xref: /linux/arch/x86/include/asm/processor.h (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3 
4 #include <asm/processor-flags.h>
5 
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10 
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25 
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32 
33 /*
34  * We handle most unaligned accesses in hardware.  On the other hand
35  * unaligned DMA can be quite expensive on some Nehalem processors.
36  *
37  * Based on this we disable the IP header alignment in network drivers.
38  */
39 #define NET_IP_ALIGN	0
40 
41 #define HBP_NUM 4
42 /*
43  * Default implementation of macro that returns current
44  * instruction pointer ("program counter").
45  */
46 static inline void *current_text_addr(void)
47 {
48 	void *pc;
49 
50 	asm volatile("mov $1f, %0; 1:":"=r" (pc));
51 
52 	return pc;
53 }
54 
55 /*
56  * These alignment constraints are for performance in the vSMP case,
57  * but in the task_struct case we must also meet hardware imposed
58  * alignment requirements of the FPU state:
59  */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN	0
66 #endif
67 
68 enum tlb_infos {
69 	ENTRIES,
70 	NR_INFO
71 };
72 
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80 
81 /*
82  *  CPU type and hardware bug flags. Kept separately for each CPU.
83  *  Members of this structure are referenced in head.S, so think twice
84  *  before touching them. [mj]
85  */
86 
87 struct cpuinfo_x86 {
88 	__u8			x86;		/* CPU family */
89 	__u8			x86_vendor;	/* CPU vendor */
90 	__u8			x86_model;
91 	__u8			x86_mask;
92 #ifdef CONFIG_X86_32
93 	char			wp_works_ok;	/* It doesn't on 386's */
94 
95 	/* Problems on some 486Dx4's and old 386's: */
96 	char			rfu;
97 	char			pad0;
98 	char			pad1;
99 #else
100 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
101 	int			x86_tlbsize;
102 #endif
103 	__u8			x86_virt_bits;
104 	__u8			x86_phys_bits;
105 	/* CPUID returned core id bits: */
106 	__u8			x86_coreid_bits;
107 	__u8			cu_id;
108 	/* Max extended CPUID function supported: */
109 	__u32			extended_cpuid_level;
110 	/* Maximum supported CPUID level, -1=no CPUID: */
111 	int			cpuid_level;
112 	__u32			x86_capability[NCAPINTS + NBUGINTS];
113 	char			x86_vendor_id[16];
114 	char			x86_model_id[64];
115 	/* in KB - valid for CPUS which support this call: */
116 	int			x86_cache_size;
117 	int			x86_cache_alignment;	/* In bytes */
118 	/* Cache QoS architectural values: */
119 	int			x86_cache_max_rmid;	/* max index */
120 	int			x86_cache_occ_scale;	/* scale to bytes */
121 	int			x86_power;
122 	unsigned long		loops_per_jiffy;
123 	/* cpuid returned max cores value: */
124 	u16			 x86_max_cores;
125 	u16			apicid;
126 	u16			initial_apicid;
127 	u16			x86_clflush_size;
128 	/* number of cores as seen by the OS: */
129 	u16			booted_cores;
130 	/* Physical processor id: */
131 	u16			phys_proc_id;
132 	/* Logical processor id: */
133 	u16			logical_proc_id;
134 	/* Core id: */
135 	u16			cpu_core_id;
136 	/* Index into per_cpu list: */
137 	u16			cpu_index;
138 	u32			microcode;
139 };
140 
141 struct cpuid_regs {
142 	u32 eax, ebx, ecx, edx;
143 };
144 
145 enum cpuid_regs_idx {
146 	CPUID_EAX = 0,
147 	CPUID_EBX,
148 	CPUID_ECX,
149 	CPUID_EDX,
150 };
151 
152 #define X86_VENDOR_INTEL	0
153 #define X86_VENDOR_CYRIX	1
154 #define X86_VENDOR_AMD		2
155 #define X86_VENDOR_UMC		3
156 #define X86_VENDOR_CENTAUR	5
157 #define X86_VENDOR_TRANSMETA	7
158 #define X86_VENDOR_NSC		8
159 #define X86_VENDOR_NUM		9
160 
161 #define X86_VENDOR_UNKNOWN	0xff
162 
163 /*
164  * capabilities of CPUs
165  */
166 extern struct cpuinfo_x86	boot_cpu_data;
167 extern struct cpuinfo_x86	new_cpu_data;
168 
169 extern struct tss_struct	doublefault_tss;
170 extern __u32			cpu_caps_cleared[NCAPINTS];
171 extern __u32			cpu_caps_set[NCAPINTS];
172 
173 #ifdef CONFIG_SMP
174 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
175 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
176 #else
177 #define cpu_info		boot_cpu_data
178 #define cpu_data(cpu)		boot_cpu_data
179 #endif
180 
181 extern const struct seq_operations cpuinfo_op;
182 
183 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
184 
185 extern void cpu_detect(struct cpuinfo_x86 *c);
186 
187 extern void early_cpu_init(void);
188 extern void identify_boot_cpu(void);
189 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
190 extern void print_cpu_info(struct cpuinfo_x86 *);
191 void print_cpu_msr(struct cpuinfo_x86 *);
192 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
193 extern u32 get_scattered_cpuid_leaf(unsigned int level,
194 				    unsigned int sub_leaf,
195 				    enum cpuid_regs_idx reg);
196 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
197 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
198 
199 extern void detect_extended_topology(struct cpuinfo_x86 *c);
200 extern void detect_ht(struct cpuinfo_x86 *c);
201 
202 #ifdef CONFIG_X86_32
203 extern int have_cpuid_p(void);
204 #else
205 static inline int have_cpuid_p(void)
206 {
207 	return 1;
208 }
209 #endif
210 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
211 				unsigned int *ecx, unsigned int *edx)
212 {
213 	/* ecx is often an input as well as an output. */
214 	asm volatile("cpuid"
215 	    : "=a" (*eax),
216 	      "=b" (*ebx),
217 	      "=c" (*ecx),
218 	      "=d" (*edx)
219 	    : "0" (*eax), "2" (*ecx)
220 	    : "memory");
221 }
222 
223 #define native_cpuid_reg(reg)					\
224 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
225 {								\
226 	unsigned int eax = op, ebx, ecx = 0, edx;		\
227 								\
228 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
229 								\
230 	return reg;						\
231 }
232 
233 /*
234  * Native CPUID functions returning a single datum.
235  */
236 native_cpuid_reg(eax)
237 native_cpuid_reg(ebx)
238 native_cpuid_reg(ecx)
239 native_cpuid_reg(edx)
240 
241 static inline void load_cr3(pgd_t *pgdir)
242 {
243 	write_cr3(__pa(pgdir));
244 }
245 
246 #ifdef CONFIG_X86_32
247 /* This is the TSS defined by the hardware. */
248 struct x86_hw_tss {
249 	unsigned short		back_link, __blh;
250 	unsigned long		sp0;
251 	unsigned short		ss0, __ss0h;
252 	unsigned long		sp1;
253 
254 	/*
255 	 * We don't use ring 1, so ss1 is a convenient scratch space in
256 	 * the same cacheline as sp0.  We use ss1 to cache the value in
257 	 * MSR_IA32_SYSENTER_CS.  When we context switch
258 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
259 	 * written matches ss1, and, if it's not, then we wrmsr the new
260 	 * value and update ss1.
261 	 *
262 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
263 	 * that we set it to zero in vm86 tasks to avoid corrupting the
264 	 * stack if we were to go through the sysenter path from vm86
265 	 * mode.
266 	 */
267 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
268 
269 	unsigned short		__ss1h;
270 	unsigned long		sp2;
271 	unsigned short		ss2, __ss2h;
272 	unsigned long		__cr3;
273 	unsigned long		ip;
274 	unsigned long		flags;
275 	unsigned long		ax;
276 	unsigned long		cx;
277 	unsigned long		dx;
278 	unsigned long		bx;
279 	unsigned long		sp;
280 	unsigned long		bp;
281 	unsigned long		si;
282 	unsigned long		di;
283 	unsigned short		es, __esh;
284 	unsigned short		cs, __csh;
285 	unsigned short		ss, __ssh;
286 	unsigned short		ds, __dsh;
287 	unsigned short		fs, __fsh;
288 	unsigned short		gs, __gsh;
289 	unsigned short		ldt, __ldth;
290 	unsigned short		trace;
291 	unsigned short		io_bitmap_base;
292 
293 } __attribute__((packed));
294 #else
295 struct x86_hw_tss {
296 	u32			reserved1;
297 	u64			sp0;
298 	u64			sp1;
299 	u64			sp2;
300 	u64			reserved2;
301 	u64			ist[7];
302 	u32			reserved3;
303 	u32			reserved4;
304 	u16			reserved5;
305 	u16			io_bitmap_base;
306 
307 } __attribute__((packed));
308 #endif
309 
310 /*
311  * IO-bitmap sizes:
312  */
313 #define IO_BITMAP_BITS			65536
314 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
315 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
316 #define IO_BITMAP_OFFSET		offsetof(struct tss_struct, io_bitmap)
317 #define INVALID_IO_BITMAP_OFFSET	0x8000
318 
319 struct tss_struct {
320 	/*
321 	 * The hardware state:
322 	 */
323 	struct x86_hw_tss	x86_tss;
324 
325 	/*
326 	 * The extra 1 is there because the CPU will access an
327 	 * additional byte beyond the end of the IO permission
328 	 * bitmap. The extra byte must be all 1 bits, and must
329 	 * be within the limit.
330 	 */
331 	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];
332 
333 #ifdef CONFIG_X86_32
334 	/*
335 	 * Space for the temporary SYSENTER stack.
336 	 */
337 	unsigned long		SYSENTER_stack_canary;
338 	unsigned long		SYSENTER_stack[64];
339 #endif
340 
341 } ____cacheline_aligned;
342 
343 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
344 
345 /*
346  * sizeof(unsigned long) coming from an extra "long" at the end
347  * of the iobitmap.
348  *
349  * -1? seg base+limit should be pointing to the address of the
350  * last valid byte
351  */
352 #define __KERNEL_TSS_LIMIT	\
353 	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
354 
355 #ifdef CONFIG_X86_32
356 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
357 #endif
358 
359 /*
360  * Save the original ist values for checking stack pointers during debugging
361  */
362 struct orig_ist {
363 	unsigned long		ist[7];
364 };
365 
366 #ifdef CONFIG_X86_64
367 DECLARE_PER_CPU(struct orig_ist, orig_ist);
368 
369 union irq_stack_union {
370 	char irq_stack[IRQ_STACK_SIZE];
371 	/*
372 	 * GCC hardcodes the stack canary as %gs:40.  Since the
373 	 * irq_stack is the object at %gs:0, we reserve the bottom
374 	 * 48 bytes of the irq stack for the canary.
375 	 */
376 	struct {
377 		char gs_base[40];
378 		unsigned long stack_canary;
379 	};
380 };
381 
382 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
383 DECLARE_INIT_PER_CPU(irq_stack_union);
384 
385 DECLARE_PER_CPU(char *, irq_stack_ptr);
386 DECLARE_PER_CPU(unsigned int, irq_count);
387 extern asmlinkage void ignore_sysret(void);
388 #else	/* X86_64 */
389 #ifdef CONFIG_CC_STACKPROTECTOR
390 /*
391  * Make sure stack canary segment base is cached-aligned:
392  *   "For Intel Atom processors, avoid non zero segment base address
393  *    that is not aligned to cache line boundary at all cost."
394  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
395  */
396 struct stack_canary {
397 	char __pad[20];		/* canary at %gs:20 */
398 	unsigned long canary;
399 };
400 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
401 #endif
402 /*
403  * per-CPU IRQ handling stacks
404  */
405 struct irq_stack {
406 	u32                     stack[THREAD_SIZE/sizeof(u32)];
407 } __aligned(THREAD_SIZE);
408 
409 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
410 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
411 #endif	/* X86_64 */
412 
413 extern unsigned int fpu_kernel_xstate_size;
414 extern unsigned int fpu_user_xstate_size;
415 
416 struct perf_event;
417 
418 typedef struct {
419 	unsigned long		seg;
420 } mm_segment_t;
421 
422 struct thread_struct {
423 	/* Cached TLS descriptors: */
424 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
425 	unsigned long		sp0;
426 	unsigned long		sp;
427 #ifdef CONFIG_X86_32
428 	unsigned long		sysenter_cs;
429 #else
430 	unsigned short		es;
431 	unsigned short		ds;
432 	unsigned short		fsindex;
433 	unsigned short		gsindex;
434 #endif
435 
436 	u32			status;		/* thread synchronous flags */
437 
438 #ifdef CONFIG_X86_64
439 	unsigned long		fsbase;
440 	unsigned long		gsbase;
441 #else
442 	/*
443 	 * XXX: this could presumably be unsigned short.  Alternatively,
444 	 * 32-bit kernels could be taught to use fsindex instead.
445 	 */
446 	unsigned long fs;
447 	unsigned long gs;
448 #endif
449 
450 	/* Save middle states of ptrace breakpoints */
451 	struct perf_event	*ptrace_bps[HBP_NUM];
452 	/* Debug status used for traps, single steps, etc... */
453 	unsigned long           debugreg6;
454 	/* Keep track of the exact dr7 value set by the user */
455 	unsigned long           ptrace_dr7;
456 	/* Fault info: */
457 	unsigned long		cr2;
458 	unsigned long		trap_nr;
459 	unsigned long		error_code;
460 #ifdef CONFIG_VM86
461 	/* Virtual 86 mode info */
462 	struct vm86		*vm86;
463 #endif
464 	/* IO permissions: */
465 	unsigned long		*io_bitmap_ptr;
466 	unsigned long		iopl;
467 	/* Max allowed port in the bitmap, in bytes: */
468 	unsigned		io_bitmap_max;
469 
470 	mm_segment_t		addr_limit;
471 
472 	unsigned int		sig_on_uaccess_err:1;
473 	unsigned int		uaccess_err:1;	/* uaccess failed */
474 
475 	/* Floating point and extended processor state */
476 	struct fpu		fpu;
477 	/*
478 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
479 	 * the end.
480 	 */
481 };
482 
483 /*
484  * Thread-synchronous status.
485  *
486  * This is different from the flags in that nobody else
487  * ever touches our thread-synchronous status, so we don't
488  * have to worry about atomic accesses.
489  */
490 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
491 
492 /*
493  * Set IOPL bits in EFLAGS from given mask
494  */
495 static inline void native_set_iopl_mask(unsigned mask)
496 {
497 #ifdef CONFIG_X86_32
498 	unsigned int reg;
499 
500 	asm volatile ("pushfl;"
501 		      "popl %0;"
502 		      "andl %1, %0;"
503 		      "orl %2, %0;"
504 		      "pushl %0;"
505 		      "popfl"
506 		      : "=&r" (reg)
507 		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
508 #endif
509 }
510 
511 static inline void
512 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
513 {
514 	tss->x86_tss.sp0 = thread->sp0;
515 #ifdef CONFIG_X86_32
516 	/* Only happens when SEP is enabled, no need to test "SEP"arately: */
517 	if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
518 		tss->x86_tss.ss1 = thread->sysenter_cs;
519 		wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
520 	}
521 #endif
522 }
523 
524 static inline void native_swapgs(void)
525 {
526 #ifdef CONFIG_X86_64
527 	asm volatile("swapgs" ::: "memory");
528 #endif
529 }
530 
531 static inline unsigned long current_top_of_stack(void)
532 {
533 #ifdef CONFIG_X86_64
534 	return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
535 #else
536 	/* sp0 on x86_32 is special in and around vm86 mode. */
537 	return this_cpu_read_stable(cpu_current_top_of_stack);
538 #endif
539 }
540 
541 #ifdef CONFIG_PARAVIRT
542 #include <asm/paravirt.h>
543 #else
544 #define __cpuid			native_cpuid
545 
546 static inline void load_sp0(struct tss_struct *tss,
547 			    struct thread_struct *thread)
548 {
549 	native_load_sp0(tss, thread);
550 }
551 
552 #define set_iopl_mask native_set_iopl_mask
553 #endif /* CONFIG_PARAVIRT */
554 
555 /* Free all resources held by a thread. */
556 extern void release_thread(struct task_struct *);
557 
558 unsigned long get_wchan(struct task_struct *p);
559 
560 /*
561  * Generic CPUID function
562  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
563  * resulting in stale register contents being returned.
564  */
565 static inline void cpuid(unsigned int op,
566 			 unsigned int *eax, unsigned int *ebx,
567 			 unsigned int *ecx, unsigned int *edx)
568 {
569 	*eax = op;
570 	*ecx = 0;
571 	__cpuid(eax, ebx, ecx, edx);
572 }
573 
574 /* Some CPUID calls want 'count' to be placed in ecx */
575 static inline void cpuid_count(unsigned int op, int count,
576 			       unsigned int *eax, unsigned int *ebx,
577 			       unsigned int *ecx, unsigned int *edx)
578 {
579 	*eax = op;
580 	*ecx = count;
581 	__cpuid(eax, ebx, ecx, edx);
582 }
583 
584 /*
585  * CPUID functions returning a single datum
586  */
587 static inline unsigned int cpuid_eax(unsigned int op)
588 {
589 	unsigned int eax, ebx, ecx, edx;
590 
591 	cpuid(op, &eax, &ebx, &ecx, &edx);
592 
593 	return eax;
594 }
595 
596 static inline unsigned int cpuid_ebx(unsigned int op)
597 {
598 	unsigned int eax, ebx, ecx, edx;
599 
600 	cpuid(op, &eax, &ebx, &ecx, &edx);
601 
602 	return ebx;
603 }
604 
605 static inline unsigned int cpuid_ecx(unsigned int op)
606 {
607 	unsigned int eax, ebx, ecx, edx;
608 
609 	cpuid(op, &eax, &ebx, &ecx, &edx);
610 
611 	return ecx;
612 }
613 
614 static inline unsigned int cpuid_edx(unsigned int op)
615 {
616 	unsigned int eax, ebx, ecx, edx;
617 
618 	cpuid(op, &eax, &ebx, &ecx, &edx);
619 
620 	return edx;
621 }
622 
623 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
624 static __always_inline void rep_nop(void)
625 {
626 	asm volatile("rep; nop" ::: "memory");
627 }
628 
629 static __always_inline void cpu_relax(void)
630 {
631 	rep_nop();
632 }
633 
634 /*
635  * This function forces the icache and prefetched instruction stream to
636  * catch up with reality in two very specific cases:
637  *
638  *  a) Text was modified using one virtual address and is about to be executed
639  *     from the same physical page at a different virtual address.
640  *
641  *  b) Text was modified on a different CPU, may subsequently be
642  *     executed on this CPU, and you want to make sure the new version
643  *     gets executed.  This generally means you're calling this in a IPI.
644  *
645  * If you're calling this for a different reason, you're probably doing
646  * it wrong.
647  */
648 static inline void sync_core(void)
649 {
650 	/*
651 	 * There are quite a few ways to do this.  IRET-to-self is nice
652 	 * because it works on every CPU, at any CPL (so it's compatible
653 	 * with paravirtualization), and it never exits to a hypervisor.
654 	 * The only down sides are that it's a bit slow (it seems to be
655 	 * a bit more than 2x slower than the fastest options) and that
656 	 * it unmasks NMIs.  The "push %cs" is needed because, in
657 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
658 	 * value when we do IRET directly.
659 	 *
660 	 * In case NMI unmasking or performance ever becomes a problem,
661 	 * the next best option appears to be MOV-to-CR2 and an
662 	 * unconditional jump.  That sequence also works on all CPUs,
663 	 * but it will fault at CPL3 (i.e. Xen PV and lguest).
664 	 *
665 	 * CPUID is the conventional way, but it's nasty: it doesn't
666 	 * exist on some 486-like CPUs, and it usually exits to a
667 	 * hypervisor.
668 	 *
669 	 * Like all of Linux's memory ordering operations, this is a
670 	 * compiler barrier as well.
671 	 */
672 	register void *__sp asm(_ASM_SP);
673 
674 #ifdef CONFIG_X86_32
675 	asm volatile (
676 		"pushfl\n\t"
677 		"pushl %%cs\n\t"
678 		"pushl $1f\n\t"
679 		"iret\n\t"
680 		"1:"
681 		: "+r" (__sp) : : "memory");
682 #else
683 	unsigned int tmp;
684 
685 	asm volatile (
686 		"mov %%ss, %0\n\t"
687 		"pushq %q0\n\t"
688 		"pushq %%rsp\n\t"
689 		"addq $8, (%%rsp)\n\t"
690 		"pushfq\n\t"
691 		"mov %%cs, %0\n\t"
692 		"pushq %q0\n\t"
693 		"pushq $1f\n\t"
694 		"iretq\n\t"
695 		"1:"
696 		: "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
697 #endif
698 }
699 
700 extern void select_idle_routine(const struct cpuinfo_x86 *c);
701 extern void amd_e400_c1e_apic_setup(void);
702 
703 extern unsigned long		boot_option_idle_override;
704 
705 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
706 			 IDLE_POLL};
707 
708 extern void enable_sep_cpu(void);
709 extern int sysenter_setup(void);
710 
711 extern void early_trap_init(void);
712 void early_trap_pf_init(void);
713 
714 /* Defined in head.S */
715 extern struct desc_ptr		early_gdt_descr;
716 
717 extern void cpu_set_gdt(int);
718 extern void switch_to_new_gdt(int);
719 extern void load_percpu_segment(int);
720 extern void cpu_init(void);
721 
722 static inline unsigned long get_debugctlmsr(void)
723 {
724 	unsigned long debugctlmsr = 0;
725 
726 #ifndef CONFIG_X86_DEBUGCTLMSR
727 	if (boot_cpu_data.x86 < 6)
728 		return 0;
729 #endif
730 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
731 
732 	return debugctlmsr;
733 }
734 
735 static inline void update_debugctlmsr(unsigned long debugctlmsr)
736 {
737 #ifndef CONFIG_X86_DEBUGCTLMSR
738 	if (boot_cpu_data.x86 < 6)
739 		return;
740 #endif
741 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
742 }
743 
744 extern void set_task_blockstep(struct task_struct *task, bool on);
745 
746 /* Boot loader type from the setup header: */
747 extern int			bootloader_type;
748 extern int			bootloader_version;
749 
750 extern char			ignore_fpu_irq;
751 
752 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
753 #define ARCH_HAS_PREFETCHW
754 #define ARCH_HAS_SPINLOCK_PREFETCH
755 
756 #ifdef CONFIG_X86_32
757 # define BASE_PREFETCH		""
758 # define ARCH_HAS_PREFETCH
759 #else
760 # define BASE_PREFETCH		"prefetcht0 %P1"
761 #endif
762 
763 /*
764  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
765  *
766  * It's not worth to care about 3dnow prefetches for the K6
767  * because they are microcoded there and very slow.
768  */
769 static inline void prefetch(const void *x)
770 {
771 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
772 			  X86_FEATURE_XMM,
773 			  "m" (*(const char *)x));
774 }
775 
776 /*
777  * 3dnow prefetch to get an exclusive cache line.
778  * Useful for spinlocks to avoid one state transition in the
779  * cache coherency protocol:
780  */
781 static inline void prefetchw(const void *x)
782 {
783 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
784 			  X86_FEATURE_3DNOWPREFETCH,
785 			  "m" (*(const char *)x));
786 }
787 
788 static inline void spin_lock_prefetch(const void *x)
789 {
790 	prefetchw(x);
791 }
792 
793 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
794 			   TOP_OF_KERNEL_STACK_PADDING)
795 
796 #ifdef CONFIG_X86_32
797 /*
798  * User space process size: 3GB (default).
799  */
800 #define TASK_SIZE		PAGE_OFFSET
801 #define TASK_SIZE_MAX		TASK_SIZE
802 #define STACK_TOP		TASK_SIZE
803 #define STACK_TOP_MAX		STACK_TOP
804 
805 #define INIT_THREAD  {							  \
806 	.sp0			= TOP_OF_INIT_STACK,			  \
807 	.sysenter_cs		= __KERNEL_CS,				  \
808 	.io_bitmap_ptr		= NULL,					  \
809 	.addr_limit		= KERNEL_DS,				  \
810 }
811 
812 /*
813  * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
814  * This is necessary to guarantee that the entire "struct pt_regs"
815  * is accessible even if the CPU haven't stored the SS/ESP registers
816  * on the stack (interrupt gate does not save these registers
817  * when switching to the same priv ring).
818  * Therefore beware: accessing the ss/esp fields of the
819  * "struct pt_regs" is possible, but they may contain the
820  * completely wrong values.
821  */
822 #define task_pt_regs(task) \
823 ({									\
824 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
825 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
826 	((struct pt_regs *)__ptr) - 1;					\
827 })
828 
829 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
830 
831 #else
832 /*
833  * User space process size. 47bits minus one guard page.  The guard
834  * page is necessary on Intel CPUs: if a SYSCALL instruction is at
835  * the highest possible canonical userspace address, then that
836  * syscall will enter the kernel with a non-canonical return
837  * address, and SYSRET will explode dangerously.  We avoid this
838  * particular problem by preventing anything from being mapped
839  * at the maximum canonical address.
840  */
841 #define TASK_SIZE_MAX	((1UL << 47) - PAGE_SIZE)
842 
843 /* This decides where the kernel will search for a free chunk of vm
844  * space during mmap's.
845  */
846 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
847 					0xc0000000 : 0xFFFFe000)
848 
849 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
850 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
851 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
852 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
853 
854 #define STACK_TOP		TASK_SIZE
855 #define STACK_TOP_MAX		TASK_SIZE_MAX
856 
857 #define INIT_THREAD  {						\
858 	.sp0			= TOP_OF_INIT_STACK,		\
859 	.addr_limit		= KERNEL_DS,			\
860 }
861 
862 #define task_pt_regs(tsk)	((struct pt_regs *)(tsk)->thread.sp0 - 1)
863 extern unsigned long KSTK_ESP(struct task_struct *task);
864 
865 #endif /* CONFIG_X86_64 */
866 
867 extern unsigned long thread_saved_pc(struct task_struct *tsk);
868 
869 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
870 					       unsigned long new_sp);
871 
872 /*
873  * This decides where the kernel will search for a free chunk of vm
874  * space during mmap's.
875  */
876 #define TASK_UNMAPPED_BASE	(PAGE_ALIGN(TASK_SIZE / 3))
877 
878 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
879 
880 /* Get/set a process' ability to use the timestamp counter instruction */
881 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
882 #define SET_TSC_CTL(val)	set_tsc_mode((val))
883 
884 extern int get_tsc_mode(unsigned long adr);
885 extern int set_tsc_mode(unsigned int val);
886 
887 /* Register/unregister a process' MPX related resource */
888 #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
889 #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
890 
891 #ifdef CONFIG_X86_INTEL_MPX
892 extern int mpx_enable_management(void);
893 extern int mpx_disable_management(void);
894 #else
895 static inline int mpx_enable_management(void)
896 {
897 	return -EINVAL;
898 }
899 static inline int mpx_disable_management(void)
900 {
901 	return -EINVAL;
902 }
903 #endif /* CONFIG_X86_INTEL_MPX */
904 
905 extern u16 amd_get_nb_id(int cpu);
906 extern u32 amd_get_nodes_per_socket(void);
907 
908 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
909 {
910 	uint32_t base, eax, signature[3];
911 
912 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
913 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
914 
915 		if (!memcmp(sig, signature, 12) &&
916 		    (leaves == 0 || ((eax - base) >= leaves)))
917 			return base;
918 	}
919 
920 	return 0;
921 }
922 
923 extern unsigned long arch_align_stack(unsigned long sp);
924 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
925 
926 void default_idle(void);
927 #ifdef	CONFIG_XEN
928 bool xen_set_default_idle(void);
929 #else
930 #define xen_set_default_idle 0
931 #endif
932 
933 void stop_this_cpu(void *dummy);
934 void df_debug(struct pt_regs *regs, long error_code);
935 #endif /* _ASM_X86_PROCESSOR_H */
936