xref: /linux/arch/x86/include/asm/processor.h (revision 1ee54195a305fae3955642af8528bdf67496d353)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4 
5 #include <asm/processor-flags.h>
6 
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct io_bitmap;
11 struct vm86;
12 
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
19 #include <asm/page.h>
20 #include <asm/pgtable_types.h>
21 #include <asm/percpu.h>
22 #include <asm/msr.h>
23 #include <asm/desc_defs.h>
24 #include <asm/nops.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 
29 #include <linux/personality.h>
30 #include <linux/cache.h>
31 #include <linux/threads.h>
32 #include <linux/math64.h>
33 #include <linux/err.h>
34 #include <linux/irqflags.h>
35 #include <linux/mem_encrypt.h>
36 
37 /*
38  * We handle most unaligned accesses in hardware.  On the other hand
39  * unaligned DMA can be quite expensive on some Nehalem processors.
40  *
41  * Based on this we disable the IP header alignment in network drivers.
42  */
43 #define NET_IP_ALIGN	0
44 
45 #define HBP_NUM 4
46 
47 /*
48  * These alignment constraints are for performance in the vSMP case,
49  * but in the task_struct case we must also meet hardware imposed
50  * alignment requirements of the FPU state:
51  */
52 #ifdef CONFIG_X86_VSMP
53 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
54 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
55 #else
56 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
57 # define ARCH_MIN_MMSTRUCT_ALIGN	0
58 #endif
59 
60 enum tlb_infos {
61 	ENTRIES,
62 	NR_INFO
63 };
64 
65 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
66 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
67 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
68 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
69 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
71 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
72 
73 /*
74  *  CPU type and hardware bug flags. Kept separately for each CPU.
75  *  Members of this structure are referenced in head_32.S, so think twice
76  *  before touching them. [mj]
77  */
78 
79 struct cpuinfo_x86 {
80 	__u8			x86;		/* CPU family */
81 	__u8			x86_vendor;	/* CPU vendor */
82 	__u8			x86_model;
83 	__u8			x86_stepping;
84 #ifdef CONFIG_X86_64
85 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
86 	int			x86_tlbsize;
87 #endif
88 	__u8			x86_virt_bits;
89 	__u8			x86_phys_bits;
90 	/* CPUID returned core id bits: */
91 	__u8			x86_coreid_bits;
92 	__u8			cu_id;
93 	/* Max extended CPUID function supported: */
94 	__u32			extended_cpuid_level;
95 	/* Maximum supported CPUID level, -1=no CPUID: */
96 	int			cpuid_level;
97 	/*
98 	 * Align to size of unsigned long because the x86_capability array
99 	 * is passed to bitops which require the alignment. Use unnamed
100 	 * union to enforce the array is aligned to size of unsigned long.
101 	 */
102 	union {
103 		__u32		x86_capability[NCAPINTS + NBUGINTS];
104 		unsigned long	x86_capability_alignment;
105 	};
106 	char			x86_vendor_id[16];
107 	char			x86_model_id[64];
108 	/* in KB - valid for CPUS which support this call: */
109 	unsigned int		x86_cache_size;
110 	int			x86_cache_alignment;	/* In bytes */
111 	/* Cache QoS architectural values: */
112 	int			x86_cache_max_rmid;	/* max index */
113 	int			x86_cache_occ_scale;	/* scale to bytes */
114 	int			x86_power;
115 	unsigned long		loops_per_jiffy;
116 	/* cpuid returned max cores value: */
117 	u16			x86_max_cores;
118 	u16			apicid;
119 	u16			initial_apicid;
120 	u16			x86_clflush_size;
121 	/* number of cores as seen by the OS: */
122 	u16			booted_cores;
123 	/* Physical processor id: */
124 	u16			phys_proc_id;
125 	/* Logical processor id: */
126 	u16			logical_proc_id;
127 	/* Core id: */
128 	u16			cpu_core_id;
129 	u16			cpu_die_id;
130 	u16			logical_die_id;
131 	/* Index into per_cpu list: */
132 	u16			cpu_index;
133 	u32			microcode;
134 	/* Address space bits used by the cache internally */
135 	u8			x86_cache_bits;
136 	unsigned		initialized : 1;
137 } __randomize_layout;
138 
139 struct cpuid_regs {
140 	u32 eax, ebx, ecx, edx;
141 };
142 
143 enum cpuid_regs_idx {
144 	CPUID_EAX = 0,
145 	CPUID_EBX,
146 	CPUID_ECX,
147 	CPUID_EDX,
148 };
149 
150 #define X86_VENDOR_INTEL	0
151 #define X86_VENDOR_CYRIX	1
152 #define X86_VENDOR_AMD		2
153 #define X86_VENDOR_UMC		3
154 #define X86_VENDOR_CENTAUR	5
155 #define X86_VENDOR_TRANSMETA	7
156 #define X86_VENDOR_NSC		8
157 #define X86_VENDOR_HYGON	9
158 #define X86_VENDOR_ZHAOXIN	10
159 #define X86_VENDOR_NUM		11
160 
161 #define X86_VENDOR_UNKNOWN	0xff
162 
163 /*
164  * capabilities of CPUs
165  */
166 extern struct cpuinfo_x86	boot_cpu_data;
167 extern struct cpuinfo_x86	new_cpu_data;
168 
169 extern struct x86_hw_tss	doublefault_tss;
170 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
171 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
172 
173 #ifdef CONFIG_SMP
174 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
175 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
176 #else
177 #define cpu_info		boot_cpu_data
178 #define cpu_data(cpu)		boot_cpu_data
179 #endif
180 
181 extern const struct seq_operations cpuinfo_op;
182 
183 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
184 
185 extern void cpu_detect(struct cpuinfo_x86 *c);
186 
187 static inline unsigned long long l1tf_pfn_limit(void)
188 {
189 	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
190 }
191 
192 extern void early_cpu_init(void);
193 extern void identify_boot_cpu(void);
194 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
195 extern void print_cpu_info(struct cpuinfo_x86 *);
196 void print_cpu_msr(struct cpuinfo_x86 *);
197 
198 #ifdef CONFIG_X86_32
199 extern int have_cpuid_p(void);
200 #else
201 static inline int have_cpuid_p(void)
202 {
203 	return 1;
204 }
205 #endif
206 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
207 				unsigned int *ecx, unsigned int *edx)
208 {
209 	/* ecx is often an input as well as an output. */
210 	asm volatile("cpuid"
211 	    : "=a" (*eax),
212 	      "=b" (*ebx),
213 	      "=c" (*ecx),
214 	      "=d" (*edx)
215 	    : "0" (*eax), "2" (*ecx)
216 	    : "memory");
217 }
218 
219 #define native_cpuid_reg(reg)					\
220 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
221 {								\
222 	unsigned int eax = op, ebx, ecx = 0, edx;		\
223 								\
224 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
225 								\
226 	return reg;						\
227 }
228 
229 /*
230  * Native CPUID functions returning a single datum.
231  */
232 native_cpuid_reg(eax)
233 native_cpuid_reg(ebx)
234 native_cpuid_reg(ecx)
235 native_cpuid_reg(edx)
236 
237 /*
238  * Friendlier CR3 helpers.
239  */
240 static inline unsigned long read_cr3_pa(void)
241 {
242 	return __read_cr3() & CR3_ADDR_MASK;
243 }
244 
245 static inline unsigned long native_read_cr3_pa(void)
246 {
247 	return __native_read_cr3() & CR3_ADDR_MASK;
248 }
249 
250 static inline void load_cr3(pgd_t *pgdir)
251 {
252 	write_cr3(__sme_pa(pgdir));
253 }
254 
255 /*
256  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
257  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
258  * unrelated to the task-switch mechanism:
259  */
260 #ifdef CONFIG_X86_32
261 /* This is the TSS defined by the hardware. */
262 struct x86_hw_tss {
263 	unsigned short		back_link, __blh;
264 	unsigned long		sp0;
265 	unsigned short		ss0, __ss0h;
266 	unsigned long		sp1;
267 
268 	/*
269 	 * We don't use ring 1, so ss1 is a convenient scratch space in
270 	 * the same cacheline as sp0.  We use ss1 to cache the value in
271 	 * MSR_IA32_SYSENTER_CS.  When we context switch
272 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
273 	 * written matches ss1, and, if it's not, then we wrmsr the new
274 	 * value and update ss1.
275 	 *
276 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
277 	 * that we set it to zero in vm86 tasks to avoid corrupting the
278 	 * stack if we were to go through the sysenter path from vm86
279 	 * mode.
280 	 */
281 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
282 
283 	unsigned short		__ss1h;
284 	unsigned long		sp2;
285 	unsigned short		ss2, __ss2h;
286 	unsigned long		__cr3;
287 	unsigned long		ip;
288 	unsigned long		flags;
289 	unsigned long		ax;
290 	unsigned long		cx;
291 	unsigned long		dx;
292 	unsigned long		bx;
293 	unsigned long		sp;
294 	unsigned long		bp;
295 	unsigned long		si;
296 	unsigned long		di;
297 	unsigned short		es, __esh;
298 	unsigned short		cs, __csh;
299 	unsigned short		ss, __ssh;
300 	unsigned short		ds, __dsh;
301 	unsigned short		fs, __fsh;
302 	unsigned short		gs, __gsh;
303 	unsigned short		ldt, __ldth;
304 	unsigned short		trace;
305 	unsigned short		io_bitmap_base;
306 
307 } __attribute__((packed));
308 #else
309 struct x86_hw_tss {
310 	u32			reserved1;
311 	u64			sp0;
312 
313 	/*
314 	 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
315 	 * Linux does not use ring 1, so sp1 is not otherwise needed.
316 	 */
317 	u64			sp1;
318 
319 	/*
320 	 * Since Linux does not use ring 2, the 'sp2' slot is unused by
321 	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
322 	 * the user RSP value.
323 	 */
324 	u64			sp2;
325 
326 	u64			reserved2;
327 	u64			ist[7];
328 	u32			reserved3;
329 	u32			reserved4;
330 	u16			reserved5;
331 	u16			io_bitmap_base;
332 
333 } __attribute__((packed));
334 #endif
335 
336 /*
337  * IO-bitmap sizes:
338  */
339 #define IO_BITMAP_BITS			65536
340 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS / BITS_PER_BYTE)
341 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES / sizeof(long))
342 
343 #define IO_BITMAP_OFFSET_VALID_MAP				\
344 	(offsetof(struct tss_struct, io_bitmap.bitmap) -	\
345 	 offsetof(struct tss_struct, x86_tss))
346 
347 #define IO_BITMAP_OFFSET_VALID_ALL				\
348 	(offsetof(struct tss_struct, io_bitmap.mapall) -	\
349 	 offsetof(struct tss_struct, x86_tss))
350 
351 #ifdef CONFIG_X86_IOPL_IOPERM
352 /*
353  * sizeof(unsigned long) coming from an extra "long" at the end of the
354  * iobitmap. The limit is inclusive, i.e. the last valid byte.
355  */
356 # define __KERNEL_TSS_LIMIT	\
357 	(IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
358 	 sizeof(unsigned long) - 1)
359 #else
360 # define __KERNEL_TSS_LIMIT	\
361 	(offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
362 #endif
363 
364 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
365 #define IO_BITMAP_OFFSET_INVALID	(__KERNEL_TSS_LIMIT + 1)
366 
367 struct entry_stack {
368 	unsigned long		words[64];
369 };
370 
371 struct entry_stack_page {
372 	struct entry_stack stack;
373 } __aligned(PAGE_SIZE);
374 
375 /*
376  * All IO bitmap related data stored in the TSS:
377  */
378 struct x86_io_bitmap {
379 	/* The sequence number of the last active bitmap. */
380 	u64			prev_sequence;
381 
382 	/*
383 	 * Store the dirty size of the last io bitmap offender. The next
384 	 * one will have to do the cleanup as the switch out to a non io
385 	 * bitmap user will just set x86_tss.io_bitmap_base to a value
386 	 * outside of the TSS limit. So for sane tasks there is no need to
387 	 * actually touch the io_bitmap at all.
388 	 */
389 	unsigned int		prev_max;
390 
391 	/*
392 	 * The extra 1 is there because the CPU will access an
393 	 * additional byte beyond the end of the IO permission
394 	 * bitmap. The extra byte must be all 1 bits, and must
395 	 * be within the limit.
396 	 */
397 	unsigned long		bitmap[IO_BITMAP_LONGS + 1];
398 
399 	/*
400 	 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
401 	 * except the additional byte at the end.
402 	 */
403 	unsigned long		mapall[IO_BITMAP_LONGS + 1];
404 };
405 
406 struct tss_struct {
407 	/*
408 	 * The fixed hardware portion.  This must not cross a page boundary
409 	 * at risk of violating the SDM's advice and potentially triggering
410 	 * errata.
411 	 */
412 	struct x86_hw_tss	x86_tss;
413 
414 	struct x86_io_bitmap	io_bitmap;
415 } __aligned(PAGE_SIZE);
416 
417 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
418 
419 /* Per CPU interrupt stacks */
420 struct irq_stack {
421 	char		stack[IRQ_STACK_SIZE];
422 } __aligned(IRQ_STACK_SIZE);
423 
424 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
425 
426 #ifdef CONFIG_X86_32
427 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
428 #else
429 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
430 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
431 #endif
432 
433 #ifdef CONFIG_X86_64
434 struct fixed_percpu_data {
435 	/*
436 	 * GCC hardcodes the stack canary as %gs:40.  Since the
437 	 * irq_stack is the object at %gs:0, we reserve the bottom
438 	 * 48 bytes of the irq stack for the canary.
439 	 */
440 	char		gs_base[40];
441 	unsigned long	stack_canary;
442 };
443 
444 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
445 DECLARE_INIT_PER_CPU(fixed_percpu_data);
446 
447 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
448 {
449 	return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
450 }
451 
452 DECLARE_PER_CPU(unsigned int, irq_count);
453 extern asmlinkage void ignore_sysret(void);
454 
455 #if IS_ENABLED(CONFIG_KVM)
456 /* Save actual FS/GS selectors and bases to current->thread */
457 void save_fsgs_for_kvm(void);
458 #endif
459 #else	/* X86_64 */
460 #ifdef CONFIG_STACKPROTECTOR
461 /*
462  * Make sure stack canary segment base is cached-aligned:
463  *   "For Intel Atom processors, avoid non zero segment base address
464  *    that is not aligned to cache line boundary at all cost."
465  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
466  */
467 struct stack_canary {
468 	char __pad[20];		/* canary at %gs:20 */
469 	unsigned long canary;
470 };
471 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
472 #endif
473 /* Per CPU softirq stack pointer */
474 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
475 #endif	/* X86_64 */
476 
477 extern unsigned int fpu_kernel_xstate_size;
478 extern unsigned int fpu_user_xstate_size;
479 
480 struct perf_event;
481 
482 typedef struct {
483 	unsigned long		seg;
484 } mm_segment_t;
485 
486 struct thread_struct {
487 	/* Cached TLS descriptors: */
488 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
489 #ifdef CONFIG_X86_32
490 	unsigned long		sp0;
491 #endif
492 	unsigned long		sp;
493 #ifdef CONFIG_X86_32
494 	unsigned long		sysenter_cs;
495 #else
496 	unsigned short		es;
497 	unsigned short		ds;
498 	unsigned short		fsindex;
499 	unsigned short		gsindex;
500 #endif
501 
502 #ifdef CONFIG_X86_64
503 	unsigned long		fsbase;
504 	unsigned long		gsbase;
505 #else
506 	/*
507 	 * XXX: this could presumably be unsigned short.  Alternatively,
508 	 * 32-bit kernels could be taught to use fsindex instead.
509 	 */
510 	unsigned long fs;
511 	unsigned long gs;
512 #endif
513 
514 	/* Save middle states of ptrace breakpoints */
515 	struct perf_event	*ptrace_bps[HBP_NUM];
516 	/* Debug status used for traps, single steps, etc... */
517 	unsigned long           debugreg6;
518 	/* Keep track of the exact dr7 value set by the user */
519 	unsigned long           ptrace_dr7;
520 	/* Fault info: */
521 	unsigned long		cr2;
522 	unsigned long		trap_nr;
523 	unsigned long		error_code;
524 #ifdef CONFIG_VM86
525 	/* Virtual 86 mode info */
526 	struct vm86		*vm86;
527 #endif
528 	/* IO permissions: */
529 	struct io_bitmap	*io_bitmap;
530 
531 	/*
532 	 * IOPL. Priviledge level dependent I/O permission which is
533 	 * emulated via the I/O bitmap to prevent user space from disabling
534 	 * interrupts.
535 	 */
536 	unsigned long		iopl_emul;
537 
538 	mm_segment_t		addr_limit;
539 
540 	unsigned int		sig_on_uaccess_err:1;
541 	unsigned int		uaccess_err:1;	/* uaccess failed */
542 
543 	/* Floating point and extended processor state */
544 	struct fpu		fpu;
545 	/*
546 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
547 	 * the end.
548 	 */
549 };
550 
551 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
552 static inline void arch_thread_struct_whitelist(unsigned long *offset,
553 						unsigned long *size)
554 {
555 	*offset = offsetof(struct thread_struct, fpu.state);
556 	*size = fpu_kernel_xstate_size;
557 }
558 
559 /*
560  * Thread-synchronous status.
561  *
562  * This is different from the flags in that nobody else
563  * ever touches our thread-synchronous status, so we don't
564  * have to worry about atomic accesses.
565  */
566 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
567 
568 static inline void
569 native_load_sp0(unsigned long sp0)
570 {
571 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
572 }
573 
574 static inline void native_swapgs(void)
575 {
576 #ifdef CONFIG_X86_64
577 	asm volatile("swapgs" ::: "memory");
578 #endif
579 }
580 
581 static inline unsigned long current_top_of_stack(void)
582 {
583 	/*
584 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
585 	 *  and around vm86 mode and sp0 on x86_64 is special because of the
586 	 *  entry trampoline.
587 	 */
588 	return this_cpu_read_stable(cpu_current_top_of_stack);
589 }
590 
591 static inline bool on_thread_stack(void)
592 {
593 	return (unsigned long)(current_top_of_stack() -
594 			       current_stack_pointer) < THREAD_SIZE;
595 }
596 
597 #ifdef CONFIG_PARAVIRT_XXL
598 #include <asm/paravirt.h>
599 #else
600 #define __cpuid			native_cpuid
601 
602 static inline void load_sp0(unsigned long sp0)
603 {
604 	native_load_sp0(sp0);
605 }
606 
607 #endif /* CONFIG_PARAVIRT_XXL */
608 
609 /* Free all resources held by a thread. */
610 extern void release_thread(struct task_struct *);
611 
612 unsigned long get_wchan(struct task_struct *p);
613 
614 /*
615  * Generic CPUID function
616  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
617  * resulting in stale register contents being returned.
618  */
619 static inline void cpuid(unsigned int op,
620 			 unsigned int *eax, unsigned int *ebx,
621 			 unsigned int *ecx, unsigned int *edx)
622 {
623 	*eax = op;
624 	*ecx = 0;
625 	__cpuid(eax, ebx, ecx, edx);
626 }
627 
628 /* Some CPUID calls want 'count' to be placed in ecx */
629 static inline void cpuid_count(unsigned int op, int count,
630 			       unsigned int *eax, unsigned int *ebx,
631 			       unsigned int *ecx, unsigned int *edx)
632 {
633 	*eax = op;
634 	*ecx = count;
635 	__cpuid(eax, ebx, ecx, edx);
636 }
637 
638 /*
639  * CPUID functions returning a single datum
640  */
641 static inline unsigned int cpuid_eax(unsigned int op)
642 {
643 	unsigned int eax, ebx, ecx, edx;
644 
645 	cpuid(op, &eax, &ebx, &ecx, &edx);
646 
647 	return eax;
648 }
649 
650 static inline unsigned int cpuid_ebx(unsigned int op)
651 {
652 	unsigned int eax, ebx, ecx, edx;
653 
654 	cpuid(op, &eax, &ebx, &ecx, &edx);
655 
656 	return ebx;
657 }
658 
659 static inline unsigned int cpuid_ecx(unsigned int op)
660 {
661 	unsigned int eax, ebx, ecx, edx;
662 
663 	cpuid(op, &eax, &ebx, &ecx, &edx);
664 
665 	return ecx;
666 }
667 
668 static inline unsigned int cpuid_edx(unsigned int op)
669 {
670 	unsigned int eax, ebx, ecx, edx;
671 
672 	cpuid(op, &eax, &ebx, &ecx, &edx);
673 
674 	return edx;
675 }
676 
677 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
678 static __always_inline void rep_nop(void)
679 {
680 	asm volatile("rep; nop" ::: "memory");
681 }
682 
683 static __always_inline void cpu_relax(void)
684 {
685 	rep_nop();
686 }
687 
688 /*
689  * This function forces the icache and prefetched instruction stream to
690  * catch up with reality in two very specific cases:
691  *
692  *  a) Text was modified using one virtual address and is about to be executed
693  *     from the same physical page at a different virtual address.
694  *
695  *  b) Text was modified on a different CPU, may subsequently be
696  *     executed on this CPU, and you want to make sure the new version
697  *     gets executed.  This generally means you're calling this in a IPI.
698  *
699  * If you're calling this for a different reason, you're probably doing
700  * it wrong.
701  */
702 static inline void sync_core(void)
703 {
704 	/*
705 	 * There are quite a few ways to do this.  IRET-to-self is nice
706 	 * because it works on every CPU, at any CPL (so it's compatible
707 	 * with paravirtualization), and it never exits to a hypervisor.
708 	 * The only down sides are that it's a bit slow (it seems to be
709 	 * a bit more than 2x slower than the fastest options) and that
710 	 * it unmasks NMIs.  The "push %cs" is needed because, in
711 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
712 	 * value when we do IRET directly.
713 	 *
714 	 * In case NMI unmasking or performance ever becomes a problem,
715 	 * the next best option appears to be MOV-to-CR2 and an
716 	 * unconditional jump.  That sequence also works on all CPUs,
717 	 * but it will fault at CPL3 (i.e. Xen PV).
718 	 *
719 	 * CPUID is the conventional way, but it's nasty: it doesn't
720 	 * exist on some 486-like CPUs, and it usually exits to a
721 	 * hypervisor.
722 	 *
723 	 * Like all of Linux's memory ordering operations, this is a
724 	 * compiler barrier as well.
725 	 */
726 #ifdef CONFIG_X86_32
727 	asm volatile (
728 		"pushfl\n\t"
729 		"pushl %%cs\n\t"
730 		"pushl $1f\n\t"
731 		"iret\n\t"
732 		"1:"
733 		: ASM_CALL_CONSTRAINT : : "memory");
734 #else
735 	unsigned int tmp;
736 
737 	asm volatile (
738 		UNWIND_HINT_SAVE
739 		"mov %%ss, %0\n\t"
740 		"pushq %q0\n\t"
741 		"pushq %%rsp\n\t"
742 		"addq $8, (%%rsp)\n\t"
743 		"pushfq\n\t"
744 		"mov %%cs, %0\n\t"
745 		"pushq %q0\n\t"
746 		"pushq $1f\n\t"
747 		"iretq\n\t"
748 		UNWIND_HINT_RESTORE
749 		"1:"
750 		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
751 #endif
752 }
753 
754 extern void select_idle_routine(const struct cpuinfo_x86 *c);
755 extern void amd_e400_c1e_apic_setup(void);
756 
757 extern unsigned long		boot_option_idle_override;
758 
759 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
760 			 IDLE_POLL};
761 
762 extern void enable_sep_cpu(void);
763 extern int sysenter_setup(void);
764 
765 
766 /* Defined in head.S */
767 extern struct desc_ptr		early_gdt_descr;
768 
769 extern void switch_to_new_gdt(int);
770 extern void load_direct_gdt(int);
771 extern void load_fixmap_gdt(int);
772 extern void load_percpu_segment(int);
773 extern void cpu_init(void);
774 extern void cr4_init(void);
775 
776 static inline unsigned long get_debugctlmsr(void)
777 {
778 	unsigned long debugctlmsr = 0;
779 
780 #ifndef CONFIG_X86_DEBUGCTLMSR
781 	if (boot_cpu_data.x86 < 6)
782 		return 0;
783 #endif
784 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
785 
786 	return debugctlmsr;
787 }
788 
789 static inline void update_debugctlmsr(unsigned long debugctlmsr)
790 {
791 #ifndef CONFIG_X86_DEBUGCTLMSR
792 	if (boot_cpu_data.x86 < 6)
793 		return;
794 #endif
795 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
796 }
797 
798 extern void set_task_blockstep(struct task_struct *task, bool on);
799 
800 /* Boot loader type from the setup header: */
801 extern int			bootloader_type;
802 extern int			bootloader_version;
803 
804 extern char			ignore_fpu_irq;
805 
806 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
807 #define ARCH_HAS_PREFETCHW
808 #define ARCH_HAS_SPINLOCK_PREFETCH
809 
810 #ifdef CONFIG_X86_32
811 # define BASE_PREFETCH		""
812 # define ARCH_HAS_PREFETCH
813 #else
814 # define BASE_PREFETCH		"prefetcht0 %P1"
815 #endif
816 
817 /*
818  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
819  *
820  * It's not worth to care about 3dnow prefetches for the K6
821  * because they are microcoded there and very slow.
822  */
823 static inline void prefetch(const void *x)
824 {
825 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
826 			  X86_FEATURE_XMM,
827 			  "m" (*(const char *)x));
828 }
829 
830 /*
831  * 3dnow prefetch to get an exclusive cache line.
832  * Useful for spinlocks to avoid one state transition in the
833  * cache coherency protocol:
834  */
835 static inline void prefetchw(const void *x)
836 {
837 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
838 			  X86_FEATURE_3DNOWPREFETCH,
839 			  "m" (*(const char *)x));
840 }
841 
842 static inline void spin_lock_prefetch(const void *x)
843 {
844 	prefetchw(x);
845 }
846 
847 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
848 			   TOP_OF_KERNEL_STACK_PADDING)
849 
850 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
851 
852 #define task_pt_regs(task) \
853 ({									\
854 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
855 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
856 	((struct pt_regs *)__ptr) - 1;					\
857 })
858 
859 #ifdef CONFIG_X86_32
860 /*
861  * User space process size: 3GB (default).
862  */
863 #define IA32_PAGE_OFFSET	PAGE_OFFSET
864 #define TASK_SIZE		PAGE_OFFSET
865 #define TASK_SIZE_LOW		TASK_SIZE
866 #define TASK_SIZE_MAX		TASK_SIZE
867 #define DEFAULT_MAP_WINDOW	TASK_SIZE
868 #define STACK_TOP		TASK_SIZE
869 #define STACK_TOP_MAX		STACK_TOP
870 
871 #define INIT_THREAD  {							  \
872 	.sp0			= TOP_OF_INIT_STACK,			  \
873 	.sysenter_cs		= __KERNEL_CS,				  \
874 	.addr_limit		= KERNEL_DS,				  \
875 }
876 
877 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
878 
879 #else
880 /*
881  * User space process size.  This is the first address outside the user range.
882  * There are a few constraints that determine this:
883  *
884  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
885  * address, then that syscall will enter the kernel with a
886  * non-canonical return address, and SYSRET will explode dangerously.
887  * We avoid this particular problem by preventing anything executable
888  * from being mapped at the maximum canonical address.
889  *
890  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
891  * CPUs malfunction if they execute code from the highest canonical page.
892  * They'll speculate right off the end of the canonical space, and
893  * bad things happen.  This is worked around in the same way as the
894  * Intel problem.
895  *
896  * With page table isolation enabled, we map the LDT in ... [stay tuned]
897  */
898 #define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
899 
900 #define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE)
901 
902 /* This decides where the kernel will search for a free chunk of vm
903  * space during mmap's.
904  */
905 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
906 					0xc0000000 : 0xFFFFe000)
907 
908 #define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \
909 					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
910 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
911 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
912 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
913 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
914 
915 #define STACK_TOP		TASK_SIZE_LOW
916 #define STACK_TOP_MAX		TASK_SIZE_MAX
917 
918 #define INIT_THREAD  {						\
919 	.addr_limit		= KERNEL_DS,			\
920 }
921 
922 extern unsigned long KSTK_ESP(struct task_struct *task);
923 
924 #endif /* CONFIG_X86_64 */
925 
926 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
927 					       unsigned long new_sp);
928 
929 /*
930  * This decides where the kernel will search for a free chunk of vm
931  * space during mmap's.
932  */
933 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
934 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
935 
936 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
937 
938 /* Get/set a process' ability to use the timestamp counter instruction */
939 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
940 #define SET_TSC_CTL(val)	set_tsc_mode((val))
941 
942 extern int get_tsc_mode(unsigned long adr);
943 extern int set_tsc_mode(unsigned int val);
944 
945 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
946 
947 /* Register/unregister a process' MPX related resource */
948 #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
949 #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
950 
951 #ifdef CONFIG_X86_INTEL_MPX
952 extern int mpx_enable_management(void);
953 extern int mpx_disable_management(void);
954 #else
955 static inline int mpx_enable_management(void)
956 {
957 	return -EINVAL;
958 }
959 static inline int mpx_disable_management(void)
960 {
961 	return -EINVAL;
962 }
963 #endif /* CONFIG_X86_INTEL_MPX */
964 
965 #ifdef CONFIG_CPU_SUP_AMD
966 extern u16 amd_get_nb_id(int cpu);
967 extern u32 amd_get_nodes_per_socket(void);
968 #else
969 static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
970 static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
971 #endif
972 
973 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
974 {
975 	uint32_t base, eax, signature[3];
976 
977 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
978 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
979 
980 		if (!memcmp(sig, signature, 12) &&
981 		    (leaves == 0 || ((eax - base) >= leaves)))
982 			return base;
983 	}
984 
985 	return 0;
986 }
987 
988 extern unsigned long arch_align_stack(unsigned long sp);
989 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
990 extern void free_kernel_image_pages(const char *what, void *begin, void *end);
991 
992 void default_idle(void);
993 #ifdef	CONFIG_XEN
994 bool xen_set_default_idle(void);
995 #else
996 #define xen_set_default_idle 0
997 #endif
998 
999 void stop_this_cpu(void *dummy);
1000 void df_debug(struct pt_regs *regs, long error_code);
1001 void microcode_check(void);
1002 
1003 enum l1tf_mitigations {
1004 	L1TF_MITIGATION_OFF,
1005 	L1TF_MITIGATION_FLUSH_NOWARN,
1006 	L1TF_MITIGATION_FLUSH,
1007 	L1TF_MITIGATION_FLUSH_NOSMT,
1008 	L1TF_MITIGATION_FULL,
1009 	L1TF_MITIGATION_FULL_FORCE
1010 };
1011 
1012 extern enum l1tf_mitigations l1tf_mitigation;
1013 
1014 enum mds_mitigations {
1015 	MDS_MITIGATION_OFF,
1016 	MDS_MITIGATION_FULL,
1017 	MDS_MITIGATION_VMWERV,
1018 };
1019 
1020 enum taa_mitigations {
1021 	TAA_MITIGATION_OFF,
1022 	TAA_MITIGATION_UCODE_NEEDED,
1023 	TAA_MITIGATION_VERW,
1024 	TAA_MITIGATION_TSX_DISABLED,
1025 };
1026 
1027 #endif /* _ASM_X86_PROCESSOR_H */
1028