xref: /linux/arch/x86/include/asm/processor.h (revision 8f8d74ee110c02137f5b78ca0a2bd6c10331f267)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4 
5 #include <asm/processor-flags.h>
6 
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct io_bitmap;
11 struct vm86;
12 
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
19 #include <asm/cpuid.h>
20 #include <asm/page.h>
21 #include <asm/pgtable_types.h>
22 #include <asm/percpu.h>
23 #include <asm/desc_defs.h>
24 #include <asm/nops.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 #include <asm/vdso/processor.h>
30 #include <asm/shstk.h>
31 
32 #include <linux/personality.h>
33 #include <linux/cache.h>
34 #include <linux/threads.h>
35 #include <linux/math64.h>
36 #include <linux/err.h>
37 #include <linux/irqflags.h>
38 #include <linux/mem_encrypt.h>
39 
40 /*
41  * We handle most unaligned accesses in hardware.  On the other hand
42  * unaligned DMA can be quite expensive on some Nehalem processors.
43  *
44  * Based on this we disable the IP header alignment in network drivers.
45  */
46 #define NET_IP_ALIGN	0
47 
48 #define HBP_NUM 4
49 
50 /*
51  * These alignment constraints are for performance in the vSMP case,
52  * but in the task_struct case we must also meet hardware imposed
53  * alignment requirements of the FPU state:
54  */
55 #ifdef CONFIG_X86_VSMP
56 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
57 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
58 #else
59 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
60 # define ARCH_MIN_MMSTRUCT_ALIGN	0
61 #endif
62 
63 enum tlb_infos {
64 	ENTRIES,
65 	NR_INFO
66 };
67 
68 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
69 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
70 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
71 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
72 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
73 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
74 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
75 
76 /*
77  * CPU type and hardware bug flags. Kept separately for each CPU.
78  */
79 
80 struct cpuinfo_topology {
81 	// Real APIC ID read from the local APIC
82 	u32			apicid;
83 	// The initial APIC ID provided by CPUID
84 	u32			initial_apicid;
85 
86 	// Physical package ID
87 	u32			pkg_id;
88 
89 	// Physical die ID on AMD, Relative on Intel
90 	u32			die_id;
91 
92 	// Compute unit ID - AMD specific
93 	u32			cu_id;
94 
95 	// Core ID relative to the package
96 	u32			core_id;
97 
98 	// Logical ID mappings
99 	u32			logical_pkg_id;
100 	u32			logical_die_id;
101 
102 	// AMD Node ID and Nodes per Package info
103 	u32			amd_node_id;
104 
105 	// Cache level topology IDs
106 	u32			llc_id;
107 	u32			l2c_id;
108 };
109 
110 struct cpuinfo_x86 {
111 	__u8			x86;		/* CPU family */
112 	__u8			x86_vendor;	/* CPU vendor */
113 	__u8			x86_model;
114 	__u8			x86_stepping;
115 #ifdef CONFIG_X86_64
116 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
117 	int			x86_tlbsize;
118 #endif
119 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
120 	__u32			vmx_capability[NVMXINTS];
121 #endif
122 	__u8			x86_virt_bits;
123 	__u8			x86_phys_bits;
124 	/* Max extended CPUID function supported: */
125 	__u32			extended_cpuid_level;
126 	/* Maximum supported CPUID level, -1=no CPUID: */
127 	int			cpuid_level;
128 	/*
129 	 * Align to size of unsigned long because the x86_capability array
130 	 * is passed to bitops which require the alignment. Use unnamed
131 	 * union to enforce the array is aligned to size of unsigned long.
132 	 */
133 	union {
134 		__u32		x86_capability[NCAPINTS + NBUGINTS];
135 		unsigned long	x86_capability_alignment;
136 	};
137 	char			x86_vendor_id[16];
138 	char			x86_model_id[64];
139 	struct cpuinfo_topology	topo;
140 	/* in KB - valid for CPUS which support this call: */
141 	unsigned int		x86_cache_size;
142 	int			x86_cache_alignment;	/* In bytes */
143 	/* Cache QoS architectural values, valid only on the BSP: */
144 	int			x86_cache_max_rmid;	/* max index */
145 	int			x86_cache_occ_scale;	/* scale to bytes */
146 	int			x86_cache_mbm_width_offset;
147 	int			x86_power;
148 	unsigned long		loops_per_jiffy;
149 	/* protected processor identification number */
150 	u64			ppin;
151 	u16			x86_clflush_size;
152 	/* number of cores as seen by the OS: */
153 	u16			booted_cores;
154 	/* Index into per_cpu list: */
155 	u16			cpu_index;
156 	/*  Is SMT active on this core? */
157 	bool			smt_active;
158 	u32			microcode;
159 	/* Address space bits used by the cache internally */
160 	u8			x86_cache_bits;
161 	unsigned		initialized : 1;
162 } __randomize_layout;
163 
164 #define X86_VENDOR_INTEL	0
165 #define X86_VENDOR_CYRIX	1
166 #define X86_VENDOR_AMD		2
167 #define X86_VENDOR_UMC		3
168 #define X86_VENDOR_CENTAUR	5
169 #define X86_VENDOR_TRANSMETA	7
170 #define X86_VENDOR_NSC		8
171 #define X86_VENDOR_HYGON	9
172 #define X86_VENDOR_ZHAOXIN	10
173 #define X86_VENDOR_VORTEX	11
174 #define X86_VENDOR_NUM		12
175 
176 #define X86_VENDOR_UNKNOWN	0xff
177 
178 /*
179  * capabilities of CPUs
180  */
181 extern struct cpuinfo_x86	boot_cpu_data;
182 extern struct cpuinfo_x86	new_cpu_data;
183 
184 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
185 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
186 
187 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
188 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
189 
190 extern const struct seq_operations cpuinfo_op;
191 
192 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
193 
194 extern void cpu_detect(struct cpuinfo_x86 *c);
195 
196 static inline unsigned long long l1tf_pfn_limit(void)
197 {
198 	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
199 }
200 
201 extern void early_cpu_init(void);
202 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
203 extern void print_cpu_info(struct cpuinfo_x86 *);
204 void print_cpu_msr(struct cpuinfo_x86 *);
205 
206 /*
207  * Friendlier CR3 helpers.
208  */
209 static inline unsigned long read_cr3_pa(void)
210 {
211 	return __read_cr3() & CR3_ADDR_MASK;
212 }
213 
214 static inline unsigned long native_read_cr3_pa(void)
215 {
216 	return __native_read_cr3() & CR3_ADDR_MASK;
217 }
218 
219 static inline void load_cr3(pgd_t *pgdir)
220 {
221 	write_cr3(__sme_pa(pgdir));
222 }
223 
224 /*
225  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
226  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
227  * unrelated to the task-switch mechanism:
228  */
229 #ifdef CONFIG_X86_32
230 /* This is the TSS defined by the hardware. */
231 struct x86_hw_tss {
232 	unsigned short		back_link, __blh;
233 	unsigned long		sp0;
234 	unsigned short		ss0, __ss0h;
235 	unsigned long		sp1;
236 
237 	/*
238 	 * We don't use ring 1, so ss1 is a convenient scratch space in
239 	 * the same cacheline as sp0.  We use ss1 to cache the value in
240 	 * MSR_IA32_SYSENTER_CS.  When we context switch
241 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
242 	 * written matches ss1, and, if it's not, then we wrmsr the new
243 	 * value and update ss1.
244 	 *
245 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
246 	 * that we set it to zero in vm86 tasks to avoid corrupting the
247 	 * stack if we were to go through the sysenter path from vm86
248 	 * mode.
249 	 */
250 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
251 
252 	unsigned short		__ss1h;
253 	unsigned long		sp2;
254 	unsigned short		ss2, __ss2h;
255 	unsigned long		__cr3;
256 	unsigned long		ip;
257 	unsigned long		flags;
258 	unsigned long		ax;
259 	unsigned long		cx;
260 	unsigned long		dx;
261 	unsigned long		bx;
262 	unsigned long		sp;
263 	unsigned long		bp;
264 	unsigned long		si;
265 	unsigned long		di;
266 	unsigned short		es, __esh;
267 	unsigned short		cs, __csh;
268 	unsigned short		ss, __ssh;
269 	unsigned short		ds, __dsh;
270 	unsigned short		fs, __fsh;
271 	unsigned short		gs, __gsh;
272 	unsigned short		ldt, __ldth;
273 	unsigned short		trace;
274 	unsigned short		io_bitmap_base;
275 
276 } __attribute__((packed));
277 #else
278 struct x86_hw_tss {
279 	u32			reserved1;
280 	u64			sp0;
281 	u64			sp1;
282 
283 	/*
284 	 * Since Linux does not use ring 2, the 'sp2' slot is unused by
285 	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
286 	 * the user RSP value.
287 	 */
288 	u64			sp2;
289 
290 	u64			reserved2;
291 	u64			ist[7];
292 	u32			reserved3;
293 	u32			reserved4;
294 	u16			reserved5;
295 	u16			io_bitmap_base;
296 
297 } __attribute__((packed));
298 #endif
299 
300 /*
301  * IO-bitmap sizes:
302  */
303 #define IO_BITMAP_BITS			65536
304 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS / BITS_PER_BYTE)
305 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES / sizeof(long))
306 
307 #define IO_BITMAP_OFFSET_VALID_MAP				\
308 	(offsetof(struct tss_struct, io_bitmap.bitmap) -	\
309 	 offsetof(struct tss_struct, x86_tss))
310 
311 #define IO_BITMAP_OFFSET_VALID_ALL				\
312 	(offsetof(struct tss_struct, io_bitmap.mapall) -	\
313 	 offsetof(struct tss_struct, x86_tss))
314 
315 #ifdef CONFIG_X86_IOPL_IOPERM
316 /*
317  * sizeof(unsigned long) coming from an extra "long" at the end of the
318  * iobitmap. The limit is inclusive, i.e. the last valid byte.
319  */
320 # define __KERNEL_TSS_LIMIT	\
321 	(IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
322 	 sizeof(unsigned long) - 1)
323 #else
324 # define __KERNEL_TSS_LIMIT	\
325 	(offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
326 #endif
327 
328 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
329 #define IO_BITMAP_OFFSET_INVALID	(__KERNEL_TSS_LIMIT + 1)
330 
331 struct entry_stack {
332 	char	stack[PAGE_SIZE];
333 };
334 
335 struct entry_stack_page {
336 	struct entry_stack stack;
337 } __aligned(PAGE_SIZE);
338 
339 /*
340  * All IO bitmap related data stored in the TSS:
341  */
342 struct x86_io_bitmap {
343 	/* The sequence number of the last active bitmap. */
344 	u64			prev_sequence;
345 
346 	/*
347 	 * Store the dirty size of the last io bitmap offender. The next
348 	 * one will have to do the cleanup as the switch out to a non io
349 	 * bitmap user will just set x86_tss.io_bitmap_base to a value
350 	 * outside of the TSS limit. So for sane tasks there is no need to
351 	 * actually touch the io_bitmap at all.
352 	 */
353 	unsigned int		prev_max;
354 
355 	/*
356 	 * The extra 1 is there because the CPU will access an
357 	 * additional byte beyond the end of the IO permission
358 	 * bitmap. The extra byte must be all 1 bits, and must
359 	 * be within the limit.
360 	 */
361 	unsigned long		bitmap[IO_BITMAP_LONGS + 1];
362 
363 	/*
364 	 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
365 	 * except the additional byte at the end.
366 	 */
367 	unsigned long		mapall[IO_BITMAP_LONGS + 1];
368 };
369 
370 struct tss_struct {
371 	/*
372 	 * The fixed hardware portion.  This must not cross a page boundary
373 	 * at risk of violating the SDM's advice and potentially triggering
374 	 * errata.
375 	 */
376 	struct x86_hw_tss	x86_tss;
377 
378 	struct x86_io_bitmap	io_bitmap;
379 } __aligned(PAGE_SIZE);
380 
381 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
382 
383 /* Per CPU interrupt stacks */
384 struct irq_stack {
385 	char		stack[IRQ_STACK_SIZE];
386 } __aligned(IRQ_STACK_SIZE);
387 
388 #ifdef CONFIG_X86_64
389 struct fixed_percpu_data {
390 	/*
391 	 * GCC hardcodes the stack canary as %gs:40.  Since the
392 	 * irq_stack is the object at %gs:0, we reserve the bottom
393 	 * 48 bytes of the irq stack for the canary.
394 	 *
395 	 * Once we are willing to require -mstack-protector-guard-symbol=
396 	 * support for x86_64 stackprotector, we can get rid of this.
397 	 */
398 	char		gs_base[40];
399 	unsigned long	stack_canary;
400 };
401 
402 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
403 DECLARE_INIT_PER_CPU(fixed_percpu_data);
404 
405 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
406 {
407 	return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
408 }
409 
410 extern asmlinkage void entry_SYSCALL32_ignore(void);
411 
412 /* Save actual FS/GS selectors and bases to current->thread */
413 void current_save_fsgs(void);
414 #else	/* X86_64 */
415 #ifdef CONFIG_STACKPROTECTOR
416 DECLARE_PER_CPU(unsigned long, __stack_chk_guard);
417 #endif
418 #endif	/* !X86_64 */
419 
420 struct perf_event;
421 
422 struct thread_struct {
423 	/* Cached TLS descriptors: */
424 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
425 #ifdef CONFIG_X86_32
426 	unsigned long		sp0;
427 #endif
428 	unsigned long		sp;
429 #ifdef CONFIG_X86_32
430 	unsigned long		sysenter_cs;
431 #else
432 	unsigned short		es;
433 	unsigned short		ds;
434 	unsigned short		fsindex;
435 	unsigned short		gsindex;
436 #endif
437 
438 #ifdef CONFIG_X86_64
439 	unsigned long		fsbase;
440 	unsigned long		gsbase;
441 #else
442 	/*
443 	 * XXX: this could presumably be unsigned short.  Alternatively,
444 	 * 32-bit kernels could be taught to use fsindex instead.
445 	 */
446 	unsigned long fs;
447 	unsigned long gs;
448 #endif
449 
450 	/* Save middle states of ptrace breakpoints */
451 	struct perf_event	*ptrace_bps[HBP_NUM];
452 	/* Debug status used for traps, single steps, etc... */
453 	unsigned long           virtual_dr6;
454 	/* Keep track of the exact dr7 value set by the user */
455 	unsigned long           ptrace_dr7;
456 	/* Fault info: */
457 	unsigned long		cr2;
458 	unsigned long		trap_nr;
459 	unsigned long		error_code;
460 #ifdef CONFIG_VM86
461 	/* Virtual 86 mode info */
462 	struct vm86		*vm86;
463 #endif
464 	/* IO permissions: */
465 	struct io_bitmap	*io_bitmap;
466 
467 	/*
468 	 * IOPL. Privilege level dependent I/O permission which is
469 	 * emulated via the I/O bitmap to prevent user space from disabling
470 	 * interrupts.
471 	 */
472 	unsigned long		iopl_emul;
473 
474 	unsigned int		iopl_warn:1;
475 
476 	/*
477 	 * Protection Keys Register for Userspace.  Loaded immediately on
478 	 * context switch. Store it in thread_struct to avoid a lookup in
479 	 * the tasks's FPU xstate buffer. This value is only valid when a
480 	 * task is scheduled out. For 'current' the authoritative source of
481 	 * PKRU is the hardware itself.
482 	 */
483 	u32			pkru;
484 
485 #ifdef CONFIG_X86_USER_SHADOW_STACK
486 	unsigned long		features;
487 	unsigned long		features_locked;
488 
489 	struct thread_shstk	shstk;
490 #endif
491 
492 	/* Floating point and extended processor state */
493 	struct fpu		fpu;
494 	/*
495 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
496 	 * the end.
497 	 */
498 };
499 
500 extern void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size);
501 
502 static inline void arch_thread_struct_whitelist(unsigned long *offset,
503 						unsigned long *size)
504 {
505 	fpu_thread_struct_whitelist(offset, size);
506 }
507 
508 static inline void
509 native_load_sp0(unsigned long sp0)
510 {
511 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
512 }
513 
514 static __always_inline void native_swapgs(void)
515 {
516 #ifdef CONFIG_X86_64
517 	asm volatile("swapgs" ::: "memory");
518 #endif
519 }
520 
521 static __always_inline unsigned long current_top_of_stack(void)
522 {
523 	/*
524 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
525 	 *  and around vm86 mode and sp0 on x86_64 is special because of the
526 	 *  entry trampoline.
527 	 */
528 	if (IS_ENABLED(CONFIG_USE_X86_SEG_SUPPORT))
529 		return this_cpu_read_const(const_pcpu_hot.top_of_stack);
530 
531 	return this_cpu_read_stable(pcpu_hot.top_of_stack);
532 }
533 
534 static __always_inline bool on_thread_stack(void)
535 {
536 	return (unsigned long)(current_top_of_stack() -
537 			       current_stack_pointer) < THREAD_SIZE;
538 }
539 
540 #ifdef CONFIG_PARAVIRT_XXL
541 #include <asm/paravirt.h>
542 #else
543 
544 static inline void load_sp0(unsigned long sp0)
545 {
546 	native_load_sp0(sp0);
547 }
548 
549 #endif /* CONFIG_PARAVIRT_XXL */
550 
551 unsigned long __get_wchan(struct task_struct *p);
552 
553 extern void select_idle_routine(void);
554 extern void amd_e400_c1e_apic_setup(void);
555 
556 extern unsigned long		boot_option_idle_override;
557 
558 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
559 			 IDLE_POLL};
560 
561 extern void enable_sep_cpu(void);
562 
563 
564 /* Defined in head.S */
565 extern struct desc_ptr		early_gdt_descr;
566 
567 extern void switch_gdt_and_percpu_base(int);
568 extern void load_direct_gdt(int);
569 extern void load_fixmap_gdt(int);
570 extern void cpu_init(void);
571 extern void cpu_init_exception_handling(void);
572 extern void cr4_init(void);
573 
574 extern void set_task_blockstep(struct task_struct *task, bool on);
575 
576 /* Boot loader type from the setup header: */
577 extern int			bootloader_type;
578 extern int			bootloader_version;
579 
580 extern char			ignore_fpu_irq;
581 
582 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
583 #define ARCH_HAS_PREFETCHW
584 
585 #ifdef CONFIG_X86_32
586 # define BASE_PREFETCH		""
587 # define ARCH_HAS_PREFETCH
588 #else
589 # define BASE_PREFETCH		"prefetcht0 %P1"
590 #endif
591 
592 /*
593  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
594  *
595  * It's not worth to care about 3dnow prefetches for the K6
596  * because they are microcoded there and very slow.
597  */
598 static inline void prefetch(const void *x)
599 {
600 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
601 			  X86_FEATURE_XMM,
602 			  "m" (*(const char *)x));
603 }
604 
605 /*
606  * 3dnow prefetch to get an exclusive cache line.
607  * Useful for spinlocks to avoid one state transition in the
608  * cache coherency protocol:
609  */
610 static __always_inline void prefetchw(const void *x)
611 {
612 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
613 			  X86_FEATURE_3DNOWPREFETCH,
614 			  "m" (*(const char *)x));
615 }
616 
617 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
618 			   TOP_OF_KERNEL_STACK_PADDING)
619 
620 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
621 
622 #define task_pt_regs(task) \
623 ({									\
624 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
625 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
626 	((struct pt_regs *)__ptr) - 1;					\
627 })
628 
629 #ifdef CONFIG_X86_32
630 #define INIT_THREAD  {							  \
631 	.sp0			= TOP_OF_INIT_STACK,			  \
632 	.sysenter_cs		= __KERNEL_CS,				  \
633 }
634 
635 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
636 
637 #else
638 extern unsigned long __end_init_task[];
639 
640 #define INIT_THREAD {							\
641 	.sp	= (unsigned long)&__end_init_task -			\
642 		  TOP_OF_KERNEL_STACK_PADDING -				\
643 		  sizeof(struct pt_regs),				\
644 }
645 
646 extern unsigned long KSTK_ESP(struct task_struct *task);
647 
648 #endif /* CONFIG_X86_64 */
649 
650 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
651 					       unsigned long new_sp);
652 
653 /*
654  * This decides where the kernel will search for a free chunk of vm
655  * space during mmap's.
656  */
657 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
658 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
659 
660 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
661 
662 /* Get/set a process' ability to use the timestamp counter instruction */
663 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
664 #define SET_TSC_CTL(val)	set_tsc_mode((val))
665 
666 extern int get_tsc_mode(unsigned long adr);
667 extern int set_tsc_mode(unsigned int val);
668 
669 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
670 
671 static inline u32 per_cpu_llc_id(unsigned int cpu)
672 {
673 	return per_cpu(cpu_info.topo.llc_id, cpu);
674 }
675 
676 static inline u32 per_cpu_l2c_id(unsigned int cpu)
677 {
678 	return per_cpu(cpu_info.topo.l2c_id, cpu);
679 }
680 
681 #ifdef CONFIG_CPU_SUP_AMD
682 extern u32 amd_get_highest_perf(void);
683 extern void amd_clear_divider(void);
684 extern void amd_check_microcode(void);
685 #else
686 static inline u32 amd_get_highest_perf(void)		{ return 0; }
687 static inline void amd_clear_divider(void)		{ }
688 static inline void amd_check_microcode(void)		{ }
689 #endif
690 
691 extern unsigned long arch_align_stack(unsigned long sp);
692 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
693 extern void free_kernel_image_pages(const char *what, void *begin, void *end);
694 
695 void default_idle(void);
696 #ifdef	CONFIG_XEN
697 bool xen_set_default_idle(void);
698 #else
699 #define xen_set_default_idle 0
700 #endif
701 
702 void __noreturn stop_this_cpu(void *dummy);
703 void microcode_check(struct cpuinfo_x86 *prev_info);
704 void store_cpu_caps(struct cpuinfo_x86 *info);
705 
706 enum l1tf_mitigations {
707 	L1TF_MITIGATION_OFF,
708 	L1TF_MITIGATION_FLUSH_NOWARN,
709 	L1TF_MITIGATION_FLUSH,
710 	L1TF_MITIGATION_FLUSH_NOSMT,
711 	L1TF_MITIGATION_FULL,
712 	L1TF_MITIGATION_FULL_FORCE
713 };
714 
715 extern enum l1tf_mitigations l1tf_mitigation;
716 
717 enum mds_mitigations {
718 	MDS_MITIGATION_OFF,
719 	MDS_MITIGATION_FULL,
720 	MDS_MITIGATION_VMWERV,
721 };
722 
723 extern bool gds_ucode_mitigated(void);
724 
725 /*
726  * Make previous memory operations globally visible before
727  * a WRMSR.
728  *
729  * MFENCE makes writes visible, but only affects load/store
730  * instructions.  WRMSR is unfortunately not a load/store
731  * instruction and is unaffected by MFENCE.  The LFENCE ensures
732  * that the WRMSR is not reordered.
733  *
734  * Most WRMSRs are full serializing instructions themselves and
735  * do not require this barrier.  This is only required for the
736  * IA32_TSC_DEADLINE and X2APIC MSRs.
737  */
738 static inline void weak_wrmsr_fence(void)
739 {
740 	alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE));
741 }
742 
743 #endif /* _ASM_X86_PROCESSOR_H */
744