xref: /linux/arch/x86/include/asm/pgtable.h (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4 
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8 
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)						\
13 	((boot_cpu_data.x86 > 3)					\
14 	 ? (__pgprot(pgprot_val(prot) |					\
15 		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
16 	 : (prot))
17 
18 #ifndef __ASSEMBLY__
19 #include <linux/spinlock.h>
20 #include <asm/x86_init.h>
21 #include <asm/pkru.h>
22 #include <asm/fpu/api.h>
23 #include <asm/coco.h>
24 #include <asm-generic/pgtable_uffd.h>
25 #include <linux/page_table_check.h>
26 
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29 
30 struct seq_file;
31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
33 				   bool user);
34 bool ptdump_walk_pgd_level_checkwx(void);
35 #define ptdump_check_wx ptdump_walk_pgd_level_checkwx
36 void ptdump_walk_user_pgd_level_checkwx(void);
37 
38 /*
39  * Macros to add or remove encryption attribute
40  */
41 #define pgprot_encrypted(prot)	__pgprot(cc_mkenc(pgprot_val(prot)))
42 #define pgprot_decrypted(prot)	__pgprot(cc_mkdec(pgprot_val(prot)))
43 
44 #ifdef CONFIG_DEBUG_WX
45 #define debug_checkwx_user()	ptdump_walk_user_pgd_level_checkwx()
46 #else
47 #define debug_checkwx_user()	do { } while (0)
48 #endif
49 
50 /*
51  * ZERO_PAGE is a global shared page that is always zero: used
52  * for zero-mapped memory areas etc..
53  */
54 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
55 	__visible;
56 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
57 
58 extern spinlock_t pgd_lock;
59 extern struct list_head pgd_list;
60 
61 extern struct mm_struct *pgd_page_get_mm(struct page *page);
62 
63 extern pmdval_t early_pmd_flags;
64 
65 #ifdef CONFIG_PARAVIRT_XXL
66 #include <asm/paravirt.h>
67 #else  /* !CONFIG_PARAVIRT_XXL */
68 #define set_pte(ptep, pte)		native_set_pte(ptep, pte)
69 
70 #define set_pte_atomic(ptep, pte)					\
71 	native_set_pte_atomic(ptep, pte)
72 
73 #define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
74 
75 #ifndef __PAGETABLE_P4D_FOLDED
76 #define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
77 #define pgd_clear(pgd)			(pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
78 #endif
79 
80 #ifndef set_p4d
81 # define set_p4d(p4dp, p4d)		native_set_p4d(p4dp, p4d)
82 #endif
83 
84 #ifndef __PAGETABLE_PUD_FOLDED
85 #define p4d_clear(p4d)			native_p4d_clear(p4d)
86 #endif
87 
88 #ifndef set_pud
89 # define set_pud(pudp, pud)		native_set_pud(pudp, pud)
90 #endif
91 
92 #ifndef __PAGETABLE_PUD_FOLDED
93 #define pud_clear(pud)			native_pud_clear(pud)
94 #endif
95 
96 #define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
97 #define pmd_clear(pmd)			native_pmd_clear(pmd)
98 
99 #define pgd_val(x)	native_pgd_val(x)
100 #define __pgd(x)	native_make_pgd(x)
101 
102 #ifndef __PAGETABLE_P4D_FOLDED
103 #define p4d_val(x)	native_p4d_val(x)
104 #define __p4d(x)	native_make_p4d(x)
105 #endif
106 
107 #ifndef __PAGETABLE_PUD_FOLDED
108 #define pud_val(x)	native_pud_val(x)
109 #define __pud(x)	native_make_pud(x)
110 #endif
111 
112 #ifndef __PAGETABLE_PMD_FOLDED
113 #define pmd_val(x)	native_pmd_val(x)
114 #define __pmd(x)	native_make_pmd(x)
115 #endif
116 
117 #define pte_val(x)	native_pte_val(x)
118 #define __pte(x)	native_make_pte(x)
119 
120 #define arch_end_context_switch(prev)	do {} while(0)
121 #endif	/* CONFIG_PARAVIRT_XXL */
122 
123 /*
124  * The following only work if pte_present() is true.
125  * Undefined behaviour if not..
126  */
127 static inline bool pte_dirty(pte_t pte)
128 {
129 	return pte_flags(pte) & _PAGE_DIRTY_BITS;
130 }
131 
132 static inline bool pte_shstk(pte_t pte)
133 {
134 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
135 	       (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
136 }
137 
138 static inline int pte_young(pte_t pte)
139 {
140 	return pte_flags(pte) & _PAGE_ACCESSED;
141 }
142 
143 static inline bool pte_decrypted(pte_t pte)
144 {
145 	return cc_mkdec(pte_val(pte)) == pte_val(pte);
146 }
147 
148 #define pmd_dirty pmd_dirty
149 static inline bool pmd_dirty(pmd_t pmd)
150 {
151 	return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
152 }
153 
154 static inline bool pmd_shstk(pmd_t pmd)
155 {
156 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
157 	       (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
158 	       (_PAGE_DIRTY | _PAGE_PSE);
159 }
160 
161 #define pmd_young pmd_young
162 static inline int pmd_young(pmd_t pmd)
163 {
164 	return pmd_flags(pmd) & _PAGE_ACCESSED;
165 }
166 
167 static inline bool pud_dirty(pud_t pud)
168 {
169 	return pud_flags(pud) & _PAGE_DIRTY_BITS;
170 }
171 
172 static inline int pud_young(pud_t pud)
173 {
174 	return pud_flags(pud) & _PAGE_ACCESSED;
175 }
176 
177 static inline int pte_write(pte_t pte)
178 {
179 	/*
180 	 * Shadow stack pages are logically writable, but do not have
181 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
182 	 */
183 	return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
184 }
185 
186 #define pmd_write pmd_write
187 static inline int pmd_write(pmd_t pmd)
188 {
189 	/*
190 	 * Shadow stack pages are logically writable, but do not have
191 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
192 	 */
193 	return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
194 }
195 
196 #define pud_write pud_write
197 static inline int pud_write(pud_t pud)
198 {
199 	return pud_flags(pud) & _PAGE_RW;
200 }
201 
202 static inline int pte_huge(pte_t pte)
203 {
204 	return pte_flags(pte) & _PAGE_PSE;
205 }
206 
207 static inline int pte_global(pte_t pte)
208 {
209 	return pte_flags(pte) & _PAGE_GLOBAL;
210 }
211 
212 static inline int pte_exec(pte_t pte)
213 {
214 	return !(pte_flags(pte) & _PAGE_NX);
215 }
216 
217 static inline int pte_special(pte_t pte)
218 {
219 	return pte_flags(pte) & _PAGE_SPECIAL;
220 }
221 
222 /* Entries that were set to PROT_NONE are inverted */
223 
224 static inline u64 protnone_mask(u64 val);
225 
226 #define PFN_PTE_SHIFT	PAGE_SHIFT
227 
228 static inline unsigned long pte_pfn(pte_t pte)
229 {
230 	phys_addr_t pfn = pte_val(pte);
231 	pfn ^= protnone_mask(pfn);
232 	return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
233 }
234 
235 static inline unsigned long pmd_pfn(pmd_t pmd)
236 {
237 	phys_addr_t pfn = pmd_val(pmd);
238 	pfn ^= protnone_mask(pfn);
239 	return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
240 }
241 
242 #define pud_pfn pud_pfn
243 static inline unsigned long pud_pfn(pud_t pud)
244 {
245 	phys_addr_t pfn = pud_val(pud);
246 	pfn ^= protnone_mask(pfn);
247 	return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
248 }
249 
250 static inline unsigned long p4d_pfn(p4d_t p4d)
251 {
252 	return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
253 }
254 
255 static inline unsigned long pgd_pfn(pgd_t pgd)
256 {
257 	return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
258 }
259 
260 #define p4d_leaf p4d_leaf
261 static inline bool p4d_leaf(p4d_t p4d)
262 {
263 	/* No 512 GiB pages yet */
264 	return 0;
265 }
266 
267 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
268 
269 #define pmd_leaf pmd_leaf
270 static inline bool pmd_leaf(pmd_t pte)
271 {
272 	return pmd_flags(pte) & _PAGE_PSE;
273 }
274 
275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
276 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_leaf */
277 static inline int pmd_trans_huge(pmd_t pmd)
278 {
279 	return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
280 }
281 
282 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
283 static inline int pud_trans_huge(pud_t pud)
284 {
285 	return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
286 }
287 #endif
288 
289 #define has_transparent_hugepage has_transparent_hugepage
290 static inline int has_transparent_hugepage(void)
291 {
292 	return boot_cpu_has(X86_FEATURE_PSE);
293 }
294 
295 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
296 static inline int pmd_devmap(pmd_t pmd)
297 {
298 	return !!(pmd_val(pmd) & _PAGE_DEVMAP);
299 }
300 
301 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
302 static inline int pud_devmap(pud_t pud)
303 {
304 	return !!(pud_val(pud) & _PAGE_DEVMAP);
305 }
306 #else
307 static inline int pud_devmap(pud_t pud)
308 {
309 	return 0;
310 }
311 #endif
312 
313 static inline int pgd_devmap(pgd_t pgd)
314 {
315 	return 0;
316 }
317 #endif
318 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
319 
320 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
321 {
322 	pteval_t v = native_pte_val(pte);
323 
324 	return native_make_pte(v | set);
325 }
326 
327 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
328 {
329 	pteval_t v = native_pte_val(pte);
330 
331 	return native_make_pte(v & ~clear);
332 }
333 
334 /*
335  * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
336  * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
337  * when creating dirty, write-protected memory, a software bit is used:
338  * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
339  * Dirty bit to SavedDirty, and vice-vesra.
340  *
341  * This shifting is only done if needed. In the case of shifting
342  * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
343  * shifting SavedDirty->Dirty, the condition is Write=1.
344  */
345 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
346 {
347 	pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
348 
349 	v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
350 	v &= ~(cond << _PAGE_BIT_DIRTY);
351 
352 	return v;
353 }
354 
355 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
356 {
357 	pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
358 
359 	v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
360 	v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
361 
362 	return v;
363 }
364 
365 static inline pte_t pte_mksaveddirty(pte_t pte)
366 {
367 	pteval_t v = native_pte_val(pte);
368 
369 	v = mksaveddirty_shift(v);
370 	return native_make_pte(v);
371 }
372 
373 static inline pte_t pte_clear_saveddirty(pte_t pte)
374 {
375 	pteval_t v = native_pte_val(pte);
376 
377 	v = clear_saveddirty_shift(v);
378 	return native_make_pte(v);
379 }
380 
381 static inline pte_t pte_wrprotect(pte_t pte)
382 {
383 	pte = pte_clear_flags(pte, _PAGE_RW);
384 
385 	/*
386 	 * Blindly clearing _PAGE_RW might accidentally create
387 	 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware
388 	 * dirty value to the software bit, if present.
389 	 */
390 	return pte_mksaveddirty(pte);
391 }
392 
393 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
394 static inline int pte_uffd_wp(pte_t pte)
395 {
396 	return pte_flags(pte) & _PAGE_UFFD_WP;
397 }
398 
399 static inline pte_t pte_mkuffd_wp(pte_t pte)
400 {
401 	return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
402 }
403 
404 static inline pte_t pte_clear_uffd_wp(pte_t pte)
405 {
406 	return pte_clear_flags(pte, _PAGE_UFFD_WP);
407 }
408 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
409 
410 static inline pte_t pte_mkclean(pte_t pte)
411 {
412 	return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
413 }
414 
415 static inline pte_t pte_mkold(pte_t pte)
416 {
417 	return pte_clear_flags(pte, _PAGE_ACCESSED);
418 }
419 
420 static inline pte_t pte_mkexec(pte_t pte)
421 {
422 	return pte_clear_flags(pte, _PAGE_NX);
423 }
424 
425 static inline pte_t pte_mkdirty(pte_t pte)
426 {
427 	pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
428 
429 	return pte_mksaveddirty(pte);
430 }
431 
432 static inline pte_t pte_mkwrite_shstk(pte_t pte)
433 {
434 	pte = pte_clear_flags(pte, _PAGE_RW);
435 
436 	return pte_set_flags(pte, _PAGE_DIRTY);
437 }
438 
439 static inline pte_t pte_mkyoung(pte_t pte)
440 {
441 	return pte_set_flags(pte, _PAGE_ACCESSED);
442 }
443 
444 static inline pte_t pte_mkwrite_novma(pte_t pte)
445 {
446 	return pte_set_flags(pte, _PAGE_RW);
447 }
448 
449 struct vm_area_struct;
450 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
451 #define pte_mkwrite pte_mkwrite
452 
453 static inline pte_t pte_mkhuge(pte_t pte)
454 {
455 	return pte_set_flags(pte, _PAGE_PSE);
456 }
457 
458 static inline pte_t pte_clrhuge(pte_t pte)
459 {
460 	return pte_clear_flags(pte, _PAGE_PSE);
461 }
462 
463 static inline pte_t pte_mkglobal(pte_t pte)
464 {
465 	return pte_set_flags(pte, _PAGE_GLOBAL);
466 }
467 
468 static inline pte_t pte_clrglobal(pte_t pte)
469 {
470 	return pte_clear_flags(pte, _PAGE_GLOBAL);
471 }
472 
473 static inline pte_t pte_mkspecial(pte_t pte)
474 {
475 	return pte_set_flags(pte, _PAGE_SPECIAL);
476 }
477 
478 static inline pte_t pte_mkdevmap(pte_t pte)
479 {
480 	return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
481 }
482 
483 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
484 {
485 	pmdval_t v = native_pmd_val(pmd);
486 
487 	return native_make_pmd(v | set);
488 }
489 
490 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
491 {
492 	pmdval_t v = native_pmd_val(pmd);
493 
494 	return native_make_pmd(v & ~clear);
495 }
496 
497 /* See comments above mksaveddirty_shift() */
498 static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
499 {
500 	pmdval_t v = native_pmd_val(pmd);
501 
502 	v = mksaveddirty_shift(v);
503 	return native_make_pmd(v);
504 }
505 
506 /* See comments above mksaveddirty_shift() */
507 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
508 {
509 	pmdval_t v = native_pmd_val(pmd);
510 
511 	v = clear_saveddirty_shift(v);
512 	return native_make_pmd(v);
513 }
514 
515 static inline pmd_t pmd_wrprotect(pmd_t pmd)
516 {
517 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
518 
519 	/*
520 	 * Blindly clearing _PAGE_RW might accidentally create
521 	 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware
522 	 * dirty value to the software bit.
523 	 */
524 	return pmd_mksaveddirty(pmd);
525 }
526 
527 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
528 static inline int pmd_uffd_wp(pmd_t pmd)
529 {
530 	return pmd_flags(pmd) & _PAGE_UFFD_WP;
531 }
532 
533 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
534 {
535 	return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
536 }
537 
538 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
539 {
540 	return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
541 }
542 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
543 
544 static inline pmd_t pmd_mkold(pmd_t pmd)
545 {
546 	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
547 }
548 
549 static inline pmd_t pmd_mkclean(pmd_t pmd)
550 {
551 	return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
552 }
553 
554 static inline pmd_t pmd_mkdirty(pmd_t pmd)
555 {
556 	pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
557 
558 	return pmd_mksaveddirty(pmd);
559 }
560 
561 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
562 {
563 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
564 
565 	return pmd_set_flags(pmd, _PAGE_DIRTY);
566 }
567 
568 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
569 {
570 	return pmd_set_flags(pmd, _PAGE_DEVMAP);
571 }
572 
573 static inline pmd_t pmd_mkhuge(pmd_t pmd)
574 {
575 	return pmd_set_flags(pmd, _PAGE_PSE);
576 }
577 
578 static inline pmd_t pmd_mkyoung(pmd_t pmd)
579 {
580 	return pmd_set_flags(pmd, _PAGE_ACCESSED);
581 }
582 
583 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
584 {
585 	return pmd_set_flags(pmd, _PAGE_RW);
586 }
587 
588 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
589 #define pmd_mkwrite pmd_mkwrite
590 
591 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
592 {
593 	pudval_t v = native_pud_val(pud);
594 
595 	return native_make_pud(v | set);
596 }
597 
598 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
599 {
600 	pudval_t v = native_pud_val(pud);
601 
602 	return native_make_pud(v & ~clear);
603 }
604 
605 /* See comments above mksaveddirty_shift() */
606 static inline pud_t pud_mksaveddirty(pud_t pud)
607 {
608 	pudval_t v = native_pud_val(pud);
609 
610 	v = mksaveddirty_shift(v);
611 	return native_make_pud(v);
612 }
613 
614 /* See comments above mksaveddirty_shift() */
615 static inline pud_t pud_clear_saveddirty(pud_t pud)
616 {
617 	pudval_t v = native_pud_val(pud);
618 
619 	v = clear_saveddirty_shift(v);
620 	return native_make_pud(v);
621 }
622 
623 static inline pud_t pud_mkold(pud_t pud)
624 {
625 	return pud_clear_flags(pud, _PAGE_ACCESSED);
626 }
627 
628 static inline pud_t pud_mkclean(pud_t pud)
629 {
630 	return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
631 }
632 
633 static inline pud_t pud_wrprotect(pud_t pud)
634 {
635 	pud = pud_clear_flags(pud, _PAGE_RW);
636 
637 	/*
638 	 * Blindly clearing _PAGE_RW might accidentally create
639 	 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware
640 	 * dirty value to the software bit.
641 	 */
642 	return pud_mksaveddirty(pud);
643 }
644 
645 static inline pud_t pud_mkdirty(pud_t pud)
646 {
647 	pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
648 
649 	return pud_mksaveddirty(pud);
650 }
651 
652 static inline pud_t pud_mkdevmap(pud_t pud)
653 {
654 	return pud_set_flags(pud, _PAGE_DEVMAP);
655 }
656 
657 static inline pud_t pud_mkhuge(pud_t pud)
658 {
659 	return pud_set_flags(pud, _PAGE_PSE);
660 }
661 
662 static inline pud_t pud_mkyoung(pud_t pud)
663 {
664 	return pud_set_flags(pud, _PAGE_ACCESSED);
665 }
666 
667 static inline pud_t pud_mkwrite(pud_t pud)
668 {
669 	pud = pud_set_flags(pud, _PAGE_RW);
670 
671 	return pud_clear_saveddirty(pud);
672 }
673 
674 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
675 static inline int pte_soft_dirty(pte_t pte)
676 {
677 	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
678 }
679 
680 static inline int pmd_soft_dirty(pmd_t pmd)
681 {
682 	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
683 }
684 
685 static inline int pud_soft_dirty(pud_t pud)
686 {
687 	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
688 }
689 
690 static inline pte_t pte_mksoft_dirty(pte_t pte)
691 {
692 	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
693 }
694 
695 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
696 {
697 	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
698 }
699 
700 static inline pud_t pud_mksoft_dirty(pud_t pud)
701 {
702 	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
703 }
704 
705 static inline pte_t pte_clear_soft_dirty(pte_t pte)
706 {
707 	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
708 }
709 
710 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
711 {
712 	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
713 }
714 
715 static inline pud_t pud_clear_soft_dirty(pud_t pud)
716 {
717 	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
718 }
719 
720 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
721 
722 /*
723  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
724  * can use those bits for other purposes, so leave them be.
725  */
726 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
727 {
728 	pgprotval_t protval = pgprot_val(pgprot);
729 
730 	if (protval & _PAGE_PRESENT)
731 		protval &= __supported_pte_mask;
732 
733 	return protval;
734 }
735 
736 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
737 {
738 	pgprotval_t massaged_val = massage_pgprot(pgprot);
739 
740 	/* mmdebug.h can not be included here because of dependencies */
741 #ifdef CONFIG_DEBUG_VM
742 	WARN_ONCE(pgprot_val(pgprot) != massaged_val,
743 		  "attempted to set unsupported pgprot: %016llx "
744 		  "bits: %016llx supported: %016llx\n",
745 		  (u64)pgprot_val(pgprot),
746 		  (u64)pgprot_val(pgprot) ^ massaged_val,
747 		  (u64)__supported_pte_mask);
748 #endif
749 
750 	return massaged_val;
751 }
752 
753 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
754 {
755 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
756 	pfn ^= protnone_mask(pgprot_val(pgprot));
757 	pfn &= PTE_PFN_MASK;
758 	return __pte(pfn | check_pgprot(pgprot));
759 }
760 
761 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
762 {
763 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
764 	pfn ^= protnone_mask(pgprot_val(pgprot));
765 	pfn &= PHYSICAL_PMD_PAGE_MASK;
766 	return __pmd(pfn | check_pgprot(pgprot));
767 }
768 
769 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
770 {
771 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
772 	pfn ^= protnone_mask(pgprot_val(pgprot));
773 	pfn &= PHYSICAL_PUD_PAGE_MASK;
774 	return __pud(pfn | check_pgprot(pgprot));
775 }
776 
777 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
778 {
779 	return pfn_pmd(pmd_pfn(pmd),
780 		      __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
781 }
782 
783 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
784 
785 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
786 {
787 	pteval_t val = pte_val(pte), oldval = val;
788 	pte_t pte_result;
789 
790 	/*
791 	 * Chop off the NX bit (if present), and add the NX portion of
792 	 * the newprot (if present):
793 	 */
794 	val &= _PAGE_CHG_MASK;
795 	val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
796 	val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
797 
798 	pte_result = __pte(val);
799 
800 	/*
801 	 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
802 	 *  1. Marking Write=0 PTEs Dirty=1
803 	 *  2. Marking Dirty=1 PTEs Write=0
804 	 *
805 	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
806 	 * out any Dirty bit passed in newprot. Handle the second case by
807 	 * going through the mksaveddirty exercise. Only do this if the old
808 	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
809 	 */
810 	if (oldval & _PAGE_RW)
811 		pte_result = pte_mksaveddirty(pte_result);
812 	else
813 		pte_result = pte_clear_saveddirty(pte_result);
814 
815 	return pte_result;
816 }
817 
818 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
819 {
820 	pmdval_t val = pmd_val(pmd), oldval = val;
821 	pmd_t pmd_result;
822 
823 	val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
824 	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
825 	val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
826 
827 	pmd_result = __pmd(val);
828 
829 	/*
830 	 * To avoid creating Write=0,Dirty=1 PMDs, pte_modify() needs to avoid:
831 	 *  1. Marking Write=0 PMDs Dirty=1
832 	 *  2. Marking Dirty=1 PMDs Write=0
833 	 *
834 	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
835 	 * out any Dirty bit passed in newprot. Handle the second case by
836 	 * going through the mksaveddirty exercise. Only do this if the old
837 	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
838 	 */
839 	if (oldval & _PAGE_RW)
840 		pmd_result = pmd_mksaveddirty(pmd_result);
841 	else
842 		pmd_result = pmd_clear_saveddirty(pmd_result);
843 
844 	return pmd_result;
845 }
846 
847 /*
848  * mprotect needs to preserve PAT and encryption bits when updating
849  * vm_page_prot
850  */
851 #define pgprot_modify pgprot_modify
852 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
853 {
854 	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
855 	pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
856 	return __pgprot(preservebits | addbits);
857 }
858 
859 #define pte_pgprot(x) __pgprot(pte_flags(x))
860 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
861 #define pud_pgprot(x) __pgprot(pud_flags(x))
862 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
863 
864 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
865 
866 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
867 					 enum page_cache_mode pcm,
868 					 enum page_cache_mode new_pcm)
869 {
870 	/*
871 	 * PAT type is always WB for untracked ranges, so no need to check.
872 	 */
873 	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
874 		return 1;
875 
876 	/*
877 	 * Certain new memtypes are not allowed with certain
878 	 * requested memtype:
879 	 * - request is uncached, return cannot be write-back
880 	 * - request is write-combine, return cannot be write-back
881 	 * - request is write-through, return cannot be write-back
882 	 * - request is write-through, return cannot be write-combine
883 	 */
884 	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
885 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
886 	    (pcm == _PAGE_CACHE_MODE_WC &&
887 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
888 	    (pcm == _PAGE_CACHE_MODE_WT &&
889 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
890 	    (pcm == _PAGE_CACHE_MODE_WT &&
891 	     new_pcm == _PAGE_CACHE_MODE_WC)) {
892 		return 0;
893 	}
894 
895 	return 1;
896 }
897 
898 pmd_t *populate_extra_pmd(unsigned long vaddr);
899 pte_t *populate_extra_pte(unsigned long vaddr);
900 
901 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
902 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
903 
904 /*
905  * Take a PGD location (pgdp) and a pgd value that needs to be set there.
906  * Populates the user and returns the resulting PGD that must be set in
907  * the kernel copy of the page tables.
908  */
909 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
910 {
911 	if (!static_cpu_has(X86_FEATURE_PTI))
912 		return pgd;
913 	return __pti_set_user_pgtbl(pgdp, pgd);
914 }
915 #else   /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
916 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
917 {
918 	return pgd;
919 }
920 #endif  /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
921 
922 #endif	/* __ASSEMBLY__ */
923 
924 
925 #ifdef CONFIG_X86_32
926 # include <asm/pgtable_32.h>
927 #else
928 # include <asm/pgtable_64.h>
929 #endif
930 
931 #ifndef __ASSEMBLY__
932 #include <linux/mm_types.h>
933 #include <linux/mmdebug.h>
934 #include <linux/log2.h>
935 #include <asm/fixmap.h>
936 
937 static inline int pte_none(pte_t pte)
938 {
939 	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
940 }
941 
942 #define __HAVE_ARCH_PTE_SAME
943 static inline int pte_same(pte_t a, pte_t b)
944 {
945 	return a.pte == b.pte;
946 }
947 
948 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
949 {
950 	if (__pte_needs_invert(pte_val(pte)))
951 		return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT));
952 	return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
953 }
954 #define pte_advance_pfn	pte_advance_pfn
955 
956 static inline int pte_present(pte_t a)
957 {
958 	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
959 }
960 
961 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
962 static inline int pte_devmap(pte_t a)
963 {
964 	return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
965 }
966 #endif
967 
968 #define pte_accessible pte_accessible
969 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
970 {
971 	if (pte_flags(a) & _PAGE_PRESENT)
972 		return true;
973 
974 	if ((pte_flags(a) & _PAGE_PROTNONE) &&
975 			atomic_read(&mm->tlb_flush_pending))
976 		return true;
977 
978 	return false;
979 }
980 
981 static inline int pmd_present(pmd_t pmd)
982 {
983 	/*
984 	 * Checking for _PAGE_PSE is needed too because
985 	 * split_huge_page will temporarily clear the present bit (but
986 	 * the _PAGE_PSE flag will remain set at all times while the
987 	 * _PAGE_PRESENT bit is clear).
988 	 */
989 	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
990 }
991 
992 #ifdef CONFIG_NUMA_BALANCING
993 /*
994  * These work without NUMA balancing but the kernel does not care. See the
995  * comment in include/linux/pgtable.h
996  */
997 static inline int pte_protnone(pte_t pte)
998 {
999 	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1000 		== _PAGE_PROTNONE;
1001 }
1002 
1003 static inline int pmd_protnone(pmd_t pmd)
1004 {
1005 	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1006 		== _PAGE_PROTNONE;
1007 }
1008 #endif /* CONFIG_NUMA_BALANCING */
1009 
1010 static inline int pmd_none(pmd_t pmd)
1011 {
1012 	/* Only check low word on 32-bit platforms, since it might be
1013 	   out of sync with upper half. */
1014 	unsigned long val = native_pmd_val(pmd);
1015 	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
1016 }
1017 
1018 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1019 {
1020 	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
1021 }
1022 
1023 /*
1024  * Currently stuck as a macro due to indirect forward reference to
1025  * linux/mmzone.h's __section_mem_map_addr() definition:
1026  */
1027 #define pmd_page(pmd)	pfn_to_page(pmd_pfn(pmd))
1028 
1029 /*
1030  * Conversion functions: convert a page and protection to a page entry,
1031  * and a page entry and page directory to the page they refer to.
1032  *
1033  * (Currently stuck as a macro because of indirect forward reference
1034  * to linux/mm.h:page_to_nid())
1035  */
1036 #define mk_pte(page, pgprot)						  \
1037 ({									  \
1038 	pgprot_t __pgprot = pgprot;					  \
1039 									  \
1040 	WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \
1041 		    _PAGE_DIRTY);					  \
1042 	pfn_pte(page_to_pfn(page), __pgprot);				  \
1043 })
1044 
1045 static inline int pmd_bad(pmd_t pmd)
1046 {
1047 	return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
1048 	       (_KERNPG_TABLE & ~_PAGE_ACCESSED);
1049 }
1050 
1051 static inline unsigned long pages_to_mb(unsigned long npg)
1052 {
1053 	return npg >> (20 - PAGE_SHIFT);
1054 }
1055 
1056 #if CONFIG_PGTABLE_LEVELS > 2
1057 static inline int pud_none(pud_t pud)
1058 {
1059 	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1060 }
1061 
1062 static inline int pud_present(pud_t pud)
1063 {
1064 	return pud_flags(pud) & _PAGE_PRESENT;
1065 }
1066 
1067 static inline pmd_t *pud_pgtable(pud_t pud)
1068 {
1069 	return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
1070 }
1071 
1072 /*
1073  * Currently stuck as a macro due to indirect forward reference to
1074  * linux/mmzone.h's __section_mem_map_addr() definition:
1075  */
1076 #define pud_page(pud)	pfn_to_page(pud_pfn(pud))
1077 
1078 #define pud_leaf pud_leaf
1079 static inline bool pud_leaf(pud_t pud)
1080 {
1081 	return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
1082 		(_PAGE_PSE | _PAGE_PRESENT);
1083 }
1084 
1085 static inline int pud_bad(pud_t pud)
1086 {
1087 	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
1088 }
1089 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
1090 
1091 #if CONFIG_PGTABLE_LEVELS > 3
1092 static inline int p4d_none(p4d_t p4d)
1093 {
1094 	return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1095 }
1096 
1097 static inline int p4d_present(p4d_t p4d)
1098 {
1099 	return p4d_flags(p4d) & _PAGE_PRESENT;
1100 }
1101 
1102 static inline pud_t *p4d_pgtable(p4d_t p4d)
1103 {
1104 	return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
1105 }
1106 
1107 /*
1108  * Currently stuck as a macro due to indirect forward reference to
1109  * linux/mmzone.h's __section_mem_map_addr() definition:
1110  */
1111 #define p4d_page(p4d)	pfn_to_page(p4d_pfn(p4d))
1112 
1113 static inline int p4d_bad(p4d_t p4d)
1114 {
1115 	unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
1116 
1117 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1118 		ignore_flags |= _PAGE_NX;
1119 
1120 	return (p4d_flags(p4d) & ~ignore_flags) != 0;
1121 }
1122 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1123 
1124 static inline unsigned long p4d_index(unsigned long address)
1125 {
1126 	return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
1127 }
1128 
1129 #if CONFIG_PGTABLE_LEVELS > 4
1130 static inline int pgd_present(pgd_t pgd)
1131 {
1132 	if (!pgtable_l5_enabled())
1133 		return 1;
1134 	return pgd_flags(pgd) & _PAGE_PRESENT;
1135 }
1136 
1137 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
1138 {
1139 	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
1140 }
1141 
1142 /*
1143  * Currently stuck as a macro due to indirect forward reference to
1144  * linux/mmzone.h's __section_mem_map_addr() definition:
1145  */
1146 #define pgd_page(pgd)	pfn_to_page(pgd_pfn(pgd))
1147 
1148 /* to find an entry in a page-table-directory. */
1149 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1150 {
1151 	if (!pgtable_l5_enabled())
1152 		return (p4d_t *)pgd;
1153 	return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
1154 }
1155 
1156 static inline int pgd_bad(pgd_t pgd)
1157 {
1158 	unsigned long ignore_flags = _PAGE_USER;
1159 
1160 	if (!pgtable_l5_enabled())
1161 		return 0;
1162 
1163 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1164 		ignore_flags |= _PAGE_NX;
1165 
1166 	return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
1167 }
1168 
1169 static inline int pgd_none(pgd_t pgd)
1170 {
1171 	if (!pgtable_l5_enabled())
1172 		return 0;
1173 	/*
1174 	 * There is no need to do a workaround for the KNL stray
1175 	 * A/D bit erratum here.  PGDs only point to page tables
1176 	 * except on 32-bit non-PAE which is not supported on
1177 	 * KNL.
1178 	 */
1179 	return !native_pgd_val(pgd);
1180 }
1181 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
1182 
1183 #endif	/* __ASSEMBLY__ */
1184 
1185 #define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
1186 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1187 
1188 #ifndef __ASSEMBLY__
1189 
1190 extern int direct_gbpages;
1191 void init_mem_mapping(void);
1192 void early_alloc_pgt_buf(void);
1193 void __init poking_init(void);
1194 unsigned long init_memory_mapping(unsigned long start,
1195 				  unsigned long end, pgprot_t prot);
1196 
1197 #ifdef CONFIG_X86_64
1198 extern pgd_t trampoline_pgd_entry;
1199 #endif
1200 
1201 /* local pte updates need not use xchg for locking */
1202 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1203 {
1204 	pte_t res = *ptep;
1205 
1206 	/* Pure native function needs no input for mm, addr */
1207 	native_pte_clear(NULL, 0, ptep);
1208 	return res;
1209 }
1210 
1211 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1212 {
1213 	pmd_t res = *pmdp;
1214 
1215 	native_pmd_clear(pmdp);
1216 	return res;
1217 }
1218 
1219 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1220 {
1221 	pud_t res = *pudp;
1222 
1223 	native_pud_clear(pudp);
1224 	return res;
1225 }
1226 
1227 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1228 			      pmd_t *pmdp, pmd_t pmd)
1229 {
1230 	page_table_check_pmd_set(mm, pmdp, pmd);
1231 	set_pmd(pmdp, pmd);
1232 }
1233 
1234 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1235 			      pud_t *pudp, pud_t pud)
1236 {
1237 	page_table_check_pud_set(mm, pudp, pud);
1238 	native_set_pud(pudp, pud);
1239 }
1240 
1241 /*
1242  * We only update the dirty/accessed state if we set
1243  * the dirty bit by hand in the kernel, since the hardware
1244  * will do the accessed bit for us, and we don't want to
1245  * race with other CPU's that might be updating the dirty
1246  * bit at the same time.
1247  */
1248 struct vm_area_struct;
1249 
1250 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1251 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1252 				 unsigned long address, pte_t *ptep,
1253 				 pte_t entry, int dirty);
1254 
1255 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1256 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1257 				     unsigned long addr, pte_t *ptep);
1258 
1259 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1260 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1261 				  unsigned long address, pte_t *ptep);
1262 
1263 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1264 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1265 				       pte_t *ptep)
1266 {
1267 	pte_t pte = native_ptep_get_and_clear(ptep);
1268 	page_table_check_pte_clear(mm, pte);
1269 	return pte;
1270 }
1271 
1272 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1273 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1274 					    unsigned long addr, pte_t *ptep,
1275 					    int full)
1276 {
1277 	pte_t pte;
1278 	if (full) {
1279 		/*
1280 		 * Full address destruction in progress; paravirt does not
1281 		 * care about updates and native needs no locking
1282 		 */
1283 		pte = native_local_ptep_get_and_clear(ptep);
1284 		page_table_check_pte_clear(mm, pte);
1285 	} else {
1286 		pte = ptep_get_and_clear(mm, addr, ptep);
1287 	}
1288 	return pte;
1289 }
1290 
1291 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1292 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1293 				      unsigned long addr, pte_t *ptep)
1294 {
1295 	/*
1296 	 * Avoid accidentally creating shadow stack PTEs
1297 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1298 	 * the hardware setting Dirty=1.
1299 	 */
1300 	pte_t old_pte, new_pte;
1301 
1302 	old_pte = READ_ONCE(*ptep);
1303 	do {
1304 		new_pte = pte_wrprotect(old_pte);
1305 	} while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
1306 }
1307 
1308 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
1309 
1310 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
1311 
1312 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1313 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1314 				 unsigned long address, pmd_t *pmdp,
1315 				 pmd_t entry, int dirty);
1316 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1317 				 unsigned long address, pud_t *pudp,
1318 				 pud_t entry, int dirty);
1319 
1320 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1321 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1322 				     unsigned long addr, pmd_t *pmdp);
1323 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1324 				     unsigned long addr, pud_t *pudp);
1325 
1326 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1327 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1328 				  unsigned long address, pmd_t *pmdp);
1329 
1330 
1331 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1332 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1333 				       pmd_t *pmdp)
1334 {
1335 	pmd_t pmd = native_pmdp_get_and_clear(pmdp);
1336 
1337 	page_table_check_pmd_clear(mm, pmd);
1338 
1339 	return pmd;
1340 }
1341 
1342 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1343 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1344 					unsigned long addr, pud_t *pudp)
1345 {
1346 	pud_t pud = native_pudp_get_and_clear(pudp);
1347 
1348 	page_table_check_pud_clear(mm, pud);
1349 
1350 	return pud;
1351 }
1352 
1353 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1354 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1355 				      unsigned long addr, pmd_t *pmdp)
1356 {
1357 	/*
1358 	 * Avoid accidentally creating shadow stack PTEs
1359 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1360 	 * the hardware setting Dirty=1.
1361 	 */
1362 	pmd_t old_pmd, new_pmd;
1363 
1364 	old_pmd = READ_ONCE(*pmdp);
1365 	do {
1366 		new_pmd = pmd_wrprotect(old_pmd);
1367 	} while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
1368 }
1369 
1370 #ifndef pmdp_establish
1371 #define pmdp_establish pmdp_establish
1372 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1373 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1374 {
1375 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1376 	if (IS_ENABLED(CONFIG_SMP)) {
1377 		return xchg(pmdp, pmd);
1378 	} else {
1379 		pmd_t old = *pmdp;
1380 		WRITE_ONCE(*pmdp, pmd);
1381 		return old;
1382 	}
1383 }
1384 #endif
1385 
1386 #define __HAVE_ARCH_PMDP_INVALIDATE_AD
1387 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1388 				unsigned long address, pmd_t *pmdp);
1389 
1390 /*
1391  * Page table pages are page-aligned.  The lower half of the top
1392  * level is used for userspace and the top half for the kernel.
1393  *
1394  * Returns true for parts of the PGD that map userspace and
1395  * false for the parts that map the kernel.
1396  */
1397 static inline bool pgdp_maps_userspace(void *__ptr)
1398 {
1399 	unsigned long ptr = (unsigned long)__ptr;
1400 
1401 	return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1402 }
1403 
1404 #define pgd_leaf	pgd_leaf
1405 static inline bool pgd_leaf(pgd_t pgd) { return false; }
1406 
1407 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1408 /*
1409  * All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages
1410  * (8k-aligned and 8k in size).  The kernel one is at the beginning 4k and
1411  * the user one is in the last 4k.  To switch between them, you
1412  * just need to flip the 12th bit in their addresses.
1413  */
1414 #define PTI_PGTABLE_SWITCH_BIT	PAGE_SHIFT
1415 
1416 /*
1417  * This generates better code than the inline assembly in
1418  * __set_bit().
1419  */
1420 static inline void *ptr_set_bit(void *ptr, int bit)
1421 {
1422 	unsigned long __ptr = (unsigned long)ptr;
1423 
1424 	__ptr |= BIT(bit);
1425 	return (void *)__ptr;
1426 }
1427 static inline void *ptr_clear_bit(void *ptr, int bit)
1428 {
1429 	unsigned long __ptr = (unsigned long)ptr;
1430 
1431 	__ptr &= ~BIT(bit);
1432 	return (void *)__ptr;
1433 }
1434 
1435 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1436 {
1437 	return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1438 }
1439 
1440 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1441 {
1442 	return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1443 }
1444 
1445 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1446 {
1447 	return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1448 }
1449 
1450 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1451 {
1452 	return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1453 }
1454 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
1455 
1456 /*
1457  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1458  *
1459  *  dst - pointer to pgd range anywhere on a pgd page
1460  *  src - ""
1461  *  count - the number of pgds to copy.
1462  *
1463  * dst and src can be on the same page, but the range must not overlap,
1464  * and must not cross a page boundary.
1465  */
1466 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1467 {
1468 	memcpy(dst, src, count * sizeof(pgd_t));
1469 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1470 	if (!static_cpu_has(X86_FEATURE_PTI))
1471 		return;
1472 	/* Clone the user space pgd as well */
1473 	memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1474 	       count * sizeof(pgd_t));
1475 #endif
1476 }
1477 
1478 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1479 static inline int page_level_shift(enum pg_level level)
1480 {
1481 	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1482 }
1483 static inline unsigned long page_level_size(enum pg_level level)
1484 {
1485 	return 1UL << page_level_shift(level);
1486 }
1487 static inline unsigned long page_level_mask(enum pg_level level)
1488 {
1489 	return ~(page_level_size(level) - 1);
1490 }
1491 
1492 /*
1493  * The x86 doesn't have any external MMU info: the kernel page
1494  * tables contain all the necessary information.
1495  */
1496 static inline void update_mmu_cache(struct vm_area_struct *vma,
1497 		unsigned long addr, pte_t *ptep)
1498 {
1499 }
1500 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1501 		struct vm_area_struct *vma, unsigned long addr,
1502 		pte_t *ptep, unsigned int nr)
1503 {
1504 }
1505 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1506 		unsigned long addr, pmd_t *pmd)
1507 {
1508 }
1509 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1510 		unsigned long addr, pud_t *pud)
1511 {
1512 }
1513 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1514 {
1515 	return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
1516 }
1517 
1518 static inline int pte_swp_exclusive(pte_t pte)
1519 {
1520 	return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
1521 }
1522 
1523 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1524 {
1525 	return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
1526 }
1527 
1528 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1529 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1530 {
1531 	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1532 }
1533 
1534 static inline int pte_swp_soft_dirty(pte_t pte)
1535 {
1536 	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1537 }
1538 
1539 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1540 {
1541 	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1542 }
1543 
1544 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1545 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1546 {
1547 	return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1548 }
1549 
1550 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1551 {
1552 	return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1553 }
1554 
1555 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1556 {
1557 	return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1558 }
1559 #endif
1560 #endif
1561 
1562 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1563 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
1564 {
1565 	return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
1566 }
1567 
1568 static inline int pte_swp_uffd_wp(pte_t pte)
1569 {
1570 	return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
1571 }
1572 
1573 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
1574 {
1575 	return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
1576 }
1577 
1578 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
1579 {
1580 	return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
1581 }
1582 
1583 static inline int pmd_swp_uffd_wp(pmd_t pmd)
1584 {
1585 	return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
1586 }
1587 
1588 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
1589 {
1590 	return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
1591 }
1592 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
1593 
1594 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1595 {
1596 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1597 	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1598 	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1599 #else
1600 	return 0;
1601 #endif
1602 }
1603 
1604 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1605 {
1606 	u32 pkru = read_pkru();
1607 
1608 	if (!__pkru_allows_read(pkru, pkey))
1609 		return false;
1610 	if (write && !__pkru_allows_write(pkru, pkey))
1611 		return false;
1612 
1613 	return true;
1614 }
1615 
1616 /*
1617  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1618  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1619  * same value on all 3 types.
1620  */
1621 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1622 {
1623 	unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1624 
1625 	/*
1626 	 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel
1627 	 * shouldn't generally allow access to, but since they
1628 	 * are already Write=0, the below logic covers both cases.
1629 	 */
1630 	if (write)
1631 		need_pte_bits |= _PAGE_RW;
1632 
1633 	if ((pteval & need_pte_bits) != need_pte_bits)
1634 		return 0;
1635 
1636 	return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1637 }
1638 
1639 #define pte_access_permitted pte_access_permitted
1640 static inline bool pte_access_permitted(pte_t pte, bool write)
1641 {
1642 	return __pte_access_permitted(pte_val(pte), write);
1643 }
1644 
1645 #define pmd_access_permitted pmd_access_permitted
1646 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1647 {
1648 	return __pte_access_permitted(pmd_val(pmd), write);
1649 }
1650 
1651 #define pud_access_permitted pud_access_permitted
1652 static inline bool pud_access_permitted(pud_t pud, bool write)
1653 {
1654 	return __pte_access_permitted(pud_val(pud), write);
1655 }
1656 
1657 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1658 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1659 
1660 static inline bool arch_has_pfn_modify_check(void)
1661 {
1662 	return boot_cpu_has_bug(X86_BUG_L1TF);
1663 }
1664 
1665 #define arch_check_zapped_pte arch_check_zapped_pte
1666 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
1667 
1668 #define arch_check_zapped_pmd arch_check_zapped_pmd
1669 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
1670 
1671 #ifdef CONFIG_XEN_PV
1672 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
1673 static inline bool arch_has_hw_nonleaf_pmd_young(void)
1674 {
1675 	return !cpu_feature_enabled(X86_FEATURE_XENPV);
1676 }
1677 #endif
1678 
1679 #ifdef CONFIG_PAGE_TABLE_CHECK
1680 static inline bool pte_user_accessible_page(pte_t pte)
1681 {
1682 	return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
1683 }
1684 
1685 static inline bool pmd_user_accessible_page(pmd_t pmd)
1686 {
1687 	return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
1688 }
1689 
1690 static inline bool pud_user_accessible_page(pud_t pud)
1691 {
1692 	return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
1693 }
1694 #endif
1695 
1696 #ifdef CONFIG_X86_SGX
1697 int arch_memory_failure(unsigned long pfn, int flags);
1698 #define arch_memory_failure arch_memory_failure
1699 
1700 bool arch_is_platform_page(u64 paddr);
1701 #define arch_is_platform_page arch_is_platform_page
1702 #endif
1703 
1704 #endif	/* __ASSEMBLY__ */
1705 
1706 #endif /* _ASM_X86_PGTABLE_H */
1707