xref: /linux/arch/x86/include/asm/uv/uv_hub.h (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #include <linux/numa.h>
15 #include <linux/percpu.h>
16 #include <linux/timer.h>
17 #include <asm/types.h>
18 #include <asm/percpu.h>
19 
20 
21 /*
22  * Addressing Terminology
23  *
24  *	M       - The low M bits of a physical address represent the offset
25  *		  into the blade local memory. RAM memory on a blade is physically
26  *		  contiguous (although various IO spaces may punch holes in
27  *		  it)..
28  *
29  * 	N	- Number of bits in the node portion of a socket physical
30  * 		  address.
31  *
32  * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
33  * 	 	  routers always have low bit of 1, C/MBricks have low bit
34  * 		  equal to 0. Most addressing macros that target UV hub chips
35  * 		  right shift the NASID by 1 to exclude the always-zero bit.
36  * 		  NASIDs contain up to 15 bits.
37  *
38  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
39  *		  of nasids.
40  *
41  * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
42  * 		  of the nasid for socket usage.
43  *
44  *
45  *  NumaLink Global Physical Address Format:
46  *  +--------------------------------+---------------------+
47  *  |00..000|      GNODE             |      NodeOffset     |
48  *  +--------------------------------+---------------------+
49  *          |<-------53 - M bits --->|<--------M bits ----->
50  *
51  *	M - number of node offset bits (35 .. 40)
52  *
53  *
54  *  Memory/UV-HUB Processor Socket Address Format:
55  *  +----------------+---------------+---------------------+
56  *  |00..000000000000|   PNODE       |      NodeOffset     |
57  *  +----------------+---------------+---------------------+
58  *                   <--- N bits --->|<--------M bits ----->
59  *
60  *	M - number of node offset bits (35 .. 40)
61  *	N - number of PNODE bits (0 .. 10)
62  *
63  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
64  *		The actual values are configuration dependent and are set at
65  *		boot time. M & N values are set by the hardware/BIOS at boot.
66  *
67  *
68  * APICID format
69  * 	NOTE!!!!!! This is the current format of the APICID. However, code
70  * 	should assume that this will change in the future. Use functions
71  * 	in this file for all APICID bit manipulations and conversion.
72  *
73  * 		1111110000000000
74  * 		5432109876543210
75  *		pppppppppplc0cch
76  *		sssssssssss
77  *
78  *			p  = pnode bits
79  *			l =  socket number on board
80  *			c  = core
81  *			h  = hyperthread
82  *			s  = bits that are in the SOCKET_ID CSR
83  *
84  *	Note: Processor only supports 12 bits in the APICID register. The ACPI
85  *	      tables hold all 16 bits. Software needs to be aware of this.
86  *
87  * 	      Unless otherwise specified, all references to APICID refer to
88  * 	      the FULL value contained in ACPI tables, not the subset in the
89  * 	      processor APICID register.
90  */
91 
92 
93 /*
94  * Maximum number of bricks in all partitions and in all coherency domains.
95  * This is the total number of bricks accessible in the numalink fabric. It
96  * includes all C & M bricks. Routers are NOT included.
97  *
98  * This value is also the value of the maximum number of non-router NASIDs
99  * in the numalink fabric.
100  *
101  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
102  */
103 #define UV_MAX_NUMALINK_BLADES	16384
104 
105 /*
106  * Maximum number of C/Mbricks within a software SSI (hardware may support
107  * more).
108  */
109 #define UV_MAX_SSI_BLADES	256
110 
111 /*
112  * The largest possible NASID of a C or M brick (+ 2)
113  */
114 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)
115 
116 /*
117  * The following defines attributes of the HUB chip. These attributes are
118  * frequently referenced and are kept in the per-cpu data areas of each cpu.
119  * They are kept together in a struct to minimize cache misses.
120  */
121 struct uv_hub_info_s {
122 	unsigned long	global_mmr_base;
123 	unsigned long	gpa_mask;
124 	unsigned long	gnode_upper;
125 	unsigned long	lowmem_remap_top;
126 	unsigned long	lowmem_remap_base;
127 	unsigned short	pnode;
128 	unsigned short	pnode_mask;
129 	unsigned short	coherency_domain_number;
130 	unsigned short	numa_blade_id;
131 	unsigned char	blade_processor_id;
132 	unsigned char	m_val;
133 	unsigned char	n_val;
134 };
135 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
136 #define uv_hub_info 		(&__get_cpu_var(__uv_hub_info))
137 #define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
138 
139 /*
140  * Local & Global MMR space macros.
141  * 	Note: macros are intended to be used ONLY by inline functions
142  * 	in this file - not by other kernel code.
143  * 		n -  NASID (full 15-bit global nasid)
144  * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
145  * 		p -  PNODE (local part of nsids, right shifted 1)
146  */
147 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
148 #define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
149 
150 #define UV_LOCAL_MMR_BASE		0xf4000000UL
151 #define UV_GLOBAL_MMR32_BASE		0xf8000000UL
152 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
153 #define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
154 #define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
155 
156 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
157 #define UV_GLOBAL_MMR64_PNODE_SHIFT	26
158 
159 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
160 
161 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
162 	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
163 
164 #define UV_APIC_PNODE_SHIFT	6
165 
166 /*
167  * Macros for converting between kernel virtual addresses, socket local physical
168  * addresses, and UV global physical addresses.
169  * 	Note: use the standard __pa() & __va() macros for converting
170  * 	      between socket virtual and socket physical addresses.
171  */
172 
173 /* socket phys RAM --> UV global physical address */
174 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
175 {
176 	if (paddr < uv_hub_info->lowmem_remap_top)
177 		paddr += uv_hub_info->lowmem_remap_base;
178 	return paddr | uv_hub_info->gnode_upper;
179 }
180 
181 
182 /* socket virtual --> UV global physical address */
183 static inline unsigned long uv_gpa(void *v)
184 {
185 	return __pa(v) | uv_hub_info->gnode_upper;
186 }
187 
188 /* socket virtual --> UV global physical address */
189 static inline void *uv_vgpa(void *v)
190 {
191 	return (void *)uv_gpa(v);
192 }
193 
194 /* UV global physical address --> socket virtual */
195 static inline void *uv_va(unsigned long gpa)
196 {
197 	return __va(gpa & uv_hub_info->gpa_mask);
198 }
199 
200 /* pnode, offset --> socket virtual */
201 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
202 {
203 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
204 }
205 
206 
207 /*
208  * Extract a PNODE from an APICID (full apicid, not processor subset)
209  */
210 static inline int uv_apicid_to_pnode(int apicid)
211 {
212 	return (apicid >> UV_APIC_PNODE_SHIFT);
213 }
214 
215 /*
216  * Access global MMRs using the low memory MMR32 space. This region supports
217  * faster MMR access but not all MMRs are accessible in this space.
218  */
219 static inline unsigned long *uv_global_mmr32_address(int pnode,
220 				unsigned long offset)
221 {
222 	return __va(UV_GLOBAL_MMR32_BASE |
223 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
224 }
225 
226 static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
227 				 unsigned long val)
228 {
229 	*uv_global_mmr32_address(pnode, offset) = val;
230 }
231 
232 static inline unsigned long uv_read_global_mmr32(int pnode,
233 						 unsigned long offset)
234 {
235 	return *uv_global_mmr32_address(pnode, offset);
236 }
237 
238 /*
239  * Access Global MMR space using the MMR space located at the top of physical
240  * memory.
241  */
242 static inline unsigned long *uv_global_mmr64_address(int pnode,
243 				unsigned long offset)
244 {
245 	return __va(UV_GLOBAL_MMR64_BASE |
246 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
247 }
248 
249 static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
250 				unsigned long val)
251 {
252 	*uv_global_mmr64_address(pnode, offset) = val;
253 }
254 
255 static inline unsigned long uv_read_global_mmr64(int pnode,
256 						 unsigned long offset)
257 {
258 	return *uv_global_mmr64_address(pnode, offset);
259 }
260 
261 /*
262  * Access hub local MMRs. Faster than using global space but only local MMRs
263  * are accessible.
264  */
265 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
266 {
267 	return __va(UV_LOCAL_MMR_BASE | offset);
268 }
269 
270 static inline unsigned long uv_read_local_mmr(unsigned long offset)
271 {
272 	return *uv_local_mmr_address(offset);
273 }
274 
275 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
276 {
277 	*uv_local_mmr_address(offset) = val;
278 }
279 
280 /*
281  * Structures and definitions for converting between cpu, node, pnode, and blade
282  * numbers.
283  */
284 struct uv_blade_info {
285 	unsigned short	nr_possible_cpus;
286 	unsigned short	nr_online_cpus;
287 	unsigned short	pnode;
288 };
289 extern struct uv_blade_info *uv_blade_info;
290 extern short *uv_node_to_blade;
291 extern short *uv_cpu_to_blade;
292 extern short uv_possible_blades;
293 
294 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
295 static inline int uv_blade_processor_id(void)
296 {
297 	return uv_hub_info->blade_processor_id;
298 }
299 
300 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
301 static inline int uv_numa_blade_id(void)
302 {
303 	return uv_hub_info->numa_blade_id;
304 }
305 
306 /* Convert a cpu number to the the UV blade number */
307 static inline int uv_cpu_to_blade_id(int cpu)
308 {
309 	return uv_cpu_to_blade[cpu];
310 }
311 
312 /* Convert linux node number to the UV blade number */
313 static inline int uv_node_to_blade_id(int nid)
314 {
315 	return uv_node_to_blade[nid];
316 }
317 
318 /* Convert a blade id to the PNODE of the blade */
319 static inline int uv_blade_to_pnode(int bid)
320 {
321 	return uv_blade_info[bid].pnode;
322 }
323 
324 /* Determine the number of possible cpus on a blade */
325 static inline int uv_blade_nr_possible_cpus(int bid)
326 {
327 	return uv_blade_info[bid].nr_possible_cpus;
328 }
329 
330 /* Determine the number of online cpus on a blade */
331 static inline int uv_blade_nr_online_cpus(int bid)
332 {
333 	return uv_blade_info[bid].nr_online_cpus;
334 }
335 
336 /* Convert a cpu id to the PNODE of the blade containing the cpu */
337 static inline int uv_cpu_to_pnode(int cpu)
338 {
339 	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
340 }
341 
342 /* Convert a linux node number to the PNODE of the blade */
343 static inline int uv_node_to_pnode(int nid)
344 {
345 	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
346 }
347 
348 /* Maximum possible number of blades */
349 static inline int uv_num_possible_blades(void)
350 {
351 	return uv_possible_blades;
352 }
353 
354 #endif /* _ASM_X86_UV_UV_HUB_H */
355 
356