xref: /linux/arch/x86/include/asm/special_insns.h (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 #ifndef _ASM_X86_SPECIAL_INSNS_H
2 #define _ASM_X86_SPECIAL_INSNS_H
3 
4 
5 #ifdef __KERNEL__
6 
7 #include <asm/nops.h>
8 
9 static inline void native_clts(void)
10 {
11 	asm volatile("clts");
12 }
13 
14 /*
15  * Volatile isn't enough to prevent the compiler from reordering the
16  * read/write functions for the control registers and messing everything up.
17  * A memory clobber would solve the problem, but would prevent reordering of
18  * all loads stores around it, which can hurt performance. Solution is to
19  * use a variable and mimic reads and writes to it to enforce serialization
20  */
21 extern unsigned long __force_order;
22 
23 static inline unsigned long native_read_cr0(void)
24 {
25 	unsigned long val;
26 	asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
27 	return val;
28 }
29 
30 static inline void native_write_cr0(unsigned long val)
31 {
32 	asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
33 }
34 
35 static inline unsigned long native_read_cr2(void)
36 {
37 	unsigned long val;
38 	asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
39 	return val;
40 }
41 
42 static inline void native_write_cr2(unsigned long val)
43 {
44 	asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
45 }
46 
47 static inline unsigned long native_read_cr3(void)
48 {
49 	unsigned long val;
50 	asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
51 	return val;
52 }
53 
54 static inline void native_write_cr3(unsigned long val)
55 {
56 	asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
57 }
58 
59 static inline unsigned long native_read_cr4(void)
60 {
61 	unsigned long val;
62 	asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
63 	return val;
64 }
65 
66 static inline unsigned long native_read_cr4_safe(void)
67 {
68 	unsigned long val;
69 	/* This could fault if %cr4 does not exist. In x86_64, a cr4 always
70 	 * exists, so it will never fail. */
71 #ifdef CONFIG_X86_32
72 	asm volatile("1: mov %%cr4, %0\n"
73 		     "2:\n"
74 		     _ASM_EXTABLE(1b, 2b)
75 		     : "=r" (val), "=m" (__force_order) : "0" (0));
76 #else
77 	val = native_read_cr4();
78 #endif
79 	return val;
80 }
81 
82 static inline void native_write_cr4(unsigned long val)
83 {
84 	asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
85 }
86 
87 #ifdef CONFIG_X86_64
88 static inline unsigned long native_read_cr8(void)
89 {
90 	unsigned long cr8;
91 	asm volatile("movq %%cr8,%0" : "=r" (cr8));
92 	return cr8;
93 }
94 
95 static inline void native_write_cr8(unsigned long val)
96 {
97 	asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
98 }
99 #endif
100 
101 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
102 static inline u32 __read_pkru(void)
103 {
104 	u32 ecx = 0;
105 	u32 edx, pkru;
106 
107 	/*
108 	 * "rdpkru" instruction.  Places PKRU contents in to EAX,
109 	 * clears EDX and requires that ecx=0.
110 	 */
111 	asm volatile(".byte 0x0f,0x01,0xee\n\t"
112 		     : "=a" (pkru), "=d" (edx)
113 		     : "c" (ecx));
114 	return pkru;
115 }
116 
117 static inline void __write_pkru(u32 pkru)
118 {
119 	u32 ecx = 0, edx = 0;
120 
121 	/*
122 	 * "wrpkru" instruction.  Loads contents in EAX to PKRU,
123 	 * requires that ecx = edx = 0.
124 	 */
125 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
126 		     : : "a" (pkru), "c"(ecx), "d"(edx));
127 }
128 #else
129 static inline u32 __read_pkru(void)
130 {
131 	return 0;
132 }
133 
134 static inline void __write_pkru(u32 pkru)
135 {
136 }
137 #endif
138 
139 static inline void native_wbinvd(void)
140 {
141 	asm volatile("wbinvd": : :"memory");
142 }
143 
144 extern asmlinkage void native_load_gs_index(unsigned);
145 
146 #ifdef CONFIG_PARAVIRT
147 #include <asm/paravirt.h>
148 #else
149 
150 static inline unsigned long read_cr0(void)
151 {
152 	return native_read_cr0();
153 }
154 
155 static inline void write_cr0(unsigned long x)
156 {
157 	native_write_cr0(x);
158 }
159 
160 static inline unsigned long read_cr2(void)
161 {
162 	return native_read_cr2();
163 }
164 
165 static inline void write_cr2(unsigned long x)
166 {
167 	native_write_cr2(x);
168 }
169 
170 static inline unsigned long read_cr3(void)
171 {
172 	return native_read_cr3();
173 }
174 
175 static inline void write_cr3(unsigned long x)
176 {
177 	native_write_cr3(x);
178 }
179 
180 static inline unsigned long __read_cr4(void)
181 {
182 	return native_read_cr4();
183 }
184 
185 static inline unsigned long __read_cr4_safe(void)
186 {
187 	return native_read_cr4_safe();
188 }
189 
190 static inline void __write_cr4(unsigned long x)
191 {
192 	native_write_cr4(x);
193 }
194 
195 static inline void wbinvd(void)
196 {
197 	native_wbinvd();
198 }
199 
200 #ifdef CONFIG_X86_64
201 
202 static inline unsigned long read_cr8(void)
203 {
204 	return native_read_cr8();
205 }
206 
207 static inline void write_cr8(unsigned long x)
208 {
209 	native_write_cr8(x);
210 }
211 
212 static inline void load_gs_index(unsigned selector)
213 {
214 	native_load_gs_index(selector);
215 }
216 
217 #endif
218 
219 /* Clear the 'TS' bit */
220 static inline void clts(void)
221 {
222 	native_clts();
223 }
224 
225 #endif/* CONFIG_PARAVIRT */
226 
227 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
228 
229 static inline void clflush(volatile void *__p)
230 {
231 	asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
232 }
233 
234 static inline void clflushopt(volatile void *__p)
235 {
236 	alternative_io(".byte " __stringify(NOP_DS_PREFIX) "; clflush %P0",
237 		       ".byte 0x66; clflush %P0",
238 		       X86_FEATURE_CLFLUSHOPT,
239 		       "+m" (*(volatile char __force *)__p));
240 }
241 
242 static inline void clwb(volatile void *__p)
243 {
244 	volatile struct { char x[64]; } *p = __p;
245 
246 	asm volatile(ALTERNATIVE_2(
247 		".byte " __stringify(NOP_DS_PREFIX) "; clflush (%[pax])",
248 		".byte 0x66; clflush (%[pax])", /* clflushopt (%%rax) */
249 		X86_FEATURE_CLFLUSHOPT,
250 		".byte 0x66, 0x0f, 0xae, 0x30",  /* clwb (%%rax) */
251 		X86_FEATURE_CLWB)
252 		: [p] "+m" (*p)
253 		: [pax] "a" (p));
254 }
255 
256 /**
257  * pcommit_sfence() - persistent commit and fence
258  *
259  * The PCOMMIT instruction ensures that data that has been flushed from the
260  * processor's cache hierarchy with CLWB, CLFLUSHOPT or CLFLUSH is accepted to
261  * memory and is durable on the DIMM.  The primary use case for this is
262  * persistent memory.
263  *
264  * This function shows how to properly use CLWB/CLFLUSHOPT/CLFLUSH and PCOMMIT
265  * with appropriate fencing.
266  *
267  * Example:
268  * void flush_and_commit_buffer(void *vaddr, unsigned int size)
269  * {
270  *         unsigned long clflush_mask = boot_cpu_data.x86_clflush_size - 1;
271  *         void *vend = vaddr + size;
272  *         void *p;
273  *
274  *         for (p = (void *)((unsigned long)vaddr & ~clflush_mask);
275  *              p < vend; p += boot_cpu_data.x86_clflush_size)
276  *                 clwb(p);
277  *
278  *         // SFENCE to order CLWB/CLFLUSHOPT/CLFLUSH cache flushes
279  *         // MFENCE via mb() also works
280  *         wmb();
281  *
282  *         // PCOMMIT and the required SFENCE for ordering
283  *         pcommit_sfence();
284  * }
285  *
286  * After this function completes the data pointed to by 'vaddr' has been
287  * accepted to memory and will be durable if the 'vaddr' points to persistent
288  * memory.
289  *
290  * PCOMMIT must always be ordered by an MFENCE or SFENCE, so to help simplify
291  * things we include both the PCOMMIT and the required SFENCE in the
292  * alternatives generated by pcommit_sfence().
293  */
294 static inline void pcommit_sfence(void)
295 {
296 	alternative(ASM_NOP7,
297 		    ".byte 0x66, 0x0f, 0xae, 0xf8\n\t" /* pcommit */
298 		    "sfence",
299 		    X86_FEATURE_PCOMMIT);
300 }
301 
302 #define nop() asm volatile ("nop")
303 
304 
305 #endif /* __KERNEL__ */
306 
307 #endif /* _ASM_X86_SPECIAL_INSNS_H */
308