xref: /linux/arch/x86/include/asm/pgtable.h (revision f3c11cf5cae044668f888a50abb37b29600ca197)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4 
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8 
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)						\
13 	((boot_cpu_data.x86 > 3)					\
14 	 ? (__pgprot(pgprot_val(prot) |					\
15 		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
16 	 : (prot))
17 
18 #ifndef __ASSEMBLY__
19 #include <linux/spinlock.h>
20 #include <asm/x86_init.h>
21 #include <asm/pkru.h>
22 #include <asm/fpu/api.h>
23 #include <asm/coco.h>
24 #include <asm-generic/pgtable_uffd.h>
25 #include <linux/page_table_check.h>
26 
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29 
30 struct seq_file;
31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
33 				   bool user);
34 bool ptdump_walk_pgd_level_checkwx(void);
35 #define ptdump_check_wx ptdump_walk_pgd_level_checkwx
36 void ptdump_walk_user_pgd_level_checkwx(void);
37 
38 /*
39  * Macros to add or remove encryption attribute
40  */
41 #define pgprot_encrypted(prot)	__pgprot(cc_mkenc(pgprot_val(prot)))
42 #define pgprot_decrypted(prot)	__pgprot(cc_mkdec(pgprot_val(prot)))
43 
44 #ifdef CONFIG_DEBUG_WX
45 #define debug_checkwx_user()	ptdump_walk_user_pgd_level_checkwx()
46 #else
47 #define debug_checkwx_user()	do { } while (0)
48 #endif
49 
50 /*
51  * ZERO_PAGE is a global shared page that is always zero: used
52  * for zero-mapped memory areas etc..
53  */
54 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
55 	__visible;
56 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
57 
58 extern spinlock_t pgd_lock;
59 extern struct list_head pgd_list;
60 
61 extern struct mm_struct *pgd_page_get_mm(struct page *page);
62 
63 extern pmdval_t early_pmd_flags;
64 
65 #ifdef CONFIG_PARAVIRT_XXL
66 #include <asm/paravirt.h>
67 #else  /* !CONFIG_PARAVIRT_XXL */
68 #define set_pte(ptep, pte)		native_set_pte(ptep, pte)
69 
70 #define set_pte_atomic(ptep, pte)					\
71 	native_set_pte_atomic(ptep, pte)
72 
73 #define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
74 
75 #ifndef __PAGETABLE_P4D_FOLDED
76 #define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
77 #define pgd_clear(pgd)			(pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
78 #endif
79 
80 #ifndef set_p4d
81 # define set_p4d(p4dp, p4d)		native_set_p4d(p4dp, p4d)
82 #endif
83 
84 #ifndef __PAGETABLE_PUD_FOLDED
85 #define p4d_clear(p4d)			native_p4d_clear(p4d)
86 #endif
87 
88 #ifndef set_pud
89 # define set_pud(pudp, pud)		native_set_pud(pudp, pud)
90 #endif
91 
92 #ifndef __PAGETABLE_PUD_FOLDED
93 #define pud_clear(pud)			native_pud_clear(pud)
94 #endif
95 
96 #define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
97 #define pmd_clear(pmd)			native_pmd_clear(pmd)
98 
99 #define pgd_val(x)	native_pgd_val(x)
100 #define __pgd(x)	native_make_pgd(x)
101 
102 #ifndef __PAGETABLE_P4D_FOLDED
103 #define p4d_val(x)	native_p4d_val(x)
104 #define __p4d(x)	native_make_p4d(x)
105 #endif
106 
107 #ifndef __PAGETABLE_PUD_FOLDED
108 #define pud_val(x)	native_pud_val(x)
109 #define __pud(x)	native_make_pud(x)
110 #endif
111 
112 #ifndef __PAGETABLE_PMD_FOLDED
113 #define pmd_val(x)	native_pmd_val(x)
114 #define __pmd(x)	native_make_pmd(x)
115 #endif
116 
117 #define pte_val(x)	native_pte_val(x)
118 #define __pte(x)	native_make_pte(x)
119 
120 #define arch_end_context_switch(prev)	do {} while(0)
121 #endif	/* CONFIG_PARAVIRT_XXL */
122 
123 /*
124  * The following only work if pte_present() is true.
125  * Undefined behaviour if not..
126  */
127 static inline bool pte_dirty(pte_t pte)
128 {
129 	return pte_flags(pte) & _PAGE_DIRTY_BITS;
130 }
131 
132 static inline bool pte_shstk(pte_t pte)
133 {
134 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
135 	       (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
136 }
137 
138 static inline int pte_young(pte_t pte)
139 {
140 	return pte_flags(pte) & _PAGE_ACCESSED;
141 }
142 
143 static inline bool pte_decrypted(pte_t pte)
144 {
145 	return cc_mkdec(pte_val(pte)) == pte_val(pte);
146 }
147 
148 #define pmd_dirty pmd_dirty
149 static inline bool pmd_dirty(pmd_t pmd)
150 {
151 	return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
152 }
153 
154 static inline bool pmd_shstk(pmd_t pmd)
155 {
156 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
157 	       (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
158 	       (_PAGE_DIRTY | _PAGE_PSE);
159 }
160 
161 #define pmd_young pmd_young
162 static inline int pmd_young(pmd_t pmd)
163 {
164 	return pmd_flags(pmd) & _PAGE_ACCESSED;
165 }
166 
167 static inline bool pud_dirty(pud_t pud)
168 {
169 	return pud_flags(pud) & _PAGE_DIRTY_BITS;
170 }
171 
172 static inline int pud_young(pud_t pud)
173 {
174 	return pud_flags(pud) & _PAGE_ACCESSED;
175 }
176 
177 static inline bool pud_shstk(pud_t pud)
178 {
179 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
180 	       (pud_flags(pud) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
181 	       (_PAGE_DIRTY | _PAGE_PSE);
182 }
183 
184 static inline int pte_write(pte_t pte)
185 {
186 	/*
187 	 * Shadow stack pages are logically writable, but do not have
188 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
189 	 */
190 	return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
191 }
192 
193 #define pmd_write pmd_write
194 static inline int pmd_write(pmd_t pmd)
195 {
196 	/*
197 	 * Shadow stack pages are logically writable, but do not have
198 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
199 	 */
200 	return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
201 }
202 
203 #define pud_write pud_write
204 static inline int pud_write(pud_t pud)
205 {
206 	return pud_flags(pud) & _PAGE_RW;
207 }
208 
209 static inline int pte_huge(pte_t pte)
210 {
211 	return pte_flags(pte) & _PAGE_PSE;
212 }
213 
214 static inline int pte_global(pte_t pte)
215 {
216 	return pte_flags(pte) & _PAGE_GLOBAL;
217 }
218 
219 static inline int pte_exec(pte_t pte)
220 {
221 	return !(pte_flags(pte) & _PAGE_NX);
222 }
223 
224 static inline int pte_special(pte_t pte)
225 {
226 	return pte_flags(pte) & _PAGE_SPECIAL;
227 }
228 
229 /* Entries that were set to PROT_NONE are inverted */
230 
231 static inline u64 protnone_mask(u64 val);
232 
233 #define PFN_PTE_SHIFT	PAGE_SHIFT
234 
235 static inline unsigned long pte_pfn(pte_t pte)
236 {
237 	phys_addr_t pfn = pte_val(pte);
238 	pfn ^= protnone_mask(pfn);
239 	return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
240 }
241 
242 static inline unsigned long pmd_pfn(pmd_t pmd)
243 {
244 	phys_addr_t pfn = pmd_val(pmd);
245 	pfn ^= protnone_mask(pfn);
246 	return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
247 }
248 
249 #define pud_pfn pud_pfn
250 static inline unsigned long pud_pfn(pud_t pud)
251 {
252 	phys_addr_t pfn = pud_val(pud);
253 	pfn ^= protnone_mask(pfn);
254 	return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
255 }
256 
257 static inline unsigned long p4d_pfn(p4d_t p4d)
258 {
259 	return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
260 }
261 
262 static inline unsigned long pgd_pfn(pgd_t pgd)
263 {
264 	return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
265 }
266 
267 #define p4d_leaf p4d_leaf
268 static inline bool p4d_leaf(p4d_t p4d)
269 {
270 	/* No 512 GiB pages yet */
271 	return 0;
272 }
273 
274 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
275 
276 #define pmd_leaf pmd_leaf
277 static inline bool pmd_leaf(pmd_t pte)
278 {
279 	return pmd_flags(pte) & _PAGE_PSE;
280 }
281 
282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
283 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_leaf */
284 static inline int pmd_trans_huge(pmd_t pmd)
285 {
286 	return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
287 }
288 
289 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
290 static inline int pud_trans_huge(pud_t pud)
291 {
292 	return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
293 }
294 #endif
295 
296 #define has_transparent_hugepage has_transparent_hugepage
297 static inline int has_transparent_hugepage(void)
298 {
299 	return boot_cpu_has(X86_FEATURE_PSE);
300 }
301 
302 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
303 static inline int pmd_devmap(pmd_t pmd)
304 {
305 	return !!(pmd_val(pmd) & _PAGE_DEVMAP);
306 }
307 
308 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
309 static inline int pud_devmap(pud_t pud)
310 {
311 	return !!(pud_val(pud) & _PAGE_DEVMAP);
312 }
313 #else
314 static inline int pud_devmap(pud_t pud)
315 {
316 	return 0;
317 }
318 #endif
319 
320 static inline int pgd_devmap(pgd_t pgd)
321 {
322 	return 0;
323 }
324 #endif
325 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
326 
327 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
328 {
329 	pteval_t v = native_pte_val(pte);
330 
331 	return native_make_pte(v | set);
332 }
333 
334 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
335 {
336 	pteval_t v = native_pte_val(pte);
337 
338 	return native_make_pte(v & ~clear);
339 }
340 
341 /*
342  * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
343  * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
344  * when creating dirty, write-protected memory, a software bit is used:
345  * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
346  * Dirty bit to SavedDirty, and vice-vesra.
347  *
348  * This shifting is only done if needed. In the case of shifting
349  * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
350  * shifting SavedDirty->Dirty, the condition is Write=1.
351  */
352 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
353 {
354 	pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
355 
356 	v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
357 	v &= ~(cond << _PAGE_BIT_DIRTY);
358 
359 	return v;
360 }
361 
362 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
363 {
364 	pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
365 
366 	v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
367 	v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
368 
369 	return v;
370 }
371 
372 static inline pte_t pte_mksaveddirty(pte_t pte)
373 {
374 	pteval_t v = native_pte_val(pte);
375 
376 	v = mksaveddirty_shift(v);
377 	return native_make_pte(v);
378 }
379 
380 static inline pte_t pte_clear_saveddirty(pte_t pte)
381 {
382 	pteval_t v = native_pte_val(pte);
383 
384 	v = clear_saveddirty_shift(v);
385 	return native_make_pte(v);
386 }
387 
388 static inline pte_t pte_wrprotect(pte_t pte)
389 {
390 	pte = pte_clear_flags(pte, _PAGE_RW);
391 
392 	/*
393 	 * Blindly clearing _PAGE_RW might accidentally create
394 	 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware
395 	 * dirty value to the software bit, if present.
396 	 */
397 	return pte_mksaveddirty(pte);
398 }
399 
400 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
401 static inline int pte_uffd_wp(pte_t pte)
402 {
403 	return pte_flags(pte) & _PAGE_UFFD_WP;
404 }
405 
406 static inline pte_t pte_mkuffd_wp(pte_t pte)
407 {
408 	return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
409 }
410 
411 static inline pte_t pte_clear_uffd_wp(pte_t pte)
412 {
413 	return pte_clear_flags(pte, _PAGE_UFFD_WP);
414 }
415 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
416 
417 static inline pte_t pte_mkclean(pte_t pte)
418 {
419 	return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
420 }
421 
422 static inline pte_t pte_mkold(pte_t pte)
423 {
424 	return pte_clear_flags(pte, _PAGE_ACCESSED);
425 }
426 
427 static inline pte_t pte_mkexec(pte_t pte)
428 {
429 	return pte_clear_flags(pte, _PAGE_NX);
430 }
431 
432 static inline pte_t pte_mkdirty(pte_t pte)
433 {
434 	pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
435 
436 	return pte_mksaveddirty(pte);
437 }
438 
439 static inline pte_t pte_mkwrite_shstk(pte_t pte)
440 {
441 	pte = pte_clear_flags(pte, _PAGE_RW);
442 
443 	return pte_set_flags(pte, _PAGE_DIRTY);
444 }
445 
446 static inline pte_t pte_mkyoung(pte_t pte)
447 {
448 	return pte_set_flags(pte, _PAGE_ACCESSED);
449 }
450 
451 static inline pte_t pte_mkwrite_novma(pte_t pte)
452 {
453 	return pte_set_flags(pte, _PAGE_RW);
454 }
455 
456 struct vm_area_struct;
457 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
458 #define pte_mkwrite pte_mkwrite
459 
460 static inline pte_t pte_mkhuge(pte_t pte)
461 {
462 	return pte_set_flags(pte, _PAGE_PSE);
463 }
464 
465 static inline pte_t pte_clrhuge(pte_t pte)
466 {
467 	return pte_clear_flags(pte, _PAGE_PSE);
468 }
469 
470 static inline pte_t pte_mkglobal(pte_t pte)
471 {
472 	return pte_set_flags(pte, _PAGE_GLOBAL);
473 }
474 
475 static inline pte_t pte_clrglobal(pte_t pte)
476 {
477 	return pte_clear_flags(pte, _PAGE_GLOBAL);
478 }
479 
480 static inline pte_t pte_mkspecial(pte_t pte)
481 {
482 	return pte_set_flags(pte, _PAGE_SPECIAL);
483 }
484 
485 static inline pte_t pte_mkdevmap(pte_t pte)
486 {
487 	return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
488 }
489 
490 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
491 {
492 	pmdval_t v = native_pmd_val(pmd);
493 
494 	return native_make_pmd(v | set);
495 }
496 
497 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
498 {
499 	pmdval_t v = native_pmd_val(pmd);
500 
501 	return native_make_pmd(v & ~clear);
502 }
503 
504 /* See comments above mksaveddirty_shift() */
505 static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
506 {
507 	pmdval_t v = native_pmd_val(pmd);
508 
509 	v = mksaveddirty_shift(v);
510 	return native_make_pmd(v);
511 }
512 
513 /* See comments above mksaveddirty_shift() */
514 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
515 {
516 	pmdval_t v = native_pmd_val(pmd);
517 
518 	v = clear_saveddirty_shift(v);
519 	return native_make_pmd(v);
520 }
521 
522 static inline pmd_t pmd_wrprotect(pmd_t pmd)
523 {
524 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
525 
526 	/*
527 	 * Blindly clearing _PAGE_RW might accidentally create
528 	 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware
529 	 * dirty value to the software bit.
530 	 */
531 	return pmd_mksaveddirty(pmd);
532 }
533 
534 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
535 static inline int pmd_uffd_wp(pmd_t pmd)
536 {
537 	return pmd_flags(pmd) & _PAGE_UFFD_WP;
538 }
539 
540 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
541 {
542 	return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
543 }
544 
545 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
546 {
547 	return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
548 }
549 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
550 
551 static inline pmd_t pmd_mkold(pmd_t pmd)
552 {
553 	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
554 }
555 
556 static inline pmd_t pmd_mkclean(pmd_t pmd)
557 {
558 	return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
559 }
560 
561 static inline pmd_t pmd_mkdirty(pmd_t pmd)
562 {
563 	pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
564 
565 	return pmd_mksaveddirty(pmd);
566 }
567 
568 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
569 {
570 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
571 
572 	return pmd_set_flags(pmd, _PAGE_DIRTY);
573 }
574 
575 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
576 {
577 	return pmd_set_flags(pmd, _PAGE_DEVMAP);
578 }
579 
580 static inline pmd_t pmd_mkhuge(pmd_t pmd)
581 {
582 	return pmd_set_flags(pmd, _PAGE_PSE);
583 }
584 
585 static inline pmd_t pmd_mkyoung(pmd_t pmd)
586 {
587 	return pmd_set_flags(pmd, _PAGE_ACCESSED);
588 }
589 
590 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
591 {
592 	return pmd_set_flags(pmd, _PAGE_RW);
593 }
594 
595 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
596 #define pmd_mkwrite pmd_mkwrite
597 
598 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
599 {
600 	pudval_t v = native_pud_val(pud);
601 
602 	return native_make_pud(v | set);
603 }
604 
605 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
606 {
607 	pudval_t v = native_pud_val(pud);
608 
609 	return native_make_pud(v & ~clear);
610 }
611 
612 /* See comments above mksaveddirty_shift() */
613 static inline pud_t pud_mksaveddirty(pud_t pud)
614 {
615 	pudval_t v = native_pud_val(pud);
616 
617 	v = mksaveddirty_shift(v);
618 	return native_make_pud(v);
619 }
620 
621 /* See comments above mksaveddirty_shift() */
622 static inline pud_t pud_clear_saveddirty(pud_t pud)
623 {
624 	pudval_t v = native_pud_val(pud);
625 
626 	v = clear_saveddirty_shift(v);
627 	return native_make_pud(v);
628 }
629 
630 static inline pud_t pud_mkold(pud_t pud)
631 {
632 	return pud_clear_flags(pud, _PAGE_ACCESSED);
633 }
634 
635 static inline pud_t pud_mkclean(pud_t pud)
636 {
637 	return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
638 }
639 
640 static inline pud_t pud_wrprotect(pud_t pud)
641 {
642 	pud = pud_clear_flags(pud, _PAGE_RW);
643 
644 	/*
645 	 * Blindly clearing _PAGE_RW might accidentally create
646 	 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware
647 	 * dirty value to the software bit.
648 	 */
649 	return pud_mksaveddirty(pud);
650 }
651 
652 static inline pud_t pud_mkdirty(pud_t pud)
653 {
654 	pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
655 
656 	return pud_mksaveddirty(pud);
657 }
658 
659 static inline pud_t pud_mkdevmap(pud_t pud)
660 {
661 	return pud_set_flags(pud, _PAGE_DEVMAP);
662 }
663 
664 static inline pud_t pud_mkhuge(pud_t pud)
665 {
666 	return pud_set_flags(pud, _PAGE_PSE);
667 }
668 
669 static inline pud_t pud_mkyoung(pud_t pud)
670 {
671 	return pud_set_flags(pud, _PAGE_ACCESSED);
672 }
673 
674 static inline pud_t pud_mkwrite(pud_t pud)
675 {
676 	pud = pud_set_flags(pud, _PAGE_RW);
677 
678 	return pud_clear_saveddirty(pud);
679 }
680 
681 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
682 static inline int pte_soft_dirty(pte_t pte)
683 {
684 	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
685 }
686 
687 static inline int pmd_soft_dirty(pmd_t pmd)
688 {
689 	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
690 }
691 
692 static inline int pud_soft_dirty(pud_t pud)
693 {
694 	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
695 }
696 
697 static inline pte_t pte_mksoft_dirty(pte_t pte)
698 {
699 	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
700 }
701 
702 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
703 {
704 	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
705 }
706 
707 static inline pud_t pud_mksoft_dirty(pud_t pud)
708 {
709 	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
710 }
711 
712 static inline pte_t pte_clear_soft_dirty(pte_t pte)
713 {
714 	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
715 }
716 
717 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
718 {
719 	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
720 }
721 
722 static inline pud_t pud_clear_soft_dirty(pud_t pud)
723 {
724 	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
725 }
726 
727 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
728 
729 /*
730  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
731  * can use those bits for other purposes, so leave them be.
732  */
733 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
734 {
735 	pgprotval_t protval = pgprot_val(pgprot);
736 
737 	if (protval & _PAGE_PRESENT)
738 		protval &= __supported_pte_mask;
739 
740 	return protval;
741 }
742 
743 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
744 {
745 	pgprotval_t massaged_val = massage_pgprot(pgprot);
746 
747 	/* mmdebug.h can not be included here because of dependencies */
748 #ifdef CONFIG_DEBUG_VM
749 	WARN_ONCE(pgprot_val(pgprot) != massaged_val,
750 		  "attempted to set unsupported pgprot: %016llx "
751 		  "bits: %016llx supported: %016llx\n",
752 		  (u64)pgprot_val(pgprot),
753 		  (u64)pgprot_val(pgprot) ^ massaged_val,
754 		  (u64)__supported_pte_mask);
755 #endif
756 
757 	return massaged_val;
758 }
759 
760 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
761 {
762 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
763 	pfn ^= protnone_mask(pgprot_val(pgprot));
764 	pfn &= PTE_PFN_MASK;
765 	return __pte(pfn | check_pgprot(pgprot));
766 }
767 
768 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
769 {
770 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
771 	pfn ^= protnone_mask(pgprot_val(pgprot));
772 	pfn &= PHYSICAL_PMD_PAGE_MASK;
773 	return __pmd(pfn | check_pgprot(pgprot));
774 }
775 
776 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
777 {
778 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
779 	pfn ^= protnone_mask(pgprot_val(pgprot));
780 	pfn &= PHYSICAL_PUD_PAGE_MASK;
781 	return __pud(pfn | check_pgprot(pgprot));
782 }
783 
784 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
785 {
786 	return pfn_pmd(pmd_pfn(pmd),
787 		      __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
788 }
789 
790 static inline pud_t pud_mkinvalid(pud_t pud)
791 {
792 	return pfn_pud(pud_pfn(pud),
793 		       __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
794 }
795 
796 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
797 
798 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
799 {
800 	pteval_t val = pte_val(pte), oldval = val;
801 	pte_t pte_result;
802 
803 	/*
804 	 * Chop off the NX bit (if present), and add the NX portion of
805 	 * the newprot (if present):
806 	 */
807 	val &= _PAGE_CHG_MASK;
808 	val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
809 	val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
810 
811 	pte_result = __pte(val);
812 
813 	/*
814 	 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
815 	 *  1. Marking Write=0 PTEs Dirty=1
816 	 *  2. Marking Dirty=1 PTEs Write=0
817 	 *
818 	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
819 	 * out any Dirty bit passed in newprot. Handle the second case by
820 	 * going through the mksaveddirty exercise. Only do this if the old
821 	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
822 	 */
823 	if (oldval & _PAGE_RW)
824 		pte_result = pte_mksaveddirty(pte_result);
825 	else
826 		pte_result = pte_clear_saveddirty(pte_result);
827 
828 	return pte_result;
829 }
830 
831 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
832 {
833 	pmdval_t val = pmd_val(pmd), oldval = val;
834 	pmd_t pmd_result;
835 
836 	val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
837 	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
838 	val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
839 
840 	pmd_result = __pmd(val);
841 
842 	/*
843 	 * Avoid creating shadow stack PMD by accident.  See comment in
844 	 * pte_modify().
845 	 */
846 	if (oldval & _PAGE_RW)
847 		pmd_result = pmd_mksaveddirty(pmd_result);
848 	else
849 		pmd_result = pmd_clear_saveddirty(pmd_result);
850 
851 	return pmd_result;
852 }
853 
854 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
855 {
856 	pudval_t val = pud_val(pud), oldval = val;
857 	pud_t pud_result;
858 
859 	val &= _HPAGE_CHG_MASK;
860 	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
861 	val = flip_protnone_guard(oldval, val, PHYSICAL_PUD_PAGE_MASK);
862 
863 	pud_result = __pud(val);
864 
865 	/*
866 	 * Avoid creating shadow stack PUD by accident.  See comment in
867 	 * pte_modify().
868 	 */
869 	if (oldval & _PAGE_RW)
870 		pud_result = pud_mksaveddirty(pud_result);
871 	else
872 		pud_result = pud_clear_saveddirty(pud_result);
873 
874 	return pud_result;
875 }
876 
877 /*
878  * mprotect needs to preserve PAT and encryption bits when updating
879  * vm_page_prot
880  */
881 #define pgprot_modify pgprot_modify
882 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
883 {
884 	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
885 	pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
886 	return __pgprot(preservebits | addbits);
887 }
888 
889 #define pte_pgprot(x) __pgprot(pte_flags(x))
890 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
891 #define pud_pgprot(x) __pgprot(pud_flags(x))
892 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
893 
894 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
895 
896 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
897 					 enum page_cache_mode pcm,
898 					 enum page_cache_mode new_pcm)
899 {
900 	/*
901 	 * PAT type is always WB for untracked ranges, so no need to check.
902 	 */
903 	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
904 		return 1;
905 
906 	/*
907 	 * Certain new memtypes are not allowed with certain
908 	 * requested memtype:
909 	 * - request is uncached, return cannot be write-back
910 	 * - request is write-combine, return cannot be write-back
911 	 * - request is write-through, return cannot be write-back
912 	 * - request is write-through, return cannot be write-combine
913 	 */
914 	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
915 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
916 	    (pcm == _PAGE_CACHE_MODE_WC &&
917 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
918 	    (pcm == _PAGE_CACHE_MODE_WT &&
919 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
920 	    (pcm == _PAGE_CACHE_MODE_WT &&
921 	     new_pcm == _PAGE_CACHE_MODE_WC)) {
922 		return 0;
923 	}
924 
925 	return 1;
926 }
927 
928 pmd_t *populate_extra_pmd(unsigned long vaddr);
929 pte_t *populate_extra_pte(unsigned long vaddr);
930 
931 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
932 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
933 
934 /*
935  * Take a PGD location (pgdp) and a pgd value that needs to be set there.
936  * Populates the user and returns the resulting PGD that must be set in
937  * the kernel copy of the page tables.
938  */
939 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
940 {
941 	if (!static_cpu_has(X86_FEATURE_PTI))
942 		return pgd;
943 	return __pti_set_user_pgtbl(pgdp, pgd);
944 }
945 #else   /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
946 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
947 {
948 	return pgd;
949 }
950 #endif  /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
951 
952 #endif	/* __ASSEMBLY__ */
953 
954 
955 #ifdef CONFIG_X86_32
956 # include <asm/pgtable_32.h>
957 #else
958 # include <asm/pgtable_64.h>
959 #endif
960 
961 #ifndef __ASSEMBLY__
962 #include <linux/mm_types.h>
963 #include <linux/mmdebug.h>
964 #include <linux/log2.h>
965 #include <asm/fixmap.h>
966 
967 static inline int pte_none(pte_t pte)
968 {
969 	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
970 }
971 
972 #define __HAVE_ARCH_PTE_SAME
973 static inline int pte_same(pte_t a, pte_t b)
974 {
975 	return a.pte == b.pte;
976 }
977 
978 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
979 {
980 	if (__pte_needs_invert(pte_val(pte)))
981 		return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT));
982 	return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
983 }
984 #define pte_advance_pfn	pte_advance_pfn
985 
986 static inline int pte_present(pte_t a)
987 {
988 	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
989 }
990 
991 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
992 static inline int pte_devmap(pte_t a)
993 {
994 	return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
995 }
996 #endif
997 
998 #define pte_accessible pte_accessible
999 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
1000 {
1001 	if (pte_flags(a) & _PAGE_PRESENT)
1002 		return true;
1003 
1004 	if ((pte_flags(a) & _PAGE_PROTNONE) &&
1005 			atomic_read(&mm->tlb_flush_pending))
1006 		return true;
1007 
1008 	return false;
1009 }
1010 
1011 static inline int pmd_present(pmd_t pmd)
1012 {
1013 	/*
1014 	 * Checking for _PAGE_PSE is needed too because
1015 	 * split_huge_page will temporarily clear the present bit (but
1016 	 * the _PAGE_PSE flag will remain set at all times while the
1017 	 * _PAGE_PRESENT bit is clear).
1018 	 */
1019 	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
1020 }
1021 
1022 #ifdef CONFIG_NUMA_BALANCING
1023 /*
1024  * These work without NUMA balancing but the kernel does not care. See the
1025  * comment in include/linux/pgtable.h
1026  */
1027 static inline int pte_protnone(pte_t pte)
1028 {
1029 	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1030 		== _PAGE_PROTNONE;
1031 }
1032 
1033 static inline int pmd_protnone(pmd_t pmd)
1034 {
1035 	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1036 		== _PAGE_PROTNONE;
1037 }
1038 #endif /* CONFIG_NUMA_BALANCING */
1039 
1040 static inline int pmd_none(pmd_t pmd)
1041 {
1042 	/* Only check low word on 32-bit platforms, since it might be
1043 	   out of sync with upper half. */
1044 	unsigned long val = native_pmd_val(pmd);
1045 	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
1046 }
1047 
1048 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1049 {
1050 	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
1051 }
1052 
1053 /*
1054  * Currently stuck as a macro due to indirect forward reference to
1055  * linux/mmzone.h's __section_mem_map_addr() definition:
1056  */
1057 #define pmd_page(pmd)	pfn_to_page(pmd_pfn(pmd))
1058 
1059 /*
1060  * Conversion functions: convert a page and protection to a page entry,
1061  * and a page entry and page directory to the page they refer to.
1062  *
1063  * (Currently stuck as a macro because of indirect forward reference
1064  * to linux/mm.h:page_to_nid())
1065  */
1066 #define mk_pte(page, pgprot)						  \
1067 ({									  \
1068 	pgprot_t __pgprot = pgprot;					  \
1069 									  \
1070 	WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \
1071 		    _PAGE_DIRTY);					  \
1072 	pfn_pte(page_to_pfn(page), __pgprot);				  \
1073 })
1074 
1075 static inline int pmd_bad(pmd_t pmd)
1076 {
1077 	return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
1078 	       (_KERNPG_TABLE & ~_PAGE_ACCESSED);
1079 }
1080 
1081 static inline unsigned long pages_to_mb(unsigned long npg)
1082 {
1083 	return npg >> (20 - PAGE_SHIFT);
1084 }
1085 
1086 #if CONFIG_PGTABLE_LEVELS > 2
1087 static inline int pud_none(pud_t pud)
1088 {
1089 	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1090 }
1091 
1092 static inline int pud_present(pud_t pud)
1093 {
1094 	return pud_flags(pud) & _PAGE_PRESENT;
1095 }
1096 
1097 static inline pmd_t *pud_pgtable(pud_t pud)
1098 {
1099 	return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
1100 }
1101 
1102 /*
1103  * Currently stuck as a macro due to indirect forward reference to
1104  * linux/mmzone.h's __section_mem_map_addr() definition:
1105  */
1106 #define pud_page(pud)	pfn_to_page(pud_pfn(pud))
1107 
1108 #define pud_leaf pud_leaf
1109 static inline bool pud_leaf(pud_t pud)
1110 {
1111 	return pud_val(pud) & _PAGE_PSE;
1112 }
1113 
1114 static inline int pud_bad(pud_t pud)
1115 {
1116 	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
1117 }
1118 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
1119 
1120 #if CONFIG_PGTABLE_LEVELS > 3
1121 static inline int p4d_none(p4d_t p4d)
1122 {
1123 	return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1124 }
1125 
1126 static inline int p4d_present(p4d_t p4d)
1127 {
1128 	return p4d_flags(p4d) & _PAGE_PRESENT;
1129 }
1130 
1131 static inline pud_t *p4d_pgtable(p4d_t p4d)
1132 {
1133 	return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
1134 }
1135 
1136 /*
1137  * Currently stuck as a macro due to indirect forward reference to
1138  * linux/mmzone.h's __section_mem_map_addr() definition:
1139  */
1140 #define p4d_page(p4d)	pfn_to_page(p4d_pfn(p4d))
1141 
1142 static inline int p4d_bad(p4d_t p4d)
1143 {
1144 	unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
1145 
1146 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1147 		ignore_flags |= _PAGE_NX;
1148 
1149 	return (p4d_flags(p4d) & ~ignore_flags) != 0;
1150 }
1151 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1152 
1153 static inline unsigned long p4d_index(unsigned long address)
1154 {
1155 	return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
1156 }
1157 
1158 #if CONFIG_PGTABLE_LEVELS > 4
1159 static inline int pgd_present(pgd_t pgd)
1160 {
1161 	if (!pgtable_l5_enabled())
1162 		return 1;
1163 	return pgd_flags(pgd) & _PAGE_PRESENT;
1164 }
1165 
1166 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
1167 {
1168 	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
1169 }
1170 
1171 /*
1172  * Currently stuck as a macro due to indirect forward reference to
1173  * linux/mmzone.h's __section_mem_map_addr() definition:
1174  */
1175 #define pgd_page(pgd)	pfn_to_page(pgd_pfn(pgd))
1176 
1177 /* to find an entry in a page-table-directory. */
1178 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1179 {
1180 	if (!pgtable_l5_enabled())
1181 		return (p4d_t *)pgd;
1182 	return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
1183 }
1184 
1185 static inline int pgd_bad(pgd_t pgd)
1186 {
1187 	unsigned long ignore_flags = _PAGE_USER;
1188 
1189 	if (!pgtable_l5_enabled())
1190 		return 0;
1191 
1192 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1193 		ignore_flags |= _PAGE_NX;
1194 
1195 	return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
1196 }
1197 
1198 static inline int pgd_none(pgd_t pgd)
1199 {
1200 	if (!pgtable_l5_enabled())
1201 		return 0;
1202 	/*
1203 	 * There is no need to do a workaround for the KNL stray
1204 	 * A/D bit erratum here.  PGDs only point to page tables
1205 	 * except on 32-bit non-PAE which is not supported on
1206 	 * KNL.
1207 	 */
1208 	return !native_pgd_val(pgd);
1209 }
1210 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
1211 
1212 #endif	/* __ASSEMBLY__ */
1213 
1214 #define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
1215 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1216 
1217 #ifndef __ASSEMBLY__
1218 
1219 extern int direct_gbpages;
1220 void init_mem_mapping(void);
1221 void early_alloc_pgt_buf(void);
1222 void __init poking_init(void);
1223 unsigned long init_memory_mapping(unsigned long start,
1224 				  unsigned long end, pgprot_t prot);
1225 
1226 #ifdef CONFIG_X86_64
1227 extern pgd_t trampoline_pgd_entry;
1228 #endif
1229 
1230 /* local pte updates need not use xchg for locking */
1231 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1232 {
1233 	pte_t res = *ptep;
1234 
1235 	/* Pure native function needs no input for mm, addr */
1236 	native_pte_clear(NULL, 0, ptep);
1237 	return res;
1238 }
1239 
1240 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1241 {
1242 	pmd_t res = *pmdp;
1243 
1244 	native_pmd_clear(pmdp);
1245 	return res;
1246 }
1247 
1248 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1249 {
1250 	pud_t res = *pudp;
1251 
1252 	native_pud_clear(pudp);
1253 	return res;
1254 }
1255 
1256 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1257 			      pmd_t *pmdp, pmd_t pmd)
1258 {
1259 	page_table_check_pmd_set(mm, pmdp, pmd);
1260 	set_pmd(pmdp, pmd);
1261 }
1262 
1263 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1264 			      pud_t *pudp, pud_t pud)
1265 {
1266 	page_table_check_pud_set(mm, pudp, pud);
1267 	native_set_pud(pudp, pud);
1268 }
1269 
1270 /*
1271  * We only update the dirty/accessed state if we set
1272  * the dirty bit by hand in the kernel, since the hardware
1273  * will do the accessed bit for us, and we don't want to
1274  * race with other CPU's that might be updating the dirty
1275  * bit at the same time.
1276  */
1277 struct vm_area_struct;
1278 
1279 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1280 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1281 				 unsigned long address, pte_t *ptep,
1282 				 pte_t entry, int dirty);
1283 
1284 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1285 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1286 				     unsigned long addr, pte_t *ptep);
1287 
1288 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1289 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1290 				  unsigned long address, pte_t *ptep);
1291 
1292 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1293 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1294 				       pte_t *ptep)
1295 {
1296 	pte_t pte = native_ptep_get_and_clear(ptep);
1297 	page_table_check_pte_clear(mm, pte);
1298 	return pte;
1299 }
1300 
1301 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1302 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1303 					    unsigned long addr, pte_t *ptep,
1304 					    int full)
1305 {
1306 	pte_t pte;
1307 	if (full) {
1308 		/*
1309 		 * Full address destruction in progress; paravirt does not
1310 		 * care about updates and native needs no locking
1311 		 */
1312 		pte = native_local_ptep_get_and_clear(ptep);
1313 		page_table_check_pte_clear(mm, pte);
1314 	} else {
1315 		pte = ptep_get_and_clear(mm, addr, ptep);
1316 	}
1317 	return pte;
1318 }
1319 
1320 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1321 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1322 				      unsigned long addr, pte_t *ptep)
1323 {
1324 	/*
1325 	 * Avoid accidentally creating shadow stack PTEs
1326 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1327 	 * the hardware setting Dirty=1.
1328 	 */
1329 	pte_t old_pte, new_pte;
1330 
1331 	old_pte = READ_ONCE(*ptep);
1332 	do {
1333 		new_pte = pte_wrprotect(old_pte);
1334 	} while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
1335 }
1336 
1337 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
1338 
1339 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
1340 
1341 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1342 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1343 				 unsigned long address, pmd_t *pmdp,
1344 				 pmd_t entry, int dirty);
1345 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1346 				 unsigned long address, pud_t *pudp,
1347 				 pud_t entry, int dirty);
1348 
1349 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1350 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1351 				     unsigned long addr, pmd_t *pmdp);
1352 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1353 				     unsigned long addr, pud_t *pudp);
1354 
1355 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1356 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1357 				  unsigned long address, pmd_t *pmdp);
1358 
1359 
1360 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1361 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1362 				       pmd_t *pmdp)
1363 {
1364 	pmd_t pmd = native_pmdp_get_and_clear(pmdp);
1365 
1366 	page_table_check_pmd_clear(mm, pmd);
1367 
1368 	return pmd;
1369 }
1370 
1371 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1372 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1373 					unsigned long addr, pud_t *pudp)
1374 {
1375 	pud_t pud = native_pudp_get_and_clear(pudp);
1376 
1377 	page_table_check_pud_clear(mm, pud);
1378 
1379 	return pud;
1380 }
1381 
1382 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1383 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1384 				      unsigned long addr, pmd_t *pmdp)
1385 {
1386 	/*
1387 	 * Avoid accidentally creating shadow stack PTEs
1388 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1389 	 * the hardware setting Dirty=1.
1390 	 */
1391 	pmd_t old_pmd, new_pmd;
1392 
1393 	old_pmd = READ_ONCE(*pmdp);
1394 	do {
1395 		new_pmd = pmd_wrprotect(old_pmd);
1396 	} while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
1397 }
1398 
1399 #ifndef pmdp_establish
1400 #define pmdp_establish pmdp_establish
1401 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1402 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1403 {
1404 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1405 	if (IS_ENABLED(CONFIG_SMP)) {
1406 		return xchg(pmdp, pmd);
1407 	} else {
1408 		pmd_t old = *pmdp;
1409 		WRITE_ONCE(*pmdp, pmd);
1410 		return old;
1411 	}
1412 }
1413 #endif
1414 
1415 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1416 static inline pud_t pudp_establish(struct vm_area_struct *vma,
1417 		unsigned long address, pud_t *pudp, pud_t pud)
1418 {
1419 	page_table_check_pud_set(vma->vm_mm, pudp, pud);
1420 	if (IS_ENABLED(CONFIG_SMP)) {
1421 		return xchg(pudp, pud);
1422 	} else {
1423 		pud_t old = *pudp;
1424 		WRITE_ONCE(*pudp, pud);
1425 		return old;
1426 	}
1427 }
1428 #endif
1429 
1430 #define __HAVE_ARCH_PMDP_INVALIDATE_AD
1431 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1432 				unsigned long address, pmd_t *pmdp);
1433 
1434 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1435 		      pud_t *pudp);
1436 
1437 /*
1438  * Page table pages are page-aligned.  The lower half of the top
1439  * level is used for userspace and the top half for the kernel.
1440  *
1441  * Returns true for parts of the PGD that map userspace and
1442  * false for the parts that map the kernel.
1443  */
1444 static inline bool pgdp_maps_userspace(void *__ptr)
1445 {
1446 	unsigned long ptr = (unsigned long)__ptr;
1447 
1448 	return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1449 }
1450 
1451 #define pgd_leaf	pgd_leaf
1452 static inline bool pgd_leaf(pgd_t pgd) { return false; }
1453 
1454 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1455 /*
1456  * All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages
1457  * (8k-aligned and 8k in size).  The kernel one is at the beginning 4k and
1458  * the user one is in the last 4k.  To switch between them, you
1459  * just need to flip the 12th bit in their addresses.
1460  */
1461 #define PTI_PGTABLE_SWITCH_BIT	PAGE_SHIFT
1462 
1463 /*
1464  * This generates better code than the inline assembly in
1465  * __set_bit().
1466  */
1467 static inline void *ptr_set_bit(void *ptr, int bit)
1468 {
1469 	unsigned long __ptr = (unsigned long)ptr;
1470 
1471 	__ptr |= BIT(bit);
1472 	return (void *)__ptr;
1473 }
1474 static inline void *ptr_clear_bit(void *ptr, int bit)
1475 {
1476 	unsigned long __ptr = (unsigned long)ptr;
1477 
1478 	__ptr &= ~BIT(bit);
1479 	return (void *)__ptr;
1480 }
1481 
1482 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1483 {
1484 	return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1485 }
1486 
1487 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1488 {
1489 	return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1490 }
1491 
1492 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1493 {
1494 	return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1495 }
1496 
1497 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1498 {
1499 	return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1500 }
1501 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
1502 
1503 /*
1504  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1505  *
1506  *  dst - pointer to pgd range anywhere on a pgd page
1507  *  src - ""
1508  *  count - the number of pgds to copy.
1509  *
1510  * dst and src can be on the same page, but the range must not overlap,
1511  * and must not cross a page boundary.
1512  */
1513 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1514 {
1515 	memcpy(dst, src, count * sizeof(pgd_t));
1516 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1517 	if (!static_cpu_has(X86_FEATURE_PTI))
1518 		return;
1519 	/* Clone the user space pgd as well */
1520 	memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1521 	       count * sizeof(pgd_t));
1522 #endif
1523 }
1524 
1525 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1526 static inline int page_level_shift(enum pg_level level)
1527 {
1528 	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1529 }
1530 static inline unsigned long page_level_size(enum pg_level level)
1531 {
1532 	return 1UL << page_level_shift(level);
1533 }
1534 static inline unsigned long page_level_mask(enum pg_level level)
1535 {
1536 	return ~(page_level_size(level) - 1);
1537 }
1538 
1539 /*
1540  * The x86 doesn't have any external MMU info: the kernel page
1541  * tables contain all the necessary information.
1542  */
1543 static inline void update_mmu_cache(struct vm_area_struct *vma,
1544 		unsigned long addr, pte_t *ptep)
1545 {
1546 }
1547 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1548 		struct vm_area_struct *vma, unsigned long addr,
1549 		pte_t *ptep, unsigned int nr)
1550 {
1551 }
1552 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1553 		unsigned long addr, pmd_t *pmd)
1554 {
1555 }
1556 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1557 		unsigned long addr, pud_t *pud)
1558 {
1559 }
1560 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1561 {
1562 	return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
1563 }
1564 
1565 static inline int pte_swp_exclusive(pte_t pte)
1566 {
1567 	return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
1568 }
1569 
1570 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1571 {
1572 	return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
1573 }
1574 
1575 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1576 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1577 {
1578 	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1579 }
1580 
1581 static inline int pte_swp_soft_dirty(pte_t pte)
1582 {
1583 	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1584 }
1585 
1586 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1587 {
1588 	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1589 }
1590 
1591 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1592 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1593 {
1594 	return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1595 }
1596 
1597 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1598 {
1599 	return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1600 }
1601 
1602 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1603 {
1604 	return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1605 }
1606 #endif
1607 #endif
1608 
1609 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1610 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
1611 {
1612 	return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
1613 }
1614 
1615 static inline int pte_swp_uffd_wp(pte_t pte)
1616 {
1617 	return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
1618 }
1619 
1620 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
1621 {
1622 	return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
1623 }
1624 
1625 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
1626 {
1627 	return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
1628 }
1629 
1630 static inline int pmd_swp_uffd_wp(pmd_t pmd)
1631 {
1632 	return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
1633 }
1634 
1635 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
1636 {
1637 	return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
1638 }
1639 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
1640 
1641 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1642 {
1643 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1644 	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1645 	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1646 #else
1647 	return 0;
1648 #endif
1649 }
1650 
1651 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1652 {
1653 	u32 pkru = read_pkru();
1654 
1655 	if (!__pkru_allows_read(pkru, pkey))
1656 		return false;
1657 	if (write && !__pkru_allows_write(pkru, pkey))
1658 		return false;
1659 
1660 	return true;
1661 }
1662 
1663 /*
1664  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1665  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1666  * same value on all 3 types.
1667  */
1668 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1669 {
1670 	unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1671 
1672 	/*
1673 	 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel
1674 	 * shouldn't generally allow access to, but since they
1675 	 * are already Write=0, the below logic covers both cases.
1676 	 */
1677 	if (write)
1678 		need_pte_bits |= _PAGE_RW;
1679 
1680 	if ((pteval & need_pte_bits) != need_pte_bits)
1681 		return 0;
1682 
1683 	return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1684 }
1685 
1686 #define pte_access_permitted pte_access_permitted
1687 static inline bool pte_access_permitted(pte_t pte, bool write)
1688 {
1689 	return __pte_access_permitted(pte_val(pte), write);
1690 }
1691 
1692 #define pmd_access_permitted pmd_access_permitted
1693 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1694 {
1695 	return __pte_access_permitted(pmd_val(pmd), write);
1696 }
1697 
1698 #define pud_access_permitted pud_access_permitted
1699 static inline bool pud_access_permitted(pud_t pud, bool write)
1700 {
1701 	return __pte_access_permitted(pud_val(pud), write);
1702 }
1703 
1704 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1705 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1706 
1707 static inline bool arch_has_pfn_modify_check(void)
1708 {
1709 	return boot_cpu_has_bug(X86_BUG_L1TF);
1710 }
1711 
1712 #define arch_check_zapped_pte arch_check_zapped_pte
1713 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
1714 
1715 #define arch_check_zapped_pmd arch_check_zapped_pmd
1716 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
1717 
1718 #define arch_check_zapped_pud arch_check_zapped_pud
1719 void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud);
1720 
1721 #ifdef CONFIG_XEN_PV
1722 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
1723 static inline bool arch_has_hw_nonleaf_pmd_young(void)
1724 {
1725 	return !cpu_feature_enabled(X86_FEATURE_XENPV);
1726 }
1727 #endif
1728 
1729 #ifdef CONFIG_PAGE_TABLE_CHECK
1730 static inline bool pte_user_accessible_page(pte_t pte)
1731 {
1732 	return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
1733 }
1734 
1735 static inline bool pmd_user_accessible_page(pmd_t pmd)
1736 {
1737 	return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
1738 }
1739 
1740 static inline bool pud_user_accessible_page(pud_t pud)
1741 {
1742 	return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
1743 }
1744 #endif
1745 
1746 #ifdef CONFIG_X86_SGX
1747 int arch_memory_failure(unsigned long pfn, int flags);
1748 #define arch_memory_failure arch_memory_failure
1749 
1750 bool arch_is_platform_page(u64 paddr);
1751 #define arch_is_platform_page arch_is_platform_page
1752 #endif
1753 
1754 #endif	/* __ASSEMBLY__ */
1755 
1756 #endif /* _ASM_X86_PGTABLE_H */
1757