xref: /linux/arch/x86/include/asm/pgtable.h (revision a5766cd479fd212e9831ceef8e9ab630c91445ab)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4 
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8 
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)						\
13 	((boot_cpu_data.x86 > 3)					\
14 	 ? (__pgprot(pgprot_val(prot) |					\
15 		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
16 	 : (prot))
17 
18 #ifndef __ASSEMBLY__
19 #include <linux/spinlock.h>
20 #include <asm/x86_init.h>
21 #include <asm/pkru.h>
22 #include <asm/fpu/api.h>
23 #include <asm/coco.h>
24 #include <asm-generic/pgtable_uffd.h>
25 #include <linux/page_table_check.h>
26 
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29 
30 struct seq_file;
31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
33 				   bool user);
34 void ptdump_walk_pgd_level_checkwx(void);
35 void ptdump_walk_user_pgd_level_checkwx(void);
36 
37 /*
38  * Macros to add or remove encryption attribute
39  */
40 #define pgprot_encrypted(prot)	__pgprot(cc_mkenc(pgprot_val(prot)))
41 #define pgprot_decrypted(prot)	__pgprot(cc_mkdec(pgprot_val(prot)))
42 
43 #ifdef CONFIG_DEBUG_WX
44 #define debug_checkwx()		ptdump_walk_pgd_level_checkwx()
45 #define debug_checkwx_user()	ptdump_walk_user_pgd_level_checkwx()
46 #else
47 #define debug_checkwx()		do { } while (0)
48 #define debug_checkwx_user()	do { } while (0)
49 #endif
50 
51 /*
52  * ZERO_PAGE is a global shared page that is always zero: used
53  * for zero-mapped memory areas etc..
54  */
55 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
56 	__visible;
57 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
58 
59 extern spinlock_t pgd_lock;
60 extern struct list_head pgd_list;
61 
62 extern struct mm_struct *pgd_page_get_mm(struct page *page);
63 
64 extern pmdval_t early_pmd_flags;
65 
66 #ifdef CONFIG_PARAVIRT_XXL
67 #include <asm/paravirt.h>
68 #else  /* !CONFIG_PARAVIRT_XXL */
69 #define set_pte(ptep, pte)		native_set_pte(ptep, pte)
70 
71 #define set_pte_atomic(ptep, pte)					\
72 	native_set_pte_atomic(ptep, pte)
73 
74 #define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
75 
76 #ifndef __PAGETABLE_P4D_FOLDED
77 #define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
78 #define pgd_clear(pgd)			(pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
79 #endif
80 
81 #ifndef set_p4d
82 # define set_p4d(p4dp, p4d)		native_set_p4d(p4dp, p4d)
83 #endif
84 
85 #ifndef __PAGETABLE_PUD_FOLDED
86 #define p4d_clear(p4d)			native_p4d_clear(p4d)
87 #endif
88 
89 #ifndef set_pud
90 # define set_pud(pudp, pud)		native_set_pud(pudp, pud)
91 #endif
92 
93 #ifndef __PAGETABLE_PUD_FOLDED
94 #define pud_clear(pud)			native_pud_clear(pud)
95 #endif
96 
97 #define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
98 #define pmd_clear(pmd)			native_pmd_clear(pmd)
99 
100 #define pgd_val(x)	native_pgd_val(x)
101 #define __pgd(x)	native_make_pgd(x)
102 
103 #ifndef __PAGETABLE_P4D_FOLDED
104 #define p4d_val(x)	native_p4d_val(x)
105 #define __p4d(x)	native_make_p4d(x)
106 #endif
107 
108 #ifndef __PAGETABLE_PUD_FOLDED
109 #define pud_val(x)	native_pud_val(x)
110 #define __pud(x)	native_make_pud(x)
111 #endif
112 
113 #ifndef __PAGETABLE_PMD_FOLDED
114 #define pmd_val(x)	native_pmd_val(x)
115 #define __pmd(x)	native_make_pmd(x)
116 #endif
117 
118 #define pte_val(x)	native_pte_val(x)
119 #define __pte(x)	native_make_pte(x)
120 
121 #define arch_end_context_switch(prev)	do {} while(0)
122 #endif	/* CONFIG_PARAVIRT_XXL */
123 
124 /*
125  * The following only work if pte_present() is true.
126  * Undefined behaviour if not..
127  */
128 static inline bool pte_dirty(pte_t pte)
129 {
130 	return pte_flags(pte) & _PAGE_DIRTY_BITS;
131 }
132 
133 static inline bool pte_shstk(pte_t pte)
134 {
135 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
136 	       (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
137 }
138 
139 static inline int pte_young(pte_t pte)
140 {
141 	return pte_flags(pte) & _PAGE_ACCESSED;
142 }
143 
144 #define pmd_dirty pmd_dirty
145 static inline bool pmd_dirty(pmd_t pmd)
146 {
147 	return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
148 }
149 
150 static inline bool pmd_shstk(pmd_t pmd)
151 {
152 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
153 	       (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
154 	       (_PAGE_DIRTY | _PAGE_PSE);
155 }
156 
157 #define pmd_young pmd_young
158 static inline int pmd_young(pmd_t pmd)
159 {
160 	return pmd_flags(pmd) & _PAGE_ACCESSED;
161 }
162 
163 static inline bool pud_dirty(pud_t pud)
164 {
165 	return pud_flags(pud) & _PAGE_DIRTY_BITS;
166 }
167 
168 static inline int pud_young(pud_t pud)
169 {
170 	return pud_flags(pud) & _PAGE_ACCESSED;
171 }
172 
173 static inline int pte_write(pte_t pte)
174 {
175 	/*
176 	 * Shadow stack pages are logically writable, but do not have
177 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
178 	 */
179 	return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
180 }
181 
182 #define pmd_write pmd_write
183 static inline int pmd_write(pmd_t pmd)
184 {
185 	/*
186 	 * Shadow stack pages are logically writable, but do not have
187 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
188 	 */
189 	return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
190 }
191 
192 #define pud_write pud_write
193 static inline int pud_write(pud_t pud)
194 {
195 	return pud_flags(pud) & _PAGE_RW;
196 }
197 
198 static inline int pte_huge(pte_t pte)
199 {
200 	return pte_flags(pte) & _PAGE_PSE;
201 }
202 
203 static inline int pte_global(pte_t pte)
204 {
205 	return pte_flags(pte) & _PAGE_GLOBAL;
206 }
207 
208 static inline int pte_exec(pte_t pte)
209 {
210 	return !(pte_flags(pte) & _PAGE_NX);
211 }
212 
213 static inline int pte_special(pte_t pte)
214 {
215 	return pte_flags(pte) & _PAGE_SPECIAL;
216 }
217 
218 /* Entries that were set to PROT_NONE are inverted */
219 
220 static inline u64 protnone_mask(u64 val);
221 
222 #define PFN_PTE_SHIFT	PAGE_SHIFT
223 
224 static inline unsigned long pte_pfn(pte_t pte)
225 {
226 	phys_addr_t pfn = pte_val(pte);
227 	pfn ^= protnone_mask(pfn);
228 	return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
229 }
230 
231 static inline unsigned long pmd_pfn(pmd_t pmd)
232 {
233 	phys_addr_t pfn = pmd_val(pmd);
234 	pfn ^= protnone_mask(pfn);
235 	return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
236 }
237 
238 static inline unsigned long pud_pfn(pud_t pud)
239 {
240 	phys_addr_t pfn = pud_val(pud);
241 	pfn ^= protnone_mask(pfn);
242 	return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
243 }
244 
245 static inline unsigned long p4d_pfn(p4d_t p4d)
246 {
247 	return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
248 }
249 
250 static inline unsigned long pgd_pfn(pgd_t pgd)
251 {
252 	return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
253 }
254 
255 #define p4d_leaf	p4d_large
256 static inline int p4d_large(p4d_t p4d)
257 {
258 	/* No 512 GiB pages yet */
259 	return 0;
260 }
261 
262 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
263 
264 #define pmd_leaf	pmd_large
265 static inline int pmd_large(pmd_t pte)
266 {
267 	return pmd_flags(pte) & _PAGE_PSE;
268 }
269 
270 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
271 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */
272 static inline int pmd_trans_huge(pmd_t pmd)
273 {
274 	return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
275 }
276 
277 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
278 static inline int pud_trans_huge(pud_t pud)
279 {
280 	return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
281 }
282 #endif
283 
284 #define has_transparent_hugepage has_transparent_hugepage
285 static inline int has_transparent_hugepage(void)
286 {
287 	return boot_cpu_has(X86_FEATURE_PSE);
288 }
289 
290 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
291 static inline int pmd_devmap(pmd_t pmd)
292 {
293 	return !!(pmd_val(pmd) & _PAGE_DEVMAP);
294 }
295 
296 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
297 static inline int pud_devmap(pud_t pud)
298 {
299 	return !!(pud_val(pud) & _PAGE_DEVMAP);
300 }
301 #else
302 static inline int pud_devmap(pud_t pud)
303 {
304 	return 0;
305 }
306 #endif
307 
308 static inline int pgd_devmap(pgd_t pgd)
309 {
310 	return 0;
311 }
312 #endif
313 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
314 
315 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
316 {
317 	pteval_t v = native_pte_val(pte);
318 
319 	return native_make_pte(v | set);
320 }
321 
322 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
323 {
324 	pteval_t v = native_pte_val(pte);
325 
326 	return native_make_pte(v & ~clear);
327 }
328 
329 /*
330  * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
331  * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
332  * when creating dirty, write-protected memory, a software bit is used:
333  * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
334  * Dirty bit to SavedDirty, and vice-vesra.
335  *
336  * This shifting is only done if needed. In the case of shifting
337  * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
338  * shifting SavedDirty->Dirty, the condition is Write=1.
339  */
340 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
341 {
342 	pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
343 
344 	v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
345 	v &= ~(cond << _PAGE_BIT_DIRTY);
346 
347 	return v;
348 }
349 
350 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
351 {
352 	pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
353 
354 	v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
355 	v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
356 
357 	return v;
358 }
359 
360 static inline pte_t pte_mksaveddirty(pte_t pte)
361 {
362 	pteval_t v = native_pte_val(pte);
363 
364 	v = mksaveddirty_shift(v);
365 	return native_make_pte(v);
366 }
367 
368 static inline pte_t pte_clear_saveddirty(pte_t pte)
369 {
370 	pteval_t v = native_pte_val(pte);
371 
372 	v = clear_saveddirty_shift(v);
373 	return native_make_pte(v);
374 }
375 
376 static inline pte_t pte_wrprotect(pte_t pte)
377 {
378 	pte = pte_clear_flags(pte, _PAGE_RW);
379 
380 	/*
381 	 * Blindly clearing _PAGE_RW might accidentally create
382 	 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware
383 	 * dirty value to the software bit, if present.
384 	 */
385 	return pte_mksaveddirty(pte);
386 }
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
389 static inline int pte_uffd_wp(pte_t pte)
390 {
391 	bool wp = pte_flags(pte) & _PAGE_UFFD_WP;
392 
393 #ifdef CONFIG_DEBUG_VM
394 	/*
395 	 * Having write bit for wr-protect-marked present ptes is fatal,
396 	 * because it means the uffd-wp bit will be ignored and write will
397 	 * just go through.
398 	 *
399 	 * Use any chance of pgtable walking to verify this (e.g., when
400 	 * page swapped out or being migrated for all purposes). It means
401 	 * something is already wrong.  Tell the admin even before the
402 	 * process crashes. We also nail it with wrong pgtable setup.
403 	 */
404 	WARN_ON_ONCE(wp && pte_write(pte));
405 #endif
406 
407 	return wp;
408 }
409 
410 static inline pte_t pte_mkuffd_wp(pte_t pte)
411 {
412 	return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
413 }
414 
415 static inline pte_t pte_clear_uffd_wp(pte_t pte)
416 {
417 	return pte_clear_flags(pte, _PAGE_UFFD_WP);
418 }
419 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
420 
421 static inline pte_t pte_mkclean(pte_t pte)
422 {
423 	return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
424 }
425 
426 static inline pte_t pte_mkold(pte_t pte)
427 {
428 	return pte_clear_flags(pte, _PAGE_ACCESSED);
429 }
430 
431 static inline pte_t pte_mkexec(pte_t pte)
432 {
433 	return pte_clear_flags(pte, _PAGE_NX);
434 }
435 
436 static inline pte_t pte_mkdirty(pte_t pte)
437 {
438 	pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
439 
440 	return pte_mksaveddirty(pte);
441 }
442 
443 static inline pte_t pte_mkwrite_shstk(pte_t pte)
444 {
445 	pte = pte_clear_flags(pte, _PAGE_RW);
446 
447 	return pte_set_flags(pte, _PAGE_DIRTY);
448 }
449 
450 static inline pte_t pte_mkyoung(pte_t pte)
451 {
452 	return pte_set_flags(pte, _PAGE_ACCESSED);
453 }
454 
455 static inline pte_t pte_mkwrite_novma(pte_t pte)
456 {
457 	return pte_set_flags(pte, _PAGE_RW);
458 }
459 
460 struct vm_area_struct;
461 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
462 #define pte_mkwrite pte_mkwrite
463 
464 static inline pte_t pte_mkhuge(pte_t pte)
465 {
466 	return pte_set_flags(pte, _PAGE_PSE);
467 }
468 
469 static inline pte_t pte_clrhuge(pte_t pte)
470 {
471 	return pte_clear_flags(pte, _PAGE_PSE);
472 }
473 
474 static inline pte_t pte_mkglobal(pte_t pte)
475 {
476 	return pte_set_flags(pte, _PAGE_GLOBAL);
477 }
478 
479 static inline pte_t pte_clrglobal(pte_t pte)
480 {
481 	return pte_clear_flags(pte, _PAGE_GLOBAL);
482 }
483 
484 static inline pte_t pte_mkspecial(pte_t pte)
485 {
486 	return pte_set_flags(pte, _PAGE_SPECIAL);
487 }
488 
489 static inline pte_t pte_mkdevmap(pte_t pte)
490 {
491 	return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
492 }
493 
494 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
495 {
496 	pmdval_t v = native_pmd_val(pmd);
497 
498 	return native_make_pmd(v | set);
499 }
500 
501 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
502 {
503 	pmdval_t v = native_pmd_val(pmd);
504 
505 	return native_make_pmd(v & ~clear);
506 }
507 
508 /* See comments above mksaveddirty_shift() */
509 static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
510 {
511 	pmdval_t v = native_pmd_val(pmd);
512 
513 	v = mksaveddirty_shift(v);
514 	return native_make_pmd(v);
515 }
516 
517 /* See comments above mksaveddirty_shift() */
518 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
519 {
520 	pmdval_t v = native_pmd_val(pmd);
521 
522 	v = clear_saveddirty_shift(v);
523 	return native_make_pmd(v);
524 }
525 
526 static inline pmd_t pmd_wrprotect(pmd_t pmd)
527 {
528 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
529 
530 	/*
531 	 * Blindly clearing _PAGE_RW might accidentally create
532 	 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware
533 	 * dirty value to the software bit.
534 	 */
535 	return pmd_mksaveddirty(pmd);
536 }
537 
538 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
539 static inline int pmd_uffd_wp(pmd_t pmd)
540 {
541 	return pmd_flags(pmd) & _PAGE_UFFD_WP;
542 }
543 
544 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
545 {
546 	return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
547 }
548 
549 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
550 {
551 	return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
552 }
553 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
554 
555 static inline pmd_t pmd_mkold(pmd_t pmd)
556 {
557 	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
558 }
559 
560 static inline pmd_t pmd_mkclean(pmd_t pmd)
561 {
562 	return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
563 }
564 
565 static inline pmd_t pmd_mkdirty(pmd_t pmd)
566 {
567 	pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
568 
569 	return pmd_mksaveddirty(pmd);
570 }
571 
572 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
573 {
574 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
575 
576 	return pmd_set_flags(pmd, _PAGE_DIRTY);
577 }
578 
579 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
580 {
581 	return pmd_set_flags(pmd, _PAGE_DEVMAP);
582 }
583 
584 static inline pmd_t pmd_mkhuge(pmd_t pmd)
585 {
586 	return pmd_set_flags(pmd, _PAGE_PSE);
587 }
588 
589 static inline pmd_t pmd_mkyoung(pmd_t pmd)
590 {
591 	return pmd_set_flags(pmd, _PAGE_ACCESSED);
592 }
593 
594 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
595 {
596 	return pmd_set_flags(pmd, _PAGE_RW);
597 }
598 
599 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
600 #define pmd_mkwrite pmd_mkwrite
601 
602 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
603 {
604 	pudval_t v = native_pud_val(pud);
605 
606 	return native_make_pud(v | set);
607 }
608 
609 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
610 {
611 	pudval_t v = native_pud_val(pud);
612 
613 	return native_make_pud(v & ~clear);
614 }
615 
616 /* See comments above mksaveddirty_shift() */
617 static inline pud_t pud_mksaveddirty(pud_t pud)
618 {
619 	pudval_t v = native_pud_val(pud);
620 
621 	v = mksaveddirty_shift(v);
622 	return native_make_pud(v);
623 }
624 
625 /* See comments above mksaveddirty_shift() */
626 static inline pud_t pud_clear_saveddirty(pud_t pud)
627 {
628 	pudval_t v = native_pud_val(pud);
629 
630 	v = clear_saveddirty_shift(v);
631 	return native_make_pud(v);
632 }
633 
634 static inline pud_t pud_mkold(pud_t pud)
635 {
636 	return pud_clear_flags(pud, _PAGE_ACCESSED);
637 }
638 
639 static inline pud_t pud_mkclean(pud_t pud)
640 {
641 	return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
642 }
643 
644 static inline pud_t pud_wrprotect(pud_t pud)
645 {
646 	pud = pud_clear_flags(pud, _PAGE_RW);
647 
648 	/*
649 	 * Blindly clearing _PAGE_RW might accidentally create
650 	 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware
651 	 * dirty value to the software bit.
652 	 */
653 	return pud_mksaveddirty(pud);
654 }
655 
656 static inline pud_t pud_mkdirty(pud_t pud)
657 {
658 	pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
659 
660 	return pud_mksaveddirty(pud);
661 }
662 
663 static inline pud_t pud_mkdevmap(pud_t pud)
664 {
665 	return pud_set_flags(pud, _PAGE_DEVMAP);
666 }
667 
668 static inline pud_t pud_mkhuge(pud_t pud)
669 {
670 	return pud_set_flags(pud, _PAGE_PSE);
671 }
672 
673 static inline pud_t pud_mkyoung(pud_t pud)
674 {
675 	return pud_set_flags(pud, _PAGE_ACCESSED);
676 }
677 
678 static inline pud_t pud_mkwrite(pud_t pud)
679 {
680 	pud = pud_set_flags(pud, _PAGE_RW);
681 
682 	return pud_clear_saveddirty(pud);
683 }
684 
685 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
686 static inline int pte_soft_dirty(pte_t pte)
687 {
688 	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
689 }
690 
691 static inline int pmd_soft_dirty(pmd_t pmd)
692 {
693 	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
694 }
695 
696 static inline int pud_soft_dirty(pud_t pud)
697 {
698 	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
699 }
700 
701 static inline pte_t pte_mksoft_dirty(pte_t pte)
702 {
703 	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
704 }
705 
706 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
707 {
708 	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
709 }
710 
711 static inline pud_t pud_mksoft_dirty(pud_t pud)
712 {
713 	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
714 }
715 
716 static inline pte_t pte_clear_soft_dirty(pte_t pte)
717 {
718 	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
719 }
720 
721 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
722 {
723 	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
724 }
725 
726 static inline pud_t pud_clear_soft_dirty(pud_t pud)
727 {
728 	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
729 }
730 
731 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
732 
733 /*
734  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
735  * can use those bits for other purposes, so leave them be.
736  */
737 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
738 {
739 	pgprotval_t protval = pgprot_val(pgprot);
740 
741 	if (protval & _PAGE_PRESENT)
742 		protval &= __supported_pte_mask;
743 
744 	return protval;
745 }
746 
747 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
748 {
749 	pgprotval_t massaged_val = massage_pgprot(pgprot);
750 
751 	/* mmdebug.h can not be included here because of dependencies */
752 #ifdef CONFIG_DEBUG_VM
753 	WARN_ONCE(pgprot_val(pgprot) != massaged_val,
754 		  "attempted to set unsupported pgprot: %016llx "
755 		  "bits: %016llx supported: %016llx\n",
756 		  (u64)pgprot_val(pgprot),
757 		  (u64)pgprot_val(pgprot) ^ massaged_val,
758 		  (u64)__supported_pte_mask);
759 #endif
760 
761 	return massaged_val;
762 }
763 
764 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
765 {
766 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
767 	pfn ^= protnone_mask(pgprot_val(pgprot));
768 	pfn &= PTE_PFN_MASK;
769 	return __pte(pfn | check_pgprot(pgprot));
770 }
771 
772 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
773 {
774 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
775 	pfn ^= protnone_mask(pgprot_val(pgprot));
776 	pfn &= PHYSICAL_PMD_PAGE_MASK;
777 	return __pmd(pfn | check_pgprot(pgprot));
778 }
779 
780 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
781 {
782 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
783 	pfn ^= protnone_mask(pgprot_val(pgprot));
784 	pfn &= PHYSICAL_PUD_PAGE_MASK;
785 	return __pud(pfn | check_pgprot(pgprot));
786 }
787 
788 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
789 {
790 	return pfn_pmd(pmd_pfn(pmd),
791 		      __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
792 }
793 
794 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
795 
796 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
797 {
798 	pteval_t val = pte_val(pte), oldval = val;
799 	pte_t pte_result;
800 
801 	/*
802 	 * Chop off the NX bit (if present), and add the NX portion of
803 	 * the newprot (if present):
804 	 */
805 	val &= _PAGE_CHG_MASK;
806 	val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
807 	val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
808 
809 	pte_result = __pte(val);
810 
811 	/*
812 	 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
813 	 *  1. Marking Write=0 PTEs Dirty=1
814 	 *  2. Marking Dirty=1 PTEs Write=0
815 	 *
816 	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
817 	 * out any Dirty bit passed in newprot. Handle the second case by
818 	 * going through the mksaveddirty exercise. Only do this if the old
819 	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
820 	 */
821 	if (oldval & _PAGE_RW)
822 		pte_result = pte_mksaveddirty(pte_result);
823 	else
824 		pte_result = pte_clear_saveddirty(pte_result);
825 
826 	return pte_result;
827 }
828 
829 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
830 {
831 	pmdval_t val = pmd_val(pmd), oldval = val;
832 	pmd_t pmd_result;
833 
834 	val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
835 	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
836 	val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
837 
838 	pmd_result = __pmd(val);
839 
840 	/*
841 	 * To avoid creating Write=0,Dirty=1 PMDs, pte_modify() needs to avoid:
842 	 *  1. Marking Write=0 PMDs Dirty=1
843 	 *  2. Marking Dirty=1 PMDs Write=0
844 	 *
845 	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
846 	 * out any Dirty bit passed in newprot. Handle the second case by
847 	 * going through the mksaveddirty exercise. Only do this if the old
848 	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
849 	 */
850 	if (oldval & _PAGE_RW)
851 		pmd_result = pmd_mksaveddirty(pmd_result);
852 	else
853 		pmd_result = pmd_clear_saveddirty(pmd_result);
854 
855 	return pmd_result;
856 }
857 
858 /*
859  * mprotect needs to preserve PAT and encryption bits when updating
860  * vm_page_prot
861  */
862 #define pgprot_modify pgprot_modify
863 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
864 {
865 	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
866 	pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
867 	return __pgprot(preservebits | addbits);
868 }
869 
870 #define pte_pgprot(x) __pgprot(pte_flags(x))
871 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
872 #define pud_pgprot(x) __pgprot(pud_flags(x))
873 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
874 
875 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
876 
877 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
878 					 enum page_cache_mode pcm,
879 					 enum page_cache_mode new_pcm)
880 {
881 	/*
882 	 * PAT type is always WB for untracked ranges, so no need to check.
883 	 */
884 	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
885 		return 1;
886 
887 	/*
888 	 * Certain new memtypes are not allowed with certain
889 	 * requested memtype:
890 	 * - request is uncached, return cannot be write-back
891 	 * - request is write-combine, return cannot be write-back
892 	 * - request is write-through, return cannot be write-back
893 	 * - request is write-through, return cannot be write-combine
894 	 */
895 	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
896 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
897 	    (pcm == _PAGE_CACHE_MODE_WC &&
898 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
899 	    (pcm == _PAGE_CACHE_MODE_WT &&
900 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
901 	    (pcm == _PAGE_CACHE_MODE_WT &&
902 	     new_pcm == _PAGE_CACHE_MODE_WC)) {
903 		return 0;
904 	}
905 
906 	return 1;
907 }
908 
909 pmd_t *populate_extra_pmd(unsigned long vaddr);
910 pte_t *populate_extra_pte(unsigned long vaddr);
911 
912 #ifdef CONFIG_PAGE_TABLE_ISOLATION
913 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
914 
915 /*
916  * Take a PGD location (pgdp) and a pgd value that needs to be set there.
917  * Populates the user and returns the resulting PGD that must be set in
918  * the kernel copy of the page tables.
919  */
920 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
921 {
922 	if (!static_cpu_has(X86_FEATURE_PTI))
923 		return pgd;
924 	return __pti_set_user_pgtbl(pgdp, pgd);
925 }
926 #else   /* CONFIG_PAGE_TABLE_ISOLATION */
927 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
928 {
929 	return pgd;
930 }
931 #endif  /* CONFIG_PAGE_TABLE_ISOLATION */
932 
933 #endif	/* __ASSEMBLY__ */
934 
935 
936 #ifdef CONFIG_X86_32
937 # include <asm/pgtable_32.h>
938 #else
939 # include <asm/pgtable_64.h>
940 #endif
941 
942 #ifndef __ASSEMBLY__
943 #include <linux/mm_types.h>
944 #include <linux/mmdebug.h>
945 #include <linux/log2.h>
946 #include <asm/fixmap.h>
947 
948 static inline int pte_none(pte_t pte)
949 {
950 	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
951 }
952 
953 #define __HAVE_ARCH_PTE_SAME
954 static inline int pte_same(pte_t a, pte_t b)
955 {
956 	return a.pte == b.pte;
957 }
958 
959 static inline pte_t pte_next_pfn(pte_t pte)
960 {
961 	if (__pte_needs_invert(pte_val(pte)))
962 		return __pte(pte_val(pte) - (1UL << PFN_PTE_SHIFT));
963 	return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT));
964 }
965 #define pte_next_pfn	pte_next_pfn
966 
967 static inline int pte_present(pte_t a)
968 {
969 	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
970 }
971 
972 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
973 static inline int pte_devmap(pte_t a)
974 {
975 	return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
976 }
977 #endif
978 
979 #define pte_accessible pte_accessible
980 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
981 {
982 	if (pte_flags(a) & _PAGE_PRESENT)
983 		return true;
984 
985 	if ((pte_flags(a) & _PAGE_PROTNONE) &&
986 			atomic_read(&mm->tlb_flush_pending))
987 		return true;
988 
989 	return false;
990 }
991 
992 static inline int pmd_present(pmd_t pmd)
993 {
994 	/*
995 	 * Checking for _PAGE_PSE is needed too because
996 	 * split_huge_page will temporarily clear the present bit (but
997 	 * the _PAGE_PSE flag will remain set at all times while the
998 	 * _PAGE_PRESENT bit is clear).
999 	 */
1000 	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
1001 }
1002 
1003 #ifdef CONFIG_NUMA_BALANCING
1004 /*
1005  * These work without NUMA balancing but the kernel does not care. See the
1006  * comment in include/linux/pgtable.h
1007  */
1008 static inline int pte_protnone(pte_t pte)
1009 {
1010 	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1011 		== _PAGE_PROTNONE;
1012 }
1013 
1014 static inline int pmd_protnone(pmd_t pmd)
1015 {
1016 	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1017 		== _PAGE_PROTNONE;
1018 }
1019 #endif /* CONFIG_NUMA_BALANCING */
1020 
1021 static inline int pmd_none(pmd_t pmd)
1022 {
1023 	/* Only check low word on 32-bit platforms, since it might be
1024 	   out of sync with upper half. */
1025 	unsigned long val = native_pmd_val(pmd);
1026 	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
1027 }
1028 
1029 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1030 {
1031 	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
1032 }
1033 
1034 /*
1035  * Currently stuck as a macro due to indirect forward reference to
1036  * linux/mmzone.h's __section_mem_map_addr() definition:
1037  */
1038 #define pmd_page(pmd)	pfn_to_page(pmd_pfn(pmd))
1039 
1040 /*
1041  * Conversion functions: convert a page and protection to a page entry,
1042  * and a page entry and page directory to the page they refer to.
1043  *
1044  * (Currently stuck as a macro because of indirect forward reference
1045  * to linux/mm.h:page_to_nid())
1046  */
1047 #define mk_pte(page, pgprot)						  \
1048 ({									  \
1049 	pgprot_t __pgprot = pgprot;					  \
1050 									  \
1051 	WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \
1052 		    _PAGE_DIRTY);					  \
1053 	pfn_pte(page_to_pfn(page), __pgprot);				  \
1054 })
1055 
1056 static inline int pmd_bad(pmd_t pmd)
1057 {
1058 	return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
1059 	       (_KERNPG_TABLE & ~_PAGE_ACCESSED);
1060 }
1061 
1062 static inline unsigned long pages_to_mb(unsigned long npg)
1063 {
1064 	return npg >> (20 - PAGE_SHIFT);
1065 }
1066 
1067 #if CONFIG_PGTABLE_LEVELS > 2
1068 static inline int pud_none(pud_t pud)
1069 {
1070 	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1071 }
1072 
1073 static inline int pud_present(pud_t pud)
1074 {
1075 	return pud_flags(pud) & _PAGE_PRESENT;
1076 }
1077 
1078 static inline pmd_t *pud_pgtable(pud_t pud)
1079 {
1080 	return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
1081 }
1082 
1083 /*
1084  * Currently stuck as a macro due to indirect forward reference to
1085  * linux/mmzone.h's __section_mem_map_addr() definition:
1086  */
1087 #define pud_page(pud)	pfn_to_page(pud_pfn(pud))
1088 
1089 #define pud_leaf	pud_large
1090 static inline int pud_large(pud_t pud)
1091 {
1092 	return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
1093 		(_PAGE_PSE | _PAGE_PRESENT);
1094 }
1095 
1096 static inline int pud_bad(pud_t pud)
1097 {
1098 	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
1099 }
1100 #else
1101 #define pud_leaf	pud_large
1102 static inline int pud_large(pud_t pud)
1103 {
1104 	return 0;
1105 }
1106 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
1107 
1108 #if CONFIG_PGTABLE_LEVELS > 3
1109 static inline int p4d_none(p4d_t p4d)
1110 {
1111 	return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1112 }
1113 
1114 static inline int p4d_present(p4d_t p4d)
1115 {
1116 	return p4d_flags(p4d) & _PAGE_PRESENT;
1117 }
1118 
1119 static inline pud_t *p4d_pgtable(p4d_t p4d)
1120 {
1121 	return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
1122 }
1123 
1124 /*
1125  * Currently stuck as a macro due to indirect forward reference to
1126  * linux/mmzone.h's __section_mem_map_addr() definition:
1127  */
1128 #define p4d_page(p4d)	pfn_to_page(p4d_pfn(p4d))
1129 
1130 static inline int p4d_bad(p4d_t p4d)
1131 {
1132 	unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
1133 
1134 	if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
1135 		ignore_flags |= _PAGE_NX;
1136 
1137 	return (p4d_flags(p4d) & ~ignore_flags) != 0;
1138 }
1139 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1140 
1141 static inline unsigned long p4d_index(unsigned long address)
1142 {
1143 	return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
1144 }
1145 
1146 #if CONFIG_PGTABLE_LEVELS > 4
1147 static inline int pgd_present(pgd_t pgd)
1148 {
1149 	if (!pgtable_l5_enabled())
1150 		return 1;
1151 	return pgd_flags(pgd) & _PAGE_PRESENT;
1152 }
1153 
1154 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
1155 {
1156 	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
1157 }
1158 
1159 /*
1160  * Currently stuck as a macro due to indirect forward reference to
1161  * linux/mmzone.h's __section_mem_map_addr() definition:
1162  */
1163 #define pgd_page(pgd)	pfn_to_page(pgd_pfn(pgd))
1164 
1165 /* to find an entry in a page-table-directory. */
1166 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1167 {
1168 	if (!pgtable_l5_enabled())
1169 		return (p4d_t *)pgd;
1170 	return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
1171 }
1172 
1173 static inline int pgd_bad(pgd_t pgd)
1174 {
1175 	unsigned long ignore_flags = _PAGE_USER;
1176 
1177 	if (!pgtable_l5_enabled())
1178 		return 0;
1179 
1180 	if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
1181 		ignore_flags |= _PAGE_NX;
1182 
1183 	return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
1184 }
1185 
1186 static inline int pgd_none(pgd_t pgd)
1187 {
1188 	if (!pgtable_l5_enabled())
1189 		return 0;
1190 	/*
1191 	 * There is no need to do a workaround for the KNL stray
1192 	 * A/D bit erratum here.  PGDs only point to page tables
1193 	 * except on 32-bit non-PAE which is not supported on
1194 	 * KNL.
1195 	 */
1196 	return !native_pgd_val(pgd);
1197 }
1198 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
1199 
1200 #endif	/* __ASSEMBLY__ */
1201 
1202 #define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
1203 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1204 
1205 #ifndef __ASSEMBLY__
1206 
1207 extern int direct_gbpages;
1208 void init_mem_mapping(void);
1209 void early_alloc_pgt_buf(void);
1210 extern void memblock_find_dma_reserve(void);
1211 void __init poking_init(void);
1212 unsigned long init_memory_mapping(unsigned long start,
1213 				  unsigned long end, pgprot_t prot);
1214 
1215 #ifdef CONFIG_X86_64
1216 extern pgd_t trampoline_pgd_entry;
1217 #endif
1218 
1219 /* local pte updates need not use xchg for locking */
1220 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1221 {
1222 	pte_t res = *ptep;
1223 
1224 	/* Pure native function needs no input for mm, addr */
1225 	native_pte_clear(NULL, 0, ptep);
1226 	return res;
1227 }
1228 
1229 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1230 {
1231 	pmd_t res = *pmdp;
1232 
1233 	native_pmd_clear(pmdp);
1234 	return res;
1235 }
1236 
1237 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1238 {
1239 	pud_t res = *pudp;
1240 
1241 	native_pud_clear(pudp);
1242 	return res;
1243 }
1244 
1245 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1246 			      pmd_t *pmdp, pmd_t pmd)
1247 {
1248 	page_table_check_pmd_set(mm, pmdp, pmd);
1249 	set_pmd(pmdp, pmd);
1250 }
1251 
1252 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1253 			      pud_t *pudp, pud_t pud)
1254 {
1255 	page_table_check_pud_set(mm, pudp, pud);
1256 	native_set_pud(pudp, pud);
1257 }
1258 
1259 /*
1260  * We only update the dirty/accessed state if we set
1261  * the dirty bit by hand in the kernel, since the hardware
1262  * will do the accessed bit for us, and we don't want to
1263  * race with other CPU's that might be updating the dirty
1264  * bit at the same time.
1265  */
1266 struct vm_area_struct;
1267 
1268 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1269 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1270 				 unsigned long address, pte_t *ptep,
1271 				 pte_t entry, int dirty);
1272 
1273 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1274 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1275 				     unsigned long addr, pte_t *ptep);
1276 
1277 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1278 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1279 				  unsigned long address, pte_t *ptep);
1280 
1281 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1282 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1283 				       pte_t *ptep)
1284 {
1285 	pte_t pte = native_ptep_get_and_clear(ptep);
1286 	page_table_check_pte_clear(mm, pte);
1287 	return pte;
1288 }
1289 
1290 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1291 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1292 					    unsigned long addr, pte_t *ptep,
1293 					    int full)
1294 {
1295 	pte_t pte;
1296 	if (full) {
1297 		/*
1298 		 * Full address destruction in progress; paravirt does not
1299 		 * care about updates and native needs no locking
1300 		 */
1301 		pte = native_local_ptep_get_and_clear(ptep);
1302 		page_table_check_pte_clear(mm, pte);
1303 	} else {
1304 		pte = ptep_get_and_clear(mm, addr, ptep);
1305 	}
1306 	return pte;
1307 }
1308 
1309 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1310 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1311 				      unsigned long addr, pte_t *ptep)
1312 {
1313 	/*
1314 	 * Avoid accidentally creating shadow stack PTEs
1315 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1316 	 * the hardware setting Dirty=1.
1317 	 */
1318 	pte_t old_pte, new_pte;
1319 
1320 	old_pte = READ_ONCE(*ptep);
1321 	do {
1322 		new_pte = pte_wrprotect(old_pte);
1323 	} while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
1324 }
1325 
1326 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
1327 
1328 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
1329 
1330 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1331 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1332 				 unsigned long address, pmd_t *pmdp,
1333 				 pmd_t entry, int dirty);
1334 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1335 				 unsigned long address, pud_t *pudp,
1336 				 pud_t entry, int dirty);
1337 
1338 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1339 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1340 				     unsigned long addr, pmd_t *pmdp);
1341 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1342 				     unsigned long addr, pud_t *pudp);
1343 
1344 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1345 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1346 				  unsigned long address, pmd_t *pmdp);
1347 
1348 
1349 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1350 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1351 				       pmd_t *pmdp)
1352 {
1353 	pmd_t pmd = native_pmdp_get_and_clear(pmdp);
1354 
1355 	page_table_check_pmd_clear(mm, pmd);
1356 
1357 	return pmd;
1358 }
1359 
1360 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1361 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1362 					unsigned long addr, pud_t *pudp)
1363 {
1364 	pud_t pud = native_pudp_get_and_clear(pudp);
1365 
1366 	page_table_check_pud_clear(mm, pud);
1367 
1368 	return pud;
1369 }
1370 
1371 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1372 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1373 				      unsigned long addr, pmd_t *pmdp)
1374 {
1375 	/*
1376 	 * Avoid accidentally creating shadow stack PTEs
1377 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1378 	 * the hardware setting Dirty=1.
1379 	 */
1380 	pmd_t old_pmd, new_pmd;
1381 
1382 	old_pmd = READ_ONCE(*pmdp);
1383 	do {
1384 		new_pmd = pmd_wrprotect(old_pmd);
1385 	} while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
1386 }
1387 
1388 #ifndef pmdp_establish
1389 #define pmdp_establish pmdp_establish
1390 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1391 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1392 {
1393 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1394 	if (IS_ENABLED(CONFIG_SMP)) {
1395 		return xchg(pmdp, pmd);
1396 	} else {
1397 		pmd_t old = *pmdp;
1398 		WRITE_ONCE(*pmdp, pmd);
1399 		return old;
1400 	}
1401 }
1402 #endif
1403 
1404 #define __HAVE_ARCH_PMDP_INVALIDATE_AD
1405 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1406 				unsigned long address, pmd_t *pmdp);
1407 
1408 /*
1409  * Page table pages are page-aligned.  The lower half of the top
1410  * level is used for userspace and the top half for the kernel.
1411  *
1412  * Returns true for parts of the PGD that map userspace and
1413  * false for the parts that map the kernel.
1414  */
1415 static inline bool pgdp_maps_userspace(void *__ptr)
1416 {
1417 	unsigned long ptr = (unsigned long)__ptr;
1418 
1419 	return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1420 }
1421 
1422 #define pgd_leaf	pgd_large
1423 static inline int pgd_large(pgd_t pgd) { return 0; }
1424 
1425 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1426 /*
1427  * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages
1428  * (8k-aligned and 8k in size).  The kernel one is at the beginning 4k and
1429  * the user one is in the last 4k.  To switch between them, you
1430  * just need to flip the 12th bit in their addresses.
1431  */
1432 #define PTI_PGTABLE_SWITCH_BIT	PAGE_SHIFT
1433 
1434 /*
1435  * This generates better code than the inline assembly in
1436  * __set_bit().
1437  */
1438 static inline void *ptr_set_bit(void *ptr, int bit)
1439 {
1440 	unsigned long __ptr = (unsigned long)ptr;
1441 
1442 	__ptr |= BIT(bit);
1443 	return (void *)__ptr;
1444 }
1445 static inline void *ptr_clear_bit(void *ptr, int bit)
1446 {
1447 	unsigned long __ptr = (unsigned long)ptr;
1448 
1449 	__ptr &= ~BIT(bit);
1450 	return (void *)__ptr;
1451 }
1452 
1453 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1454 {
1455 	return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1456 }
1457 
1458 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1459 {
1460 	return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1461 }
1462 
1463 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1464 {
1465 	return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1466 }
1467 
1468 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1469 {
1470 	return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1471 }
1472 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
1473 
1474 /*
1475  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1476  *
1477  *  dst - pointer to pgd range anywhere on a pgd page
1478  *  src - ""
1479  *  count - the number of pgds to copy.
1480  *
1481  * dst and src can be on the same page, but the range must not overlap,
1482  * and must not cross a page boundary.
1483  */
1484 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1485 {
1486 	memcpy(dst, src, count * sizeof(pgd_t));
1487 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1488 	if (!static_cpu_has(X86_FEATURE_PTI))
1489 		return;
1490 	/* Clone the user space pgd as well */
1491 	memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1492 	       count * sizeof(pgd_t));
1493 #endif
1494 }
1495 
1496 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1497 static inline int page_level_shift(enum pg_level level)
1498 {
1499 	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1500 }
1501 static inline unsigned long page_level_size(enum pg_level level)
1502 {
1503 	return 1UL << page_level_shift(level);
1504 }
1505 static inline unsigned long page_level_mask(enum pg_level level)
1506 {
1507 	return ~(page_level_size(level) - 1);
1508 }
1509 
1510 /*
1511  * The x86 doesn't have any external MMU info: the kernel page
1512  * tables contain all the necessary information.
1513  */
1514 static inline void update_mmu_cache(struct vm_area_struct *vma,
1515 		unsigned long addr, pte_t *ptep)
1516 {
1517 }
1518 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1519 		struct vm_area_struct *vma, unsigned long addr,
1520 		pte_t *ptep, unsigned int nr)
1521 {
1522 }
1523 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1524 		unsigned long addr, pmd_t *pmd)
1525 {
1526 }
1527 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1528 		unsigned long addr, pud_t *pud)
1529 {
1530 }
1531 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1532 {
1533 	return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
1534 }
1535 
1536 static inline int pte_swp_exclusive(pte_t pte)
1537 {
1538 	return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
1539 }
1540 
1541 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1542 {
1543 	return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
1544 }
1545 
1546 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1547 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1548 {
1549 	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1550 }
1551 
1552 static inline int pte_swp_soft_dirty(pte_t pte)
1553 {
1554 	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1555 }
1556 
1557 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1558 {
1559 	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1560 }
1561 
1562 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1563 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1564 {
1565 	return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1566 }
1567 
1568 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1569 {
1570 	return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1571 }
1572 
1573 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1574 {
1575 	return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1576 }
1577 #endif
1578 #endif
1579 
1580 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1581 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
1582 {
1583 	return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
1584 }
1585 
1586 static inline int pte_swp_uffd_wp(pte_t pte)
1587 {
1588 	return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
1589 }
1590 
1591 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
1592 {
1593 	return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
1594 }
1595 
1596 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
1597 {
1598 	return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
1599 }
1600 
1601 static inline int pmd_swp_uffd_wp(pmd_t pmd)
1602 {
1603 	return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
1604 }
1605 
1606 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
1607 {
1608 	return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
1609 }
1610 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
1611 
1612 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1613 {
1614 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1615 	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1616 	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1617 #else
1618 	return 0;
1619 #endif
1620 }
1621 
1622 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1623 {
1624 	u32 pkru = read_pkru();
1625 
1626 	if (!__pkru_allows_read(pkru, pkey))
1627 		return false;
1628 	if (write && !__pkru_allows_write(pkru, pkey))
1629 		return false;
1630 
1631 	return true;
1632 }
1633 
1634 /*
1635  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1636  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1637  * same value on all 3 types.
1638  */
1639 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1640 {
1641 	unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1642 
1643 	/*
1644 	 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel
1645 	 * shouldn't generally allow access to, but since they
1646 	 * are already Write=0, the below logic covers both cases.
1647 	 */
1648 	if (write)
1649 		need_pte_bits |= _PAGE_RW;
1650 
1651 	if ((pteval & need_pte_bits) != need_pte_bits)
1652 		return 0;
1653 
1654 	return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1655 }
1656 
1657 #define pte_access_permitted pte_access_permitted
1658 static inline bool pte_access_permitted(pte_t pte, bool write)
1659 {
1660 	return __pte_access_permitted(pte_val(pte), write);
1661 }
1662 
1663 #define pmd_access_permitted pmd_access_permitted
1664 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1665 {
1666 	return __pte_access_permitted(pmd_val(pmd), write);
1667 }
1668 
1669 #define pud_access_permitted pud_access_permitted
1670 static inline bool pud_access_permitted(pud_t pud, bool write)
1671 {
1672 	return __pte_access_permitted(pud_val(pud), write);
1673 }
1674 
1675 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1676 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1677 
1678 static inline bool arch_has_pfn_modify_check(void)
1679 {
1680 	return boot_cpu_has_bug(X86_BUG_L1TF);
1681 }
1682 
1683 #define arch_check_zapped_pte arch_check_zapped_pte
1684 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
1685 
1686 #define arch_check_zapped_pmd arch_check_zapped_pmd
1687 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
1688 
1689 #ifdef CONFIG_XEN_PV
1690 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
1691 static inline bool arch_has_hw_nonleaf_pmd_young(void)
1692 {
1693 	return !cpu_feature_enabled(X86_FEATURE_XENPV);
1694 }
1695 #endif
1696 
1697 #ifdef CONFIG_PAGE_TABLE_CHECK
1698 static inline bool pte_user_accessible_page(pte_t pte)
1699 {
1700 	return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
1701 }
1702 
1703 static inline bool pmd_user_accessible_page(pmd_t pmd)
1704 {
1705 	return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
1706 }
1707 
1708 static inline bool pud_user_accessible_page(pud_t pud)
1709 {
1710 	return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
1711 }
1712 #endif
1713 
1714 #ifdef CONFIG_X86_SGX
1715 int arch_memory_failure(unsigned long pfn, int flags);
1716 #define arch_memory_failure arch_memory_failure
1717 
1718 bool arch_is_platform_page(u64 paddr);
1719 #define arch_is_platform_page arch_is_platform_page
1720 #endif
1721 
1722 #endif	/* __ASSEMBLY__ */
1723 
1724 #endif /* _ASM_X86_PGTABLE_H */
1725