1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PGTABLE_H 3 #define _ASM_X86_PGTABLE_H 4 5 #include <linux/mem_encrypt.h> 6 #include <asm/page.h> 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 #ifndef __ASSEMBLY__ 19 #include <linux/spinlock.h> 20 #include <asm/x86_init.h> 21 #include <asm/pkru.h> 22 #include <asm/fpu/api.h> 23 #include <asm/coco.h> 24 #include <asm-generic/pgtable_uffd.h> 25 #include <linux/page_table_check.h> 26 27 extern pgd_t early_top_pgt[PTRS_PER_PGD]; 28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd); 29 30 struct seq_file; 31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); 32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, 33 bool user); 34 bool ptdump_walk_pgd_level_checkwx(void); 35 #define ptdump_check_wx ptdump_walk_pgd_level_checkwx 36 void ptdump_walk_user_pgd_level_checkwx(void); 37 38 /* 39 * Macros to add or remove encryption attribute 40 */ 41 #define pgprot_encrypted(prot) __pgprot(cc_mkenc(pgprot_val(prot))) 42 #define pgprot_decrypted(prot) __pgprot(cc_mkdec(pgprot_val(prot))) 43 44 #ifdef CONFIG_DEBUG_WX 45 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() 46 #else 47 #define debug_checkwx_user() do { } while (0) 48 #endif 49 50 /* 51 * ZERO_PAGE is a global shared page that is always zero: used 52 * for zero-mapped memory areas etc.. 53 */ 54 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 55 __visible; 56 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) 57 58 extern spinlock_t pgd_lock; 59 extern struct list_head pgd_list; 60 61 extern struct mm_struct *pgd_page_get_mm(struct page *page); 62 63 extern pmdval_t early_pmd_flags; 64 65 #ifdef CONFIG_PARAVIRT_XXL 66 #include <asm/paravirt.h> 67 #else /* !CONFIG_PARAVIRT_XXL */ 68 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 69 70 #define set_pte_atomic(ptep, pte) \ 71 native_set_pte_atomic(ptep, pte) 72 73 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 74 75 #ifndef __PAGETABLE_P4D_FOLDED 76 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 77 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) 78 #endif 79 80 #ifndef set_p4d 81 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) 82 #endif 83 84 #ifndef __PAGETABLE_PUD_FOLDED 85 #define p4d_clear(p4d) native_p4d_clear(p4d) 86 #endif 87 88 #ifndef set_pud 89 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 90 #endif 91 92 #ifndef __PAGETABLE_PUD_FOLDED 93 #define pud_clear(pud) native_pud_clear(pud) 94 #endif 95 96 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 97 #define pmd_clear(pmd) native_pmd_clear(pmd) 98 99 #define pgd_val(x) native_pgd_val(x) 100 #define __pgd(x) native_make_pgd(x) 101 102 #ifndef __PAGETABLE_P4D_FOLDED 103 #define p4d_val(x) native_p4d_val(x) 104 #define __p4d(x) native_make_p4d(x) 105 #endif 106 107 #ifndef __PAGETABLE_PUD_FOLDED 108 #define pud_val(x) native_pud_val(x) 109 #define __pud(x) native_make_pud(x) 110 #endif 111 112 #ifndef __PAGETABLE_PMD_FOLDED 113 #define pmd_val(x) native_pmd_val(x) 114 #define __pmd(x) native_make_pmd(x) 115 #endif 116 117 #define pte_val(x) native_pte_val(x) 118 #define __pte(x) native_make_pte(x) 119 120 #define arch_end_context_switch(prev) do {} while(0) 121 #endif /* CONFIG_PARAVIRT_XXL */ 122 123 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 124 { 125 pmdval_t v = native_pmd_val(pmd); 126 127 return native_make_pmd(v | set); 128 } 129 130 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 131 { 132 pmdval_t v = native_pmd_val(pmd); 133 134 return native_make_pmd(v & ~clear); 135 } 136 137 static inline pud_t pud_set_flags(pud_t pud, pudval_t set) 138 { 139 pudval_t v = native_pud_val(pud); 140 141 return native_make_pud(v | set); 142 } 143 144 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) 145 { 146 pudval_t v = native_pud_val(pud); 147 148 return native_make_pud(v & ~clear); 149 } 150 151 /* 152 * The following only work if pte_present() is true. 153 * Undefined behaviour if not.. 154 */ 155 static inline bool pte_dirty(pte_t pte) 156 { 157 return pte_flags(pte) & _PAGE_DIRTY_BITS; 158 } 159 160 static inline bool pte_shstk(pte_t pte) 161 { 162 return cpu_feature_enabled(X86_FEATURE_SHSTK) && 163 (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY; 164 } 165 166 static inline int pte_young(pte_t pte) 167 { 168 return pte_flags(pte) & _PAGE_ACCESSED; 169 } 170 171 static inline bool pte_decrypted(pte_t pte) 172 { 173 return cc_mkdec(pte_val(pte)) == pte_val(pte); 174 } 175 176 #define pmd_dirty pmd_dirty 177 static inline bool pmd_dirty(pmd_t pmd) 178 { 179 return pmd_flags(pmd) & _PAGE_DIRTY_BITS; 180 } 181 182 static inline bool pmd_shstk(pmd_t pmd) 183 { 184 return cpu_feature_enabled(X86_FEATURE_SHSTK) && 185 (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) == 186 (_PAGE_DIRTY | _PAGE_PSE); 187 } 188 189 #define pmd_young pmd_young 190 static inline int pmd_young(pmd_t pmd) 191 { 192 return pmd_flags(pmd) & _PAGE_ACCESSED; 193 } 194 195 static inline bool pud_dirty(pud_t pud) 196 { 197 return pud_flags(pud) & _PAGE_DIRTY_BITS; 198 } 199 200 static inline int pud_young(pud_t pud) 201 { 202 return pud_flags(pud) & _PAGE_ACCESSED; 203 } 204 205 static inline bool pud_shstk(pud_t pud) 206 { 207 return cpu_feature_enabled(X86_FEATURE_SHSTK) && 208 (pud_flags(pud) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) == 209 (_PAGE_DIRTY | _PAGE_PSE); 210 } 211 212 static inline int pte_write(pte_t pte) 213 { 214 /* 215 * Shadow stack pages are logically writable, but do not have 216 * _PAGE_RW. Check for them separately from _PAGE_RW itself. 217 */ 218 return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte); 219 } 220 221 #define pmd_write pmd_write 222 static inline int pmd_write(pmd_t pmd) 223 { 224 /* 225 * Shadow stack pages are logically writable, but do not have 226 * _PAGE_RW. Check for them separately from _PAGE_RW itself. 227 */ 228 return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd); 229 } 230 231 #define pud_write pud_write 232 static inline int pud_write(pud_t pud) 233 { 234 return pud_flags(pud) & _PAGE_RW; 235 } 236 237 static inline int pte_huge(pte_t pte) 238 { 239 return pte_flags(pte) & _PAGE_PSE; 240 } 241 242 static inline int pte_global(pte_t pte) 243 { 244 return pte_flags(pte) & _PAGE_GLOBAL; 245 } 246 247 static inline int pte_exec(pte_t pte) 248 { 249 return !(pte_flags(pte) & _PAGE_NX); 250 } 251 252 static inline int pte_special(pte_t pte) 253 { 254 return pte_flags(pte) & _PAGE_SPECIAL; 255 } 256 257 /* Entries that were set to PROT_NONE are inverted */ 258 259 static inline u64 protnone_mask(u64 val); 260 261 #define PFN_PTE_SHIFT PAGE_SHIFT 262 263 static inline unsigned long pte_pfn(pte_t pte) 264 { 265 phys_addr_t pfn = pte_val(pte); 266 pfn ^= protnone_mask(pfn); 267 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; 268 } 269 270 static inline unsigned long pmd_pfn(pmd_t pmd) 271 { 272 phys_addr_t pfn = pmd_val(pmd); 273 pfn ^= protnone_mask(pfn); 274 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; 275 } 276 277 #define pud_pfn pud_pfn 278 static inline unsigned long pud_pfn(pud_t pud) 279 { 280 phys_addr_t pfn = pud_val(pud); 281 pfn ^= protnone_mask(pfn); 282 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; 283 } 284 285 static inline unsigned long p4d_pfn(p4d_t p4d) 286 { 287 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; 288 } 289 290 static inline unsigned long pgd_pfn(pgd_t pgd) 291 { 292 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; 293 } 294 295 #define p4d_leaf p4d_leaf 296 static inline bool p4d_leaf(p4d_t p4d) 297 { 298 /* No 512 GiB pages yet */ 299 return 0; 300 } 301 302 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 303 304 #define pmd_leaf pmd_leaf 305 static inline bool pmd_leaf(pmd_t pte) 306 { 307 return pmd_flags(pte) & _PAGE_PSE; 308 } 309 310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 311 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_leaf */ 312 static inline int pmd_trans_huge(pmd_t pmd) 313 { 314 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 315 } 316 317 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 318 static inline int pud_trans_huge(pud_t pud) 319 { 320 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 321 } 322 #endif 323 324 #define has_transparent_hugepage has_transparent_hugepage 325 static inline int has_transparent_hugepage(void) 326 { 327 return boot_cpu_has(X86_FEATURE_PSE); 328 } 329 330 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 331 static inline int pmd_devmap(pmd_t pmd) 332 { 333 return !!(pmd_val(pmd) & _PAGE_DEVMAP); 334 } 335 336 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 337 static inline int pud_devmap(pud_t pud) 338 { 339 return !!(pud_val(pud) & _PAGE_DEVMAP); 340 } 341 #else 342 static inline int pud_devmap(pud_t pud) 343 { 344 return 0; 345 } 346 #endif 347 348 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 349 static inline bool pmd_special(pmd_t pmd) 350 { 351 return pmd_flags(pmd) & _PAGE_SPECIAL; 352 } 353 354 static inline pmd_t pmd_mkspecial(pmd_t pmd) 355 { 356 return pmd_set_flags(pmd, _PAGE_SPECIAL); 357 } 358 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 359 360 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 361 static inline bool pud_special(pud_t pud) 362 { 363 return pud_flags(pud) & _PAGE_SPECIAL; 364 } 365 366 static inline pud_t pud_mkspecial(pud_t pud) 367 { 368 return pud_set_flags(pud, _PAGE_SPECIAL); 369 } 370 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 371 372 static inline int pgd_devmap(pgd_t pgd) 373 { 374 return 0; 375 } 376 #endif 377 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 378 379 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 380 { 381 pteval_t v = native_pte_val(pte); 382 383 return native_make_pte(v | set); 384 } 385 386 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 387 { 388 pteval_t v = native_pte_val(pte); 389 390 return native_make_pte(v & ~clear); 391 } 392 393 /* 394 * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the 395 * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So 396 * when creating dirty, write-protected memory, a software bit is used: 397 * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the 398 * Dirty bit to SavedDirty, and vice-vesra. 399 * 400 * This shifting is only done if needed. In the case of shifting 401 * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of 402 * shifting SavedDirty->Dirty, the condition is Write=1. 403 */ 404 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v) 405 { 406 pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1; 407 408 v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY; 409 v &= ~(cond << _PAGE_BIT_DIRTY); 410 411 return v; 412 } 413 414 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v) 415 { 416 pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1; 417 418 v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY; 419 v &= ~(cond << _PAGE_BIT_SAVED_DIRTY); 420 421 return v; 422 } 423 424 static inline pte_t pte_mksaveddirty(pte_t pte) 425 { 426 pteval_t v = native_pte_val(pte); 427 428 v = mksaveddirty_shift(v); 429 return native_make_pte(v); 430 } 431 432 static inline pte_t pte_clear_saveddirty(pte_t pte) 433 { 434 pteval_t v = native_pte_val(pte); 435 436 v = clear_saveddirty_shift(v); 437 return native_make_pte(v); 438 } 439 440 static inline pte_t pte_wrprotect(pte_t pte) 441 { 442 pte = pte_clear_flags(pte, _PAGE_RW); 443 444 /* 445 * Blindly clearing _PAGE_RW might accidentally create 446 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware 447 * dirty value to the software bit, if present. 448 */ 449 return pte_mksaveddirty(pte); 450 } 451 452 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 453 static inline int pte_uffd_wp(pte_t pte) 454 { 455 return pte_flags(pte) & _PAGE_UFFD_WP; 456 } 457 458 static inline pte_t pte_mkuffd_wp(pte_t pte) 459 { 460 return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP)); 461 } 462 463 static inline pte_t pte_clear_uffd_wp(pte_t pte) 464 { 465 return pte_clear_flags(pte, _PAGE_UFFD_WP); 466 } 467 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 468 469 static inline pte_t pte_mkclean(pte_t pte) 470 { 471 return pte_clear_flags(pte, _PAGE_DIRTY_BITS); 472 } 473 474 static inline pte_t pte_mkold(pte_t pte) 475 { 476 return pte_clear_flags(pte, _PAGE_ACCESSED); 477 } 478 479 static inline pte_t pte_mkexec(pte_t pte) 480 { 481 return pte_clear_flags(pte, _PAGE_NX); 482 } 483 484 static inline pte_t pte_mkdirty(pte_t pte) 485 { 486 pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 487 488 return pte_mksaveddirty(pte); 489 } 490 491 static inline pte_t pte_mkwrite_shstk(pte_t pte) 492 { 493 pte = pte_clear_flags(pte, _PAGE_RW); 494 495 return pte_set_flags(pte, _PAGE_DIRTY); 496 } 497 498 static inline pte_t pte_mkyoung(pte_t pte) 499 { 500 return pte_set_flags(pte, _PAGE_ACCESSED); 501 } 502 503 static inline pte_t pte_mkwrite_novma(pte_t pte) 504 { 505 return pte_set_flags(pte, _PAGE_RW); 506 } 507 508 struct vm_area_struct; 509 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma); 510 #define pte_mkwrite pte_mkwrite 511 512 static inline pte_t pte_mkhuge(pte_t pte) 513 { 514 return pte_set_flags(pte, _PAGE_PSE); 515 } 516 517 static inline pte_t pte_clrhuge(pte_t pte) 518 { 519 return pte_clear_flags(pte, _PAGE_PSE); 520 } 521 522 static inline pte_t pte_mkglobal(pte_t pte) 523 { 524 return pte_set_flags(pte, _PAGE_GLOBAL); 525 } 526 527 static inline pte_t pte_clrglobal(pte_t pte) 528 { 529 return pte_clear_flags(pte, _PAGE_GLOBAL); 530 } 531 532 static inline pte_t pte_mkspecial(pte_t pte) 533 { 534 return pte_set_flags(pte, _PAGE_SPECIAL); 535 } 536 537 static inline pte_t pte_mkdevmap(pte_t pte) 538 { 539 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); 540 } 541 542 /* See comments above mksaveddirty_shift() */ 543 static inline pmd_t pmd_mksaveddirty(pmd_t pmd) 544 { 545 pmdval_t v = native_pmd_val(pmd); 546 547 v = mksaveddirty_shift(v); 548 return native_make_pmd(v); 549 } 550 551 /* See comments above mksaveddirty_shift() */ 552 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd) 553 { 554 pmdval_t v = native_pmd_val(pmd); 555 556 v = clear_saveddirty_shift(v); 557 return native_make_pmd(v); 558 } 559 560 static inline pmd_t pmd_wrprotect(pmd_t pmd) 561 { 562 pmd = pmd_clear_flags(pmd, _PAGE_RW); 563 564 /* 565 * Blindly clearing _PAGE_RW might accidentally create 566 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware 567 * dirty value to the software bit. 568 */ 569 return pmd_mksaveddirty(pmd); 570 } 571 572 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 573 static inline int pmd_uffd_wp(pmd_t pmd) 574 { 575 return pmd_flags(pmd) & _PAGE_UFFD_WP; 576 } 577 578 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) 579 { 580 return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP)); 581 } 582 583 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) 584 { 585 return pmd_clear_flags(pmd, _PAGE_UFFD_WP); 586 } 587 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 588 589 static inline pmd_t pmd_mkold(pmd_t pmd) 590 { 591 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 592 } 593 594 static inline pmd_t pmd_mkclean(pmd_t pmd) 595 { 596 return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS); 597 } 598 599 static inline pmd_t pmd_mkdirty(pmd_t pmd) 600 { 601 pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 602 603 return pmd_mksaveddirty(pmd); 604 } 605 606 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd) 607 { 608 pmd = pmd_clear_flags(pmd, _PAGE_RW); 609 610 return pmd_set_flags(pmd, _PAGE_DIRTY); 611 } 612 613 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 614 { 615 return pmd_set_flags(pmd, _PAGE_DEVMAP); 616 } 617 618 static inline pmd_t pmd_mkhuge(pmd_t pmd) 619 { 620 return pmd_set_flags(pmd, _PAGE_PSE); 621 } 622 623 static inline pmd_t pmd_mkyoung(pmd_t pmd) 624 { 625 return pmd_set_flags(pmd, _PAGE_ACCESSED); 626 } 627 628 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 629 { 630 return pmd_set_flags(pmd, _PAGE_RW); 631 } 632 633 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 634 #define pmd_mkwrite pmd_mkwrite 635 636 /* See comments above mksaveddirty_shift() */ 637 static inline pud_t pud_mksaveddirty(pud_t pud) 638 { 639 pudval_t v = native_pud_val(pud); 640 641 v = mksaveddirty_shift(v); 642 return native_make_pud(v); 643 } 644 645 /* See comments above mksaveddirty_shift() */ 646 static inline pud_t pud_clear_saveddirty(pud_t pud) 647 { 648 pudval_t v = native_pud_val(pud); 649 650 v = clear_saveddirty_shift(v); 651 return native_make_pud(v); 652 } 653 654 static inline pud_t pud_mkold(pud_t pud) 655 { 656 return pud_clear_flags(pud, _PAGE_ACCESSED); 657 } 658 659 static inline pud_t pud_mkclean(pud_t pud) 660 { 661 return pud_clear_flags(pud, _PAGE_DIRTY_BITS); 662 } 663 664 static inline pud_t pud_wrprotect(pud_t pud) 665 { 666 pud = pud_clear_flags(pud, _PAGE_RW); 667 668 /* 669 * Blindly clearing _PAGE_RW might accidentally create 670 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware 671 * dirty value to the software bit. 672 */ 673 return pud_mksaveddirty(pud); 674 } 675 676 static inline pud_t pud_mkdirty(pud_t pud) 677 { 678 pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 679 680 return pud_mksaveddirty(pud); 681 } 682 683 static inline pud_t pud_mkdevmap(pud_t pud) 684 { 685 return pud_set_flags(pud, _PAGE_DEVMAP); 686 } 687 688 static inline pud_t pud_mkhuge(pud_t pud) 689 { 690 return pud_set_flags(pud, _PAGE_PSE); 691 } 692 693 static inline pud_t pud_mkyoung(pud_t pud) 694 { 695 return pud_set_flags(pud, _PAGE_ACCESSED); 696 } 697 698 static inline pud_t pud_mkwrite(pud_t pud) 699 { 700 pud = pud_set_flags(pud, _PAGE_RW); 701 702 return pud_clear_saveddirty(pud); 703 } 704 705 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 706 static inline int pte_soft_dirty(pte_t pte) 707 { 708 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 709 } 710 711 static inline int pmd_soft_dirty(pmd_t pmd) 712 { 713 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 714 } 715 716 static inline int pud_soft_dirty(pud_t pud) 717 { 718 return pud_flags(pud) & _PAGE_SOFT_DIRTY; 719 } 720 721 static inline pte_t pte_mksoft_dirty(pte_t pte) 722 { 723 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 724 } 725 726 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 727 { 728 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 729 } 730 731 static inline pud_t pud_mksoft_dirty(pud_t pud) 732 { 733 return pud_set_flags(pud, _PAGE_SOFT_DIRTY); 734 } 735 736 static inline pte_t pte_clear_soft_dirty(pte_t pte) 737 { 738 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 739 } 740 741 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 742 { 743 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 744 } 745 746 static inline pud_t pud_clear_soft_dirty(pud_t pud) 747 { 748 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); 749 } 750 751 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 752 753 /* 754 * Mask out unsupported bits in a present pgprot. Non-present pgprots 755 * can use those bits for other purposes, so leave them be. 756 */ 757 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 758 { 759 pgprotval_t protval = pgprot_val(pgprot); 760 761 if (protval & _PAGE_PRESENT) 762 protval &= __supported_pte_mask; 763 764 return protval; 765 } 766 767 static inline pgprotval_t check_pgprot(pgprot_t pgprot) 768 { 769 pgprotval_t massaged_val = massage_pgprot(pgprot); 770 771 /* mmdebug.h can not be included here because of dependencies */ 772 #ifdef CONFIG_DEBUG_VM 773 WARN_ONCE(pgprot_val(pgprot) != massaged_val, 774 "attempted to set unsupported pgprot: %016llx " 775 "bits: %016llx supported: %016llx\n", 776 (u64)pgprot_val(pgprot), 777 (u64)pgprot_val(pgprot) ^ massaged_val, 778 (u64)__supported_pte_mask); 779 #endif 780 781 return massaged_val; 782 } 783 784 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 785 { 786 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 787 pfn ^= protnone_mask(pgprot_val(pgprot)); 788 pfn &= PTE_PFN_MASK; 789 return __pte(pfn | check_pgprot(pgprot)); 790 } 791 792 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 793 { 794 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 795 pfn ^= protnone_mask(pgprot_val(pgprot)); 796 pfn &= PHYSICAL_PMD_PAGE_MASK; 797 return __pmd(pfn | check_pgprot(pgprot)); 798 } 799 800 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) 801 { 802 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 803 pfn ^= protnone_mask(pgprot_val(pgprot)); 804 pfn &= PHYSICAL_PUD_PAGE_MASK; 805 return __pud(pfn | check_pgprot(pgprot)); 806 } 807 808 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 809 { 810 return pfn_pmd(pmd_pfn(pmd), 811 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 812 } 813 814 static inline pud_t pud_mkinvalid(pud_t pud) 815 { 816 return pfn_pud(pud_pfn(pud), 817 __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 818 } 819 820 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); 821 822 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 823 { 824 pteval_t val = pte_val(pte), oldval = val; 825 pte_t pte_result; 826 827 /* 828 * Chop off the NX bit (if present), and add the NX portion of 829 * the newprot (if present): 830 */ 831 val &= _PAGE_CHG_MASK; 832 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; 833 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); 834 835 pte_result = __pte(val); 836 837 /* 838 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid: 839 * 1. Marking Write=0 PTEs Dirty=1 840 * 2. Marking Dirty=1 PTEs Write=0 841 * 842 * The first case cannot happen because the _PAGE_CHG_MASK will filter 843 * out any Dirty bit passed in newprot. Handle the second case by 844 * going through the mksaveddirty exercise. Only do this if the old 845 * value was Write=1 to avoid doing this on Shadow Stack PTEs. 846 */ 847 if (oldval & _PAGE_RW) 848 pte_result = pte_mksaveddirty(pte_result); 849 else 850 pte_result = pte_clear_saveddirty(pte_result); 851 852 return pte_result; 853 } 854 855 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 856 { 857 pmdval_t val = pmd_val(pmd), oldval = val; 858 pmd_t pmd_result; 859 860 val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY); 861 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; 862 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); 863 864 pmd_result = __pmd(val); 865 866 /* 867 * Avoid creating shadow stack PMD by accident. See comment in 868 * pte_modify(). 869 */ 870 if (oldval & _PAGE_RW) 871 pmd_result = pmd_mksaveddirty(pmd_result); 872 else 873 pmd_result = pmd_clear_saveddirty(pmd_result); 874 875 return pmd_result; 876 } 877 878 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot) 879 { 880 pudval_t val = pud_val(pud), oldval = val; 881 pud_t pud_result; 882 883 val &= _HPAGE_CHG_MASK; 884 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; 885 val = flip_protnone_guard(oldval, val, PHYSICAL_PUD_PAGE_MASK); 886 887 pud_result = __pud(val); 888 889 /* 890 * Avoid creating shadow stack PUD by accident. See comment in 891 * pte_modify(). 892 */ 893 if (oldval & _PAGE_RW) 894 pud_result = pud_mksaveddirty(pud_result); 895 else 896 pud_result = pud_clear_saveddirty(pud_result); 897 898 return pud_result; 899 } 900 901 /* 902 * mprotect needs to preserve PAT and encryption bits when updating 903 * vm_page_prot 904 */ 905 #define pgprot_modify pgprot_modify 906 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 907 { 908 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 909 pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; 910 return __pgprot(preservebits | addbits); 911 } 912 913 #define pte_pgprot(x) __pgprot(pte_flags(x)) 914 #define pmd_pgprot(x) __pgprot(pmd_flags(x)) 915 #define pud_pgprot(x) __pgprot(pud_flags(x)) 916 #define p4d_pgprot(x) __pgprot(p4d_flags(x)) 917 918 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 919 920 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 921 enum page_cache_mode pcm, 922 enum page_cache_mode new_pcm) 923 { 924 /* 925 * PAT type is always WB for untracked ranges, so no need to check. 926 */ 927 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 928 return 1; 929 930 /* 931 * Certain new memtypes are not allowed with certain 932 * requested memtype: 933 * - request is uncached, return cannot be write-back 934 * - request is write-combine, return cannot be write-back 935 * - request is write-through, return cannot be write-back 936 * - request is write-through, return cannot be write-combine 937 */ 938 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 939 new_pcm == _PAGE_CACHE_MODE_WB) || 940 (pcm == _PAGE_CACHE_MODE_WC && 941 new_pcm == _PAGE_CACHE_MODE_WB) || 942 (pcm == _PAGE_CACHE_MODE_WT && 943 new_pcm == _PAGE_CACHE_MODE_WB) || 944 (pcm == _PAGE_CACHE_MODE_WT && 945 new_pcm == _PAGE_CACHE_MODE_WC)) { 946 return 0; 947 } 948 949 return 1; 950 } 951 952 pmd_t *populate_extra_pmd(unsigned long vaddr); 953 pte_t *populate_extra_pte(unsigned long vaddr); 954 955 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 956 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); 957 958 /* 959 * Take a PGD location (pgdp) and a pgd value that needs to be set there. 960 * Populates the user and returns the resulting PGD that must be set in 961 * the kernel copy of the page tables. 962 */ 963 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 964 { 965 if (!static_cpu_has(X86_FEATURE_PTI)) 966 return pgd; 967 return __pti_set_user_pgtbl(pgdp, pgd); 968 } 969 #else /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ 970 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 971 { 972 return pgd; 973 } 974 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ 975 976 #endif /* __ASSEMBLY__ */ 977 978 979 #ifdef CONFIG_X86_32 980 # include <asm/pgtable_32.h> 981 #else 982 # include <asm/pgtable_64.h> 983 #endif 984 985 #ifndef __ASSEMBLY__ 986 #include <linux/mm_types.h> 987 #include <linux/mmdebug.h> 988 #include <linux/log2.h> 989 #include <asm/fixmap.h> 990 991 static inline int pte_none(pte_t pte) 992 { 993 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); 994 } 995 996 #define __HAVE_ARCH_PTE_SAME 997 static inline int pte_same(pte_t a, pte_t b) 998 { 999 return a.pte == b.pte; 1000 } 1001 1002 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 1003 { 1004 if (__pte_needs_invert(pte_val(pte))) 1005 return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT)); 1006 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); 1007 } 1008 #define pte_advance_pfn pte_advance_pfn 1009 1010 static inline int pte_present(pte_t a) 1011 { 1012 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 1013 } 1014 1015 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 1016 static inline int pte_devmap(pte_t a) 1017 { 1018 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; 1019 } 1020 #endif 1021 1022 #define pte_accessible pte_accessible 1023 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 1024 { 1025 if (pte_flags(a) & _PAGE_PRESENT) 1026 return true; 1027 1028 if ((pte_flags(a) & _PAGE_PROTNONE) && 1029 atomic_read(&mm->tlb_flush_pending)) 1030 return true; 1031 1032 return false; 1033 } 1034 1035 static inline int pmd_present(pmd_t pmd) 1036 { 1037 /* 1038 * Checking for _PAGE_PSE is needed too because 1039 * split_huge_page will temporarily clear the present bit (but 1040 * the _PAGE_PSE flag will remain set at all times while the 1041 * _PAGE_PRESENT bit is clear). 1042 */ 1043 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 1044 } 1045 1046 #ifdef CONFIG_NUMA_BALANCING 1047 /* 1048 * These work without NUMA balancing but the kernel does not care. See the 1049 * comment in include/linux/pgtable.h 1050 */ 1051 static inline int pte_protnone(pte_t pte) 1052 { 1053 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 1054 == _PAGE_PROTNONE; 1055 } 1056 1057 static inline int pmd_protnone(pmd_t pmd) 1058 { 1059 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 1060 == _PAGE_PROTNONE; 1061 } 1062 #endif /* CONFIG_NUMA_BALANCING */ 1063 1064 static inline int pmd_none(pmd_t pmd) 1065 { 1066 /* Only check low word on 32-bit platforms, since it might be 1067 out of sync with upper half. */ 1068 unsigned long val = native_pmd_val(pmd); 1069 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; 1070 } 1071 1072 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 1073 { 1074 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); 1075 } 1076 1077 /* 1078 * Currently stuck as a macro due to indirect forward reference to 1079 * linux/mmzone.h's __section_mem_map_addr() definition: 1080 */ 1081 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1082 1083 /* 1084 * Conversion functions: convert a page and protection to a page entry, 1085 * and a page entry and page directory to the page they refer to. 1086 * 1087 * (Currently stuck as a macro because of indirect forward reference 1088 * to linux/mm.h:page_to_nid()) 1089 */ 1090 #define mk_pte(page, pgprot) \ 1091 ({ \ 1092 pgprot_t __pgprot = pgprot; \ 1093 \ 1094 WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \ 1095 _PAGE_DIRTY); \ 1096 pfn_pte(page_to_pfn(page), __pgprot); \ 1097 }) 1098 1099 static inline int pmd_bad(pmd_t pmd) 1100 { 1101 return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) != 1102 (_KERNPG_TABLE & ~_PAGE_ACCESSED); 1103 } 1104 1105 static inline unsigned long pages_to_mb(unsigned long npg) 1106 { 1107 return npg >> (20 - PAGE_SHIFT); 1108 } 1109 1110 #if CONFIG_PGTABLE_LEVELS > 2 1111 static inline int pud_none(pud_t pud) 1112 { 1113 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 1114 } 1115 1116 static inline int pud_present(pud_t pud) 1117 { 1118 return pud_flags(pud) & _PAGE_PRESENT; 1119 } 1120 1121 static inline pmd_t *pud_pgtable(pud_t pud) 1122 { 1123 return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud)); 1124 } 1125 1126 /* 1127 * Currently stuck as a macro due to indirect forward reference to 1128 * linux/mmzone.h's __section_mem_map_addr() definition: 1129 */ 1130 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1131 1132 #define pud_leaf pud_leaf 1133 static inline bool pud_leaf(pud_t pud) 1134 { 1135 return pud_val(pud) & _PAGE_PSE; 1136 } 1137 1138 static inline int pud_bad(pud_t pud) 1139 { 1140 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 1141 } 1142 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 1143 1144 #if CONFIG_PGTABLE_LEVELS > 3 1145 static inline int p4d_none(p4d_t p4d) 1146 { 1147 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 1148 } 1149 1150 static inline int p4d_present(p4d_t p4d) 1151 { 1152 return p4d_flags(p4d) & _PAGE_PRESENT; 1153 } 1154 1155 static inline pud_t *p4d_pgtable(p4d_t p4d) 1156 { 1157 return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); 1158 } 1159 1160 /* 1161 * Currently stuck as a macro due to indirect forward reference to 1162 * linux/mmzone.h's __section_mem_map_addr() definition: 1163 */ 1164 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1165 1166 static inline int p4d_bad(p4d_t p4d) 1167 { 1168 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; 1169 1170 if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) 1171 ignore_flags |= _PAGE_NX; 1172 1173 return (p4d_flags(p4d) & ~ignore_flags) != 0; 1174 } 1175 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 1176 1177 static inline unsigned long p4d_index(unsigned long address) 1178 { 1179 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); 1180 } 1181 1182 #if CONFIG_PGTABLE_LEVELS > 4 1183 static inline int pgd_present(pgd_t pgd) 1184 { 1185 if (!pgtable_l5_enabled()) 1186 return 1; 1187 return pgd_flags(pgd) & _PAGE_PRESENT; 1188 } 1189 1190 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 1191 { 1192 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 1193 } 1194 1195 /* 1196 * Currently stuck as a macro due to indirect forward reference to 1197 * linux/mmzone.h's __section_mem_map_addr() definition: 1198 */ 1199 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1200 1201 /* to find an entry in a page-table-directory. */ 1202 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 1203 { 1204 if (!pgtable_l5_enabled()) 1205 return (p4d_t *)pgd; 1206 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); 1207 } 1208 1209 static inline int pgd_bad(pgd_t pgd) 1210 { 1211 unsigned long ignore_flags = _PAGE_USER; 1212 1213 if (!pgtable_l5_enabled()) 1214 return 0; 1215 1216 if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) 1217 ignore_flags |= _PAGE_NX; 1218 1219 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; 1220 } 1221 1222 static inline int pgd_none(pgd_t pgd) 1223 { 1224 if (!pgtable_l5_enabled()) 1225 return 0; 1226 /* 1227 * There is no need to do a workaround for the KNL stray 1228 * A/D bit erratum here. PGDs only point to page tables 1229 * except on 32-bit non-PAE which is not supported on 1230 * KNL. 1231 */ 1232 return !native_pgd_val(pgd); 1233 } 1234 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 1235 1236 #endif /* __ASSEMBLY__ */ 1237 1238 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 1239 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 1240 1241 #ifndef __ASSEMBLY__ 1242 1243 extern int direct_gbpages; 1244 void init_mem_mapping(void); 1245 void early_alloc_pgt_buf(void); 1246 void __init poking_init(void); 1247 unsigned long init_memory_mapping(unsigned long start, 1248 unsigned long end, pgprot_t prot); 1249 1250 #ifdef CONFIG_X86_64 1251 extern pgd_t trampoline_pgd_entry; 1252 #endif 1253 1254 /* local pte updates need not use xchg for locking */ 1255 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 1256 { 1257 pte_t res = *ptep; 1258 1259 /* Pure native function needs no input for mm, addr */ 1260 native_pte_clear(NULL, 0, ptep); 1261 return res; 1262 } 1263 1264 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 1265 { 1266 pmd_t res = *pmdp; 1267 1268 native_pmd_clear(pmdp); 1269 return res; 1270 } 1271 1272 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) 1273 { 1274 pud_t res = *pudp; 1275 1276 native_pud_clear(pudp); 1277 return res; 1278 } 1279 1280 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1281 pmd_t *pmdp, pmd_t pmd) 1282 { 1283 page_table_check_pmd_set(mm, pmdp, pmd); 1284 set_pmd(pmdp, pmd); 1285 } 1286 1287 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 1288 pud_t *pudp, pud_t pud) 1289 { 1290 page_table_check_pud_set(mm, pudp, pud); 1291 native_set_pud(pudp, pud); 1292 } 1293 1294 /* 1295 * We only update the dirty/accessed state if we set 1296 * the dirty bit by hand in the kernel, since the hardware 1297 * will do the accessed bit for us, and we don't want to 1298 * race with other CPU's that might be updating the dirty 1299 * bit at the same time. 1300 */ 1301 struct vm_area_struct; 1302 1303 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1304 extern int ptep_set_access_flags(struct vm_area_struct *vma, 1305 unsigned long address, pte_t *ptep, 1306 pte_t entry, int dirty); 1307 1308 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1309 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 1310 unsigned long addr, pte_t *ptep); 1311 1312 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1313 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 1314 unsigned long address, pte_t *ptep); 1315 1316 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1317 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 1318 pte_t *ptep) 1319 { 1320 pte_t pte = native_ptep_get_and_clear(ptep); 1321 page_table_check_pte_clear(mm, pte); 1322 return pte; 1323 } 1324 1325 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1326 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1327 unsigned long addr, pte_t *ptep, 1328 int full) 1329 { 1330 pte_t pte; 1331 if (full) { 1332 /* 1333 * Full address destruction in progress; paravirt does not 1334 * care about updates and native needs no locking 1335 */ 1336 pte = native_local_ptep_get_and_clear(ptep); 1337 page_table_check_pte_clear(mm, pte); 1338 } else { 1339 pte = ptep_get_and_clear(mm, addr, ptep); 1340 } 1341 return pte; 1342 } 1343 1344 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1345 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1346 unsigned long addr, pte_t *ptep) 1347 { 1348 /* 1349 * Avoid accidentally creating shadow stack PTEs 1350 * (Write=0,Dirty=1). Use cmpxchg() to prevent races with 1351 * the hardware setting Dirty=1. 1352 */ 1353 pte_t old_pte, new_pte; 1354 1355 old_pte = READ_ONCE(*ptep); 1356 do { 1357 new_pte = pte_wrprotect(old_pte); 1358 } while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte)); 1359 } 1360 1361 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0) 1362 1363 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1364 1365 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1366 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1367 unsigned long address, pmd_t *pmdp, 1368 pmd_t entry, int dirty); 1369 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1370 unsigned long address, pud_t *pudp, 1371 pud_t entry, int dirty); 1372 1373 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1374 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1375 unsigned long addr, pmd_t *pmdp); 1376 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1377 unsigned long addr, pud_t *pudp); 1378 1379 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1380 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 1381 unsigned long address, pmd_t *pmdp); 1382 1383 1384 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1385 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 1386 pmd_t *pmdp) 1387 { 1388 pmd_t pmd = native_pmdp_get_and_clear(pmdp); 1389 1390 page_table_check_pmd_clear(mm, pmd); 1391 1392 return pmd; 1393 } 1394 1395 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1396 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1397 unsigned long addr, pud_t *pudp) 1398 { 1399 pud_t pud = native_pudp_get_and_clear(pudp); 1400 1401 page_table_check_pud_clear(mm, pud); 1402 1403 return pud; 1404 } 1405 1406 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1407 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1408 unsigned long addr, pmd_t *pmdp) 1409 { 1410 /* 1411 * Avoid accidentally creating shadow stack PTEs 1412 * (Write=0,Dirty=1). Use cmpxchg() to prevent races with 1413 * the hardware setting Dirty=1. 1414 */ 1415 pmd_t old_pmd, new_pmd; 1416 1417 old_pmd = READ_ONCE(*pmdp); 1418 do { 1419 new_pmd = pmd_wrprotect(old_pmd); 1420 } while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd)); 1421 } 1422 1423 #ifndef pmdp_establish 1424 #define pmdp_establish pmdp_establish 1425 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1426 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1427 { 1428 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 1429 if (IS_ENABLED(CONFIG_SMP)) { 1430 return xchg(pmdp, pmd); 1431 } else { 1432 pmd_t old = *pmdp; 1433 WRITE_ONCE(*pmdp, pmd); 1434 return old; 1435 } 1436 } 1437 #endif 1438 1439 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1440 static inline pud_t pudp_establish(struct vm_area_struct *vma, 1441 unsigned long address, pud_t *pudp, pud_t pud) 1442 { 1443 page_table_check_pud_set(vma->vm_mm, pudp, pud); 1444 if (IS_ENABLED(CONFIG_SMP)) { 1445 return xchg(pudp, pud); 1446 } else { 1447 pud_t old = *pudp; 1448 WRITE_ONCE(*pudp, pud); 1449 return old; 1450 } 1451 } 1452 #endif 1453 1454 #define __HAVE_ARCH_PMDP_INVALIDATE_AD 1455 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 1456 unsigned long address, pmd_t *pmdp); 1457 1458 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, 1459 pud_t *pudp); 1460 1461 /* 1462 * Page table pages are page-aligned. The lower half of the top 1463 * level is used for userspace and the top half for the kernel. 1464 * 1465 * Returns true for parts of the PGD that map userspace and 1466 * false for the parts that map the kernel. 1467 */ 1468 static inline bool pgdp_maps_userspace(void *__ptr) 1469 { 1470 unsigned long ptr = (unsigned long)__ptr; 1471 1472 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); 1473 } 1474 1475 #define pgd_leaf pgd_leaf 1476 static inline bool pgd_leaf(pgd_t pgd) { return false; } 1477 1478 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 1479 /* 1480 * All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages 1481 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and 1482 * the user one is in the last 4k. To switch between them, you 1483 * just need to flip the 12th bit in their addresses. 1484 */ 1485 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT 1486 1487 /* 1488 * This generates better code than the inline assembly in 1489 * __set_bit(). 1490 */ 1491 static inline void *ptr_set_bit(void *ptr, int bit) 1492 { 1493 unsigned long __ptr = (unsigned long)ptr; 1494 1495 __ptr |= BIT(bit); 1496 return (void *)__ptr; 1497 } 1498 static inline void *ptr_clear_bit(void *ptr, int bit) 1499 { 1500 unsigned long __ptr = (unsigned long)ptr; 1501 1502 __ptr &= ~BIT(bit); 1503 return (void *)__ptr; 1504 } 1505 1506 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) 1507 { 1508 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1509 } 1510 1511 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) 1512 { 1513 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1514 } 1515 1516 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) 1517 { 1518 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1519 } 1520 1521 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) 1522 { 1523 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1524 } 1525 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ 1526 1527 /* 1528 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 1529 * 1530 * dst - pointer to pgd range anywhere on a pgd page 1531 * src - "" 1532 * count - the number of pgds to copy. 1533 * 1534 * dst and src can be on the same page, but the range must not overlap, 1535 * and must not cross a page boundary. 1536 */ 1537 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 1538 { 1539 memcpy(dst, src, count * sizeof(pgd_t)); 1540 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 1541 if (!static_cpu_has(X86_FEATURE_PTI)) 1542 return; 1543 /* Clone the user space pgd as well */ 1544 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), 1545 count * sizeof(pgd_t)); 1546 #endif 1547 } 1548 1549 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 1550 static inline int page_level_shift(enum pg_level level) 1551 { 1552 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 1553 } 1554 static inline unsigned long page_level_size(enum pg_level level) 1555 { 1556 return 1UL << page_level_shift(level); 1557 } 1558 static inline unsigned long page_level_mask(enum pg_level level) 1559 { 1560 return ~(page_level_size(level) - 1); 1561 } 1562 1563 /* 1564 * The x86 doesn't have any external MMU info: the kernel page 1565 * tables contain all the necessary information. 1566 */ 1567 static inline void update_mmu_cache(struct vm_area_struct *vma, 1568 unsigned long addr, pte_t *ptep) 1569 { 1570 } 1571 static inline void update_mmu_cache_range(struct vm_fault *vmf, 1572 struct vm_area_struct *vma, unsigned long addr, 1573 pte_t *ptep, unsigned int nr) 1574 { 1575 } 1576 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1577 unsigned long addr, pmd_t *pmd) 1578 { 1579 } 1580 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1581 unsigned long addr, pud_t *pud) 1582 { 1583 } 1584 static inline pte_t pte_swp_mkexclusive(pte_t pte) 1585 { 1586 return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE); 1587 } 1588 1589 static inline int pte_swp_exclusive(pte_t pte) 1590 { 1591 return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE; 1592 } 1593 1594 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 1595 { 1596 return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE); 1597 } 1598 1599 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1600 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1601 { 1602 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1603 } 1604 1605 static inline int pte_swp_soft_dirty(pte_t pte) 1606 { 1607 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 1608 } 1609 1610 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1611 { 1612 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1613 } 1614 1615 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1616 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1617 { 1618 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1619 } 1620 1621 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1622 { 1623 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; 1624 } 1625 1626 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1627 { 1628 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1629 } 1630 #endif 1631 #endif 1632 1633 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1634 static inline pte_t pte_swp_mkuffd_wp(pte_t pte) 1635 { 1636 return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); 1637 } 1638 1639 static inline int pte_swp_uffd_wp(pte_t pte) 1640 { 1641 return pte_flags(pte) & _PAGE_SWP_UFFD_WP; 1642 } 1643 1644 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) 1645 { 1646 return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); 1647 } 1648 1649 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) 1650 { 1651 return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); 1652 } 1653 1654 static inline int pmd_swp_uffd_wp(pmd_t pmd) 1655 { 1656 return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; 1657 } 1658 1659 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) 1660 { 1661 return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); 1662 } 1663 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 1664 1665 static inline u16 pte_flags_pkey(unsigned long pte_flags) 1666 { 1667 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1668 /* ifdef to avoid doing 59-bit shift on 32-bit values */ 1669 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; 1670 #else 1671 return 0; 1672 #endif 1673 } 1674 1675 static inline bool __pkru_allows_pkey(u16 pkey, bool write) 1676 { 1677 u32 pkru = read_pkru(); 1678 1679 if (!__pkru_allows_read(pkru, pkey)) 1680 return false; 1681 if (write && !__pkru_allows_write(pkru, pkey)) 1682 return false; 1683 1684 return true; 1685 } 1686 1687 /* 1688 * 'pteval' can come from a PTE, PMD or PUD. We only check 1689 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the 1690 * same value on all 3 types. 1691 */ 1692 static inline bool __pte_access_permitted(unsigned long pteval, bool write) 1693 { 1694 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; 1695 1696 /* 1697 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel 1698 * shouldn't generally allow access to, but since they 1699 * are already Write=0, the below logic covers both cases. 1700 */ 1701 if (write) 1702 need_pte_bits |= _PAGE_RW; 1703 1704 if ((pteval & need_pte_bits) != need_pte_bits) 1705 return 0; 1706 1707 return __pkru_allows_pkey(pte_flags_pkey(pteval), write); 1708 } 1709 1710 #define pte_access_permitted pte_access_permitted 1711 static inline bool pte_access_permitted(pte_t pte, bool write) 1712 { 1713 return __pte_access_permitted(pte_val(pte), write); 1714 } 1715 1716 #define pmd_access_permitted pmd_access_permitted 1717 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1718 { 1719 return __pte_access_permitted(pmd_val(pmd), write); 1720 } 1721 1722 #define pud_access_permitted pud_access_permitted 1723 static inline bool pud_access_permitted(pud_t pud, bool write) 1724 { 1725 return __pte_access_permitted(pud_val(pud), write); 1726 } 1727 1728 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 1729 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); 1730 1731 static inline bool arch_has_pfn_modify_check(void) 1732 { 1733 return boot_cpu_has_bug(X86_BUG_L1TF); 1734 } 1735 1736 #define arch_check_zapped_pte arch_check_zapped_pte 1737 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte); 1738 1739 #define arch_check_zapped_pmd arch_check_zapped_pmd 1740 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd); 1741 1742 #define arch_check_zapped_pud arch_check_zapped_pud 1743 void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud); 1744 1745 #ifdef CONFIG_XEN_PV 1746 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young 1747 static inline bool arch_has_hw_nonleaf_pmd_young(void) 1748 { 1749 return !cpu_feature_enabled(X86_FEATURE_XENPV); 1750 } 1751 #endif 1752 1753 #ifdef CONFIG_PAGE_TABLE_CHECK 1754 static inline bool pte_user_accessible_page(pte_t pte) 1755 { 1756 return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER); 1757 } 1758 1759 static inline bool pmd_user_accessible_page(pmd_t pmd) 1760 { 1761 return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER); 1762 } 1763 1764 static inline bool pud_user_accessible_page(pud_t pud) 1765 { 1766 return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER); 1767 } 1768 #endif 1769 1770 #ifdef CONFIG_X86_SGX 1771 int arch_memory_failure(unsigned long pfn, int flags); 1772 #define arch_memory_failure arch_memory_failure 1773 1774 bool arch_is_platform_page(u64 paddr); 1775 #define arch_is_platform_page arch_is_platform_page 1776 #endif 1777 1778 /* 1779 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 1780 * TLB flush will be required as a result of the "set". For example, use 1781 * in scenarios where it is known ahead of time that the routine is 1782 * setting non-present entries, or re-setting an existing entry to the 1783 * same value. Otherwise, use the typical "set" helpers and flush the 1784 * TLB. 1785 */ 1786 #define set_pte_safe(ptep, pte) \ 1787 ({ \ 1788 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 1789 set_pte(ptep, pte); \ 1790 }) 1791 1792 #define set_pmd_safe(pmdp, pmd) \ 1793 ({ \ 1794 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 1795 set_pmd(pmdp, pmd); \ 1796 }) 1797 1798 #define set_pud_safe(pudp, pud) \ 1799 ({ \ 1800 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 1801 set_pud(pudp, pud); \ 1802 }) 1803 1804 #define set_p4d_safe(p4dp, p4d) \ 1805 ({ \ 1806 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 1807 set_p4d(p4dp, p4d); \ 1808 }) 1809 1810 #define set_pgd_safe(pgdp, pgd) \ 1811 ({ \ 1812 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 1813 set_pgd(pgdp, pgd); \ 1814 }) 1815 #endif /* __ASSEMBLY__ */ 1816 1817 #endif /* _ASM_X86_PGTABLE_H */ 1818