1 #ifndef _ASM_X86_PGTABLE_H 2 #define _ASM_X86_PGTABLE_H 3 4 #define FIRST_USER_ADDRESS 0 5 6 #define _PAGE_BIT_PRESENT 0 /* is present */ 7 #define _PAGE_BIT_RW 1 /* writeable */ 8 #define _PAGE_BIT_USER 2 /* userspace addressable */ 9 #define _PAGE_BIT_PWT 3 /* page write through */ 10 #define _PAGE_BIT_PCD 4 /* page cache disabled */ 11 #define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) */ 12 #define _PAGE_BIT_DIRTY 6 /* was written to (raised by CPU) */ 13 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */ 14 #define _PAGE_BIT_PAT 7 /* on 4KB pages */ 15 #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ 16 #define _PAGE_BIT_UNUSED1 9 /* available for programmer */ 17 #define _PAGE_BIT_IOMAP 10 /* flag used to indicate IO mapping */ 18 #define _PAGE_BIT_UNUSED3 11 19 #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */ 20 #define _PAGE_BIT_SPECIAL _PAGE_BIT_UNUSED1 21 #define _PAGE_BIT_CPA_TEST _PAGE_BIT_UNUSED1 22 #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ 23 24 /* If _PAGE_BIT_PRESENT is clear, we use these: */ 25 /* - if the user mapped it with PROT_NONE; pte_present gives true */ 26 #define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL 27 /* - set: nonlinear file mapping, saved PTE; unset:swap */ 28 #define _PAGE_BIT_FILE _PAGE_BIT_DIRTY 29 30 #define _PAGE_PRESENT (_AT(pteval_t, 1) << _PAGE_BIT_PRESENT) 31 #define _PAGE_RW (_AT(pteval_t, 1) << _PAGE_BIT_RW) 32 #define _PAGE_USER (_AT(pteval_t, 1) << _PAGE_BIT_USER) 33 #define _PAGE_PWT (_AT(pteval_t, 1) << _PAGE_BIT_PWT) 34 #define _PAGE_PCD (_AT(pteval_t, 1) << _PAGE_BIT_PCD) 35 #define _PAGE_ACCESSED (_AT(pteval_t, 1) << _PAGE_BIT_ACCESSED) 36 #define _PAGE_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_DIRTY) 37 #define _PAGE_PSE (_AT(pteval_t, 1) << _PAGE_BIT_PSE) 38 #define _PAGE_GLOBAL (_AT(pteval_t, 1) << _PAGE_BIT_GLOBAL) 39 #define _PAGE_UNUSED1 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED1) 40 #define _PAGE_IOMAP (_AT(pteval_t, 1) << _PAGE_BIT_IOMAP) 41 #define _PAGE_UNUSED3 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED3) 42 #define _PAGE_PAT (_AT(pteval_t, 1) << _PAGE_BIT_PAT) 43 #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE) 44 #define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL) 45 #define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST) 46 #define __HAVE_ARCH_PTE_SPECIAL 47 48 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 49 #define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX) 50 #else 51 #define _PAGE_NX (_AT(pteval_t, 0)) 52 #endif 53 54 #define _PAGE_FILE (_AT(pteval_t, 1) << _PAGE_BIT_FILE) 55 #define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE) 56 57 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \ 58 _PAGE_ACCESSED | _PAGE_DIRTY) 59 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | \ 60 _PAGE_DIRTY) 61 62 /* Set of bits not changed in pte_modify */ 63 #define _PAGE_CHG_MASK (PTE_PFN_MASK | _PAGE_PCD | _PAGE_PWT | \ 64 _PAGE_SPECIAL | _PAGE_ACCESSED | _PAGE_DIRTY) 65 66 #define _PAGE_CACHE_MASK (_PAGE_PCD | _PAGE_PWT) 67 #define _PAGE_CACHE_WB (0) 68 #define _PAGE_CACHE_WC (_PAGE_PWT) 69 #define _PAGE_CACHE_UC_MINUS (_PAGE_PCD) 70 #define _PAGE_CACHE_UC (_PAGE_PCD | _PAGE_PWT) 71 72 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 73 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \ 74 _PAGE_ACCESSED | _PAGE_NX) 75 76 #define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | \ 77 _PAGE_USER | _PAGE_ACCESSED) 78 #define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 79 _PAGE_ACCESSED | _PAGE_NX) 80 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 81 _PAGE_ACCESSED) 82 #define PAGE_COPY PAGE_COPY_NOEXEC 83 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 84 _PAGE_ACCESSED | _PAGE_NX) 85 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 86 _PAGE_ACCESSED) 87 88 #define __PAGE_KERNEL_EXEC \ 89 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL) 90 #define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX) 91 92 #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW) 93 #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW) 94 #define __PAGE_KERNEL_EXEC_NOCACHE (__PAGE_KERNEL_EXEC | _PAGE_PCD | _PAGE_PWT) 95 #define __PAGE_KERNEL_WC (__PAGE_KERNEL | _PAGE_CACHE_WC) 96 #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT) 97 #define __PAGE_KERNEL_UC_MINUS (__PAGE_KERNEL | _PAGE_PCD) 98 #define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER) 99 #define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT) 100 #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) 101 #define __PAGE_KERNEL_LARGE_NOCACHE (__PAGE_KERNEL | _PAGE_CACHE_UC | _PAGE_PSE) 102 #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) 103 104 #define __PAGE_KERNEL_IO (__PAGE_KERNEL | _PAGE_IOMAP) 105 #define __PAGE_KERNEL_IO_NOCACHE (__PAGE_KERNEL_NOCACHE | _PAGE_IOMAP) 106 #define __PAGE_KERNEL_IO_UC_MINUS (__PAGE_KERNEL_UC_MINUS | _PAGE_IOMAP) 107 #define __PAGE_KERNEL_IO_WC (__PAGE_KERNEL_WC | _PAGE_IOMAP) 108 109 #define PAGE_KERNEL __pgprot(__PAGE_KERNEL) 110 #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO) 111 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 112 #define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX) 113 #define PAGE_KERNEL_WC __pgprot(__PAGE_KERNEL_WC) 114 #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE) 115 #define PAGE_KERNEL_UC_MINUS __pgprot(__PAGE_KERNEL_UC_MINUS) 116 #define PAGE_KERNEL_EXEC_NOCACHE __pgprot(__PAGE_KERNEL_EXEC_NOCACHE) 117 #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE) 118 #define PAGE_KERNEL_LARGE_NOCACHE __pgprot(__PAGE_KERNEL_LARGE_NOCACHE) 119 #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC) 120 #define PAGE_KERNEL_VSYSCALL __pgprot(__PAGE_KERNEL_VSYSCALL) 121 #define PAGE_KERNEL_VSYSCALL_NOCACHE __pgprot(__PAGE_KERNEL_VSYSCALL_NOCACHE) 122 123 #define PAGE_KERNEL_IO __pgprot(__PAGE_KERNEL_IO) 124 #define PAGE_KERNEL_IO_NOCACHE __pgprot(__PAGE_KERNEL_IO_NOCACHE) 125 #define PAGE_KERNEL_IO_UC_MINUS __pgprot(__PAGE_KERNEL_IO_UC_MINUS) 126 #define PAGE_KERNEL_IO_WC __pgprot(__PAGE_KERNEL_IO_WC) 127 128 /* xwr */ 129 #define __P000 PAGE_NONE 130 #define __P001 PAGE_READONLY 131 #define __P010 PAGE_COPY 132 #define __P011 PAGE_COPY 133 #define __P100 PAGE_READONLY_EXEC 134 #define __P101 PAGE_READONLY_EXEC 135 #define __P110 PAGE_COPY_EXEC 136 #define __P111 PAGE_COPY_EXEC 137 138 #define __S000 PAGE_NONE 139 #define __S001 PAGE_READONLY 140 #define __S010 PAGE_SHARED 141 #define __S011 PAGE_SHARED 142 #define __S100 PAGE_READONLY_EXEC 143 #define __S101 PAGE_READONLY_EXEC 144 #define __S110 PAGE_SHARED_EXEC 145 #define __S111 PAGE_SHARED_EXEC 146 147 /* 148 * early identity mapping pte attrib macros. 149 */ 150 #ifdef CONFIG_X86_64 151 #define __PAGE_KERNEL_IDENT_LARGE_EXEC __PAGE_KERNEL_LARGE_EXEC 152 #else 153 /* 154 * For PDE_IDENT_ATTR include USER bit. As the PDE and PTE protection 155 * bits are combined, this will alow user to access the high address mapped 156 * VDSO in the presence of CONFIG_COMPAT_VDSO 157 */ 158 #define PTE_IDENT_ATTR 0x003 /* PRESENT+RW */ 159 #define PDE_IDENT_ATTR 0x067 /* PRESENT+RW+USER+DIRTY+ACCESSED */ 160 #define PGD_IDENT_ATTR 0x001 /* PRESENT (no other attributes) */ 161 #endif 162 163 /* 164 * Macro to mark a page protection value as UC- 165 */ 166 #define pgprot_noncached(prot) \ 167 ((boot_cpu_data.x86 > 3) \ 168 ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \ 169 : (prot)) 170 171 #ifndef __ASSEMBLY__ 172 173 #define pgprot_writecombine pgprot_writecombine 174 extern pgprot_t pgprot_writecombine(pgprot_t prot); 175 176 /* 177 * ZERO_PAGE is a global shared page that is always zero: used 178 * for zero-mapped memory areas etc.. 179 */ 180 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 181 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 182 183 extern spinlock_t pgd_lock; 184 extern struct list_head pgd_list; 185 186 /* 187 * The following only work if pte_present() is true. 188 * Undefined behaviour if not.. 189 */ 190 static inline int pte_dirty(pte_t pte) 191 { 192 return pte_flags(pte) & _PAGE_DIRTY; 193 } 194 195 static inline int pte_young(pte_t pte) 196 { 197 return pte_flags(pte) & _PAGE_ACCESSED; 198 } 199 200 static inline int pte_write(pte_t pte) 201 { 202 return pte_flags(pte) & _PAGE_RW; 203 } 204 205 static inline int pte_file(pte_t pte) 206 { 207 return pte_flags(pte) & _PAGE_FILE; 208 } 209 210 static inline int pte_huge(pte_t pte) 211 { 212 return pte_flags(pte) & _PAGE_PSE; 213 } 214 215 static inline int pte_global(pte_t pte) 216 { 217 return pte_flags(pte) & _PAGE_GLOBAL; 218 } 219 220 static inline int pte_exec(pte_t pte) 221 { 222 return !(pte_flags(pte) & _PAGE_NX); 223 } 224 225 static inline int pte_special(pte_t pte) 226 { 227 return pte_flags(pte) & _PAGE_SPECIAL; 228 } 229 230 static inline unsigned long pte_pfn(pte_t pte) 231 { 232 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT; 233 } 234 235 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 236 237 static inline int pmd_large(pmd_t pte) 238 { 239 return (pmd_val(pte) & (_PAGE_PSE | _PAGE_PRESENT)) == 240 (_PAGE_PSE | _PAGE_PRESENT); 241 } 242 243 static inline pte_t pte_mkclean(pte_t pte) 244 { 245 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 246 } 247 248 static inline pte_t pte_mkold(pte_t pte) 249 { 250 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 251 } 252 253 static inline pte_t pte_wrprotect(pte_t pte) 254 { 255 return __pte(pte_val(pte) & ~_PAGE_RW); 256 } 257 258 static inline pte_t pte_mkexec(pte_t pte) 259 { 260 return __pte(pte_val(pte) & ~_PAGE_NX); 261 } 262 263 static inline pte_t pte_mkdirty(pte_t pte) 264 { 265 return __pte(pte_val(pte) | _PAGE_DIRTY); 266 } 267 268 static inline pte_t pte_mkyoung(pte_t pte) 269 { 270 return __pte(pte_val(pte) | _PAGE_ACCESSED); 271 } 272 273 static inline pte_t pte_mkwrite(pte_t pte) 274 { 275 return __pte(pte_val(pte) | _PAGE_RW); 276 } 277 278 static inline pte_t pte_mkhuge(pte_t pte) 279 { 280 return __pte(pte_val(pte) | _PAGE_PSE); 281 } 282 283 static inline pte_t pte_clrhuge(pte_t pte) 284 { 285 return __pte(pte_val(pte) & ~_PAGE_PSE); 286 } 287 288 static inline pte_t pte_mkglobal(pte_t pte) 289 { 290 return __pte(pte_val(pte) | _PAGE_GLOBAL); 291 } 292 293 static inline pte_t pte_clrglobal(pte_t pte) 294 { 295 return __pte(pte_val(pte) & ~_PAGE_GLOBAL); 296 } 297 298 static inline pte_t pte_mkspecial(pte_t pte) 299 { 300 return __pte(pte_val(pte) | _PAGE_SPECIAL); 301 } 302 303 extern pteval_t __supported_pte_mask; 304 305 /* 306 * Mask out unsupported bits in a present pgprot. Non-present pgprots 307 * can use those bits for other purposes, so leave them be. 308 */ 309 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 310 { 311 pgprotval_t protval = pgprot_val(pgprot); 312 313 if (protval & _PAGE_PRESENT) 314 protval &= __supported_pte_mask; 315 316 return protval; 317 } 318 319 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 320 { 321 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) | 322 massage_pgprot(pgprot)); 323 } 324 325 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 326 { 327 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) | 328 massage_pgprot(pgprot)); 329 } 330 331 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 332 { 333 pteval_t val = pte_val(pte); 334 335 /* 336 * Chop off the NX bit (if present), and add the NX portion of 337 * the newprot (if present): 338 */ 339 val &= _PAGE_CHG_MASK; 340 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK; 341 342 return __pte(val); 343 } 344 345 /* mprotect needs to preserve PAT bits when updating vm_page_prot */ 346 #define pgprot_modify pgprot_modify 347 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 348 { 349 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 350 pgprotval_t addbits = pgprot_val(newprot); 351 return __pgprot(preservebits | addbits); 352 } 353 354 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK) 355 356 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 357 358 static inline int is_new_memtype_allowed(unsigned long flags, 359 unsigned long new_flags) 360 { 361 /* 362 * Certain new memtypes are not allowed with certain 363 * requested memtype: 364 * - request is uncached, return cannot be write-back 365 * - request is write-combine, return cannot be write-back 366 */ 367 if ((flags == _PAGE_CACHE_UC_MINUS && 368 new_flags == _PAGE_CACHE_WB) || 369 (flags == _PAGE_CACHE_WC && 370 new_flags == _PAGE_CACHE_WB)) { 371 return 0; 372 } 373 374 return 1; 375 } 376 377 #ifndef __ASSEMBLY__ 378 /* Indicate that x86 has its own track and untrack pfn vma functions */ 379 #define __HAVE_PFNMAP_TRACKING 380 381 #define __HAVE_PHYS_MEM_ACCESS_PROT 382 struct file; 383 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 384 unsigned long size, pgprot_t vma_prot); 385 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 386 unsigned long size, pgprot_t *vma_prot); 387 #endif 388 389 /* Install a pte for a particular vaddr in kernel space. */ 390 void set_pte_vaddr(unsigned long vaddr, pte_t pte); 391 392 #ifdef CONFIG_X86_32 393 extern void native_pagetable_setup_start(pgd_t *base); 394 extern void native_pagetable_setup_done(pgd_t *base); 395 #else 396 static inline void native_pagetable_setup_start(pgd_t *base) {} 397 static inline void native_pagetable_setup_done(pgd_t *base) {} 398 #endif 399 400 struct seq_file; 401 extern void arch_report_meminfo(struct seq_file *m); 402 403 #ifdef CONFIG_PARAVIRT 404 #include <asm/paravirt.h> 405 #else /* !CONFIG_PARAVIRT */ 406 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 407 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 408 409 #define set_pte_present(mm, addr, ptep, pte) \ 410 native_set_pte_present(mm, addr, ptep, pte) 411 #define set_pte_atomic(ptep, pte) \ 412 native_set_pte_atomic(ptep, pte) 413 414 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 415 416 #ifndef __PAGETABLE_PUD_FOLDED 417 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 418 #define pgd_clear(pgd) native_pgd_clear(pgd) 419 #endif 420 421 #ifndef set_pud 422 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 423 #endif 424 425 #ifndef __PAGETABLE_PMD_FOLDED 426 #define pud_clear(pud) native_pud_clear(pud) 427 #endif 428 429 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 430 #define pmd_clear(pmd) native_pmd_clear(pmd) 431 432 #define pte_update(mm, addr, ptep) do { } while (0) 433 #define pte_update_defer(mm, addr, ptep) do { } while (0) 434 435 static inline void __init paravirt_pagetable_setup_start(pgd_t *base) 436 { 437 native_pagetable_setup_start(base); 438 } 439 440 static inline void __init paravirt_pagetable_setup_done(pgd_t *base) 441 { 442 native_pagetable_setup_done(base); 443 } 444 #endif /* CONFIG_PARAVIRT */ 445 446 #endif /* __ASSEMBLY__ */ 447 448 #ifdef CONFIG_X86_32 449 # include "pgtable_32.h" 450 #else 451 # include "pgtable_64.h" 452 #endif 453 454 /* 455 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 456 * 457 * this macro returns the index of the entry in the pgd page which would 458 * control the given virtual address 459 */ 460 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 461 462 /* 463 * pgd_offset() returns a (pgd_t *) 464 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 465 */ 466 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address))) 467 /* 468 * a shortcut which implies the use of the kernel's pgd, instead 469 * of a process's 470 */ 471 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 472 473 474 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 475 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 476 477 #ifndef __ASSEMBLY__ 478 479 enum { 480 PG_LEVEL_NONE, 481 PG_LEVEL_4K, 482 PG_LEVEL_2M, 483 PG_LEVEL_1G, 484 PG_LEVEL_NUM 485 }; 486 487 #ifdef CONFIG_PROC_FS 488 extern void update_page_count(int level, unsigned long pages); 489 #else 490 static inline void update_page_count(int level, unsigned long pages) { } 491 #endif 492 493 /* 494 * Helper function that returns the kernel pagetable entry controlling 495 * the virtual address 'address'. NULL means no pagetable entry present. 496 * NOTE: the return type is pte_t but if the pmd is PSE then we return it 497 * as a pte too. 498 */ 499 extern pte_t *lookup_address(unsigned long address, unsigned int *level); 500 501 /* local pte updates need not use xchg for locking */ 502 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 503 { 504 pte_t res = *ptep; 505 506 /* Pure native function needs no input for mm, addr */ 507 native_pte_clear(NULL, 0, ptep); 508 return res; 509 } 510 511 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 512 pte_t *ptep , pte_t pte) 513 { 514 native_set_pte(ptep, pte); 515 } 516 517 #ifndef CONFIG_PARAVIRT 518 /* 519 * Rules for using pte_update - it must be called after any PTE update which 520 * has not been done using the set_pte / clear_pte interfaces. It is used by 521 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE 522 * updates should either be sets, clears, or set_pte_atomic for P->P 523 * transitions, which means this hook should only be called for user PTEs. 524 * This hook implies a P->P protection or access change has taken place, which 525 * requires a subsequent TLB flush. The notification can optionally be delayed 526 * until the TLB flush event by using the pte_update_defer form of the 527 * interface, but care must be taken to assure that the flush happens while 528 * still holding the same page table lock so that the shadow and primary pages 529 * do not become out of sync on SMP. 530 */ 531 #define pte_update(mm, addr, ptep) do { } while (0) 532 #define pte_update_defer(mm, addr, ptep) do { } while (0) 533 #endif 534 535 /* 536 * We only update the dirty/accessed state if we set 537 * the dirty bit by hand in the kernel, since the hardware 538 * will do the accessed bit for us, and we don't want to 539 * race with other CPU's that might be updating the dirty 540 * bit at the same time. 541 */ 542 struct vm_area_struct; 543 544 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 545 extern int ptep_set_access_flags(struct vm_area_struct *vma, 546 unsigned long address, pte_t *ptep, 547 pte_t entry, int dirty); 548 549 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 550 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 551 unsigned long addr, pte_t *ptep); 552 553 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 554 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 555 unsigned long address, pte_t *ptep); 556 557 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 558 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 559 pte_t *ptep) 560 { 561 pte_t pte = native_ptep_get_and_clear(ptep); 562 pte_update(mm, addr, ptep); 563 return pte; 564 } 565 566 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 567 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 568 unsigned long addr, pte_t *ptep, 569 int full) 570 { 571 pte_t pte; 572 if (full) { 573 /* 574 * Full address destruction in progress; paravirt does not 575 * care about updates and native needs no locking 576 */ 577 pte = native_local_ptep_get_and_clear(ptep); 578 } else { 579 pte = ptep_get_and_clear(mm, addr, ptep); 580 } 581 return pte; 582 } 583 584 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 585 static inline void ptep_set_wrprotect(struct mm_struct *mm, 586 unsigned long addr, pte_t *ptep) 587 { 588 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 589 pte_update(mm, addr, ptep); 590 } 591 592 /* 593 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 594 * 595 * dst - pointer to pgd range anwhere on a pgd page 596 * src - "" 597 * count - the number of pgds to copy. 598 * 599 * dst and src can be on the same page, but the range must not overlap, 600 * and must not cross a page boundary. 601 */ 602 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 603 { 604 memcpy(dst, src, count * sizeof(pgd_t)); 605 } 606 607 608 #include <asm-generic/pgtable.h> 609 #endif /* __ASSEMBLY__ */ 610 611 #endif /* _ASM_X86_PGTABLE_H */ 612