1 #ifndef _ASM_X86_PGTABLE_H 2 #define _ASM_X86_PGTABLE_H 3 4 #include <asm/page.h> 5 #include <asm/e820.h> 6 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \ 15 : (prot)) 16 17 #ifndef __ASSEMBLY__ 18 19 #include <asm/x86_init.h> 20 21 /* 22 * ZERO_PAGE is a global shared page that is always zero: used 23 * for zero-mapped memory areas etc.. 24 */ 25 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 26 __visible; 27 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 28 29 extern spinlock_t pgd_lock; 30 extern struct list_head pgd_list; 31 32 extern struct mm_struct *pgd_page_get_mm(struct page *page); 33 34 #ifdef CONFIG_PARAVIRT 35 #include <asm/paravirt.h> 36 #else /* !CONFIG_PARAVIRT */ 37 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 38 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 39 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd) 40 41 #define set_pte_atomic(ptep, pte) \ 42 native_set_pte_atomic(ptep, pte) 43 44 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 45 46 #ifndef __PAGETABLE_PUD_FOLDED 47 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 48 #define pgd_clear(pgd) native_pgd_clear(pgd) 49 #endif 50 51 #ifndef set_pud 52 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 53 #endif 54 55 #ifndef __PAGETABLE_PMD_FOLDED 56 #define pud_clear(pud) native_pud_clear(pud) 57 #endif 58 59 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 60 #define pmd_clear(pmd) native_pmd_clear(pmd) 61 62 #define pte_update(mm, addr, ptep) do { } while (0) 63 #define pte_update_defer(mm, addr, ptep) do { } while (0) 64 #define pmd_update(mm, addr, ptep) do { } while (0) 65 #define pmd_update_defer(mm, addr, ptep) do { } while (0) 66 67 #define pgd_val(x) native_pgd_val(x) 68 #define __pgd(x) native_make_pgd(x) 69 70 #ifndef __PAGETABLE_PUD_FOLDED 71 #define pud_val(x) native_pud_val(x) 72 #define __pud(x) native_make_pud(x) 73 #endif 74 75 #ifndef __PAGETABLE_PMD_FOLDED 76 #define pmd_val(x) native_pmd_val(x) 77 #define __pmd(x) native_make_pmd(x) 78 #endif 79 80 #define pte_val(x) native_pte_val(x) 81 #define __pte(x) native_make_pte(x) 82 83 #define arch_end_context_switch(prev) do {} while(0) 84 85 #endif /* CONFIG_PARAVIRT */ 86 87 /* 88 * The following only work if pte_present() is true. 89 * Undefined behaviour if not.. 90 */ 91 static inline int pte_dirty(pte_t pte) 92 { 93 return pte_flags(pte) & _PAGE_DIRTY; 94 } 95 96 static inline int pte_young(pte_t pte) 97 { 98 return pte_flags(pte) & _PAGE_ACCESSED; 99 } 100 101 static inline int pmd_young(pmd_t pmd) 102 { 103 return pmd_flags(pmd) & _PAGE_ACCESSED; 104 } 105 106 static inline int pte_write(pte_t pte) 107 { 108 return pte_flags(pte) & _PAGE_RW; 109 } 110 111 static inline int pte_file(pte_t pte) 112 { 113 return pte_flags(pte) & _PAGE_FILE; 114 } 115 116 static inline int pte_huge(pte_t pte) 117 { 118 return pte_flags(pte) & _PAGE_PSE; 119 } 120 121 static inline int pte_global(pte_t pte) 122 { 123 return pte_flags(pte) & _PAGE_GLOBAL; 124 } 125 126 static inline int pte_exec(pte_t pte) 127 { 128 return !(pte_flags(pte) & _PAGE_NX); 129 } 130 131 static inline int pte_special(pte_t pte) 132 { 133 return pte_flags(pte) & _PAGE_SPECIAL; 134 } 135 136 static inline unsigned long pte_pfn(pte_t pte) 137 { 138 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT; 139 } 140 141 static inline unsigned long pmd_pfn(pmd_t pmd) 142 { 143 return (pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT; 144 } 145 146 static inline unsigned long pud_pfn(pud_t pud) 147 { 148 return (pud_val(pud) & PTE_PFN_MASK) >> PAGE_SHIFT; 149 } 150 151 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 152 153 static inline int pmd_large(pmd_t pte) 154 { 155 return pmd_flags(pte) & _PAGE_PSE; 156 } 157 158 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 159 static inline int pmd_trans_splitting(pmd_t pmd) 160 { 161 return pmd_val(pmd) & _PAGE_SPLITTING; 162 } 163 164 static inline int pmd_trans_huge(pmd_t pmd) 165 { 166 return pmd_val(pmd) & _PAGE_PSE; 167 } 168 169 static inline int has_transparent_hugepage(void) 170 { 171 return cpu_has_pse; 172 } 173 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 174 175 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 176 { 177 pteval_t v = native_pte_val(pte); 178 179 return native_make_pte(v | set); 180 } 181 182 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 183 { 184 pteval_t v = native_pte_val(pte); 185 186 return native_make_pte(v & ~clear); 187 } 188 189 static inline pte_t pte_mkclean(pte_t pte) 190 { 191 return pte_clear_flags(pte, _PAGE_DIRTY); 192 } 193 194 static inline pte_t pte_mkold(pte_t pte) 195 { 196 return pte_clear_flags(pte, _PAGE_ACCESSED); 197 } 198 199 static inline pte_t pte_wrprotect(pte_t pte) 200 { 201 return pte_clear_flags(pte, _PAGE_RW); 202 } 203 204 static inline pte_t pte_mkexec(pte_t pte) 205 { 206 return pte_clear_flags(pte, _PAGE_NX); 207 } 208 209 static inline pte_t pte_mkdirty(pte_t pte) 210 { 211 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 212 } 213 214 static inline pte_t pte_mkyoung(pte_t pte) 215 { 216 return pte_set_flags(pte, _PAGE_ACCESSED); 217 } 218 219 static inline pte_t pte_mkwrite(pte_t pte) 220 { 221 return pte_set_flags(pte, _PAGE_RW); 222 } 223 224 static inline pte_t pte_mkhuge(pte_t pte) 225 { 226 return pte_set_flags(pte, _PAGE_PSE); 227 } 228 229 static inline pte_t pte_clrhuge(pte_t pte) 230 { 231 return pte_clear_flags(pte, _PAGE_PSE); 232 } 233 234 static inline pte_t pte_mkglobal(pte_t pte) 235 { 236 return pte_set_flags(pte, _PAGE_GLOBAL); 237 } 238 239 static inline pte_t pte_clrglobal(pte_t pte) 240 { 241 return pte_clear_flags(pte, _PAGE_GLOBAL); 242 } 243 244 static inline pte_t pte_mkspecial(pte_t pte) 245 { 246 return pte_set_flags(pte, _PAGE_SPECIAL); 247 } 248 249 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 250 { 251 pmdval_t v = native_pmd_val(pmd); 252 253 return __pmd(v | set); 254 } 255 256 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 257 { 258 pmdval_t v = native_pmd_val(pmd); 259 260 return __pmd(v & ~clear); 261 } 262 263 static inline pmd_t pmd_mkold(pmd_t pmd) 264 { 265 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 266 } 267 268 static inline pmd_t pmd_wrprotect(pmd_t pmd) 269 { 270 return pmd_clear_flags(pmd, _PAGE_RW); 271 } 272 273 static inline pmd_t pmd_mkdirty(pmd_t pmd) 274 { 275 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 276 } 277 278 static inline pmd_t pmd_mkhuge(pmd_t pmd) 279 { 280 return pmd_set_flags(pmd, _PAGE_PSE); 281 } 282 283 static inline pmd_t pmd_mkyoung(pmd_t pmd) 284 { 285 return pmd_set_flags(pmd, _PAGE_ACCESSED); 286 } 287 288 static inline pmd_t pmd_mkwrite(pmd_t pmd) 289 { 290 return pmd_set_flags(pmd, _PAGE_RW); 291 } 292 293 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 294 { 295 return pmd_clear_flags(pmd, _PAGE_PRESENT); 296 } 297 298 static inline int pte_soft_dirty(pte_t pte) 299 { 300 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 301 } 302 303 static inline int pmd_soft_dirty(pmd_t pmd) 304 { 305 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 306 } 307 308 static inline pte_t pte_mksoft_dirty(pte_t pte) 309 { 310 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 311 } 312 313 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 314 { 315 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 316 } 317 318 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 319 { 320 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 321 } 322 323 static inline int pte_swp_soft_dirty(pte_t pte) 324 { 325 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 326 } 327 328 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 329 { 330 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 331 } 332 333 static inline pte_t pte_file_clear_soft_dirty(pte_t pte) 334 { 335 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 336 } 337 338 static inline pte_t pte_file_mksoft_dirty(pte_t pte) 339 { 340 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 341 } 342 343 static inline int pte_file_soft_dirty(pte_t pte) 344 { 345 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 346 } 347 348 /* 349 * Mask out unsupported bits in a present pgprot. Non-present pgprots 350 * can use those bits for other purposes, so leave them be. 351 */ 352 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 353 { 354 pgprotval_t protval = pgprot_val(pgprot); 355 356 if (protval & _PAGE_PRESENT) 357 protval &= __supported_pte_mask; 358 359 return protval; 360 } 361 362 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 363 { 364 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) | 365 massage_pgprot(pgprot)); 366 } 367 368 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 369 { 370 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) | 371 massage_pgprot(pgprot)); 372 } 373 374 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 375 { 376 pteval_t val = pte_val(pte); 377 378 /* 379 * Chop off the NX bit (if present), and add the NX portion of 380 * the newprot (if present): 381 */ 382 val &= _PAGE_CHG_MASK; 383 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK; 384 385 return __pte(val); 386 } 387 388 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 389 { 390 pmdval_t val = pmd_val(pmd); 391 392 val &= _HPAGE_CHG_MASK; 393 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK; 394 395 return __pmd(val); 396 } 397 398 /* mprotect needs to preserve PAT bits when updating vm_page_prot */ 399 #define pgprot_modify pgprot_modify 400 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 401 { 402 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 403 pgprotval_t addbits = pgprot_val(newprot); 404 return __pgprot(preservebits | addbits); 405 } 406 407 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK) 408 409 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 410 411 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 412 unsigned long flags, 413 unsigned long new_flags) 414 { 415 /* 416 * PAT type is always WB for untracked ranges, so no need to check. 417 */ 418 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 419 return 1; 420 421 /* 422 * Certain new memtypes are not allowed with certain 423 * requested memtype: 424 * - request is uncached, return cannot be write-back 425 * - request is write-combine, return cannot be write-back 426 */ 427 if ((flags == _PAGE_CACHE_UC_MINUS && 428 new_flags == _PAGE_CACHE_WB) || 429 (flags == _PAGE_CACHE_WC && 430 new_flags == _PAGE_CACHE_WB)) { 431 return 0; 432 } 433 434 return 1; 435 } 436 437 pmd_t *populate_extra_pmd(unsigned long vaddr); 438 pte_t *populate_extra_pte(unsigned long vaddr); 439 #endif /* __ASSEMBLY__ */ 440 441 #ifdef CONFIG_X86_32 442 # include <asm/pgtable_32.h> 443 #else 444 # include <asm/pgtable_64.h> 445 #endif 446 447 #ifndef __ASSEMBLY__ 448 #include <linux/mm_types.h> 449 #include <linux/log2.h> 450 451 static inline int pte_none(pte_t pte) 452 { 453 return !pte.pte; 454 } 455 456 #define __HAVE_ARCH_PTE_SAME 457 static inline int pte_same(pte_t a, pte_t b) 458 { 459 return a.pte == b.pte; 460 } 461 462 static inline int pte_present(pte_t a) 463 { 464 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE | 465 _PAGE_NUMA); 466 } 467 468 #define pte_accessible pte_accessible 469 static inline int pte_accessible(pte_t a) 470 { 471 return pte_flags(a) & _PAGE_PRESENT; 472 } 473 474 static inline int pte_hidden(pte_t pte) 475 { 476 return pte_flags(pte) & _PAGE_HIDDEN; 477 } 478 479 static inline int pmd_present(pmd_t pmd) 480 { 481 /* 482 * Checking for _PAGE_PSE is needed too because 483 * split_huge_page will temporarily clear the present bit (but 484 * the _PAGE_PSE flag will remain set at all times while the 485 * _PAGE_PRESENT bit is clear). 486 */ 487 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE | 488 _PAGE_NUMA); 489 } 490 491 static inline int pmd_none(pmd_t pmd) 492 { 493 /* Only check low word on 32-bit platforms, since it might be 494 out of sync with upper half. */ 495 return (unsigned long)native_pmd_val(pmd) == 0; 496 } 497 498 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 499 { 500 return (unsigned long)__va(pmd_val(pmd) & PTE_PFN_MASK); 501 } 502 503 /* 504 * Currently stuck as a macro due to indirect forward reference to 505 * linux/mmzone.h's __section_mem_map_addr() definition: 506 */ 507 #define pmd_page(pmd) pfn_to_page((pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT) 508 509 /* 510 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 511 * 512 * this macro returns the index of the entry in the pmd page which would 513 * control the given virtual address 514 */ 515 static inline unsigned long pmd_index(unsigned long address) 516 { 517 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 518 } 519 520 /* 521 * Conversion functions: convert a page and protection to a page entry, 522 * and a page entry and page directory to the page they refer to. 523 * 524 * (Currently stuck as a macro because of indirect forward reference 525 * to linux/mm.h:page_to_nid()) 526 */ 527 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 528 529 /* 530 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 531 * 532 * this function returns the index of the entry in the pte page which would 533 * control the given virtual address 534 */ 535 static inline unsigned long pte_index(unsigned long address) 536 { 537 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 538 } 539 540 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 541 { 542 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 543 } 544 545 static inline int pmd_bad(pmd_t pmd) 546 { 547 #ifdef CONFIG_NUMA_BALANCING 548 /* pmd_numa check */ 549 if ((pmd_flags(pmd) & (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA) 550 return 0; 551 #endif 552 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 553 } 554 555 static inline unsigned long pages_to_mb(unsigned long npg) 556 { 557 return npg >> (20 - PAGE_SHIFT); 558 } 559 560 #if PAGETABLE_LEVELS > 2 561 static inline int pud_none(pud_t pud) 562 { 563 return native_pud_val(pud) == 0; 564 } 565 566 static inline int pud_present(pud_t pud) 567 { 568 return pud_flags(pud) & _PAGE_PRESENT; 569 } 570 571 static inline unsigned long pud_page_vaddr(pud_t pud) 572 { 573 return (unsigned long)__va((unsigned long)pud_val(pud) & PTE_PFN_MASK); 574 } 575 576 /* 577 * Currently stuck as a macro due to indirect forward reference to 578 * linux/mmzone.h's __section_mem_map_addr() definition: 579 */ 580 #define pud_page(pud) pfn_to_page(pud_val(pud) >> PAGE_SHIFT) 581 582 /* Find an entry in the second-level page table.. */ 583 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 584 { 585 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 586 } 587 588 static inline int pud_large(pud_t pud) 589 { 590 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 591 (_PAGE_PSE | _PAGE_PRESENT); 592 } 593 594 static inline int pud_bad(pud_t pud) 595 { 596 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 597 } 598 #else 599 static inline int pud_large(pud_t pud) 600 { 601 return 0; 602 } 603 #endif /* PAGETABLE_LEVELS > 2 */ 604 605 #if PAGETABLE_LEVELS > 3 606 static inline int pgd_present(pgd_t pgd) 607 { 608 return pgd_flags(pgd) & _PAGE_PRESENT; 609 } 610 611 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 612 { 613 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 614 } 615 616 /* 617 * Currently stuck as a macro due to indirect forward reference to 618 * linux/mmzone.h's __section_mem_map_addr() definition: 619 */ 620 #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT) 621 622 /* to find an entry in a page-table-directory. */ 623 static inline unsigned long pud_index(unsigned long address) 624 { 625 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 626 } 627 628 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 629 { 630 return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address); 631 } 632 633 static inline int pgd_bad(pgd_t pgd) 634 { 635 return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE; 636 } 637 638 static inline int pgd_none(pgd_t pgd) 639 { 640 return !native_pgd_val(pgd); 641 } 642 #endif /* PAGETABLE_LEVELS > 3 */ 643 644 #endif /* __ASSEMBLY__ */ 645 646 /* 647 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 648 * 649 * this macro returns the index of the entry in the pgd page which would 650 * control the given virtual address 651 */ 652 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 653 654 /* 655 * pgd_offset() returns a (pgd_t *) 656 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 657 */ 658 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address))) 659 /* 660 * a shortcut which implies the use of the kernel's pgd, instead 661 * of a process's 662 */ 663 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 664 665 666 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 667 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 668 669 #ifndef __ASSEMBLY__ 670 671 extern int direct_gbpages; 672 void init_mem_mapping(void); 673 void early_alloc_pgt_buf(void); 674 675 /* local pte updates need not use xchg for locking */ 676 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 677 { 678 pte_t res = *ptep; 679 680 /* Pure native function needs no input for mm, addr */ 681 native_pte_clear(NULL, 0, ptep); 682 return res; 683 } 684 685 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 686 { 687 pmd_t res = *pmdp; 688 689 native_pmd_clear(pmdp); 690 return res; 691 } 692 693 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 694 pte_t *ptep , pte_t pte) 695 { 696 native_set_pte(ptep, pte); 697 } 698 699 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr, 700 pmd_t *pmdp , pmd_t pmd) 701 { 702 native_set_pmd(pmdp, pmd); 703 } 704 705 #ifndef CONFIG_PARAVIRT 706 /* 707 * Rules for using pte_update - it must be called after any PTE update which 708 * has not been done using the set_pte / clear_pte interfaces. It is used by 709 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE 710 * updates should either be sets, clears, or set_pte_atomic for P->P 711 * transitions, which means this hook should only be called for user PTEs. 712 * This hook implies a P->P protection or access change has taken place, which 713 * requires a subsequent TLB flush. The notification can optionally be delayed 714 * until the TLB flush event by using the pte_update_defer form of the 715 * interface, but care must be taken to assure that the flush happens while 716 * still holding the same page table lock so that the shadow and primary pages 717 * do not become out of sync on SMP. 718 */ 719 #define pte_update(mm, addr, ptep) do { } while (0) 720 #define pte_update_defer(mm, addr, ptep) do { } while (0) 721 #endif 722 723 /* 724 * We only update the dirty/accessed state if we set 725 * the dirty bit by hand in the kernel, since the hardware 726 * will do the accessed bit for us, and we don't want to 727 * race with other CPU's that might be updating the dirty 728 * bit at the same time. 729 */ 730 struct vm_area_struct; 731 732 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 733 extern int ptep_set_access_flags(struct vm_area_struct *vma, 734 unsigned long address, pte_t *ptep, 735 pte_t entry, int dirty); 736 737 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 738 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 739 unsigned long addr, pte_t *ptep); 740 741 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 742 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 743 unsigned long address, pte_t *ptep); 744 745 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 746 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 747 pte_t *ptep) 748 { 749 pte_t pte = native_ptep_get_and_clear(ptep); 750 pte_update(mm, addr, ptep); 751 return pte; 752 } 753 754 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 755 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 756 unsigned long addr, pte_t *ptep, 757 int full) 758 { 759 pte_t pte; 760 if (full) { 761 /* 762 * Full address destruction in progress; paravirt does not 763 * care about updates and native needs no locking 764 */ 765 pte = native_local_ptep_get_and_clear(ptep); 766 } else { 767 pte = ptep_get_and_clear(mm, addr, ptep); 768 } 769 return pte; 770 } 771 772 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 773 static inline void ptep_set_wrprotect(struct mm_struct *mm, 774 unsigned long addr, pte_t *ptep) 775 { 776 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 777 pte_update(mm, addr, ptep); 778 } 779 780 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 781 782 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 783 784 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 785 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 786 unsigned long address, pmd_t *pmdp, 787 pmd_t entry, int dirty); 788 789 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 790 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 791 unsigned long addr, pmd_t *pmdp); 792 793 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 794 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 795 unsigned long address, pmd_t *pmdp); 796 797 798 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH 799 extern void pmdp_splitting_flush(struct vm_area_struct *vma, 800 unsigned long addr, pmd_t *pmdp); 801 802 #define __HAVE_ARCH_PMD_WRITE 803 static inline int pmd_write(pmd_t pmd) 804 { 805 return pmd_flags(pmd) & _PAGE_RW; 806 } 807 808 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR 809 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long addr, 810 pmd_t *pmdp) 811 { 812 pmd_t pmd = native_pmdp_get_and_clear(pmdp); 813 pmd_update(mm, addr, pmdp); 814 return pmd; 815 } 816 817 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 818 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 819 unsigned long addr, pmd_t *pmdp) 820 { 821 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 822 pmd_update(mm, addr, pmdp); 823 } 824 825 /* 826 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 827 * 828 * dst - pointer to pgd range anwhere on a pgd page 829 * src - "" 830 * count - the number of pgds to copy. 831 * 832 * dst and src can be on the same page, but the range must not overlap, 833 * and must not cross a page boundary. 834 */ 835 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 836 { 837 memcpy(dst, src, count * sizeof(pgd_t)); 838 } 839 840 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 841 static inline int page_level_shift(enum pg_level level) 842 { 843 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 844 } 845 static inline unsigned long page_level_size(enum pg_level level) 846 { 847 return 1UL << page_level_shift(level); 848 } 849 static inline unsigned long page_level_mask(enum pg_level level) 850 { 851 return ~(page_level_size(level) - 1); 852 } 853 854 /* 855 * The x86 doesn't have any external MMU info: the kernel page 856 * tables contain all the necessary information. 857 */ 858 static inline void update_mmu_cache(struct vm_area_struct *vma, 859 unsigned long addr, pte_t *ptep) 860 { 861 } 862 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 863 unsigned long addr, pmd_t *pmd) 864 { 865 } 866 867 #include <asm-generic/pgtable.h> 868 #endif /* __ASSEMBLY__ */ 869 870 #endif /* _ASM_X86_PGTABLE_H */ 871