1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_TLBFLUSH_H 3 #define _ASM_X86_TLBFLUSH_H 4 5 #include <linux/mm.h> 6 #include <linux/sched.h> 7 8 #include <asm/processor.h> 9 #include <asm/cpufeature.h> 10 #include <asm/special_insns.h> 11 #include <asm/smp.h> 12 #include <asm/invpcid.h> 13 #include <asm/pti.h> 14 #include <asm/processor-flags.h> 15 16 /* 17 * The x86 feature is called PCID (Process Context IDentifier). It is similar 18 * to what is traditionally called ASID on the RISC processors. 19 * 20 * We don't use the traditional ASID implementation, where each process/mm gets 21 * its own ASID and flush/restart when we run out of ASID space. 22 * 23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 24 * that came by on this CPU, allowing cheaper switch_mm between processes on 25 * this CPU. 26 * 27 * We end up with different spaces for different things. To avoid confusion we 28 * use different names for each of them: 29 * 30 * ASID - [0, TLB_NR_DYN_ASIDS-1] 31 * the canonical identifier for an mm 32 * 33 * kPCID - [1, TLB_NR_DYN_ASIDS] 34 * the value we write into the PCID part of CR3; corresponds to the 35 * ASID+1, because PCID 0 is special. 36 * 37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 38 * for KPTI each mm has two address spaces and thus needs two 39 * PCID values, but we can still do with a single ASID denomination 40 * for each mm. Corresponds to kPCID + 2048. 41 * 42 */ 43 44 /* There are 12 bits of space for ASIDS in CR3 */ 45 #define CR3_HW_ASID_BITS 12 46 47 /* 48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 49 * user/kernel switches 50 */ 51 #ifdef CONFIG_PAGE_TABLE_ISOLATION 52 # define PTI_CONSUMED_PCID_BITS 1 53 #else 54 # define PTI_CONSUMED_PCID_BITS 0 55 #endif 56 57 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 58 59 /* 60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 61 * for them being zero-based. Another -1 is because PCID 0 is reserved for 62 * use by non-PCID-aware users. 63 */ 64 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 65 66 /* 67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache 68 * lines. 69 */ 70 #define TLB_NR_DYN_ASIDS 6 71 72 /* 73 * Given @asid, compute kPCID 74 */ 75 static inline u16 kern_pcid(u16 asid) 76 { 77 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 78 79 #ifdef CONFIG_PAGE_TABLE_ISOLATION 80 /* 81 * Make sure that the dynamic ASID space does not confict with the 82 * bit we are using to switch between user and kernel ASIDs. 83 */ 84 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 85 86 /* 87 * The ASID being passed in here should have respected the 88 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 89 */ 90 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 91 #endif 92 /* 93 * The dynamically-assigned ASIDs that get passed in are small 94 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 95 * so do not bother to clear it. 96 * 97 * If PCID is on, ASID-aware code paths put the ASID+1 into the 98 * PCID bits. This serves two purposes. It prevents a nasty 99 * situation in which PCID-unaware code saves CR3, loads some other 100 * value (with PCID == 0), and then restores CR3, thus corrupting 101 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 102 * that any bugs involving loading a PCID-enabled CR3 with 103 * CR4.PCIDE off will trigger deterministically. 104 */ 105 return asid + 1; 106 } 107 108 /* 109 * Given @asid, compute uPCID 110 */ 111 static inline u16 user_pcid(u16 asid) 112 { 113 u16 ret = kern_pcid(asid); 114 #ifdef CONFIG_PAGE_TABLE_ISOLATION 115 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 116 #endif 117 return ret; 118 } 119 120 struct pgd_t; 121 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 122 { 123 if (static_cpu_has(X86_FEATURE_PCID)) { 124 return __sme_pa(pgd) | kern_pcid(asid); 125 } else { 126 VM_WARN_ON_ONCE(asid != 0); 127 return __sme_pa(pgd); 128 } 129 } 130 131 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 132 { 133 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 134 /* 135 * Use boot_cpu_has() instead of this_cpu_has() as this function 136 * might be called during early boot. This should work even after 137 * boot because all CPU's the have same capabilities: 138 */ 139 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 140 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 141 } 142 143 #ifdef CONFIG_PARAVIRT 144 #include <asm/paravirt.h> 145 #else 146 #define __flush_tlb() __native_flush_tlb() 147 #define __flush_tlb_global() __native_flush_tlb_global() 148 #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr) 149 #endif 150 151 struct tlb_context { 152 u64 ctx_id; 153 u64 tlb_gen; 154 }; 155 156 struct tlb_state { 157 /* 158 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts 159 * are on. This means that it may not match current->active_mm, 160 * which will contain the previous user mm when we're in lazy TLB 161 * mode even if we've already switched back to swapper_pg_dir. 162 */ 163 struct mm_struct *loaded_mm; 164 u16 loaded_mm_asid; 165 u16 next_asid; 166 /* last user mm's ctx id */ 167 u64 last_ctx_id; 168 169 /* 170 * We can be in one of several states: 171 * 172 * - Actively using an mm. Our CPU's bit will be set in 173 * mm_cpumask(loaded_mm) and is_lazy == false; 174 * 175 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit 176 * will not be set in mm_cpumask(&init_mm) and is_lazy == false. 177 * 178 * - Lazily using a real mm. loaded_mm != &init_mm, our bit 179 * is set in mm_cpumask(loaded_mm), but is_lazy == true. 180 * We're heuristically guessing that the CR3 load we 181 * skipped more than makes up for the overhead added by 182 * lazy mode. 183 */ 184 bool is_lazy; 185 186 /* 187 * If set we changed the page tables in such a way that we 188 * needed an invalidation of all contexts (aka. PCIDs / ASIDs). 189 * This tells us to go invalidate all the non-loaded ctxs[] 190 * on the next context switch. 191 * 192 * The current ctx was kept up-to-date as it ran and does not 193 * need to be invalidated. 194 */ 195 bool invalidate_other; 196 197 /* 198 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate 199 * the corresponding user PCID needs a flush next time we 200 * switch to it; see SWITCH_TO_USER_CR3. 201 */ 202 unsigned short user_pcid_flush_mask; 203 204 /* 205 * Access to this CR4 shadow and to H/W CR4 is protected by 206 * disabling interrupts when modifying either one. 207 */ 208 unsigned long cr4; 209 210 /* 211 * This is a list of all contexts that might exist in the TLB. 212 * There is one per ASID that we use, and the ASID (what the 213 * CPU calls PCID) is the index into ctxts. 214 * 215 * For each context, ctx_id indicates which mm the TLB's user 216 * entries came from. As an invariant, the TLB will never 217 * contain entries that are out-of-date as when that mm reached 218 * the tlb_gen in the list. 219 * 220 * To be clear, this means that it's legal for the TLB code to 221 * flush the TLB without updating tlb_gen. This can happen 222 * (for now, at least) due to paravirt remote flushes. 223 * 224 * NB: context 0 is a bit special, since it's also used by 225 * various bits of init code. This is fine -- code that 226 * isn't aware of PCID will end up harmlessly flushing 227 * context 0. 228 */ 229 struct tlb_context ctxs[TLB_NR_DYN_ASIDS]; 230 }; 231 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); 232 233 /* Initialize cr4 shadow for this CPU. */ 234 static inline void cr4_init_shadow(void) 235 { 236 this_cpu_write(cpu_tlbstate.cr4, __read_cr4()); 237 } 238 239 static inline void __cr4_set(unsigned long cr4) 240 { 241 lockdep_assert_irqs_disabled(); 242 this_cpu_write(cpu_tlbstate.cr4, cr4); 243 __write_cr4(cr4); 244 } 245 246 /* Set in this cpu's CR4. */ 247 static inline void cr4_set_bits(unsigned long mask) 248 { 249 unsigned long cr4, flags; 250 251 local_irq_save(flags); 252 cr4 = this_cpu_read(cpu_tlbstate.cr4); 253 if ((cr4 | mask) != cr4) 254 __cr4_set(cr4 | mask); 255 local_irq_restore(flags); 256 } 257 258 /* Clear in this cpu's CR4. */ 259 static inline void cr4_clear_bits(unsigned long mask) 260 { 261 unsigned long cr4, flags; 262 263 local_irq_save(flags); 264 cr4 = this_cpu_read(cpu_tlbstate.cr4); 265 if ((cr4 & ~mask) != cr4) 266 __cr4_set(cr4 & ~mask); 267 local_irq_restore(flags); 268 } 269 270 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 271 { 272 unsigned long cr4; 273 274 cr4 = this_cpu_read(cpu_tlbstate.cr4); 275 __cr4_set(cr4 ^ mask); 276 } 277 278 /* Read the CR4 shadow. */ 279 static inline unsigned long cr4_read_shadow(void) 280 { 281 return this_cpu_read(cpu_tlbstate.cr4); 282 } 283 284 /* 285 * Mark all other ASIDs as invalid, preserves the current. 286 */ 287 static inline void invalidate_other_asid(void) 288 { 289 this_cpu_write(cpu_tlbstate.invalidate_other, true); 290 } 291 292 /* 293 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 294 * enable and PPro Global page enable), so that any CPU's that boot 295 * up after us can get the correct flags. This should only be used 296 * during boot on the boot cpu. 297 */ 298 extern unsigned long mmu_cr4_features; 299 extern u32 *trampoline_cr4_features; 300 301 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 302 { 303 mmu_cr4_features |= mask; 304 if (trampoline_cr4_features) 305 *trampoline_cr4_features = mmu_cr4_features; 306 cr4_set_bits(mask); 307 } 308 309 extern void initialize_tlbstate_and_flush(void); 310 311 /* 312 * Given an ASID, flush the corresponding user ASID. We can delay this 313 * until the next time we switch to it. 314 * 315 * See SWITCH_TO_USER_CR3. 316 */ 317 static inline void invalidate_user_asid(u16 asid) 318 { 319 /* There is no user ASID if address space separation is off */ 320 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 321 return; 322 323 /* 324 * We only have a single ASID if PCID is off and the CR3 325 * write will have flushed it. 326 */ 327 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 328 return; 329 330 if (!static_cpu_has(X86_FEATURE_PTI)) 331 return; 332 333 __set_bit(kern_pcid(asid), 334 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 335 } 336 337 /* 338 * flush the entire current user mapping 339 */ 340 static inline void __native_flush_tlb(void) 341 { 342 /* 343 * Preemption or interrupts must be disabled to protect the access 344 * to the per CPU variable and to prevent being preempted between 345 * read_cr3() and write_cr3(). 346 */ 347 WARN_ON_ONCE(preemptible()); 348 349 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 350 351 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 352 native_write_cr3(__native_read_cr3()); 353 } 354 355 /* 356 * flush everything 357 */ 358 static inline void __native_flush_tlb_global(void) 359 { 360 unsigned long cr4, flags; 361 362 if (static_cpu_has(X86_FEATURE_INVPCID)) { 363 /* 364 * Using INVPCID is considerably faster than a pair of writes 365 * to CR4 sandwiched inside an IRQ flag save/restore. 366 * 367 * Note, this works with CR4.PCIDE=0 or 1. 368 */ 369 invpcid_flush_all(); 370 return; 371 } 372 373 /* 374 * Read-modify-write to CR4 - protect it from preemption and 375 * from interrupts. (Use the raw variant because this code can 376 * be called from deep inside debugging code.) 377 */ 378 raw_local_irq_save(flags); 379 380 cr4 = this_cpu_read(cpu_tlbstate.cr4); 381 /* toggle PGE */ 382 native_write_cr4(cr4 ^ X86_CR4_PGE); 383 /* write old PGE again and flush TLBs */ 384 native_write_cr4(cr4); 385 386 raw_local_irq_restore(flags); 387 } 388 389 /* 390 * flush one page in the user mapping 391 */ 392 static inline void __native_flush_tlb_one_user(unsigned long addr) 393 { 394 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 395 396 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 397 398 if (!static_cpu_has(X86_FEATURE_PTI)) 399 return; 400 401 /* 402 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 403 * Just use invalidate_user_asid() in case we are called early. 404 */ 405 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 406 invalidate_user_asid(loaded_mm_asid); 407 else 408 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 409 } 410 411 /* 412 * flush everything 413 */ 414 static inline void __flush_tlb_all(void) 415 { 416 if (boot_cpu_has(X86_FEATURE_PGE)) { 417 __flush_tlb_global(); 418 } else { 419 /* 420 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 421 */ 422 __flush_tlb(); 423 } 424 } 425 426 /* 427 * flush one page in the kernel mapping 428 */ 429 static inline void __flush_tlb_one_kernel(unsigned long addr) 430 { 431 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 432 433 /* 434 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 435 * paravirt equivalent. Even with PCID, this is sufficient: we only 436 * use PCID if we also use global PTEs for the kernel mapping, and 437 * INVLPG flushes global translations across all address spaces. 438 * 439 * If PTI is on, then the kernel is mapped with non-global PTEs, and 440 * __flush_tlb_one_user() will flush the given address for the current 441 * kernel address space and for its usermode counterpart, but it does 442 * not flush it for other address spaces. 443 */ 444 __flush_tlb_one_user(addr); 445 446 if (!static_cpu_has(X86_FEATURE_PTI)) 447 return; 448 449 /* 450 * See above. We need to propagate the flush to all other address 451 * spaces. In principle, we only need to propagate it to kernelmode 452 * address spaces, but the extra bookkeeping we would need is not 453 * worth it. 454 */ 455 invalidate_other_asid(); 456 } 457 458 #define TLB_FLUSH_ALL -1UL 459 460 /* 461 * TLB flushing: 462 * 463 * - flush_tlb_all() flushes all processes TLBs 464 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 465 * - flush_tlb_page(vma, vmaddr) flushes one page 466 * - flush_tlb_range(vma, start, end) flushes a range of pages 467 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages 468 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus 469 * 470 * ..but the i386 has somewhat limited tlb flushing capabilities, 471 * and page-granular flushes are available only on i486 and up. 472 */ 473 struct flush_tlb_info { 474 /* 475 * We support several kinds of flushes. 476 * 477 * - Fully flush a single mm. .mm will be set, .end will be 478 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to 479 * which the IPI sender is trying to catch us up. 480 * 481 * - Partially flush a single mm. .mm will be set, .start and 482 * .end will indicate the range, and .new_tlb_gen will be set 483 * such that the changes between generation .new_tlb_gen-1 and 484 * .new_tlb_gen are entirely contained in the indicated range. 485 * 486 * - Fully flush all mms whose tlb_gens have been updated. .mm 487 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen 488 * will be zero. 489 */ 490 struct mm_struct *mm; 491 unsigned long start; 492 unsigned long end; 493 u64 new_tlb_gen; 494 }; 495 496 #define local_flush_tlb() __flush_tlb() 497 498 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL) 499 500 #define flush_tlb_range(vma, start, end) \ 501 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags) 502 503 extern void flush_tlb_all(void); 504 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 505 unsigned long end, unsigned long vmflag); 506 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); 507 508 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a) 509 { 510 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE); 511 } 512 513 void native_flush_tlb_others(const struct cpumask *cpumask, 514 const struct flush_tlb_info *info); 515 516 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm) 517 { 518 /* 519 * Bump the generation count. This also serves as a full barrier 520 * that synchronizes with switch_mm(): callers are required to order 521 * their read of mm_cpumask after their writes to the paging 522 * structures. 523 */ 524 return atomic64_inc_return(&mm->context.tlb_gen); 525 } 526 527 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch, 528 struct mm_struct *mm) 529 { 530 inc_mm_tlb_gen(mm); 531 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm)); 532 } 533 534 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch); 535 536 #ifndef CONFIG_PARAVIRT 537 #define flush_tlb_others(mask, info) \ 538 native_flush_tlb_others(mask, info) 539 #endif 540 541 extern void tlb_flush_remove_tables(struct mm_struct *mm); 542 extern void tlb_flush_remove_tables_local(void *arg); 543 544 #define HAVE_TLB_FLUSH_REMOVE_TABLES 545 546 #endif /* _ASM_X86_TLBFLUSH_H */ 547