xref: /linux/arch/x86/include/asm/processor.h (revision c4c14c3bd177ea769fee938674f73a8ec0cdd47a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4 
5 #include <asm/processor-flags.h>
6 
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct vm86;
11 
12 #include <asm/math_emu.h>
13 #include <asm/segment.h>
14 #include <asm/types.h>
15 #include <uapi/asm/sigcontext.h>
16 #include <asm/current.h>
17 #include <asm/cpufeatures.h>
18 #include <asm/page.h>
19 #include <asm/pgtable_types.h>
20 #include <asm/percpu.h>
21 #include <asm/msr.h>
22 #include <asm/desc_defs.h>
23 #include <asm/nops.h>
24 #include <asm/special_insns.h>
25 #include <asm/fpu/types.h>
26 #include <asm/unwind_hints.h>
27 
28 #include <linux/personality.h>
29 #include <linux/cache.h>
30 #include <linux/threads.h>
31 #include <linux/math64.h>
32 #include <linux/err.h>
33 #include <linux/irqflags.h>
34 #include <linux/mem_encrypt.h>
35 
36 /*
37  * We handle most unaligned accesses in hardware.  On the other hand
38  * unaligned DMA can be quite expensive on some Nehalem processors.
39  *
40  * Based on this we disable the IP header alignment in network drivers.
41  */
42 #define NET_IP_ALIGN	0
43 
44 #define HBP_NUM 4
45 /*
46  * Default implementation of macro that returns current
47  * instruction pointer ("program counter").
48  */
49 static inline void *current_text_addr(void)
50 {
51 	void *pc;
52 
53 	asm volatile("mov $1f, %0; 1:":"=r" (pc));
54 
55 	return pc;
56 }
57 
58 /*
59  * These alignment constraints are for performance in the vSMP case,
60  * but in the task_struct case we must also meet hardware imposed
61  * alignment requirements of the FPU state:
62  */
63 #ifdef CONFIG_X86_VSMP
64 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
65 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
66 #else
67 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
68 # define ARCH_MIN_MMSTRUCT_ALIGN	0
69 #endif
70 
71 enum tlb_infos {
72 	ENTRIES,
73 	NR_INFO
74 };
75 
76 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
80 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
81 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83 
84 /*
85  *  CPU type and hardware bug flags. Kept separately for each CPU.
86  *  Members of this structure are referenced in head_32.S, so think twice
87  *  before touching them. [mj]
88  */
89 
90 struct cpuinfo_x86 {
91 	__u8			x86;		/* CPU family */
92 	__u8			x86_vendor;	/* CPU vendor */
93 	__u8			x86_model;
94 	__u8			x86_stepping;
95 #ifdef CONFIG_X86_64
96 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
97 	int			x86_tlbsize;
98 #endif
99 	__u8			x86_virt_bits;
100 	__u8			x86_phys_bits;
101 	/* CPUID returned core id bits: */
102 	__u8			x86_coreid_bits;
103 	__u8			cu_id;
104 	/* Max extended CPUID function supported: */
105 	__u32			extended_cpuid_level;
106 	/* Maximum supported CPUID level, -1=no CPUID: */
107 	int			cpuid_level;
108 	__u32			x86_capability[NCAPINTS + NBUGINTS];
109 	char			x86_vendor_id[16];
110 	char			x86_model_id[64];
111 	/* in KB - valid for CPUS which support this call: */
112 	unsigned int		x86_cache_size;
113 	int			x86_cache_alignment;	/* In bytes */
114 	/* Cache QoS architectural values: */
115 	int			x86_cache_max_rmid;	/* max index */
116 	int			x86_cache_occ_scale;	/* scale to bytes */
117 	int			x86_power;
118 	unsigned long		loops_per_jiffy;
119 	/* cpuid returned max cores value: */
120 	u16			 x86_max_cores;
121 	u16			apicid;
122 	u16			initial_apicid;
123 	u16			x86_clflush_size;
124 	/* number of cores as seen by the OS: */
125 	u16			booted_cores;
126 	/* Physical processor id: */
127 	u16			phys_proc_id;
128 	/* Logical processor id: */
129 	u16			logical_proc_id;
130 	/* Core id: */
131 	u16			cpu_core_id;
132 	/* Index into per_cpu list: */
133 	u16			cpu_index;
134 	u32			microcode;
135 	/* Address space bits used by the cache internally */
136 	u8			x86_cache_bits;
137 	unsigned		initialized : 1;
138 } __randomize_layout;
139 
140 struct cpuid_regs {
141 	u32 eax, ebx, ecx, edx;
142 };
143 
144 enum cpuid_regs_idx {
145 	CPUID_EAX = 0,
146 	CPUID_EBX,
147 	CPUID_ECX,
148 	CPUID_EDX,
149 };
150 
151 #define X86_VENDOR_INTEL	0
152 #define X86_VENDOR_CYRIX	1
153 #define X86_VENDOR_AMD		2
154 #define X86_VENDOR_UMC		3
155 #define X86_VENDOR_CENTAUR	5
156 #define X86_VENDOR_TRANSMETA	7
157 #define X86_VENDOR_NSC		8
158 #define X86_VENDOR_HYGON	9
159 #define X86_VENDOR_NUM		10
160 
161 #define X86_VENDOR_UNKNOWN	0xff
162 
163 /*
164  * capabilities of CPUs
165  */
166 extern struct cpuinfo_x86	boot_cpu_data;
167 extern struct cpuinfo_x86	new_cpu_data;
168 
169 extern struct x86_hw_tss	doublefault_tss;
170 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
171 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
172 
173 #ifdef CONFIG_SMP
174 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
175 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
176 #else
177 #define cpu_info		boot_cpu_data
178 #define cpu_data(cpu)		boot_cpu_data
179 #endif
180 
181 extern const struct seq_operations cpuinfo_op;
182 
183 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
184 
185 extern void cpu_detect(struct cpuinfo_x86 *c);
186 
187 static inline unsigned long long l1tf_pfn_limit(void)
188 {
189 	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
190 }
191 
192 extern void early_cpu_init(void);
193 extern void identify_boot_cpu(void);
194 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
195 extern void print_cpu_info(struct cpuinfo_x86 *);
196 void print_cpu_msr(struct cpuinfo_x86 *);
197 
198 #ifdef CONFIG_X86_32
199 extern int have_cpuid_p(void);
200 #else
201 static inline int have_cpuid_p(void)
202 {
203 	return 1;
204 }
205 #endif
206 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
207 				unsigned int *ecx, unsigned int *edx)
208 {
209 	/* ecx is often an input as well as an output. */
210 	asm volatile("cpuid"
211 	    : "=a" (*eax),
212 	      "=b" (*ebx),
213 	      "=c" (*ecx),
214 	      "=d" (*edx)
215 	    : "0" (*eax), "2" (*ecx)
216 	    : "memory");
217 }
218 
219 #define native_cpuid_reg(reg)					\
220 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
221 {								\
222 	unsigned int eax = op, ebx, ecx = 0, edx;		\
223 								\
224 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
225 								\
226 	return reg;						\
227 }
228 
229 /*
230  * Native CPUID functions returning a single datum.
231  */
232 native_cpuid_reg(eax)
233 native_cpuid_reg(ebx)
234 native_cpuid_reg(ecx)
235 native_cpuid_reg(edx)
236 
237 /*
238  * Friendlier CR3 helpers.
239  */
240 static inline unsigned long read_cr3_pa(void)
241 {
242 	return __read_cr3() & CR3_ADDR_MASK;
243 }
244 
245 static inline unsigned long native_read_cr3_pa(void)
246 {
247 	return __native_read_cr3() & CR3_ADDR_MASK;
248 }
249 
250 static inline void load_cr3(pgd_t *pgdir)
251 {
252 	write_cr3(__sme_pa(pgdir));
253 }
254 
255 /*
256  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
257  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
258  * unrelated to the task-switch mechanism:
259  */
260 #ifdef CONFIG_X86_32
261 /* This is the TSS defined by the hardware. */
262 struct x86_hw_tss {
263 	unsigned short		back_link, __blh;
264 	unsigned long		sp0;
265 	unsigned short		ss0, __ss0h;
266 	unsigned long		sp1;
267 
268 	/*
269 	 * We don't use ring 1, so ss1 is a convenient scratch space in
270 	 * the same cacheline as sp0.  We use ss1 to cache the value in
271 	 * MSR_IA32_SYSENTER_CS.  When we context switch
272 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
273 	 * written matches ss1, and, if it's not, then we wrmsr the new
274 	 * value and update ss1.
275 	 *
276 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
277 	 * that we set it to zero in vm86 tasks to avoid corrupting the
278 	 * stack if we were to go through the sysenter path from vm86
279 	 * mode.
280 	 */
281 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
282 
283 	unsigned short		__ss1h;
284 	unsigned long		sp2;
285 	unsigned short		ss2, __ss2h;
286 	unsigned long		__cr3;
287 	unsigned long		ip;
288 	unsigned long		flags;
289 	unsigned long		ax;
290 	unsigned long		cx;
291 	unsigned long		dx;
292 	unsigned long		bx;
293 	unsigned long		sp;
294 	unsigned long		bp;
295 	unsigned long		si;
296 	unsigned long		di;
297 	unsigned short		es, __esh;
298 	unsigned short		cs, __csh;
299 	unsigned short		ss, __ssh;
300 	unsigned short		ds, __dsh;
301 	unsigned short		fs, __fsh;
302 	unsigned short		gs, __gsh;
303 	unsigned short		ldt, __ldth;
304 	unsigned short		trace;
305 	unsigned short		io_bitmap_base;
306 
307 } __attribute__((packed));
308 #else
309 struct x86_hw_tss {
310 	u32			reserved1;
311 	u64			sp0;
312 
313 	/*
314 	 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
315 	 * Linux does not use ring 1, so sp1 is not otherwise needed.
316 	 */
317 	u64			sp1;
318 
319 	/*
320 	 * Since Linux does not use ring 2, the 'sp2' slot is unused by
321 	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
322 	 * the user RSP value.
323 	 */
324 	u64			sp2;
325 
326 	u64			reserved2;
327 	u64			ist[7];
328 	u32			reserved3;
329 	u32			reserved4;
330 	u16			reserved5;
331 	u16			io_bitmap_base;
332 
333 } __attribute__((packed));
334 #endif
335 
336 /*
337  * IO-bitmap sizes:
338  */
339 #define IO_BITMAP_BITS			65536
340 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
341 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
342 #define IO_BITMAP_OFFSET		(offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
343 #define INVALID_IO_BITMAP_OFFSET	0x8000
344 
345 struct entry_stack {
346 	unsigned long		words[64];
347 };
348 
349 struct entry_stack_page {
350 	struct entry_stack stack;
351 } __aligned(PAGE_SIZE);
352 
353 struct tss_struct {
354 	/*
355 	 * The fixed hardware portion.  This must not cross a page boundary
356 	 * at risk of violating the SDM's advice and potentially triggering
357 	 * errata.
358 	 */
359 	struct x86_hw_tss	x86_tss;
360 
361 	/*
362 	 * The extra 1 is there because the CPU will access an
363 	 * additional byte beyond the end of the IO permission
364 	 * bitmap. The extra byte must be all 1 bits, and must
365 	 * be within the limit.
366 	 */
367 	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];
368 } __aligned(PAGE_SIZE);
369 
370 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
371 
372 /*
373  * sizeof(unsigned long) coming from an extra "long" at the end
374  * of the iobitmap.
375  *
376  * -1? seg base+limit should be pointing to the address of the
377  * last valid byte
378  */
379 #define __KERNEL_TSS_LIMIT	\
380 	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
381 
382 #ifdef CONFIG_X86_32
383 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
384 #else
385 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
386 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
387 #endif
388 
389 /*
390  * Save the original ist values for checking stack pointers during debugging
391  */
392 struct orig_ist {
393 	unsigned long		ist[7];
394 };
395 
396 #ifdef CONFIG_X86_64
397 DECLARE_PER_CPU(struct orig_ist, orig_ist);
398 
399 union irq_stack_union {
400 	char irq_stack[IRQ_STACK_SIZE];
401 	/*
402 	 * GCC hardcodes the stack canary as %gs:40.  Since the
403 	 * irq_stack is the object at %gs:0, we reserve the bottom
404 	 * 48 bytes of the irq stack for the canary.
405 	 */
406 	struct {
407 		char gs_base[40];
408 		unsigned long stack_canary;
409 	};
410 };
411 
412 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
413 DECLARE_INIT_PER_CPU(irq_stack_union);
414 
415 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
416 {
417 	return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu);
418 }
419 
420 DECLARE_PER_CPU(char *, irq_stack_ptr);
421 DECLARE_PER_CPU(unsigned int, irq_count);
422 extern asmlinkage void ignore_sysret(void);
423 
424 #if IS_ENABLED(CONFIG_KVM)
425 /* Save actual FS/GS selectors and bases to current->thread */
426 void save_fsgs_for_kvm(void);
427 #endif
428 #else	/* X86_64 */
429 #ifdef CONFIG_STACKPROTECTOR
430 /*
431  * Make sure stack canary segment base is cached-aligned:
432  *   "For Intel Atom processors, avoid non zero segment base address
433  *    that is not aligned to cache line boundary at all cost."
434  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
435  */
436 struct stack_canary {
437 	char __pad[20];		/* canary at %gs:20 */
438 	unsigned long canary;
439 };
440 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
441 #endif
442 /*
443  * per-CPU IRQ handling stacks
444  */
445 struct irq_stack {
446 	u32                     stack[THREAD_SIZE/sizeof(u32)];
447 } __aligned(THREAD_SIZE);
448 
449 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
450 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
451 #endif	/* X86_64 */
452 
453 extern unsigned int fpu_kernel_xstate_size;
454 extern unsigned int fpu_user_xstate_size;
455 
456 struct perf_event;
457 
458 typedef struct {
459 	unsigned long		seg;
460 } mm_segment_t;
461 
462 struct thread_struct {
463 	/* Cached TLS descriptors: */
464 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
465 #ifdef CONFIG_X86_32
466 	unsigned long		sp0;
467 #endif
468 	unsigned long		sp;
469 #ifdef CONFIG_X86_32
470 	unsigned long		sysenter_cs;
471 #else
472 	unsigned short		es;
473 	unsigned short		ds;
474 	unsigned short		fsindex;
475 	unsigned short		gsindex;
476 #endif
477 
478 #ifdef CONFIG_X86_64
479 	unsigned long		fsbase;
480 	unsigned long		gsbase;
481 #else
482 	/*
483 	 * XXX: this could presumably be unsigned short.  Alternatively,
484 	 * 32-bit kernels could be taught to use fsindex instead.
485 	 */
486 	unsigned long fs;
487 	unsigned long gs;
488 #endif
489 
490 	/* Save middle states of ptrace breakpoints */
491 	struct perf_event	*ptrace_bps[HBP_NUM];
492 	/* Debug status used for traps, single steps, etc... */
493 	unsigned long           debugreg6;
494 	/* Keep track of the exact dr7 value set by the user */
495 	unsigned long           ptrace_dr7;
496 	/* Fault info: */
497 	unsigned long		cr2;
498 	unsigned long		trap_nr;
499 	unsigned long		error_code;
500 #ifdef CONFIG_VM86
501 	/* Virtual 86 mode info */
502 	struct vm86		*vm86;
503 #endif
504 	/* IO permissions: */
505 	unsigned long		*io_bitmap_ptr;
506 	unsigned long		iopl;
507 	/* Max allowed port in the bitmap, in bytes: */
508 	unsigned		io_bitmap_max;
509 
510 	mm_segment_t		addr_limit;
511 
512 	unsigned int		sig_on_uaccess_err:1;
513 	unsigned int		uaccess_err:1;	/* uaccess failed */
514 
515 	/* Floating point and extended processor state */
516 	struct fpu		fpu;
517 	/*
518 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
519 	 * the end.
520 	 */
521 };
522 
523 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
524 static inline void arch_thread_struct_whitelist(unsigned long *offset,
525 						unsigned long *size)
526 {
527 	*offset = offsetof(struct thread_struct, fpu.state);
528 	*size = fpu_kernel_xstate_size;
529 }
530 
531 /*
532  * Thread-synchronous status.
533  *
534  * This is different from the flags in that nobody else
535  * ever touches our thread-synchronous status, so we don't
536  * have to worry about atomic accesses.
537  */
538 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
539 
540 /*
541  * Set IOPL bits in EFLAGS from given mask
542  */
543 static inline void native_set_iopl_mask(unsigned mask)
544 {
545 #ifdef CONFIG_X86_32
546 	unsigned int reg;
547 
548 	asm volatile ("pushfl;"
549 		      "popl %0;"
550 		      "andl %1, %0;"
551 		      "orl %2, %0;"
552 		      "pushl %0;"
553 		      "popfl"
554 		      : "=&r" (reg)
555 		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
556 #endif
557 }
558 
559 static inline void
560 native_load_sp0(unsigned long sp0)
561 {
562 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
563 }
564 
565 static inline void native_swapgs(void)
566 {
567 #ifdef CONFIG_X86_64
568 	asm volatile("swapgs" ::: "memory");
569 #endif
570 }
571 
572 static inline unsigned long current_top_of_stack(void)
573 {
574 	/*
575 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
576 	 *  and around vm86 mode and sp0 on x86_64 is special because of the
577 	 *  entry trampoline.
578 	 */
579 	return this_cpu_read_stable(cpu_current_top_of_stack);
580 }
581 
582 static inline bool on_thread_stack(void)
583 {
584 	return (unsigned long)(current_top_of_stack() -
585 			       current_stack_pointer) < THREAD_SIZE;
586 }
587 
588 #ifdef CONFIG_PARAVIRT_XXL
589 #include <asm/paravirt.h>
590 #else
591 #define __cpuid			native_cpuid
592 
593 static inline void load_sp0(unsigned long sp0)
594 {
595 	native_load_sp0(sp0);
596 }
597 
598 #define set_iopl_mask native_set_iopl_mask
599 #endif /* CONFIG_PARAVIRT_XXL */
600 
601 /* Free all resources held by a thread. */
602 extern void release_thread(struct task_struct *);
603 
604 unsigned long get_wchan(struct task_struct *p);
605 
606 /*
607  * Generic CPUID function
608  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
609  * resulting in stale register contents being returned.
610  */
611 static inline void cpuid(unsigned int op,
612 			 unsigned int *eax, unsigned int *ebx,
613 			 unsigned int *ecx, unsigned int *edx)
614 {
615 	*eax = op;
616 	*ecx = 0;
617 	__cpuid(eax, ebx, ecx, edx);
618 }
619 
620 /* Some CPUID calls want 'count' to be placed in ecx */
621 static inline void cpuid_count(unsigned int op, int count,
622 			       unsigned int *eax, unsigned int *ebx,
623 			       unsigned int *ecx, unsigned int *edx)
624 {
625 	*eax = op;
626 	*ecx = count;
627 	__cpuid(eax, ebx, ecx, edx);
628 }
629 
630 /*
631  * CPUID functions returning a single datum
632  */
633 static inline unsigned int cpuid_eax(unsigned int op)
634 {
635 	unsigned int eax, ebx, ecx, edx;
636 
637 	cpuid(op, &eax, &ebx, &ecx, &edx);
638 
639 	return eax;
640 }
641 
642 static inline unsigned int cpuid_ebx(unsigned int op)
643 {
644 	unsigned int eax, ebx, ecx, edx;
645 
646 	cpuid(op, &eax, &ebx, &ecx, &edx);
647 
648 	return ebx;
649 }
650 
651 static inline unsigned int cpuid_ecx(unsigned int op)
652 {
653 	unsigned int eax, ebx, ecx, edx;
654 
655 	cpuid(op, &eax, &ebx, &ecx, &edx);
656 
657 	return ecx;
658 }
659 
660 static inline unsigned int cpuid_edx(unsigned int op)
661 {
662 	unsigned int eax, ebx, ecx, edx;
663 
664 	cpuid(op, &eax, &ebx, &ecx, &edx);
665 
666 	return edx;
667 }
668 
669 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
670 static __always_inline void rep_nop(void)
671 {
672 	asm volatile("rep; nop" ::: "memory");
673 }
674 
675 static __always_inline void cpu_relax(void)
676 {
677 	rep_nop();
678 }
679 
680 /*
681  * This function forces the icache and prefetched instruction stream to
682  * catch up with reality in two very specific cases:
683  *
684  *  a) Text was modified using one virtual address and is about to be executed
685  *     from the same physical page at a different virtual address.
686  *
687  *  b) Text was modified on a different CPU, may subsequently be
688  *     executed on this CPU, and you want to make sure the new version
689  *     gets executed.  This generally means you're calling this in a IPI.
690  *
691  * If you're calling this for a different reason, you're probably doing
692  * it wrong.
693  */
694 static inline void sync_core(void)
695 {
696 	/*
697 	 * There are quite a few ways to do this.  IRET-to-self is nice
698 	 * because it works on every CPU, at any CPL (so it's compatible
699 	 * with paravirtualization), and it never exits to a hypervisor.
700 	 * The only down sides are that it's a bit slow (it seems to be
701 	 * a bit more than 2x slower than the fastest options) and that
702 	 * it unmasks NMIs.  The "push %cs" is needed because, in
703 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
704 	 * value when we do IRET directly.
705 	 *
706 	 * In case NMI unmasking or performance ever becomes a problem,
707 	 * the next best option appears to be MOV-to-CR2 and an
708 	 * unconditional jump.  That sequence also works on all CPUs,
709 	 * but it will fault at CPL3 (i.e. Xen PV).
710 	 *
711 	 * CPUID is the conventional way, but it's nasty: it doesn't
712 	 * exist on some 486-like CPUs, and it usually exits to a
713 	 * hypervisor.
714 	 *
715 	 * Like all of Linux's memory ordering operations, this is a
716 	 * compiler barrier as well.
717 	 */
718 #ifdef CONFIG_X86_32
719 	asm volatile (
720 		"pushfl\n\t"
721 		"pushl %%cs\n\t"
722 		"pushl $1f\n\t"
723 		"iret\n\t"
724 		"1:"
725 		: ASM_CALL_CONSTRAINT : : "memory");
726 #else
727 	unsigned int tmp;
728 
729 	asm volatile (
730 		UNWIND_HINT_SAVE
731 		"mov %%ss, %0\n\t"
732 		"pushq %q0\n\t"
733 		"pushq %%rsp\n\t"
734 		"addq $8, (%%rsp)\n\t"
735 		"pushfq\n\t"
736 		"mov %%cs, %0\n\t"
737 		"pushq %q0\n\t"
738 		"pushq $1f\n\t"
739 		"iretq\n\t"
740 		UNWIND_HINT_RESTORE
741 		"1:"
742 		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
743 #endif
744 }
745 
746 extern void select_idle_routine(const struct cpuinfo_x86 *c);
747 extern void amd_e400_c1e_apic_setup(void);
748 
749 extern unsigned long		boot_option_idle_override;
750 
751 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
752 			 IDLE_POLL};
753 
754 extern void enable_sep_cpu(void);
755 extern int sysenter_setup(void);
756 
757 void early_trap_pf_init(void);
758 
759 /* Defined in head.S */
760 extern struct desc_ptr		early_gdt_descr;
761 
762 extern void switch_to_new_gdt(int);
763 extern void load_direct_gdt(int);
764 extern void load_fixmap_gdt(int);
765 extern void load_percpu_segment(int);
766 extern void cpu_init(void);
767 
768 static inline unsigned long get_debugctlmsr(void)
769 {
770 	unsigned long debugctlmsr = 0;
771 
772 #ifndef CONFIG_X86_DEBUGCTLMSR
773 	if (boot_cpu_data.x86 < 6)
774 		return 0;
775 #endif
776 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
777 
778 	return debugctlmsr;
779 }
780 
781 static inline void update_debugctlmsr(unsigned long debugctlmsr)
782 {
783 #ifndef CONFIG_X86_DEBUGCTLMSR
784 	if (boot_cpu_data.x86 < 6)
785 		return;
786 #endif
787 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
788 }
789 
790 extern void set_task_blockstep(struct task_struct *task, bool on);
791 
792 /* Boot loader type from the setup header: */
793 extern int			bootloader_type;
794 extern int			bootloader_version;
795 
796 extern char			ignore_fpu_irq;
797 
798 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
799 #define ARCH_HAS_PREFETCHW
800 #define ARCH_HAS_SPINLOCK_PREFETCH
801 
802 #ifdef CONFIG_X86_32
803 # define BASE_PREFETCH		""
804 # define ARCH_HAS_PREFETCH
805 #else
806 # define BASE_PREFETCH		"prefetcht0 %P1"
807 #endif
808 
809 /*
810  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
811  *
812  * It's not worth to care about 3dnow prefetches for the K6
813  * because they are microcoded there and very slow.
814  */
815 static inline void prefetch(const void *x)
816 {
817 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
818 			  X86_FEATURE_XMM,
819 			  "m" (*(const char *)x));
820 }
821 
822 /*
823  * 3dnow prefetch to get an exclusive cache line.
824  * Useful for spinlocks to avoid one state transition in the
825  * cache coherency protocol:
826  */
827 static inline void prefetchw(const void *x)
828 {
829 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
830 			  X86_FEATURE_3DNOWPREFETCH,
831 			  "m" (*(const char *)x));
832 }
833 
834 static inline void spin_lock_prefetch(const void *x)
835 {
836 	prefetchw(x);
837 }
838 
839 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
840 			   TOP_OF_KERNEL_STACK_PADDING)
841 
842 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
843 
844 #define task_pt_regs(task) \
845 ({									\
846 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
847 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
848 	((struct pt_regs *)__ptr) - 1;					\
849 })
850 
851 #ifdef CONFIG_X86_32
852 /*
853  * User space process size: 3GB (default).
854  */
855 #define IA32_PAGE_OFFSET	PAGE_OFFSET
856 #define TASK_SIZE		PAGE_OFFSET
857 #define TASK_SIZE_LOW		TASK_SIZE
858 #define TASK_SIZE_MAX		TASK_SIZE
859 #define DEFAULT_MAP_WINDOW	TASK_SIZE
860 #define STACK_TOP		TASK_SIZE
861 #define STACK_TOP_MAX		STACK_TOP
862 
863 #define INIT_THREAD  {							  \
864 	.sp0			= TOP_OF_INIT_STACK,			  \
865 	.sysenter_cs		= __KERNEL_CS,				  \
866 	.io_bitmap_ptr		= NULL,					  \
867 	.addr_limit		= KERNEL_DS,				  \
868 }
869 
870 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
871 
872 #else
873 /*
874  * User space process size.  This is the first address outside the user range.
875  * There are a few constraints that determine this:
876  *
877  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
878  * address, then that syscall will enter the kernel with a
879  * non-canonical return address, and SYSRET will explode dangerously.
880  * We avoid this particular problem by preventing anything executable
881  * from being mapped at the maximum canonical address.
882  *
883  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
884  * CPUs malfunction if they execute code from the highest canonical page.
885  * They'll speculate right off the end of the canonical space, and
886  * bad things happen.  This is worked around in the same way as the
887  * Intel problem.
888  *
889  * With page table isolation enabled, we map the LDT in ... [stay tuned]
890  */
891 #define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
892 
893 #define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE)
894 
895 /* This decides where the kernel will search for a free chunk of vm
896  * space during mmap's.
897  */
898 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
899 					0xc0000000 : 0xFFFFe000)
900 
901 #define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \
902 					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
903 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
904 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
905 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
906 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
907 
908 #define STACK_TOP		TASK_SIZE_LOW
909 #define STACK_TOP_MAX		TASK_SIZE_MAX
910 
911 #define INIT_THREAD  {						\
912 	.addr_limit		= KERNEL_DS,			\
913 }
914 
915 extern unsigned long KSTK_ESP(struct task_struct *task);
916 
917 #endif /* CONFIG_X86_64 */
918 
919 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
920 					       unsigned long new_sp);
921 
922 /*
923  * This decides where the kernel will search for a free chunk of vm
924  * space during mmap's.
925  */
926 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
927 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
928 
929 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
930 
931 /* Get/set a process' ability to use the timestamp counter instruction */
932 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
933 #define SET_TSC_CTL(val)	set_tsc_mode((val))
934 
935 extern int get_tsc_mode(unsigned long adr);
936 extern int set_tsc_mode(unsigned int val);
937 
938 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
939 
940 /* Register/unregister a process' MPX related resource */
941 #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
942 #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
943 
944 #ifdef CONFIG_X86_INTEL_MPX
945 extern int mpx_enable_management(void);
946 extern int mpx_disable_management(void);
947 #else
948 static inline int mpx_enable_management(void)
949 {
950 	return -EINVAL;
951 }
952 static inline int mpx_disable_management(void)
953 {
954 	return -EINVAL;
955 }
956 #endif /* CONFIG_X86_INTEL_MPX */
957 
958 #ifdef CONFIG_CPU_SUP_AMD
959 extern u16 amd_get_nb_id(int cpu);
960 extern u32 amd_get_nodes_per_socket(void);
961 #else
962 static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
963 static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
964 #endif
965 
966 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
967 {
968 	uint32_t base, eax, signature[3];
969 
970 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
971 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
972 
973 		if (!memcmp(sig, signature, 12) &&
974 		    (leaves == 0 || ((eax - base) >= leaves)))
975 			return base;
976 	}
977 
978 	return 0;
979 }
980 
981 extern unsigned long arch_align_stack(unsigned long sp);
982 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
983 extern void free_kernel_image_pages(void *begin, void *end);
984 
985 void default_idle(void);
986 #ifdef	CONFIG_XEN
987 bool xen_set_default_idle(void);
988 #else
989 #define xen_set_default_idle 0
990 #endif
991 
992 void stop_this_cpu(void *dummy);
993 void df_debug(struct pt_regs *regs, long error_code);
994 void microcode_check(void);
995 
996 enum l1tf_mitigations {
997 	L1TF_MITIGATION_OFF,
998 	L1TF_MITIGATION_FLUSH_NOWARN,
999 	L1TF_MITIGATION_FLUSH,
1000 	L1TF_MITIGATION_FLUSH_NOSMT,
1001 	L1TF_MITIGATION_FULL,
1002 	L1TF_MITIGATION_FULL_FORCE
1003 };
1004 
1005 extern enum l1tf_mitigations l1tf_mitigation;
1006 
1007 #endif /* _ASM_X86_PROCESSOR_H */
1008