1 #ifndef _ASM_X86_PROCESSOR_H 2 #define _ASM_X86_PROCESSOR_H 3 4 #include <asm/processor-flags.h> 5 6 /* Forward declaration, a strange C thing */ 7 struct task_struct; 8 struct mm_struct; 9 struct vm86; 10 11 #include <asm/math_emu.h> 12 #include <asm/segment.h> 13 #include <asm/types.h> 14 #include <uapi/asm/sigcontext.h> 15 #include <asm/current.h> 16 #include <asm/cpufeatures.h> 17 #include <asm/page.h> 18 #include <asm/pgtable_types.h> 19 #include <asm/percpu.h> 20 #include <asm/msr.h> 21 #include <asm/desc_defs.h> 22 #include <asm/nops.h> 23 #include <asm/special_insns.h> 24 #include <asm/fpu/types.h> 25 26 #include <linux/personality.h> 27 #include <linux/cache.h> 28 #include <linux/threads.h> 29 #include <linux/math64.h> 30 #include <linux/err.h> 31 #include <linux/irqflags.h> 32 33 /* 34 * We handle most unaligned accesses in hardware. On the other hand 35 * unaligned DMA can be quite expensive on some Nehalem processors. 36 * 37 * Based on this we disable the IP header alignment in network drivers. 38 */ 39 #define NET_IP_ALIGN 0 40 41 #define HBP_NUM 4 42 /* 43 * Default implementation of macro that returns current 44 * instruction pointer ("program counter"). 45 */ 46 static inline void *current_text_addr(void) 47 { 48 void *pc; 49 50 asm volatile("mov $1f, %0; 1:":"=r" (pc)); 51 52 return pc; 53 } 54 55 /* 56 * These alignment constraints are for performance in the vSMP case, 57 * but in the task_struct case we must also meet hardware imposed 58 * alignment requirements of the FPU state: 59 */ 60 #ifdef CONFIG_X86_VSMP 61 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 62 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 63 #else 64 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 65 # define ARCH_MIN_MMSTRUCT_ALIGN 0 66 #endif 67 68 enum tlb_infos { 69 ENTRIES, 70 NR_INFO 71 }; 72 73 extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 74 extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 75 extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 76 extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 77 extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 78 extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 79 extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 80 81 /* 82 * CPU type and hardware bug flags. Kept separately for each CPU. 83 * Members of this structure are referenced in head.S, so think twice 84 * before touching them. [mj] 85 */ 86 87 struct cpuinfo_x86 { 88 __u8 x86; /* CPU family */ 89 __u8 x86_vendor; /* CPU vendor */ 90 __u8 x86_model; 91 __u8 x86_mask; 92 #ifdef CONFIG_X86_32 93 char wp_works_ok; /* It doesn't on 386's */ 94 95 /* Problems on some 486Dx4's and old 386's: */ 96 char rfu; 97 char pad0; 98 char pad1; 99 #else 100 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 101 int x86_tlbsize; 102 #endif 103 __u8 x86_virt_bits; 104 __u8 x86_phys_bits; 105 /* CPUID returned core id bits: */ 106 __u8 x86_coreid_bits; 107 __u8 cu_id; 108 /* Max extended CPUID function supported: */ 109 __u32 extended_cpuid_level; 110 /* Maximum supported CPUID level, -1=no CPUID: */ 111 int cpuid_level; 112 __u32 x86_capability[NCAPINTS + NBUGINTS]; 113 char x86_vendor_id[16]; 114 char x86_model_id[64]; 115 /* in KB - valid for CPUS which support this call: */ 116 int x86_cache_size; 117 int x86_cache_alignment; /* In bytes */ 118 /* Cache QoS architectural values: */ 119 int x86_cache_max_rmid; /* max index */ 120 int x86_cache_occ_scale; /* scale to bytes */ 121 int x86_power; 122 unsigned long loops_per_jiffy; 123 /* cpuid returned max cores value: */ 124 u16 x86_max_cores; 125 u16 apicid; 126 u16 initial_apicid; 127 u16 x86_clflush_size; 128 /* number of cores as seen by the OS: */ 129 u16 booted_cores; 130 /* Physical processor id: */ 131 u16 phys_proc_id; 132 /* Logical processor id: */ 133 u16 logical_proc_id; 134 /* Core id: */ 135 u16 cpu_core_id; 136 /* Index into per_cpu list: */ 137 u16 cpu_index; 138 u32 microcode; 139 }; 140 141 struct cpuid_regs { 142 u32 eax, ebx, ecx, edx; 143 }; 144 145 enum cpuid_regs_idx { 146 CPUID_EAX = 0, 147 CPUID_EBX, 148 CPUID_ECX, 149 CPUID_EDX, 150 }; 151 152 #define X86_VENDOR_INTEL 0 153 #define X86_VENDOR_CYRIX 1 154 #define X86_VENDOR_AMD 2 155 #define X86_VENDOR_UMC 3 156 #define X86_VENDOR_CENTAUR 5 157 #define X86_VENDOR_TRANSMETA 7 158 #define X86_VENDOR_NSC 8 159 #define X86_VENDOR_NUM 9 160 161 #define X86_VENDOR_UNKNOWN 0xff 162 163 /* 164 * capabilities of CPUs 165 */ 166 extern struct cpuinfo_x86 boot_cpu_data; 167 extern struct cpuinfo_x86 new_cpu_data; 168 169 extern struct tss_struct doublefault_tss; 170 extern __u32 cpu_caps_cleared[NCAPINTS]; 171 extern __u32 cpu_caps_set[NCAPINTS]; 172 173 #ifdef CONFIG_SMP 174 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 175 #define cpu_data(cpu) per_cpu(cpu_info, cpu) 176 #else 177 #define cpu_info boot_cpu_data 178 #define cpu_data(cpu) boot_cpu_data 179 #endif 180 181 extern const struct seq_operations cpuinfo_op; 182 183 #define cache_line_size() (boot_cpu_data.x86_cache_alignment) 184 185 extern void cpu_detect(struct cpuinfo_x86 *c); 186 187 extern void early_cpu_init(void); 188 extern void identify_boot_cpu(void); 189 extern void identify_secondary_cpu(struct cpuinfo_x86 *); 190 extern void print_cpu_info(struct cpuinfo_x86 *); 191 void print_cpu_msr(struct cpuinfo_x86 *); 192 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c); 193 extern u32 get_scattered_cpuid_leaf(unsigned int level, 194 unsigned int sub_leaf, 195 enum cpuid_regs_idx reg); 196 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c); 197 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c); 198 199 extern void detect_extended_topology(struct cpuinfo_x86 *c); 200 extern void detect_ht(struct cpuinfo_x86 *c); 201 202 #ifdef CONFIG_X86_32 203 extern int have_cpuid_p(void); 204 #else 205 static inline int have_cpuid_p(void) 206 { 207 return 1; 208 } 209 #endif 210 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 211 unsigned int *ecx, unsigned int *edx) 212 { 213 /* ecx is often an input as well as an output. */ 214 asm volatile("cpuid" 215 : "=a" (*eax), 216 "=b" (*ebx), 217 "=c" (*ecx), 218 "=d" (*edx) 219 : "0" (*eax), "2" (*ecx) 220 : "memory"); 221 } 222 223 #define native_cpuid_reg(reg) \ 224 static inline unsigned int native_cpuid_##reg(unsigned int op) \ 225 { \ 226 unsigned int eax = op, ebx, ecx = 0, edx; \ 227 \ 228 native_cpuid(&eax, &ebx, &ecx, &edx); \ 229 \ 230 return reg; \ 231 } 232 233 /* 234 * Native CPUID functions returning a single datum. 235 */ 236 native_cpuid_reg(eax) 237 native_cpuid_reg(ebx) 238 native_cpuid_reg(ecx) 239 native_cpuid_reg(edx) 240 241 static inline void load_cr3(pgd_t *pgdir) 242 { 243 write_cr3(__pa(pgdir)); 244 } 245 246 #ifdef CONFIG_X86_32 247 /* This is the TSS defined by the hardware. */ 248 struct x86_hw_tss { 249 unsigned short back_link, __blh; 250 unsigned long sp0; 251 unsigned short ss0, __ss0h; 252 unsigned long sp1; 253 254 /* 255 * We don't use ring 1, so ss1 is a convenient scratch space in 256 * the same cacheline as sp0. We use ss1 to cache the value in 257 * MSR_IA32_SYSENTER_CS. When we context switch 258 * MSR_IA32_SYSENTER_CS, we first check if the new value being 259 * written matches ss1, and, if it's not, then we wrmsr the new 260 * value and update ss1. 261 * 262 * The only reason we context switch MSR_IA32_SYSENTER_CS is 263 * that we set it to zero in vm86 tasks to avoid corrupting the 264 * stack if we were to go through the sysenter path from vm86 265 * mode. 266 */ 267 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 268 269 unsigned short __ss1h; 270 unsigned long sp2; 271 unsigned short ss2, __ss2h; 272 unsigned long __cr3; 273 unsigned long ip; 274 unsigned long flags; 275 unsigned long ax; 276 unsigned long cx; 277 unsigned long dx; 278 unsigned long bx; 279 unsigned long sp; 280 unsigned long bp; 281 unsigned long si; 282 unsigned long di; 283 unsigned short es, __esh; 284 unsigned short cs, __csh; 285 unsigned short ss, __ssh; 286 unsigned short ds, __dsh; 287 unsigned short fs, __fsh; 288 unsigned short gs, __gsh; 289 unsigned short ldt, __ldth; 290 unsigned short trace; 291 unsigned short io_bitmap_base; 292 293 } __attribute__((packed)); 294 #else 295 struct x86_hw_tss { 296 u32 reserved1; 297 u64 sp0; 298 u64 sp1; 299 u64 sp2; 300 u64 reserved2; 301 u64 ist[7]; 302 u32 reserved3; 303 u32 reserved4; 304 u16 reserved5; 305 u16 io_bitmap_base; 306 307 } __attribute__((packed)) ____cacheline_aligned; 308 #endif 309 310 /* 311 * IO-bitmap sizes: 312 */ 313 #define IO_BITMAP_BITS 65536 314 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 315 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 316 #define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap) 317 #define INVALID_IO_BITMAP_OFFSET 0x8000 318 319 struct tss_struct { 320 /* 321 * The hardware state: 322 */ 323 struct x86_hw_tss x86_tss; 324 325 /* 326 * The extra 1 is there because the CPU will access an 327 * additional byte beyond the end of the IO permission 328 * bitmap. The extra byte must be all 1 bits, and must 329 * be within the limit. 330 */ 331 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 332 333 #ifdef CONFIG_X86_32 334 /* 335 * Space for the temporary SYSENTER stack. 336 */ 337 unsigned long SYSENTER_stack_canary; 338 unsigned long SYSENTER_stack[64]; 339 #endif 340 341 } ____cacheline_aligned; 342 343 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss); 344 345 #ifdef CONFIG_X86_32 346 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 347 #endif 348 349 /* 350 * Save the original ist values for checking stack pointers during debugging 351 */ 352 struct orig_ist { 353 unsigned long ist[7]; 354 }; 355 356 #ifdef CONFIG_X86_64 357 DECLARE_PER_CPU(struct orig_ist, orig_ist); 358 359 union irq_stack_union { 360 char irq_stack[IRQ_STACK_SIZE]; 361 /* 362 * GCC hardcodes the stack canary as %gs:40. Since the 363 * irq_stack is the object at %gs:0, we reserve the bottom 364 * 48 bytes of the irq stack for the canary. 365 */ 366 struct { 367 char gs_base[40]; 368 unsigned long stack_canary; 369 }; 370 }; 371 372 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; 373 DECLARE_INIT_PER_CPU(irq_stack_union); 374 375 DECLARE_PER_CPU(char *, irq_stack_ptr); 376 DECLARE_PER_CPU(unsigned int, irq_count); 377 extern asmlinkage void ignore_sysret(void); 378 #else /* X86_64 */ 379 #ifdef CONFIG_CC_STACKPROTECTOR 380 /* 381 * Make sure stack canary segment base is cached-aligned: 382 * "For Intel Atom processors, avoid non zero segment base address 383 * that is not aligned to cache line boundary at all cost." 384 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 385 */ 386 struct stack_canary { 387 char __pad[20]; /* canary at %gs:20 */ 388 unsigned long canary; 389 }; 390 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 391 #endif 392 /* 393 * per-CPU IRQ handling stacks 394 */ 395 struct irq_stack { 396 u32 stack[THREAD_SIZE/sizeof(u32)]; 397 } __aligned(THREAD_SIZE); 398 399 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); 400 DECLARE_PER_CPU(struct irq_stack *, softirq_stack); 401 #endif /* X86_64 */ 402 403 extern unsigned int fpu_kernel_xstate_size; 404 extern unsigned int fpu_user_xstate_size; 405 406 struct perf_event; 407 408 typedef struct { 409 unsigned long seg; 410 } mm_segment_t; 411 412 struct thread_struct { 413 /* Cached TLS descriptors: */ 414 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 415 unsigned long sp0; 416 unsigned long sp; 417 #ifdef CONFIG_X86_32 418 unsigned long sysenter_cs; 419 #else 420 unsigned short es; 421 unsigned short ds; 422 unsigned short fsindex; 423 unsigned short gsindex; 424 #endif 425 426 u32 status; /* thread synchronous flags */ 427 428 #ifdef CONFIG_X86_64 429 unsigned long fsbase; 430 unsigned long gsbase; 431 #else 432 /* 433 * XXX: this could presumably be unsigned short. Alternatively, 434 * 32-bit kernels could be taught to use fsindex instead. 435 */ 436 unsigned long fs; 437 unsigned long gs; 438 #endif 439 440 /* Save middle states of ptrace breakpoints */ 441 struct perf_event *ptrace_bps[HBP_NUM]; 442 /* Debug status used for traps, single steps, etc... */ 443 unsigned long debugreg6; 444 /* Keep track of the exact dr7 value set by the user */ 445 unsigned long ptrace_dr7; 446 /* Fault info: */ 447 unsigned long cr2; 448 unsigned long trap_nr; 449 unsigned long error_code; 450 #ifdef CONFIG_VM86 451 /* Virtual 86 mode info */ 452 struct vm86 *vm86; 453 #endif 454 /* IO permissions: */ 455 unsigned long *io_bitmap_ptr; 456 unsigned long iopl; 457 /* Max allowed port in the bitmap, in bytes: */ 458 unsigned io_bitmap_max; 459 460 mm_segment_t addr_limit; 461 462 unsigned int sig_on_uaccess_err:1; 463 unsigned int uaccess_err:1; /* uaccess failed */ 464 465 /* Floating point and extended processor state */ 466 struct fpu fpu; 467 /* 468 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 469 * the end. 470 */ 471 }; 472 473 /* 474 * Thread-synchronous status. 475 * 476 * This is different from the flags in that nobody else 477 * ever touches our thread-synchronous status, so we don't 478 * have to worry about atomic accesses. 479 */ 480 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 481 482 /* 483 * Set IOPL bits in EFLAGS from given mask 484 */ 485 static inline void native_set_iopl_mask(unsigned mask) 486 { 487 #ifdef CONFIG_X86_32 488 unsigned int reg; 489 490 asm volatile ("pushfl;" 491 "popl %0;" 492 "andl %1, %0;" 493 "orl %2, %0;" 494 "pushl %0;" 495 "popfl" 496 : "=&r" (reg) 497 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 498 #endif 499 } 500 501 static inline void 502 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread) 503 { 504 tss->x86_tss.sp0 = thread->sp0; 505 #ifdef CONFIG_X86_32 506 /* Only happens when SEP is enabled, no need to test "SEP"arately: */ 507 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) { 508 tss->x86_tss.ss1 = thread->sysenter_cs; 509 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0); 510 } 511 #endif 512 } 513 514 static inline void native_swapgs(void) 515 { 516 #ifdef CONFIG_X86_64 517 asm volatile("swapgs" ::: "memory"); 518 #endif 519 } 520 521 static inline unsigned long current_top_of_stack(void) 522 { 523 #ifdef CONFIG_X86_64 524 return this_cpu_read_stable(cpu_tss.x86_tss.sp0); 525 #else 526 /* sp0 on x86_32 is special in and around vm86 mode. */ 527 return this_cpu_read_stable(cpu_current_top_of_stack); 528 #endif 529 } 530 531 #ifdef CONFIG_PARAVIRT 532 #include <asm/paravirt.h> 533 #else 534 #define __cpuid native_cpuid 535 536 static inline void load_sp0(struct tss_struct *tss, 537 struct thread_struct *thread) 538 { 539 native_load_sp0(tss, thread); 540 } 541 542 #define set_iopl_mask native_set_iopl_mask 543 #endif /* CONFIG_PARAVIRT */ 544 545 /* Free all resources held by a thread. */ 546 extern void release_thread(struct task_struct *); 547 548 unsigned long get_wchan(struct task_struct *p); 549 550 /* 551 * Generic CPUID function 552 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 553 * resulting in stale register contents being returned. 554 */ 555 static inline void cpuid(unsigned int op, 556 unsigned int *eax, unsigned int *ebx, 557 unsigned int *ecx, unsigned int *edx) 558 { 559 *eax = op; 560 *ecx = 0; 561 __cpuid(eax, ebx, ecx, edx); 562 } 563 564 /* Some CPUID calls want 'count' to be placed in ecx */ 565 static inline void cpuid_count(unsigned int op, int count, 566 unsigned int *eax, unsigned int *ebx, 567 unsigned int *ecx, unsigned int *edx) 568 { 569 *eax = op; 570 *ecx = count; 571 __cpuid(eax, ebx, ecx, edx); 572 } 573 574 /* 575 * CPUID functions returning a single datum 576 */ 577 static inline unsigned int cpuid_eax(unsigned int op) 578 { 579 unsigned int eax, ebx, ecx, edx; 580 581 cpuid(op, &eax, &ebx, &ecx, &edx); 582 583 return eax; 584 } 585 586 static inline unsigned int cpuid_ebx(unsigned int op) 587 { 588 unsigned int eax, ebx, ecx, edx; 589 590 cpuid(op, &eax, &ebx, &ecx, &edx); 591 592 return ebx; 593 } 594 595 static inline unsigned int cpuid_ecx(unsigned int op) 596 { 597 unsigned int eax, ebx, ecx, edx; 598 599 cpuid(op, &eax, &ebx, &ecx, &edx); 600 601 return ecx; 602 } 603 604 static inline unsigned int cpuid_edx(unsigned int op) 605 { 606 unsigned int eax, ebx, ecx, edx; 607 608 cpuid(op, &eax, &ebx, &ecx, &edx); 609 610 return edx; 611 } 612 613 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 614 static __always_inline void rep_nop(void) 615 { 616 asm volatile("rep; nop" ::: "memory"); 617 } 618 619 static __always_inline void cpu_relax(void) 620 { 621 rep_nop(); 622 } 623 624 /* 625 * This function forces the icache and prefetched instruction stream to 626 * catch up with reality in two very specific cases: 627 * 628 * a) Text was modified using one virtual address and is about to be executed 629 * from the same physical page at a different virtual address. 630 * 631 * b) Text was modified on a different CPU, may subsequently be 632 * executed on this CPU, and you want to make sure the new version 633 * gets executed. This generally means you're calling this in a IPI. 634 * 635 * If you're calling this for a different reason, you're probably doing 636 * it wrong. 637 */ 638 static inline void sync_core(void) 639 { 640 /* 641 * There are quite a few ways to do this. IRET-to-self is nice 642 * because it works on every CPU, at any CPL (so it's compatible 643 * with paravirtualization), and it never exits to a hypervisor. 644 * The only down sides are that it's a bit slow (it seems to be 645 * a bit more than 2x slower than the fastest options) and that 646 * it unmasks NMIs. The "push %cs" is needed because, in 647 * paravirtual environments, __KERNEL_CS may not be a valid CS 648 * value when we do IRET directly. 649 * 650 * In case NMI unmasking or performance ever becomes a problem, 651 * the next best option appears to be MOV-to-CR2 and an 652 * unconditional jump. That sequence also works on all CPUs, 653 * but it will fault at CPL3 (i.e. Xen PV and lguest). 654 * 655 * CPUID is the conventional way, but it's nasty: it doesn't 656 * exist on some 486-like CPUs, and it usually exits to a 657 * hypervisor. 658 * 659 * Like all of Linux's memory ordering operations, this is a 660 * compiler barrier as well. 661 */ 662 register void *__sp asm(_ASM_SP); 663 664 #ifdef CONFIG_X86_32 665 asm volatile ( 666 "pushfl\n\t" 667 "pushl %%cs\n\t" 668 "pushl $1f\n\t" 669 "iret\n\t" 670 "1:" 671 : "+r" (__sp) : : "memory"); 672 #else 673 unsigned int tmp; 674 675 asm volatile ( 676 "mov %%ss, %0\n\t" 677 "pushq %q0\n\t" 678 "pushq %%rsp\n\t" 679 "addq $8, (%%rsp)\n\t" 680 "pushfq\n\t" 681 "mov %%cs, %0\n\t" 682 "pushq %q0\n\t" 683 "pushq $1f\n\t" 684 "iretq\n\t" 685 "1:" 686 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory"); 687 #endif 688 } 689 690 extern void select_idle_routine(const struct cpuinfo_x86 *c); 691 extern void amd_e400_c1e_apic_setup(void); 692 693 extern unsigned long boot_option_idle_override; 694 695 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 696 IDLE_POLL}; 697 698 extern void enable_sep_cpu(void); 699 extern int sysenter_setup(void); 700 701 extern void early_trap_init(void); 702 void early_trap_pf_init(void); 703 704 /* Defined in head.S */ 705 extern struct desc_ptr early_gdt_descr; 706 707 extern void cpu_set_gdt(int); 708 extern void switch_to_new_gdt(int); 709 extern void load_percpu_segment(int); 710 extern void cpu_init(void); 711 712 static inline unsigned long get_debugctlmsr(void) 713 { 714 unsigned long debugctlmsr = 0; 715 716 #ifndef CONFIG_X86_DEBUGCTLMSR 717 if (boot_cpu_data.x86 < 6) 718 return 0; 719 #endif 720 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 721 722 return debugctlmsr; 723 } 724 725 static inline void update_debugctlmsr(unsigned long debugctlmsr) 726 { 727 #ifndef CONFIG_X86_DEBUGCTLMSR 728 if (boot_cpu_data.x86 < 6) 729 return; 730 #endif 731 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 732 } 733 734 extern void set_task_blockstep(struct task_struct *task, bool on); 735 736 /* Boot loader type from the setup header: */ 737 extern int bootloader_type; 738 extern int bootloader_version; 739 740 extern char ignore_fpu_irq; 741 742 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 743 #define ARCH_HAS_PREFETCHW 744 #define ARCH_HAS_SPINLOCK_PREFETCH 745 746 #ifdef CONFIG_X86_32 747 # define BASE_PREFETCH "" 748 # define ARCH_HAS_PREFETCH 749 #else 750 # define BASE_PREFETCH "prefetcht0 %P1" 751 #endif 752 753 /* 754 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 755 * 756 * It's not worth to care about 3dnow prefetches for the K6 757 * because they are microcoded there and very slow. 758 */ 759 static inline void prefetch(const void *x) 760 { 761 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 762 X86_FEATURE_XMM, 763 "m" (*(const char *)x)); 764 } 765 766 /* 767 * 3dnow prefetch to get an exclusive cache line. 768 * Useful for spinlocks to avoid one state transition in the 769 * cache coherency protocol: 770 */ 771 static inline void prefetchw(const void *x) 772 { 773 alternative_input(BASE_PREFETCH, "prefetchw %P1", 774 X86_FEATURE_3DNOWPREFETCH, 775 "m" (*(const char *)x)); 776 } 777 778 static inline void spin_lock_prefetch(const void *x) 779 { 780 prefetchw(x); 781 } 782 783 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 784 TOP_OF_KERNEL_STACK_PADDING) 785 786 #ifdef CONFIG_X86_32 787 /* 788 * User space process size: 3GB (default). 789 */ 790 #define TASK_SIZE PAGE_OFFSET 791 #define TASK_SIZE_MAX TASK_SIZE 792 #define STACK_TOP TASK_SIZE 793 #define STACK_TOP_MAX STACK_TOP 794 795 #define INIT_THREAD { \ 796 .sp0 = TOP_OF_INIT_STACK, \ 797 .sysenter_cs = __KERNEL_CS, \ 798 .io_bitmap_ptr = NULL, \ 799 .addr_limit = KERNEL_DS, \ 800 } 801 802 /* 803 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack. 804 * This is necessary to guarantee that the entire "struct pt_regs" 805 * is accessible even if the CPU haven't stored the SS/ESP registers 806 * on the stack (interrupt gate does not save these registers 807 * when switching to the same priv ring). 808 * Therefore beware: accessing the ss/esp fields of the 809 * "struct pt_regs" is possible, but they may contain the 810 * completely wrong values. 811 */ 812 #define task_pt_regs(task) \ 813 ({ \ 814 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 815 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 816 ((struct pt_regs *)__ptr) - 1; \ 817 }) 818 819 #define KSTK_ESP(task) (task_pt_regs(task)->sp) 820 821 #else 822 /* 823 * User space process size. 47bits minus one guard page. The guard 824 * page is necessary on Intel CPUs: if a SYSCALL instruction is at 825 * the highest possible canonical userspace address, then that 826 * syscall will enter the kernel with a non-canonical return 827 * address, and SYSRET will explode dangerously. We avoid this 828 * particular problem by preventing anything from being mapped 829 * at the maximum canonical address. 830 */ 831 #define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE) 832 833 /* This decides where the kernel will search for a free chunk of vm 834 * space during mmap's. 835 */ 836 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 837 0xc0000000 : 0xFFFFe000) 838 839 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 840 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 841 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 842 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 843 844 #define STACK_TOP TASK_SIZE 845 #define STACK_TOP_MAX TASK_SIZE_MAX 846 847 #define INIT_THREAD { \ 848 .sp0 = TOP_OF_INIT_STACK, \ 849 .addr_limit = KERNEL_DS, \ 850 } 851 852 #define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1) 853 extern unsigned long KSTK_ESP(struct task_struct *task); 854 855 #endif /* CONFIG_X86_64 */ 856 857 extern unsigned long thread_saved_pc(struct task_struct *tsk); 858 859 extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 860 unsigned long new_sp); 861 862 /* 863 * This decides where the kernel will search for a free chunk of vm 864 * space during mmap's. 865 */ 866 #define TASK_UNMAPPED_BASE (PAGE_ALIGN(TASK_SIZE / 3)) 867 868 #define KSTK_EIP(task) (task_pt_regs(task)->ip) 869 870 /* Get/set a process' ability to use the timestamp counter instruction */ 871 #define GET_TSC_CTL(adr) get_tsc_mode((adr)) 872 #define SET_TSC_CTL(val) set_tsc_mode((val)) 873 874 extern int get_tsc_mode(unsigned long adr); 875 extern int set_tsc_mode(unsigned int val); 876 877 /* Register/unregister a process' MPX related resource */ 878 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 879 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 880 881 #ifdef CONFIG_X86_INTEL_MPX 882 extern int mpx_enable_management(void); 883 extern int mpx_disable_management(void); 884 #else 885 static inline int mpx_enable_management(void) 886 { 887 return -EINVAL; 888 } 889 static inline int mpx_disable_management(void) 890 { 891 return -EINVAL; 892 } 893 #endif /* CONFIG_X86_INTEL_MPX */ 894 895 extern u16 amd_get_nb_id(int cpu); 896 extern u32 amd_get_nodes_per_socket(void); 897 898 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 899 { 900 uint32_t base, eax, signature[3]; 901 902 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 903 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 904 905 if (!memcmp(sig, signature, 12) && 906 (leaves == 0 || ((eax - base) >= leaves))) 907 return base; 908 } 909 910 return 0; 911 } 912 913 extern unsigned long arch_align_stack(unsigned long sp); 914 extern void free_init_pages(char *what, unsigned long begin, unsigned long end); 915 916 void default_idle(void); 917 #ifdef CONFIG_XEN 918 bool xen_set_default_idle(void); 919 #else 920 #define xen_set_default_idle 0 921 #endif 922 923 void stop_this_cpu(void *dummy); 924 void df_debug(struct pt_regs *regs, long error_code); 925 #endif /* _ASM_X86_PROCESSOR_H */ 926