0xd 1432 1433 static u32 decode_preamble_hash(void *addr, int *reg) 1434 { 1435 u8 *p = addr; 1436 1437 /* b8+reg 78 56 34 12 movl $0x12345678,\reg */ 1438 if (p[0] >= 0xb8 && p[0] < 0xc0) { 1439 if (reg) 1440 *reg = p[0] - 0xb8; 1441 return *(u32 *)(addr + 1); 1442 } 1443 1444 return 0; /* invalid hash value */ 1445 } 1446 1447 static u32 decode_caller_hash(void *addr) 1448 { 1449 u8 *p = addr; 1450 1451 /* 41 ba 88 a9 cb ed mov $(-0x12345678),%r10d */ 1452 if (p[0] == 0x41 && p[1] == 0xba) 1453 return -*(u32 *)(addr + 2); 1454 1455 /* e8 0c 88 a9 cb ed jmp.d8 +12 */ 1456 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp) 1457 return -*(u32 *)(addr + 2); 1458 1459 return 0; /* invalid hash value */ 1460 } 1461 1462 /* .retpoline_sites */ 1463 static int cfi_disable_callers(s32 *start, s32 *end) 1464 { 1465 /* 1466 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate 1467 * in tact for later usage. Also see decode_caller_hash() and 1468 * cfi_rewrite_callers(). 1469 */ 1470 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp }; 1471 s32 *s; 1472 1473 for (s = start; s < end; s++) { 1474 void *addr = (void *)s + *s; 1475 u32 hash; 1476 1477 addr -= fineibt_caller_size; 1478 hash = decode_caller_hash(addr); 1479 if (!hash) /* nocfi callers */ 1480 continue; 1481 1482 text_poke_early(addr, jmp, 2); 1483 } 1484 1485 return 0; 1486 } 1487 1488 static int cfi_enable_callers(s32 *start, s32 *end) 1489 { 1490 /* 1491 * Re-enable kCFI, undo what cfi_disable_callers() did. 1492 */ 1493 const u8 mov[] = { 0x41, 0xba }; 1494 s32 *s; 1495 1496 for (s = start; s < end; s++) { 1497 void *addr = (void *)s + *s; 1498 u32 hash; 1499 1500 addr -= fineibt_caller_size; 1501 hash = decode_caller_hash(addr); 1502 if (!hash) /* nocfi callers */ 1503 continue; 1504 1505 text_poke_early(addr, mov, 2); 1506 } 1507 1508 return 0; 1509 } 1510 1511 /* .cfi_sites */ 1512 static int cfi_rand_preamble(s32 *start, s32 *end) 1513 { 1514 s32 *s; 1515 1516 for (s = start; s < end; s++) { 1517 void *addr = (void *)s + *s; 1518 u32 hash; 1519 1520 hash = decode_preamble_hash(addr, NULL); 1521 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1522 addr, addr, 5, addr)) 1523 return -EINVAL; 1524 1525 hash = cfi_rehash(hash); 1526 text_poke_early(addr + 1, &hash, 4); 1527 } 1528 1529 return 0; 1530 } 1531 1532 static void cfi_fineibt_bhi_preamble(void *addr, int arity) 1533 { 1534 if (!arity) 1535 return; 1536 1537 if (!cfi_warn && arity == 1) { 1538 /* 1539 * Crazy scheme to allow arity-1 inline: 1540 * 1541 * __cfi_foo: 1542 * 0: f3 0f 1e fa endbr64 1543 * 4: 41 81 <ea> 78 56 34 12 sub 0x12345678, %r10d 1544 * b: 49 0f 45 fa cmovne %r10, %rdi 1545 * f: 75 f5 jne __cfi_foo+6 1546 * 11: 0f 1f 00 nopl (%rax) 1547 * 1548 * Code that direct calls to foo()+0, decodes the tail end as: 1549 * 1550 * foo: 1551 * 0: f5 cmc 1552 * 1: 0f 1f 00 nopl (%rax) 1553 * 1554 * which clobbers CF, but does not affect anything ABI 1555 * wise. 1556 * 1557 * Notably, this scheme is incompatible with permissive CFI 1558 * because the CMOVcc is unconditional and RDI will have been 1559 * clobbered. 1560 */ 1561 const u8 magic[9] = { 1562 0x49, 0x0f, 0x45, 0xfa, 1563 0x75, 0xf5, 1564 BYTES_NOP3, 1565 }; 1566 1567 text_poke_early(addr + fineibt_preamble_bhi, magic, 9); 1568 1569 return; 1570 } 1571 1572 text_poke_early(addr + fineibt_preamble_bhi, 1573 text_gen_insn(CALL_INSN_OPCODE, 1574 addr + fineibt_preamble_bhi, 1575 __bhi_args[arity]), 1576 CALL_INSN_SIZE); 1577 } 1578 1579 static int cfi_rewrite_preamble(s32 *start, s32 *end) 1580 { 1581 s32 *s; 1582 1583 for (s = start; s < end; s++) { 1584 void *addr = (void *)s + *s; 1585 int arity; 1586 u32 hash; 1587 1588 /* 1589 * When the function doesn't start with ENDBR the compiler will 1590 * have determined there are no indirect calls to it and we 1591 * don't need no CFI either. 1592 */ 1593 if (!is_endbr(addr + 16)) 1594 continue; 1595 1596 hash = decode_preamble_hash(addr, &arity); 1597 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1598 addr, addr, 5, addr)) 1599 return -EINVAL; 1600 1601 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size); 1602 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678); 1603 text_poke_early(addr + fineibt_preamble_hash, &hash, 4); 1604 1605 WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity, 1606 "kCFI preamble has wrong register at: %pS %*ph\n", 1607 addr, 5, addr); 1608 1609 if (cfi_bhi) 1610 cfi_fineibt_bhi_preamble(addr, arity); 1611 } 1612 1613 return 0; 1614 } 1615 1616 static void cfi_rewrite_endbr(s32 *start, s32 *end) 1617 { 1618 s32 *s; 1619 1620 for (s = start; s < end; s++) { 1621 void *addr = (void *)s + *s; 1622 1623 if (!exact_endbr(addr + 16)) 1624 continue; 1625 1626 poison_endbr(addr + 16); 1627 } 1628 } 1629 1630 /* .retpoline_sites */ 1631 static int cfi_rand_callers(s32 *start, s32 *end) 1632 { 1633 s32 *s; 1634 1635 for (s = start; s < end; s++) { 1636 void *addr = (void *)s + *s; 1637 u32 hash; 1638 1639 addr -= fineibt_caller_size; 1640 hash = decode_caller_hash(addr); 1641 if (hash) { 1642 hash = -cfi_rehash(hash); 1643 text_poke_early(addr + 2, &hash, 4); 1644 } 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) 1651 { 1652 u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2; 1653 1654 #ifdef CONFIG_MITIGATION_ITS 1655 u8 *tmp = its_allocate_thunk(reg); 1656 if (tmp) 1657 thunk = tmp; 1658 #endif 1659 1660 return __emit_trampoline(addr, insn, bytes, thunk, thunk); 1661 } 1662 1663 static int cfi_rewrite_callers(s32 *start, s32 *end) 1664 { 1665 s32 *s; 1666 1667 BUG_ON(fineibt_paranoid_size != 20); 1668 1669 for (s = start; s < end; s++) { 1670 void *addr = (void *)s + *s; 1671 struct insn insn; 1672 u8 bytes[20]; 1673 u32 hash; 1674 int ret; 1675 u8 op; 1676 1677 addr -= fineibt_caller_size; 1678 hash = decode_caller_hash(addr); 1679 if (!hash) 1680 continue; 1681 1682 if (!cfi_paranoid) { 1683 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size); 1684 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678); 1685 text_poke_early(addr + fineibt_caller_hash, &hash, 4); 1686 /* rely on apply_retpolines() */ 1687 continue; 1688 } 1689 1690 /* cfi_paranoid */ 1691 ret = insn_decode_kernel(&insn, addr + fineibt_caller_size); 1692 if (WARN_ON_ONCE(ret < 0)) 1693 continue; 1694 1695 op = insn.opcode.bytes[0]; 1696 if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) { 1697 WARN_ON_ONCE(1); 1698 continue; 1699 } 1700 1701 memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size); 1702 memcpy(bytes + fineibt_caller_hash, &hash, 4); 1703 1704 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) { 1705 emit_paranoid_trampoline(addr + fineibt_caller_size, 1706 &insn, 11, bytes + fineibt_caller_size); 1707 } else { 1708 ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind); 1709 if (WARN_ON_ONCE(ret != 3)) 1710 continue; 1711 } 1712 1713 text_poke_early(addr, bytes, fineibt_paranoid_size); 1714 } 1715 1716 return 0; 1717 } 1718 1719 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1720 s32 *start_cfi, s32 *end_cfi, bool builtin) 1721 { 1722 int ret; 1723 1724 if (WARN_ONCE(fineibt_preamble_size != 16, 1725 "FineIBT preamble wrong size: %ld", fineibt_preamble_size)) 1726 return; 1727 1728 if (cfi_mode == CFI_AUTO) { 1729 cfi_mode = CFI_KCFI; 1730 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) { 1731 /* 1732 * FRED has much saner context on exception entry and 1733 * is less easy to take advantage of. 1734 */ 1735 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 1736 cfi_paranoid = true; 1737 cfi_mode = CFI_FINEIBT; 1738 } 1739 } 1740 1741 /* 1742 * Rewrite the callers to not use the __cfi_ stubs, such that we might 1743 * rewrite them. This disables all CFI. If this succeeds but any of the 1744 * later stages fails, we're without CFI. 1745 */ 1746 ret = cfi_disable_callers(start_retpoline, end_retpoline); 1747 if (ret) 1748 goto err; 1749 1750 if (cfi_rand) { 1751 if (builtin) { 1752 cfi_seed = get_random_u32(); 1753 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash); 1754 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash); 1755 } 1756 1757 ret = cfi_rand_preamble(start_cfi, end_cfi); 1758 if (ret) 1759 goto err; 1760 1761 ret = cfi_rand_callers(start_retpoline, end_retpoline); 1762 if (ret) 1763 goto err; 1764 } 1765 1766 switch (cfi_mode) { 1767 case CFI_OFF: 1768 if (builtin) 1769 pr_info("Disabling CFI\n"); 1770 return; 1771 1772 case CFI_KCFI: 1773 ret = cfi_enable_callers(start_retpoline, end_retpoline); 1774 if (ret) 1775 goto err; 1776 1777 if (builtin) 1778 pr_info("Using kCFI\n"); 1779 return; 1780 1781 case CFI_FINEIBT: 1782 /* place the FineIBT preamble at func()-16 */ 1783 ret = cfi_rewrite_preamble(start_cfi, end_cfi); 1784 if (ret) 1785 goto err; 1786 1787 /* rewrite the callers to target func()-16 */ 1788 ret = cfi_rewrite_callers(start_retpoline, end_retpoline); 1789 if (ret) 1790 goto err; 1791 1792 /* now that nobody targets func()+0, remove ENDBR there */ 1793 cfi_rewrite_endbr(start_cfi, end_cfi); 1794 1795 if (builtin) { 1796 pr_info("Using %sFineIBT%s CFI\n", 1797 cfi_paranoid ? "paranoid " : "", 1798 cfi_bhi ? "+BHI" : ""); 1799 } 1800 return; 1801 1802 default: 1803 break; 1804 } 1805 1806 err: 1807 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n"); 1808 } 1809 1810 static inline void poison_hash(void *addr) 1811 { 1812 *(u32 *)addr = 0; 1813 } 1814 1815 static void poison_cfi(void *addr) 1816 { 1817 /* 1818 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes, 1819 * some (static) functions for which they can determine the address 1820 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR. 1821 * 1822 * As such, these functions will get sealed, but we need to be careful 1823 * to not unconditionally scribble the previous function. 1824 */ 1825 switch (cfi_mode) { 1826 case CFI_FINEIBT: 1827 /* 1828 * FineIBT prefix should start with an ENDBR. 1829 */ 1830 if (!is_endbr(addr)) 1831 break; 1832 1833 /* 1834 * __cfi_\func: 1835 * osp nopl (%rax) 1836 * subl $0, %r10d 1837 * jz 1f 1838 * ud2 1839 * 1: nop 1840 */ 1841 poison_endbr(addr); 1842 poison_hash(addr + fineibt_preamble_hash); 1843 break; 1844 1845 case CFI_KCFI: 1846 /* 1847 * kCFI prefix should start with a valid hash. 1848 */ 1849 if (!decode_preamble_hash(addr, NULL)) 1850 break; 1851 1852 /* 1853 * __cfi_\func: 1854 * movl $0, %eax 1855 * .skip 11, 0x90 1856 */ 1857 poison_hash(addr + 1); 1858 break; 1859 1860 default: 1861 break; 1862 } 1863 } 1864 1865 /* 1866 * When regs->ip points to a 0xEA byte in the FineIBT preamble, 1867 * return true and fill out target and type. 1868 * 1869 * We check the preamble by checking for the ENDBR instruction relative to the 1870 * 0xEA instruction. 1871 */ 1872 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type) 1873 { 1874 unsigned long addr = regs->ip - fineibt_preamble_ud; 1875 u32 hash; 1876 1877 if (!exact_endbr((void *)addr)) 1878 return false; 1879 1880 *target = addr + fineibt_preamble_size; 1881 1882 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); 1883 *type = (u32)regs->r10 + hash; 1884 1885 /* 1886 * Since regs->ip points to the middle of an instruction; it cannot 1887 * continue with the normal fixup. 1888 */ 1889 regs->ip = *target; 1890 1891 return true; 1892 1893 Efault: 1894 return false; 1895 } 1896 1897 /* 1898 * regs->ip points to one of the UD2 in __bhi_args[]. 1899 */ 1900 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type) 1901 { 1902 unsigned long addr; 1903 u32 hash; 1904 1905 if (!cfi_bhi) 1906 return false; 1907 1908 if (regs->ip < (unsigned long)__bhi_args || 1909 regs->ip >= (unsigned long)__bhi_args_end) 1910 return false; 1911 1912 /* 1913 * Fetch the return address from the stack, this points to the 1914 * FineIBT preamble. Since the CALL instruction is in the 5 last 1915 * bytes of the preamble, the return address is in fact the target 1916 * address. 1917 */ 1918 __get_kernel_nofault(&addr, regs->sp, unsigned long, Efault); 1919 *target = addr; 1920 1921 addr -= fineibt_preamble_size; 1922 if (!exact_endbr((void *)addr)) 1923 return false; 1924 1925 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); 1926 *type = (u32)regs->r10 + hash; 1927 1928 /* 1929 * The UD2 sites are constructed with a RET immediately following, 1930 * as such the non-fatal case can use the regular fixup. 1931 */ 1932 return true; 1933 1934 Efault: 1935 return false; 1936 } 1937 1938 static bool is_paranoid_thunk(unsigned long addr) 1939 { 1940 u32 thunk; 1941 1942 __get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault); 1943 return (thunk & 0x00FFFFFF) == 0xfd75ea; 1944 1945 Efault: 1946 return false; 1947 } 1948 1949 /* 1950 * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[] 1951 * sequence, or to an invalid instruction (0xea) + Jcc.d8 for cfi_paranoid + ITS 1952 * thunk. 1953 */ 1954 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type) 1955 { 1956 unsigned long addr = regs->ip - fineibt_paranoid_ud; 1957 1958 if (!cfi_paranoid) 1959 return false; 1960 1961 if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) { 1962 *target = regs->r11 + fineibt_preamble_size; 1963 *type = regs->r10; 1964 1965 /* 1966 * Since the trapping instruction is the exact, but LOCK prefixed, 1967 * Jcc.d8 that got us here, the normal fixup will work. 1968 */ 1969 return true; 1970 } 1971 1972 /* 1973 * The cfi_paranoid + ITS thunk combination results in: 1974 * 1975 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d 1976 * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d 1977 * a: 4d 8d 5b f0 lea -0x10(%r11), %r11 1978 * e: 2e e8 XX XX XX XX cs call __x86_indirect_paranoid_thunk_r11 1979 * 1980 * Where the paranoid_thunk looks like: 1981 * 1982 * 1d: <ea> (bad) 1983 * __x86_indirect_paranoid_thunk_r11: 1984 * 1e: 75 fd jne 1d 1985 * __x86_indirect_its_thunk_r11: 1986 * 20: 41 ff eb jmp *%r11 1987 * 23: cc int3 1988 * 1989 */ 1990 if (is_paranoid_thunk(regs->ip)) { 1991 *target = regs->r11 + fineibt_preamble_size; 1992 *type = regs->r10; 1993 1994 regs->ip = *target; 1995 return true; 1996 } 1997 1998 return false; 1999 } 2000 2001 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type) 2002 { 2003 if (decode_fineibt_paranoid(regs, target, type)) 2004 return true; 2005 2006 if (decode_fineibt_bhi(regs, target, type)) 2007 return true; 2008 2009 return decode_fineibt_preamble(regs, target, type); 2010 } 2011 2012 #else /* !CONFIG_FINEIBT: */ 2013 2014 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 2015 s32 *start_cfi, s32 *end_cfi, bool builtin) 2016 { 2017 } 2018 2019 #ifdef CONFIG_X86_KERNEL_IBT 2020 static void poison_cfi(void *addr) { } 2021 #endif 2022 2023 #endif /* !CONFIG_FINEIBT */ 2024 2025 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 2026 s32 *start_cfi, s32 *end_cfi) 2027 { 2028 return __apply_fineibt(start_retpoline, end_retpoline, 2029 start_cfi, end_cfi, 2030 /* .builtin = */ false); 2031 } 2032 2033 #ifdef CONFIG_SMP 2034 static void alternatives_smp_lock(const s32 *start, const s32 *end, 2035 u8 *text, u8 *text_end) 2036 { 2037 const s32 *poff; 2038 2039 for (poff = start; poff < end; poff++) { 2040 u8 *ptr = (u8 *)poff + *poff; 2041 2042 if (!*poff || ptr < text || ptr >= text_end) 2043 continue; 2044 /* turn DS segment override prefix into lock prefix */ 2045 if (*ptr == 0x3e) 2046 text_poke(ptr, ((unsigned char []){0xf0}), 1); 2047 } 2048 } 2049 2050 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 2051 u8 *text, u8 *text_end) 2052 { 2053 const s32 *poff; 2054 2055 for (poff = start; poff < end; poff++) { 2056 u8 *ptr = (u8 *)poff + *poff; 2057 2058 if (!*poff || ptr < text || ptr >= text_end) 2059 continue; 2060 /* turn lock prefix into DS segment override prefix */ 2061 if (*ptr == 0xf0) 2062 text_poke(ptr, ((unsigned char []){0x3E}), 1); 2063 } 2064 } 2065 2066 struct smp_alt_module { 2067 /* what is this ??? */ 2068 struct module *mod; 2069 char *name; 2070 2071 /* ptrs to lock prefixes */ 2072 const s32 *locks; 2073 const s32 *locks_end; 2074 2075 /* .text segment, needed to avoid patching init code ;) */ 2076 u8 *text; 2077 u8 *text_end; 2078 2079 struct list_head next; 2080 }; 2081 static LIST_HEAD(smp_alt_modules); 2082 static bool uniproc_patched = false; /* protected by text_mutex */ 2083 2084 void __init_or_module alternatives_smp_module_add(struct module *mod, 2085 char *name, 2086 void *locks, void *locks_end, 2087 void *text, void *text_end) 2088 { 2089 struct smp_alt_module *smp; 2090 2091 mutex_lock(&text_mutex); 2092 if (!uniproc_patched) 2093 goto unlock; 2094 2095 if (num_possible_cpus() == 1) 2096 /* Don't bother remembering, we'll never have to undo it. */ 2097 goto smp_unlock; 2098 2099 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 2100 if (NULL == smp) 2101 /* we'll run the (safe but slow) SMP code then ... */ 2102 goto unlock; 2103 2104 smp->mod = mod; 2105 smp->name = name; 2106 smp->locks = locks; 2107 smp->locks_end = locks_end; 2108 smp->text = text; 2109 smp->text_end = text_end; 2110 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n", 2111 smp->locks, smp->locks_end, 2112 smp->text, smp->text_end, smp->name); 2113 2114 list_add_tail(&smp->next, &smp_alt_modules); 2115 smp_unlock: 2116 alternatives_smp_unlock(locks, locks_end, text, text_end); 2117 unlock: 2118 mutex_unlock(&text_mutex); 2119 } 2120 2121 void __init_or_module alternatives_smp_module_del(struct module *mod) 2122 { 2123 struct smp_alt_module *item; 2124 2125 mutex_lock(&text_mutex); 2126 list_for_each_entry(item, &smp_alt_modules, next) { 2127 if (mod != item->mod) 2128 continue; 2129 list_del(&item->next); 2130 kfree(item); 2131 break; 2132 } 2133 mutex_unlock(&text_mutex); 2134 } 2135 2136 void alternatives_enable_smp(void) 2137 { 2138 struct smp_alt_module *mod; 2139 2140 /* Why bother if there are no other CPUs? */ 2141 BUG_ON(num_possible_cpus() == 1); 2142 2143 mutex_lock(&text_mutex); 2144 2145 if (uniproc_patched) { 2146 pr_info("switching to SMP code\n"); 2147 BUG_ON(num_online_cpus() != 1); 2148 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 2149 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 2150 list_for_each_entry(mod, &smp_alt_modules, next) 2151 alternatives_smp_lock(mod->locks, mod->locks_end, 2152 mod->text, mod->text_end); 2153 uniproc_patched = false; 2154 } 2155 mutex_unlock(&text_mutex); 2156 } 2157 2158 /* 2159 * Return 1 if the address range is reserved for SMP-alternatives. 2160 * Must hold text_mutex. 2161 */ 2162 int alternatives_text_reserved(void *start, void *end) 2163 { 2164 struct smp_alt_module *mod; 2165 const s32 *poff; 2166 u8 *text_start = start; 2167 u8 *text_end = end; 2168 2169 lockdep_assert_held(&text_mutex); 2170 2171 list_for_each_entry(mod, &smp_alt_modules, next) { 2172 if (mod->text > text_end || mod->text_end < text_start) 2173 continue; 2174 for (poff = mod->locks; poff < mod->locks_end; poff++) { 2175 const u8 *ptr = (const u8 *)poff + *poff; 2176 2177 if (text_start <= ptr && text_end > ptr) 2178 return 1; 2179 } 2180 } 2181 2182 return 0; 2183 } 2184 #endif /* CONFIG_SMP */ 2185 2186 /* 2187 * Self-test for the INT3 based CALL emulation code. 2188 * 2189 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up 2190 * properly and that there is a stack gap between the INT3 frame and the 2191 * previous context. Without this gap doing a virtual PUSH on the interrupted 2192 * stack would corrupt the INT3 IRET frame. 2193 * 2194 * See entry_{32,64}.S for more details. 2195 */ 2196 2197 /* 2198 * We define the int3_magic() function in assembly to control the calling 2199 * convention such that we can 'call' it from assembly. 2200 */ 2201 2202 extern void int3_magic(unsigned int *ptr); /* defined in asm */ 2203 2204 asm ( 2205 " .pushsection .init.text, \"ax\", @progbits\n" 2206 " .type int3_magic, @function\n" 2207 "int3_magic:\n" 2208 ANNOTATE_NOENDBR 2209 " movl $1, (%" _ASM_ARG1 ")\n" 2210 ASM_RET 2211 " .size int3_magic, .-int3_magic\n" 2212 " .popsection\n" 2213 ); 2214 2215 extern void int3_selftest_ip(void); /* defined in asm below */ 2216 2217 static int __init 2218 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) 2219 { 2220 unsigned long selftest = (unsigned long)&int3_selftest_ip; 2221 struct die_args *args = data; 2222 struct pt_regs *regs = args->regs; 2223 2224 OPTIMIZER_HIDE_VAR(selftest); 2225 2226 if (!regs || user_mode(regs)) 2227 return NOTIFY_DONE; 2228 2229 if (val != DIE_INT3) 2230 return NOTIFY_DONE; 2231 2232 if (regs->ip - INT3_INSN_SIZE != selftest) 2233 return NOTIFY_DONE; 2234 2235 int3_emulate_call(regs, (unsigned long)&int3_magic); 2236 return NOTIFY_STOP; 2237 } 2238 2239 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */ 2240 static noinline void __init int3_selftest(void) 2241 { 2242 static __initdata struct notifier_block int3_exception_nb = { 2243 .notifier_call = int3_exception_notify, 2244 .priority = INT_MAX-1, /* last */ 2245 }; 2246 unsigned int val = 0; 2247 2248 BUG_ON(register_die_notifier(&int3_exception_nb)); 2249 2250 /* 2251 * Basically: int3_magic(&val); but really complicated :-) 2252 * 2253 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb 2254 * notifier above will emulate CALL for us. 2255 */ 2256 asm volatile ("int3_selftest_ip:\n\t" 2257 ANNOTATE_NOENDBR 2258 " int3; nop; nop; nop; nop\n\t" 2259 : ASM_CALL_CONSTRAINT 2260 : __ASM_SEL_RAW(a, D) (&val) 2261 : "memory"); 2262 2263 BUG_ON(val != 1); 2264 2265 unregister_die_notifier(&int3_exception_nb); 2266 } 2267 2268 static __initdata int __alt_reloc_selftest_addr; 2269 2270 extern void __init __alt_reloc_selftest(void *arg); 2271 __visible noinline void __init __alt_reloc_selftest(void *arg) 2272 { 2273 WARN_ON(arg != &__alt_reloc_selftest_addr); 2274 } 2275 2276 static noinline void __init alt_reloc_selftest(void) 2277 { 2278 /* 2279 * Tests text_poke_apply_relocation(). 2280 * 2281 * This has a relative immediate (CALL) in a place other than the first 2282 * instruction and additionally on x86_64 we get a RIP-relative LEA: 2283 * 2284 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c 2285 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4 2286 * 2287 * Getting this wrong will either crash and burn or tickle the WARN 2288 * above. 2289 */ 2290 asm_inline volatile ( 2291 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS) 2292 : ASM_CALL_CONSTRAINT 2293 : [mem] "m" (__alt_reloc_selftest_addr) 2294 : _ASM_ARG1 2295 ); 2296 } 2297 2298 void __init alternative_instructions(void) 2299 { 2300 u64 ibt; 2301 2302 int3_selftest(); 2303 2304 /* 2305 * The patching is not fully atomic, so try to avoid local 2306 * interruptions that might execute the to be patched code. 2307 * Other CPUs are not running. 2308 */ 2309 stop_nmi(); 2310 2311 /* 2312 * Don't stop machine check exceptions while patching. 2313 * MCEs only happen when something got corrupted and in this 2314 * case we must do something about the corruption. 2315 * Ignoring it is worse than an unlikely patching race. 2316 * Also machine checks tend to be broadcast and if one CPU 2317 * goes into machine check the others follow quickly, so we don't 2318 * expect a machine check to cause undue problems during to code 2319 * patching. 2320 */ 2321 2322 /* 2323 * Make sure to set (artificial) features depending on used paravirt 2324 * functions which can later influence alternative patching. 2325 */ 2326 paravirt_set_cap(); 2327 2328 /* Keep CET-IBT disabled until caller/callee are patched */ 2329 ibt = ibt_save(/*disable*/ true); 2330 2331 __apply_fineibt(__retpoline_sites, __retpoline_sites_end, 2332 __cfi_sites, __cfi_sites_end, true); 2333 2334 /* 2335 * Rewrite the retpolines, must be done before alternatives since 2336 * those can rewrite the retpoline thunks. 2337 */ 2338 apply_retpolines(__retpoline_sites, __retpoline_sites_end); 2339 apply_returns(__return_sites, __return_sites_end); 2340 2341 /* 2342 * Adjust all CALL instructions to point to func()-10, including 2343 * those in .altinstr_replacement. 2344 */ 2345 callthunks_patch_builtin_calls(); 2346 2347 apply_alternatives(__alt_instructions, __alt_instructions_end); 2348 2349 /* 2350 * Seal all functions that do not have their address taken. 2351 */ 2352 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end); 2353 2354 ibt_restore(ibt); 2355 2356 #ifdef CONFIG_SMP 2357 /* Patch to UP if other cpus not imminent. */ 2358 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 2359 uniproc_patched = true; 2360 alternatives_smp_module_add(NULL, "core kernel", 2361 __smp_locks, __smp_locks_end, 2362 _text, _etext); 2363 } 2364 2365 if (!uniproc_patched || num_possible_cpus() == 1) { 2366 free_init_pages("SMP alternatives", 2367 (unsigned long)__smp_locks, 2368 (unsigned long)__smp_locks_end); 2369 } 2370 #endif 2371 2372 restart_nmi(); 2373 alternatives_patched = 1; 2374 2375 alt_reloc_selftest(); 2376 } 2377 2378 /** 2379 * text_poke_early - Update instructions on a live kernel at boot time 2380 * @addr: address to modify 2381 * @opcode: source of the copy 2382 * @len: length to copy 2383 * 2384 * When you use this code to patch more than one byte of an instruction 2385 * you need to make sure that other CPUs cannot execute this code in parallel. 2386 * Also no thread must be currently preempted in the middle of these 2387 * instructions. And on the local CPU you need to be protected against NMI or 2388 * MCE handlers seeing an inconsistent instruction while you patch. 2389 */ 2390 void __init_or_module text_poke_early(void *addr, const void *opcode, 2391 size_t len) 2392 { 2393 unsigned long flags; 2394 2395 if (boot_cpu_has(X86_FEATURE_NX) && 2396 is_module_text_address((unsigned long)addr)) { 2397 /* 2398 * Modules text is marked initially as non-executable, so the 2399 * code cannot be running and speculative code-fetches are 2400 * prevented. Just change the code. 2401 */ 2402 memcpy(addr, opcode, len); 2403 } else { 2404 local_irq_save(flags); 2405 memcpy(addr, opcode, len); 2406 sync_core(); 2407 local_irq_restore(flags); 2408 2409 /* 2410 * Could also do a CLFLUSH here to speed up CPU recovery; but 2411 * that causes hangs on some VIA CPUs. 2412 */ 2413 } 2414 } 2415 2416 __ro_after_init struct mm_struct *text_poke_mm; 2417 __ro_after_init unsigned long text_poke_mm_addr; 2418 2419 static void text_poke_memcpy(void *dst, const void *src, size_t len) 2420 { 2421 memcpy(dst, src, len); 2422 } 2423 2424 static void text_poke_memset(void *dst, const void *src, size_t len) 2425 { 2426 int c = *(const int *)src; 2427 2428 memset(dst, c, len); 2429 } 2430 2431 typedef void text_poke_f(void *dst, const void *src, size_t len); 2432 2433 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len) 2434 { 2435 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; 2436 struct page *pages[2] = {NULL}; 2437 struct mm_struct *prev_mm; 2438 unsigned long flags; 2439 pte_t pte, *ptep; 2440 spinlock_t *ptl; 2441 pgprot_t pgprot; 2442 2443 /* 2444 * While boot memory allocator is running we cannot use struct pages as 2445 * they are not yet initialized. There is no way to recover. 2446 */ 2447 BUG_ON(!after_bootmem); 2448 2449 if (!core_kernel_text((unsigned long)addr)) { 2450 pages[0] = vmalloc_to_page(addr); 2451 if (cross_page_boundary) 2452 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 2453 } else { 2454 pages[0] = virt_to_page(addr); 2455 WARN_ON(!PageReserved(pages[0])); 2456 if (cross_page_boundary) 2457 pages[1] = virt_to_page(addr + PAGE_SIZE); 2458 } 2459 /* 2460 * If something went wrong, crash and burn since recovery paths are not 2461 * implemented. 2462 */ 2463 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); 2464 2465 /* 2466 * Map the page without the global bit, as TLB flushing is done with 2467 * flush_tlb_mm_range(), which is intended for non-global PTEs. 2468 */ 2469 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); 2470 2471 /* 2472 * The lock is not really needed, but this allows to avoid open-coding. 2473 */ 2474 ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl); 2475 2476 /* 2477 * This must not fail; preallocated in poking_init(). 2478 */ 2479 VM_BUG_ON(!ptep); 2480 2481 local_irq_save(flags); 2482 2483 pte = mk_pte(pages[0], pgprot); 2484 set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte); 2485 2486 if (cross_page_boundary) { 2487 pte = mk_pte(pages[1], pgprot); 2488 set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte); 2489 } 2490 2491 /* 2492 * Loading the temporary mm behaves as a compiler barrier, which 2493 * guarantees that the PTE will be set at the time memcpy() is done. 2494 */ 2495 prev_mm = use_temporary_mm(text_poke_mm); 2496 2497 kasan_disable_current(); 2498 func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len); 2499 kasan_enable_current(); 2500 2501 /* 2502 * Ensure that the PTE is only cleared after the instructions of memcpy 2503 * were issued by using a compiler barrier. 2504 */ 2505 barrier(); 2506 2507 pte_clear(text_poke_mm, text_poke_mm_addr, ptep); 2508 if (cross_page_boundary) 2509 pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1); 2510 2511 /* 2512 * Loading the previous page-table hierarchy requires a serializing 2513 * instruction that already allows the core to see the updated version. 2514 * Xen-PV is assumed to serialize execution in a similar manner. 2515 */ 2516 unuse_temporary_mm(prev_mm); 2517 2518 /* 2519 * Flushing the TLB might involve IPIs, which would require enabled 2520 * IRQs, but not if the mm is not used, as it is in this point. 2521 */ 2522 flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr + 2523 (cross_page_boundary ? 2 : 1) * PAGE_SIZE, 2524 PAGE_SHIFT, false); 2525 2526 if (func == text_poke_memcpy) { 2527 /* 2528 * If the text does not match what we just wrote then something is 2529 * fundamentally screwy; there's nothing we can really do about that. 2530 */ 2531 BUG_ON(memcmp(addr, src, len)); 2532 } 2533 2534 local_irq_restore(flags); 2535 pte_unmap_unlock(ptep, ptl); 2536 return addr; 2537 } 2538 2539 /** 2540 * text_poke - Update instructions on a live kernel 2541 * @addr: address to modify 2542 * @opcode: source of the copy 2543 * @len: length to copy 2544 * 2545 * Only atomic text poke/set should be allowed when not doing early patching. 2546 * It means the size must be writable atomically and the address must be aligned 2547 * in a way that permits an atomic write. It also makes sure we fit on a single 2548 * page. 2549 * 2550 * Note that the caller must ensure that if the modified code is part of a 2551 * module, the module would not be removed during poking. This can be achieved 2552 * by registering a module notifier, and ordering module removal and patching 2553 * through a mutex. 2554 */ 2555 void *text_poke(void *addr, const void *opcode, size_t len) 2556 { 2557 lockdep_assert_held(&text_mutex); 2558 2559 return __text_poke(text_poke_memcpy, addr, opcode, len); 2560 } 2561 2562 /** 2563 * text_poke_kgdb - Update instructions on a live kernel by kgdb 2564 * @addr: address to modify 2565 * @opcode: source of the copy 2566 * @len: length to copy 2567 * 2568 * Only atomic text poke/set should be allowed when not doing early patching. 2569 * It means the size must be writable atomically and the address must be aligned 2570 * in a way that permits an atomic write. It also makes sure we fit on a single 2571 * page. 2572 * 2573 * Context: should only be used by kgdb, which ensures no other core is running, 2574 * despite the fact it does not hold the text_mutex. 2575 */ 2576 void *text_poke_kgdb(void *addr, const void *opcode, size_t len) 2577 { 2578 return __text_poke(text_poke_memcpy, addr, opcode, len); 2579 } 2580 2581 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, 2582 bool core_ok) 2583 { 2584 unsigned long start = (unsigned long)addr; 2585 size_t patched = 0; 2586 2587 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start))) 2588 return NULL; 2589 2590 while (patched < len) { 2591 unsigned long ptr = start + patched; 2592 size_t s; 2593 2594 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2595 2596 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s); 2597 patched += s; 2598 } 2599 return addr; 2600 } 2601 2602 /** 2603 * text_poke_copy - Copy instructions into (an unused part of) RX memory 2604 * @addr: address to modify 2605 * @opcode: source of the copy 2606 * @len: length to copy, could be more than 2x PAGE_SIZE 2607 * 2608 * Not safe against concurrent execution; useful for JITs to dump 2609 * new code blocks into unused regions of RX memory. Can be used in 2610 * conjunction with synchronize_rcu_tasks() to wait for existing 2611 * execution to quiesce after having made sure no existing functions 2612 * pointers are live. 2613 */ 2614 void *text_poke_copy(void *addr, const void *opcode, size_t len) 2615 { 2616 mutex_lock(&text_mutex); 2617 addr = text_poke_copy_locked(addr, opcode, len, false); 2618 mutex_unlock(&text_mutex); 2619 return addr; 2620 } 2621 2622 /** 2623 * text_poke_set - memset into (an unused part of) RX memory 2624 * @addr: address to modify 2625 * @c: the byte to fill the area with 2626 * @len: length to copy, could be more than 2x PAGE_SIZE 2627 * 2628 * This is useful to overwrite unused regions of RX memory with illegal 2629 * instructions. 2630 */ 2631 void *text_poke_set(void *addr, int c, size_t len) 2632 { 2633 unsigned long start = (unsigned long)addr; 2634 size_t patched = 0; 2635 2636 if (WARN_ON_ONCE(core_kernel_text(start))) 2637 return NULL; 2638 2639 mutex_lock(&text_mutex); 2640 while (patched < len) { 2641 unsigned long ptr = start + patched; 2642 size_t s; 2643 2644 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2645 2646 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s); 2647 patched += s; 2648 } 2649 mutex_unlock(&text_mutex); 2650 return addr; 2651 } 2652 2653 static void do_sync_core(void *info) 2654 { 2655 sync_core(); 2656 } 2657 2658 void smp_text_poke_sync_each_cpu(void) 2659 { 2660 on_each_cpu(do_sync_core, NULL, 1); 2661 } 2662 2663 /* 2664 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of 2665 * this thing. When len == 6 everything is prefixed with 0x0f and we map 2666 * opcode to Jcc.d8, using len to distinguish. 2667 */ 2668 struct smp_text_poke_loc { 2669 /* addr := _stext + rel_addr */ 2670 s32 rel_addr; 2671 s32 disp; 2672 u8 len; 2673 u8 opcode; 2674 const u8 text[TEXT_POKE_MAX_OPCODE_SIZE]; 2675 /* see smp_text_poke_batch_finish() */ 2676 u8 old; 2677 }; 2678 2679 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc)) 2680 2681 static struct smp_text_poke_array { 2682 struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX]; 2683 int nr_entries; 2684 } text_poke_array; 2685 2686 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs); 2687 2688 /* 2689 * These four __always_inline annotations imply noinstr, necessary 2690 * due to smp_text_poke_int3_handler() being noinstr: 2691 */ 2692 2693 static __always_inline bool try_get_text_poke_array(void) 2694 { 2695 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); 2696 2697 if (!raw_atomic_inc_not_zero(refs)) 2698 return false; 2699 2700 return true; 2701 } 2702 2703 static __always_inline void put_text_poke_array(void) 2704 { 2705 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); 2706 2707 smp_mb__before_atomic(); 2708 raw_atomic_dec(refs); 2709 } 2710 2711 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl) 2712 { 2713 return _stext + tpl->rel_addr; 2714 } 2715 2716 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b) 2717 { 2718 if (tpl_a < text_poke_addr(tpl_b)) 2719 return -1; 2720 if (tpl_a > text_poke_addr(tpl_b)) 2721 return 1; 2722 return 0; 2723 } 2724 2725 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs) 2726 { 2727 struct smp_text_poke_loc *tpl; 2728 int ret = 0; 2729 void *ip; 2730 2731 if (user_mode(regs)) 2732 return 0; 2733 2734 /* 2735 * Having observed our INT3 instruction, we now must observe 2736 * text_poke_array with non-zero refcount: 2737 * 2738 * text_poke_array_refs = 1 INT3 2739 * WMB RMB 2740 * write INT3 if (text_poke_array_refs != 0) 2741 */ 2742 smp_rmb(); 2743 2744 if (!try_get_text_poke_array()) 2745 return 0; 2746 2747 /* 2748 * Discount the INT3. See smp_text_poke_batch_finish(). 2749 */ 2750 ip = (void *) regs->ip - INT3_INSN_SIZE; 2751 2752 /* 2753 * Skip the binary search if there is a single member in the vector. 2754 */ 2755 if (unlikely(text_poke_array.nr_entries > 1)) { 2756 tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries, 2757 sizeof(struct smp_text_poke_loc), 2758 patch_cmp); 2759 if (!tpl) 2760 goto out_put; 2761 } else { 2762 tpl = text_poke_array.vec; 2763 if (text_poke_addr(tpl) != ip) 2764 goto out_put; 2765 } 2766 2767 ip += tpl->len; 2768 2769 switch (tpl->opcode) { 2770 case INT3_INSN_OPCODE: 2771 /* 2772 * Someone poked an explicit INT3, they'll want to handle it, 2773 * do not consume. 2774 */ 2775 goto out_put; 2776 2777 case RET_INSN_OPCODE: 2778 int3_emulate_ret(regs); 2779 break; 2780 2781 case CALL_INSN_OPCODE: 2782 int3_emulate_call(regs, (long)ip + tpl->disp); 2783 break; 2784 2785 case JMP32_INSN_OPCODE: 2786 case JMP8_INSN_OPCODE: 2787 int3_emulate_jmp(regs, (long)ip + tpl->disp); 2788 break; 2789 2790 case 0x70 ... 0x7f: /* Jcc */ 2791 int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp); 2792 break; 2793 2794 default: 2795 BUG(); 2796 } 2797 2798 ret = 1; 2799 2800 out_put: 2801 put_text_poke_array(); 2802 return ret; 2803 } 2804 2805 /** 2806 * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP 2807 * 2808 * Input state: 2809 * text_poke_array.vec: vector of instructions to patch 2810 * text_poke_array.nr_entries: number of entries in the vector 2811 * 2812 * Modify multi-byte instructions by using INT3 breakpoints on SMP. 2813 * We completely avoid using stop_machine() here, and achieve the 2814 * synchronization using INT3 breakpoints and SMP cross-calls. 2815 * 2816 * The way it is done: 2817 * - For each entry in the vector: 2818 * - add an INT3 trap to the address that will be patched 2819 * - SMP sync all CPUs 2820 * - For each entry in the vector: 2821 * - update all but the first byte of the patched range 2822 * - SMP sync all CPUs 2823 * - For each entry in the vector: 2824 * - replace the first byte (INT3) by the first byte of the 2825 * replacing opcode 2826 * - SMP sync all CPUs 2827 */ 2828 void smp_text_poke_batch_finish(void) 2829 { 2830 unsigned char int3 = INT3_INSN_OPCODE; 2831 unsigned int i; 2832 int do_sync; 2833 2834 if (!text_poke_array.nr_entries) 2835 return; 2836 2837 lockdep_assert_held(&text_mutex); 2838 2839 /* 2840 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to 2841 * ensure reading a non-zero refcount provides up to date text_poke_array data. 2842 */ 2843 for_each_possible_cpu(i) 2844 atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1); 2845 2846 /* 2847 * Function tracing can enable thousands of places that need to be 2848 * updated. This can take quite some time, and with full kernel debugging 2849 * enabled, this could cause the softlockup watchdog to trigger. 2850 * This function gets called every 256 entries added to be patched. 2851 * Call cond_resched() here to make sure that other tasks can get scheduled 2852 * while processing all the functions being patched. 2853 */ 2854 cond_resched(); 2855 2856 /* 2857 * Corresponding read barrier in INT3 notifier for making sure the 2858 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching. 2859 */ 2860 smp_wmb(); 2861 2862 /* 2863 * First step: add a INT3 trap to the address that will be patched. 2864 */ 2865 for (i = 0; i < text_poke_array.nr_entries; i++) { 2866 text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]); 2867 text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE); 2868 } 2869 2870 smp_text_poke_sync_each_cpu(); 2871 2872 /* 2873 * Second step: update all but the first byte of the patched range. 2874 */ 2875 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { 2876 u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, }; 2877 u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1]; 2878 const u8 *new = text_poke_array.vec[i].text; 2879 int len = text_poke_array.vec[i].len; 2880 2881 if (len - INT3_INSN_SIZE > 0) { 2882 memcpy(old + INT3_INSN_SIZE, 2883 text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, 2884 len - INT3_INSN_SIZE); 2885 2886 if (len == 6) { 2887 _new[0] = 0x0f; 2888 memcpy(_new + 1, new, 5); 2889 new = _new; 2890 } 2891 2892 text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, 2893 new + INT3_INSN_SIZE, 2894 len - INT3_INSN_SIZE); 2895 2896 do_sync++; 2897 } 2898 2899 /* 2900 * Emit a perf event to record the text poke, primarily to 2901 * support Intel PT decoding which must walk the executable code 2902 * to reconstruct the trace. The flow up to here is: 2903 * - write INT3 byte 2904 * - IPI-SYNC 2905 * - write instruction tail 2906 * At this point the actual control flow will be through the 2907 * INT3 and handler and not hit the old or new instruction. 2908 * Intel PT outputs FUP/TIP packets for the INT3, so the flow 2909 * can still be decoded. Subsequently: 2910 * - emit RECORD_TEXT_POKE with the new instruction 2911 * - IPI-SYNC 2912 * - write first byte 2913 * - IPI-SYNC 2914 * So before the text poke event timestamp, the decoder will see 2915 * either the old instruction flow or FUP/TIP of INT3. After the 2916 * text poke event timestamp, the decoder will see either the 2917 * new instruction flow or FUP/TIP of INT3. Thus decoders can 2918 * use the timestamp as the point at which to modify the 2919 * executable code. 2920 * The old instruction is recorded so that the event can be 2921 * processed forwards or backwards. 2922 */ 2923 perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len); 2924 } 2925 2926 if (do_sync) { 2927 /* 2928 * According to Intel, this core syncing is very likely 2929 * not necessary and we'd be safe even without it. But 2930 * better safe than sorry (plus there's not only Intel). 2931 */ 2932 smp_text_poke_sync_each_cpu(); 2933 } 2934 2935 /* 2936 * Third step: replace the first byte (INT3) by the first byte of the 2937 * replacing opcode. 2938 */ 2939 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { 2940 u8 byte = text_poke_array.vec[i].text[0]; 2941 2942 if (text_poke_array.vec[i].len == 6) 2943 byte = 0x0f; 2944 2945 if (byte == INT3_INSN_OPCODE) 2946 continue; 2947 2948 text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE); 2949 do_sync++; 2950 } 2951 2952 if (do_sync) 2953 smp_text_poke_sync_each_cpu(); 2954 2955 /* 2956 * Remove and wait for refs to be zero. 2957 * 2958 * Notably, if after step-3 above the INT3 got removed, then the 2959 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3 2960 * handlers and the below spin-wait will not happen. 2961 * 2962 * IOW. unless the replacement instruction is INT3, this case goes 2963 * unused. 2964 */ 2965 for_each_possible_cpu(i) { 2966 atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i); 2967 2968 if (unlikely(!atomic_dec_and_test(refs))) 2969 atomic_cond_read_acquire(refs, !VAL); 2970 } 2971 2972 /* They are all completed: */ 2973 text_poke_array.nr_entries = 0; 2974 } 2975 2976 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) 2977 { 2978 struct smp_text_poke_loc *tpl; 2979 struct insn insn; 2980 int ret, i = 0; 2981 2982 tpl = &text_poke_array.vec[text_poke_array.nr_entries++]; 2983 2984 if (len == 6) 2985 i = 1; 2986 memcpy((void *)tpl->text, opcode+i, len-i); 2987 if (!emulate) 2988 emulate = opcode; 2989 2990 ret = insn_decode_kernel(&insn, emulate); 2991 BUG_ON(ret < 0); 2992 2993 tpl->rel_addr = addr - (void *)_stext; 2994 tpl->len = len; 2995 tpl->opcode = insn.opcode.bytes[0]; 2996 2997 if (is_jcc32(&insn)) { 2998 /* 2999 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish. 3000 */ 3001 tpl->opcode = insn.opcode.bytes[1] - 0x10; 3002 } 3003 3004 switch (tpl->opcode) { 3005 case RET_INSN_OPCODE: 3006 case JMP32_INSN_OPCODE: 3007 case JMP8_INSN_OPCODE: 3008 /* 3009 * Control flow instructions without implied execution of the 3010 * next instruction can be padded with INT3. 3011 */ 3012 for (i = insn.length; i < len; i++) 3013 BUG_ON(tpl->text[i] != INT3_INSN_OPCODE); 3014 break; 3015 3016 default: 3017 BUG_ON(len != insn.length); 3018 } 3019 3020 switch (tpl->opcode) { 3021 case INT3_INSN_OPCODE: 3022 case RET_INSN_OPCODE: 3023 break; 3024 3025 case CALL_INSN_OPCODE: 3026 case JMP32_INSN_OPCODE: 3027 case JMP8_INSN_OPCODE: 3028 case 0x70 ... 0x7f: /* Jcc */ 3029 tpl->disp = insn.immediate.value; 3030 break; 3031 3032 default: /* assume NOP */ 3033 switch (len) { 3034 case 2: /* NOP2 -- emulate as JMP8+0 */ 3035 BUG_ON(memcmp(emulate, x86_nops[len], len)); 3036 tpl->opcode = JMP8_INSN_OPCODE; 3037 tpl->disp = 0; 3038 break; 3039 3040 case 5: /* NOP5 -- emulate as JMP32+0 */ 3041 BUG_ON(memcmp(emulate, x86_nops[len], len)); 3042 tpl->opcode = JMP32_INSN_OPCODE; 3043 tpl->disp = 0; 3044 break; 3045 3046 default: /* unknown instruction */ 3047 BUG(); 3048 } 3049 break; 3050 } 3051 } 3052 3053 /* 3054 * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing 3055 * early if needed. 3056 */ 3057 static bool text_poke_addr_ordered(void *addr) 3058 { 3059 WARN_ON_ONCE(!addr); 3060 3061 if (!text_poke_array.nr_entries) 3062 return true; 3063 3064 /* 3065 * If the last current entry's address is higher than the 3066 * new entry's address we'd like to add, then ordering 3067 * is violated and we must first flush all pending patching 3068 * requests: 3069 */ 3070 if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr) 3071 return false; 3072 3073 return true; 3074 } 3075 3076 /** 3077 * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched 3078 * @addr: address to patch 3079 * @opcode: opcode of new instruction 3080 * @len: length to copy 3081 * @emulate: instruction to be emulated 3082 * 3083 * Add a new instruction to the current queue of to-be-patched instructions 3084 * the kernel maintains. The patching request will not be executed immediately, 3085 * but becomes part of an array of patching requests, optimized for batched 3086 * execution. All pending patching requests will be executed on the next 3087 * smp_text_poke_batch_finish() call. 3088 */ 3089 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) 3090 { 3091 if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr)) 3092 smp_text_poke_batch_finish(); 3093 __smp_text_poke_batch_add(addr, opcode, len, emulate); 3094 } 3095 3096 /** 3097 * smp_text_poke_single() -- update instruction on live kernel on SMP immediately 3098 * @addr: address to patch 3099 * @opcode: opcode of new instruction 3100 * @len: length to copy 3101 * @emulate: instruction to be emulated 3102 * 3103 * Update a single instruction with the vector in the stack, avoiding 3104 * dynamically allocated memory. This function should be used when it is 3105 * not possible to allocate memory for a vector. The single instruction 3106 * is patched in immediately. 3107 */ 3108 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate) 3109 { 3110 __smp_text_poke_batch_add(addr, opcode, len, emulate); 3111 smp_text_poke_batch_finish(); 3112 } 3113