1 #ifndef _ASM_X86_PROCESSOR_H 2 #define _ASM_X86_PROCESSOR_H 3 4 #include <asm/processor-flags.h> 5 6 /* Forward declaration, a strange C thing */ 7 struct task_struct; 8 struct mm_struct; 9 struct vm86; 10 11 #include <asm/math_emu.h> 12 #include <asm/segment.h> 13 #include <asm/types.h> 14 #include <uapi/asm/sigcontext.h> 15 #include <asm/current.h> 16 #include <asm/cpufeatures.h> 17 #include <asm/page.h> 18 #include <asm/pgtable_types.h> 19 #include <asm/percpu.h> 20 #include <asm/msr.h> 21 #include <asm/desc_defs.h> 22 #include <asm/nops.h> 23 #include <asm/special_insns.h> 24 #include <asm/fpu/types.h> 25 26 #include <linux/personality.h> 27 #include <linux/cache.h> 28 #include <linux/threads.h> 29 #include <linux/math64.h> 30 #include <linux/err.h> 31 #include <linux/irqflags.h> 32 33 /* 34 * We handle most unaligned accesses in hardware. On the other hand 35 * unaligned DMA can be quite expensive on some Nehalem processors. 36 * 37 * Based on this we disable the IP header alignment in network drivers. 38 */ 39 #define NET_IP_ALIGN 0 40 41 #define HBP_NUM 4 42 /* 43 * Default implementation of macro that returns current 44 * instruction pointer ("program counter"). 45 */ 46 static inline void *current_text_addr(void) 47 { 48 void *pc; 49 50 asm volatile("mov $1f, %0; 1:":"=r" (pc)); 51 52 return pc; 53 } 54 55 /* 56 * These alignment constraints are for performance in the vSMP case, 57 * but in the task_struct case we must also meet hardware imposed 58 * alignment requirements of the FPU state: 59 */ 60 #ifdef CONFIG_X86_VSMP 61 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 62 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 63 #else 64 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 65 # define ARCH_MIN_MMSTRUCT_ALIGN 0 66 #endif 67 68 enum tlb_infos { 69 ENTRIES, 70 NR_INFO 71 }; 72 73 extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 74 extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 75 extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 76 extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 77 extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 78 extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 79 extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 80 81 /* 82 * CPU type and hardware bug flags. Kept separately for each CPU. 83 * Members of this structure are referenced in head.S, so think twice 84 * before touching them. [mj] 85 */ 86 87 struct cpuinfo_x86 { 88 __u8 x86; /* CPU family */ 89 __u8 x86_vendor; /* CPU vendor */ 90 __u8 x86_model; 91 __u8 x86_mask; 92 #ifdef CONFIG_X86_32 93 char wp_works_ok; /* It doesn't on 386's */ 94 95 /* Problems on some 486Dx4's and old 386's: */ 96 char rfu; 97 char pad0; 98 char pad1; 99 #else 100 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 101 int x86_tlbsize; 102 #endif 103 __u8 x86_virt_bits; 104 __u8 x86_phys_bits; 105 /* CPUID returned core id bits: */ 106 __u8 x86_coreid_bits; 107 __u8 cu_id; 108 /* Max extended CPUID function supported: */ 109 __u32 extended_cpuid_level; 110 /* Maximum supported CPUID level, -1=no CPUID: */ 111 int cpuid_level; 112 __u32 x86_capability[NCAPINTS + NBUGINTS]; 113 char x86_vendor_id[16]; 114 char x86_model_id[64]; 115 /* in KB - valid for CPUS which support this call: */ 116 int x86_cache_size; 117 int x86_cache_alignment; /* In bytes */ 118 /* Cache QoS architectural values: */ 119 int x86_cache_max_rmid; /* max index */ 120 int x86_cache_occ_scale; /* scale to bytes */ 121 int x86_power; 122 unsigned long loops_per_jiffy; 123 /* cpuid returned max cores value: */ 124 u16 x86_max_cores; 125 u16 apicid; 126 u16 initial_apicid; 127 u16 x86_clflush_size; 128 /* number of cores as seen by the OS: */ 129 u16 booted_cores; 130 /* Physical processor id: */ 131 u16 phys_proc_id; 132 /* Logical processor id: */ 133 u16 logical_proc_id; 134 /* Core id: */ 135 u16 cpu_core_id; 136 /* Index into per_cpu list: */ 137 u16 cpu_index; 138 u32 microcode; 139 }; 140 141 struct cpuid_regs { 142 u32 eax, ebx, ecx, edx; 143 }; 144 145 enum cpuid_regs_idx { 146 CPUID_EAX = 0, 147 CPUID_EBX, 148 CPUID_ECX, 149 CPUID_EDX, 150 }; 151 152 #define X86_VENDOR_INTEL 0 153 #define X86_VENDOR_CYRIX 1 154 #define X86_VENDOR_AMD 2 155 #define X86_VENDOR_UMC 3 156 #define X86_VENDOR_CENTAUR 5 157 #define X86_VENDOR_TRANSMETA 7 158 #define X86_VENDOR_NSC 8 159 #define X86_VENDOR_NUM 9 160 161 #define X86_VENDOR_UNKNOWN 0xff 162 163 /* 164 * capabilities of CPUs 165 */ 166 extern struct cpuinfo_x86 boot_cpu_data; 167 extern struct cpuinfo_x86 new_cpu_data; 168 169 extern struct tss_struct doublefault_tss; 170 extern __u32 cpu_caps_cleared[NCAPINTS]; 171 extern __u32 cpu_caps_set[NCAPINTS]; 172 173 #ifdef CONFIG_SMP 174 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 175 #define cpu_data(cpu) per_cpu(cpu_info, cpu) 176 #else 177 #define cpu_info boot_cpu_data 178 #define cpu_data(cpu) boot_cpu_data 179 #endif 180 181 extern const struct seq_operations cpuinfo_op; 182 183 #define cache_line_size() (boot_cpu_data.x86_cache_alignment) 184 185 extern void cpu_detect(struct cpuinfo_x86 *c); 186 187 extern void early_cpu_init(void); 188 extern void identify_boot_cpu(void); 189 extern void identify_secondary_cpu(struct cpuinfo_x86 *); 190 extern void print_cpu_info(struct cpuinfo_x86 *); 191 void print_cpu_msr(struct cpuinfo_x86 *); 192 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c); 193 extern u32 get_scattered_cpuid_leaf(unsigned int level, 194 unsigned int sub_leaf, 195 enum cpuid_regs_idx reg); 196 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c); 197 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c); 198 199 extern void detect_extended_topology(struct cpuinfo_x86 *c); 200 extern void detect_ht(struct cpuinfo_x86 *c); 201 202 #ifdef CONFIG_X86_32 203 extern int have_cpuid_p(void); 204 #else 205 static inline int have_cpuid_p(void) 206 { 207 return 1; 208 } 209 #endif 210 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 211 unsigned int *ecx, unsigned int *edx) 212 { 213 /* ecx is often an input as well as an output. */ 214 asm volatile("cpuid" 215 : "=a" (*eax), 216 "=b" (*ebx), 217 "=c" (*ecx), 218 "=d" (*edx) 219 : "0" (*eax), "2" (*ecx) 220 : "memory"); 221 } 222 223 #define native_cpuid_reg(reg) \ 224 static inline unsigned int native_cpuid_##reg(unsigned int op) \ 225 { \ 226 unsigned int eax = op, ebx, ecx = 0, edx; \ 227 \ 228 native_cpuid(&eax, &ebx, &ecx, &edx); \ 229 \ 230 return reg; \ 231 } 232 233 /* 234 * Native CPUID functions returning a single datum. 235 */ 236 native_cpuid_reg(eax) 237 native_cpuid_reg(ebx) 238 native_cpuid_reg(ecx) 239 native_cpuid_reg(edx) 240 241 static inline void load_cr3(pgd_t *pgdir) 242 { 243 write_cr3(__pa(pgdir)); 244 } 245 246 #ifdef CONFIG_X86_32 247 /* This is the TSS defined by the hardware. */ 248 struct x86_hw_tss { 249 unsigned short back_link, __blh; 250 unsigned long sp0; 251 unsigned short ss0, __ss0h; 252 unsigned long sp1; 253 254 /* 255 * We don't use ring 1, so ss1 is a convenient scratch space in 256 * the same cacheline as sp0. We use ss1 to cache the value in 257 * MSR_IA32_SYSENTER_CS. When we context switch 258 * MSR_IA32_SYSENTER_CS, we first check if the new value being 259 * written matches ss1, and, if it's not, then we wrmsr the new 260 * value and update ss1. 261 * 262 * The only reason we context switch MSR_IA32_SYSENTER_CS is 263 * that we set it to zero in vm86 tasks to avoid corrupting the 264 * stack if we were to go through the sysenter path from vm86 265 * mode. 266 */ 267 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 268 269 unsigned short __ss1h; 270 unsigned long sp2; 271 unsigned short ss2, __ss2h; 272 unsigned long __cr3; 273 unsigned long ip; 274 unsigned long flags; 275 unsigned long ax; 276 unsigned long cx; 277 unsigned long dx; 278 unsigned long bx; 279 unsigned long sp; 280 unsigned long bp; 281 unsigned long si; 282 unsigned long di; 283 unsigned short es, __esh; 284 unsigned short cs, __csh; 285 unsigned short ss, __ssh; 286 unsigned short ds, __dsh; 287 unsigned short fs, __fsh; 288 unsigned short gs, __gsh; 289 unsigned short ldt, __ldth; 290 unsigned short trace; 291 unsigned short io_bitmap_base; 292 293 } __attribute__((packed)); 294 #else 295 struct x86_hw_tss { 296 u32 reserved1; 297 u64 sp0; 298 u64 sp1; 299 u64 sp2; 300 u64 reserved2; 301 u64 ist[7]; 302 u32 reserved3; 303 u32 reserved4; 304 u16 reserved5; 305 u16 io_bitmap_base; 306 307 } __attribute__((packed)); 308 #endif 309 310 /* 311 * IO-bitmap sizes: 312 */ 313 #define IO_BITMAP_BITS 65536 314 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 315 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 316 #define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap) 317 #define INVALID_IO_BITMAP_OFFSET 0x8000 318 319 struct tss_struct { 320 /* 321 * The hardware state: 322 */ 323 struct x86_hw_tss x86_tss; 324 325 /* 326 * The extra 1 is there because the CPU will access an 327 * additional byte beyond the end of the IO permission 328 * bitmap. The extra byte must be all 1 bits, and must 329 * be within the limit. 330 */ 331 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 332 333 #ifdef CONFIG_X86_32 334 /* 335 * Space for the temporary SYSENTER stack. 336 */ 337 unsigned long SYSENTER_stack_canary; 338 unsigned long SYSENTER_stack[64]; 339 #endif 340 341 } ____cacheline_aligned; 342 343 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss); 344 345 /* 346 * sizeof(unsigned long) coming from an extra "long" at the end 347 * of the iobitmap. 348 * 349 * -1? seg base+limit should be pointing to the address of the 350 * last valid byte 351 */ 352 #define __KERNEL_TSS_LIMIT \ 353 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) 354 355 #ifdef CONFIG_X86_32 356 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 357 #endif 358 359 /* 360 * Save the original ist values for checking stack pointers during debugging 361 */ 362 struct orig_ist { 363 unsigned long ist[7]; 364 }; 365 366 #ifdef CONFIG_X86_64 367 DECLARE_PER_CPU(struct orig_ist, orig_ist); 368 369 union irq_stack_union { 370 char irq_stack[IRQ_STACK_SIZE]; 371 /* 372 * GCC hardcodes the stack canary as %gs:40. Since the 373 * irq_stack is the object at %gs:0, we reserve the bottom 374 * 48 bytes of the irq stack for the canary. 375 */ 376 struct { 377 char gs_base[40]; 378 unsigned long stack_canary; 379 }; 380 }; 381 382 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; 383 DECLARE_INIT_PER_CPU(irq_stack_union); 384 385 DECLARE_PER_CPU(char *, irq_stack_ptr); 386 DECLARE_PER_CPU(unsigned int, irq_count); 387 extern asmlinkage void ignore_sysret(void); 388 #else /* X86_64 */ 389 #ifdef CONFIG_CC_STACKPROTECTOR 390 /* 391 * Make sure stack canary segment base is cached-aligned: 392 * "For Intel Atom processors, avoid non zero segment base address 393 * that is not aligned to cache line boundary at all cost." 394 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 395 */ 396 struct stack_canary { 397 char __pad[20]; /* canary at %gs:20 */ 398 unsigned long canary; 399 }; 400 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 401 #endif 402 /* 403 * per-CPU IRQ handling stacks 404 */ 405 struct irq_stack { 406 u32 stack[THREAD_SIZE/sizeof(u32)]; 407 } __aligned(THREAD_SIZE); 408 409 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); 410 DECLARE_PER_CPU(struct irq_stack *, softirq_stack); 411 #endif /* X86_64 */ 412 413 extern unsigned int fpu_kernel_xstate_size; 414 extern unsigned int fpu_user_xstate_size; 415 416 struct perf_event; 417 418 typedef struct { 419 unsigned long seg; 420 } mm_segment_t; 421 422 struct thread_struct { 423 /* Cached TLS descriptors: */ 424 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 425 unsigned long sp0; 426 unsigned long sp; 427 #ifdef CONFIG_X86_32 428 unsigned long sysenter_cs; 429 #else 430 unsigned short es; 431 unsigned short ds; 432 unsigned short fsindex; 433 unsigned short gsindex; 434 #endif 435 436 u32 status; /* thread synchronous flags */ 437 438 #ifdef CONFIG_X86_64 439 unsigned long fsbase; 440 unsigned long gsbase; 441 #else 442 /* 443 * XXX: this could presumably be unsigned short. Alternatively, 444 * 32-bit kernels could be taught to use fsindex instead. 445 */ 446 unsigned long fs; 447 unsigned long gs; 448 #endif 449 450 /* Save middle states of ptrace breakpoints */ 451 struct perf_event *ptrace_bps[HBP_NUM]; 452 /* Debug status used for traps, single steps, etc... */ 453 unsigned long debugreg6; 454 /* Keep track of the exact dr7 value set by the user */ 455 unsigned long ptrace_dr7; 456 /* Fault info: */ 457 unsigned long cr2; 458 unsigned long trap_nr; 459 unsigned long error_code; 460 #ifdef CONFIG_VM86 461 /* Virtual 86 mode info */ 462 struct vm86 *vm86; 463 #endif 464 /* IO permissions: */ 465 unsigned long *io_bitmap_ptr; 466 unsigned long iopl; 467 /* Max allowed port in the bitmap, in bytes: */ 468 unsigned io_bitmap_max; 469 470 mm_segment_t addr_limit; 471 472 unsigned int sig_on_uaccess_err:1; 473 unsigned int uaccess_err:1; /* uaccess failed */ 474 475 /* Floating point and extended processor state */ 476 struct fpu fpu; 477 /* 478 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 479 * the end. 480 */ 481 }; 482 483 /* 484 * Thread-synchronous status. 485 * 486 * This is different from the flags in that nobody else 487 * ever touches our thread-synchronous status, so we don't 488 * have to worry about atomic accesses. 489 */ 490 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 491 492 /* 493 * Set IOPL bits in EFLAGS from given mask 494 */ 495 static inline void native_set_iopl_mask(unsigned mask) 496 { 497 #ifdef CONFIG_X86_32 498 unsigned int reg; 499 500 asm volatile ("pushfl;" 501 "popl %0;" 502 "andl %1, %0;" 503 "orl %2, %0;" 504 "pushl %0;" 505 "popfl" 506 : "=&r" (reg) 507 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 508 #endif 509 } 510 511 static inline void 512 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread) 513 { 514 tss->x86_tss.sp0 = thread->sp0; 515 #ifdef CONFIG_X86_32 516 /* Only happens when SEP is enabled, no need to test "SEP"arately: */ 517 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) { 518 tss->x86_tss.ss1 = thread->sysenter_cs; 519 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0); 520 } 521 #endif 522 } 523 524 static inline void native_swapgs(void) 525 { 526 #ifdef CONFIG_X86_64 527 asm volatile("swapgs" ::: "memory"); 528 #endif 529 } 530 531 static inline unsigned long current_top_of_stack(void) 532 { 533 #ifdef CONFIG_X86_64 534 return this_cpu_read_stable(cpu_tss.x86_tss.sp0); 535 #else 536 /* sp0 on x86_32 is special in and around vm86 mode. */ 537 return this_cpu_read_stable(cpu_current_top_of_stack); 538 #endif 539 } 540 541 #ifdef CONFIG_PARAVIRT 542 #include <asm/paravirt.h> 543 #else 544 #define __cpuid native_cpuid 545 546 static inline void load_sp0(struct tss_struct *tss, 547 struct thread_struct *thread) 548 { 549 native_load_sp0(tss, thread); 550 } 551 552 #define set_iopl_mask native_set_iopl_mask 553 #endif /* CONFIG_PARAVIRT */ 554 555 /* Free all resources held by a thread. */ 556 extern void release_thread(struct task_struct *); 557 558 unsigned long get_wchan(struct task_struct *p); 559 560 /* 561 * Generic CPUID function 562 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 563 * resulting in stale register contents being returned. 564 */ 565 static inline void cpuid(unsigned int op, 566 unsigned int *eax, unsigned int *ebx, 567 unsigned int *ecx, unsigned int *edx) 568 { 569 *eax = op; 570 *ecx = 0; 571 __cpuid(eax, ebx, ecx, edx); 572 } 573 574 /* Some CPUID calls want 'count' to be placed in ecx */ 575 static inline void cpuid_count(unsigned int op, int count, 576 unsigned int *eax, unsigned int *ebx, 577 unsigned int *ecx, unsigned int *edx) 578 { 579 *eax = op; 580 *ecx = count; 581 __cpuid(eax, ebx, ecx, edx); 582 } 583 584 /* 585 * CPUID functions returning a single datum 586 */ 587 static inline unsigned int cpuid_eax(unsigned int op) 588 { 589 unsigned int eax, ebx, ecx, edx; 590 591 cpuid(op, &eax, &ebx, &ecx, &edx); 592 593 return eax; 594 } 595 596 static inline unsigned int cpuid_ebx(unsigned int op) 597 { 598 unsigned int eax, ebx, ecx, edx; 599 600 cpuid(op, &eax, &ebx, &ecx, &edx); 601 602 return ebx; 603 } 604 605 static inline unsigned int cpuid_ecx(unsigned int op) 606 { 607 unsigned int eax, ebx, ecx, edx; 608 609 cpuid(op, &eax, &ebx, &ecx, &edx); 610 611 return ecx; 612 } 613 614 static inline unsigned int cpuid_edx(unsigned int op) 615 { 616 unsigned int eax, ebx, ecx, edx; 617 618 cpuid(op, &eax, &ebx, &ecx, &edx); 619 620 return edx; 621 } 622 623 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 624 static __always_inline void rep_nop(void) 625 { 626 asm volatile("rep; nop" ::: "memory"); 627 } 628 629 static __always_inline void cpu_relax(void) 630 { 631 rep_nop(); 632 } 633 634 /* 635 * This function forces the icache and prefetched instruction stream to 636 * catch up with reality in two very specific cases: 637 * 638 * a) Text was modified using one virtual address and is about to be executed 639 * from the same physical page at a different virtual address. 640 * 641 * b) Text was modified on a different CPU, may subsequently be 642 * executed on this CPU, and you want to make sure the new version 643 * gets executed. This generally means you're calling this in a IPI. 644 * 645 * If you're calling this for a different reason, you're probably doing 646 * it wrong. 647 */ 648 static inline void sync_core(void) 649 { 650 /* 651 * There are quite a few ways to do this. IRET-to-self is nice 652 * because it works on every CPU, at any CPL (so it's compatible 653 * with paravirtualization), and it never exits to a hypervisor. 654 * The only down sides are that it's a bit slow (it seems to be 655 * a bit more than 2x slower than the fastest options) and that 656 * it unmasks NMIs. The "push %cs" is needed because, in 657 * paravirtual environments, __KERNEL_CS may not be a valid CS 658 * value when we do IRET directly. 659 * 660 * In case NMI unmasking or performance ever becomes a problem, 661 * the next best option appears to be MOV-to-CR2 and an 662 * unconditional jump. That sequence also works on all CPUs, 663 * but it will fault at CPL3 (i.e. Xen PV and lguest). 664 * 665 * CPUID is the conventional way, but it's nasty: it doesn't 666 * exist on some 486-like CPUs, and it usually exits to a 667 * hypervisor. 668 * 669 * Like all of Linux's memory ordering operations, this is a 670 * compiler barrier as well. 671 */ 672 register void *__sp asm(_ASM_SP); 673 674 #ifdef CONFIG_X86_32 675 asm volatile ( 676 "pushfl\n\t" 677 "pushl %%cs\n\t" 678 "pushl $1f\n\t" 679 "iret\n\t" 680 "1:" 681 : "+r" (__sp) : : "memory"); 682 #else 683 unsigned int tmp; 684 685 asm volatile ( 686 "mov %%ss, %0\n\t" 687 "pushq %q0\n\t" 688 "pushq %%rsp\n\t" 689 "addq $8, (%%rsp)\n\t" 690 "pushfq\n\t" 691 "mov %%cs, %0\n\t" 692 "pushq %q0\n\t" 693 "pushq $1f\n\t" 694 "iretq\n\t" 695 "1:" 696 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory"); 697 #endif 698 } 699 700 extern void select_idle_routine(const struct cpuinfo_x86 *c); 701 extern void amd_e400_c1e_apic_setup(void); 702 703 extern unsigned long boot_option_idle_override; 704 705 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 706 IDLE_POLL}; 707 708 extern void enable_sep_cpu(void); 709 extern int sysenter_setup(void); 710 711 extern void early_trap_init(void); 712 void early_trap_pf_init(void); 713 714 /* Defined in head.S */ 715 extern struct desc_ptr early_gdt_descr; 716 717 extern void cpu_set_gdt(int); 718 extern void switch_to_new_gdt(int); 719 extern void load_percpu_segment(int); 720 extern void cpu_init(void); 721 722 static inline unsigned long get_debugctlmsr(void) 723 { 724 unsigned long debugctlmsr = 0; 725 726 #ifndef CONFIG_X86_DEBUGCTLMSR 727 if (boot_cpu_data.x86 < 6) 728 return 0; 729 #endif 730 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 731 732 return debugctlmsr; 733 } 734 735 static inline void update_debugctlmsr(unsigned long debugctlmsr) 736 { 737 #ifndef CONFIG_X86_DEBUGCTLMSR 738 if (boot_cpu_data.x86 < 6) 739 return; 740 #endif 741 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 742 } 743 744 extern void set_task_blockstep(struct task_struct *task, bool on); 745 746 /* Boot loader type from the setup header: */ 747 extern int bootloader_type; 748 extern int bootloader_version; 749 750 extern char ignore_fpu_irq; 751 752 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 753 #define ARCH_HAS_PREFETCHW 754 #define ARCH_HAS_SPINLOCK_PREFETCH 755 756 #ifdef CONFIG_X86_32 757 # define BASE_PREFETCH "" 758 # define ARCH_HAS_PREFETCH 759 #else 760 # define BASE_PREFETCH "prefetcht0 %P1" 761 #endif 762 763 /* 764 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 765 * 766 * It's not worth to care about 3dnow prefetches for the K6 767 * because they are microcoded there and very slow. 768 */ 769 static inline void prefetch(const void *x) 770 { 771 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 772 X86_FEATURE_XMM, 773 "m" (*(const char *)x)); 774 } 775 776 /* 777 * 3dnow prefetch to get an exclusive cache line. 778 * Useful for spinlocks to avoid one state transition in the 779 * cache coherency protocol: 780 */ 781 static inline void prefetchw(const void *x) 782 { 783 alternative_input(BASE_PREFETCH, "prefetchw %P1", 784 X86_FEATURE_3DNOWPREFETCH, 785 "m" (*(const char *)x)); 786 } 787 788 static inline void spin_lock_prefetch(const void *x) 789 { 790 prefetchw(x); 791 } 792 793 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 794 TOP_OF_KERNEL_STACK_PADDING) 795 796 #ifdef CONFIG_X86_32 797 /* 798 * User space process size: 3GB (default). 799 */ 800 #define TASK_SIZE PAGE_OFFSET 801 #define TASK_SIZE_MAX TASK_SIZE 802 #define STACK_TOP TASK_SIZE 803 #define STACK_TOP_MAX STACK_TOP 804 805 #define INIT_THREAD { \ 806 .sp0 = TOP_OF_INIT_STACK, \ 807 .sysenter_cs = __KERNEL_CS, \ 808 .io_bitmap_ptr = NULL, \ 809 .addr_limit = KERNEL_DS, \ 810 } 811 812 /* 813 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack. 814 * This is necessary to guarantee that the entire "struct pt_regs" 815 * is accessible even if the CPU haven't stored the SS/ESP registers 816 * on the stack (interrupt gate does not save these registers 817 * when switching to the same priv ring). 818 * Therefore beware: accessing the ss/esp fields of the 819 * "struct pt_regs" is possible, but they may contain the 820 * completely wrong values. 821 */ 822 #define task_pt_regs(task) \ 823 ({ \ 824 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 825 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 826 ((struct pt_regs *)__ptr) - 1; \ 827 }) 828 829 #define KSTK_ESP(task) (task_pt_regs(task)->sp) 830 831 #else 832 /* 833 * User space process size. 47bits minus one guard page. The guard 834 * page is necessary on Intel CPUs: if a SYSCALL instruction is at 835 * the highest possible canonical userspace address, then that 836 * syscall will enter the kernel with a non-canonical return 837 * address, and SYSRET will explode dangerously. We avoid this 838 * particular problem by preventing anything from being mapped 839 * at the maximum canonical address. 840 */ 841 #define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE) 842 843 /* This decides where the kernel will search for a free chunk of vm 844 * space during mmap's. 845 */ 846 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 847 0xc0000000 : 0xFFFFe000) 848 849 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 850 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 851 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 852 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 853 854 #define STACK_TOP TASK_SIZE 855 #define STACK_TOP_MAX TASK_SIZE_MAX 856 857 #define INIT_THREAD { \ 858 .sp0 = TOP_OF_INIT_STACK, \ 859 .addr_limit = KERNEL_DS, \ 860 } 861 862 #define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1) 863 extern unsigned long KSTK_ESP(struct task_struct *task); 864 865 #endif /* CONFIG_X86_64 */ 866 867 extern unsigned long thread_saved_pc(struct task_struct *tsk); 868 869 extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 870 unsigned long new_sp); 871 872 /* 873 * This decides where the kernel will search for a free chunk of vm 874 * space during mmap's. 875 */ 876 #define TASK_UNMAPPED_BASE (PAGE_ALIGN(TASK_SIZE / 3)) 877 878 #define KSTK_EIP(task) (task_pt_regs(task)->ip) 879 880 /* Get/set a process' ability to use the timestamp counter instruction */ 881 #define GET_TSC_CTL(adr) get_tsc_mode((adr)) 882 #define SET_TSC_CTL(val) set_tsc_mode((val)) 883 884 extern int get_tsc_mode(unsigned long adr); 885 extern int set_tsc_mode(unsigned int val); 886 887 /* Register/unregister a process' MPX related resource */ 888 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 889 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 890 891 #ifdef CONFIG_X86_INTEL_MPX 892 extern int mpx_enable_management(void); 893 extern int mpx_disable_management(void); 894 #else 895 static inline int mpx_enable_management(void) 896 { 897 return -EINVAL; 898 } 899 static inline int mpx_disable_management(void) 900 { 901 return -EINVAL; 902 } 903 #endif /* CONFIG_X86_INTEL_MPX */ 904 905 extern u16 amd_get_nb_id(int cpu); 906 extern u32 amd_get_nodes_per_socket(void); 907 908 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 909 { 910 uint32_t base, eax, signature[3]; 911 912 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 913 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 914 915 if (!memcmp(sig, signature, 12) && 916 (leaves == 0 || ((eax - base) >= leaves))) 917 return base; 918 } 919 920 return 0; 921 } 922 923 extern unsigned long arch_align_stack(unsigned long sp); 924 extern void free_init_pages(char *what, unsigned long begin, unsigned long end); 925 926 void default_idle(void); 927 #ifdef CONFIG_XEN 928 bool xen_set_default_idle(void); 929 #else 930 #define xen_set_default_idle 0 931 #endif 932 933 void stop_this_cpu(void *dummy); 934 void df_debug(struct pt_regs *regs, long error_code); 935 #endif /* _ASM_X86_PROCESSOR_H */ 936