xref: /linux/arch/x86/include/asm/pgtable.h (revision 040f404b731207935ed644b14bcc2bb8b8488d00)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4 
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8 
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)						\
13 	((boot_cpu_data.x86 > 3)					\
14 	 ? (__pgprot(pgprot_val(prot) |					\
15 		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
16 	 : (prot))
17 
18 #ifndef __ASSEMBLER__
19 #include <linux/spinlock.h>
20 #include <asm/x86_init.h>
21 #include <asm/pkru.h>
22 #include <asm/fpu/api.h>
23 #include <asm/coco.h>
24 #include <asm-generic/pgtable_uffd.h>
25 #include <linux/page_table_check.h>
26 
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29 
30 struct seq_file;
31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
33 				   bool user);
34 bool ptdump_walk_pgd_level_checkwx(void);
35 #define ptdump_check_wx ptdump_walk_pgd_level_checkwx
36 void ptdump_walk_user_pgd_level_checkwx(void);
37 
38 /*
39  * Macros to add or remove encryption attribute
40  */
41 #define pgprot_encrypted(prot)	__pgprot(cc_mkenc(pgprot_val(prot)))
42 #define pgprot_decrypted(prot)	__pgprot(cc_mkdec(pgprot_val(prot)))
43 
44 #ifdef CONFIG_DEBUG_WX
45 #define debug_checkwx_user()	ptdump_walk_user_pgd_level_checkwx()
46 #else
47 #define debug_checkwx_user()	do { } while (0)
48 #endif
49 
50 /*
51  * ZERO_PAGE is a global shared page that is always zero: used
52  * for zero-mapped memory areas etc..
53  */
54 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
55 	__visible;
56 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
57 
58 extern spinlock_t pgd_lock;
59 extern struct list_head pgd_list;
60 
61 extern struct mm_struct *pgd_page_get_mm(struct page *page);
62 
63 extern pmdval_t early_pmd_flags;
64 
65 #ifdef CONFIG_PARAVIRT_XXL
66 #include <asm/paravirt.h>
67 #else  /* !CONFIG_PARAVIRT_XXL */
68 #define set_pte(ptep, pte)		native_set_pte(ptep, pte)
69 
70 #define set_pte_atomic(ptep, pte)					\
71 	native_set_pte_atomic(ptep, pte)
72 
73 #define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
74 
75 #ifndef __PAGETABLE_P4D_FOLDED
76 #define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
77 #define pgd_clear(pgd)			(pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
78 #endif
79 
80 #ifndef set_p4d
81 # define set_p4d(p4dp, p4d)		native_set_p4d(p4dp, p4d)
82 #endif
83 
84 #ifndef __PAGETABLE_PUD_FOLDED
85 #define p4d_clear(p4d)			native_p4d_clear(p4d)
86 #endif
87 
88 #ifndef set_pud
89 # define set_pud(pudp, pud)		native_set_pud(pudp, pud)
90 #endif
91 
92 #ifndef __PAGETABLE_PUD_FOLDED
93 #define pud_clear(pud)			native_pud_clear(pud)
94 #endif
95 
96 #define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
97 #define pmd_clear(pmd)			native_pmd_clear(pmd)
98 
99 #define pgd_val(x)	native_pgd_val(x)
100 #define __pgd(x)	native_make_pgd(x)
101 
102 #ifndef __PAGETABLE_P4D_FOLDED
103 #define p4d_val(x)	native_p4d_val(x)
104 #define __p4d(x)	native_make_p4d(x)
105 #endif
106 
107 #ifndef __PAGETABLE_PUD_FOLDED
108 #define pud_val(x)	native_pud_val(x)
109 #define __pud(x)	native_make_pud(x)
110 #endif
111 
112 #ifndef __PAGETABLE_PMD_FOLDED
113 #define pmd_val(x)	native_pmd_val(x)
114 #define __pmd(x)	native_make_pmd(x)
115 #endif
116 
117 #define pte_val(x)	native_pte_val(x)
118 #define __pte(x)	native_make_pte(x)
119 
120 #define arch_end_context_switch(prev)	do {} while(0)
121 #endif	/* CONFIG_PARAVIRT_XXL */
122 
123 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
124 {
125 	pmdval_t v = native_pmd_val(pmd);
126 
127 	return native_make_pmd(v | set);
128 }
129 
130 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
131 {
132 	pmdval_t v = native_pmd_val(pmd);
133 
134 	return native_make_pmd(v & ~clear);
135 }
136 
137 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
138 {
139 	pudval_t v = native_pud_val(pud);
140 
141 	return native_make_pud(v | set);
142 }
143 
144 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
145 {
146 	pudval_t v = native_pud_val(pud);
147 
148 	return native_make_pud(v & ~clear);
149 }
150 
151 /*
152  * The following only work if pte_present() is true.
153  * Undefined behaviour if not..
154  */
155 static inline bool pte_dirty(pte_t pte)
156 {
157 	return pte_flags(pte) & _PAGE_DIRTY_BITS;
158 }
159 
160 static inline bool pte_shstk(pte_t pte)
161 {
162 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
163 	       (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
164 }
165 
166 static inline int pte_young(pte_t pte)
167 {
168 	return pte_flags(pte) & _PAGE_ACCESSED;
169 }
170 
171 static inline bool pte_decrypted(pte_t pte)
172 {
173 	return cc_mkdec(pte_val(pte)) == pte_val(pte);
174 }
175 
176 #define pmd_dirty pmd_dirty
177 static inline bool pmd_dirty(pmd_t pmd)
178 {
179 	return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
180 }
181 
182 static inline bool pmd_shstk(pmd_t pmd)
183 {
184 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
185 	       (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
186 	       (_PAGE_DIRTY | _PAGE_PSE);
187 }
188 
189 #define pmd_young pmd_young
190 static inline int pmd_young(pmd_t pmd)
191 {
192 	return pmd_flags(pmd) & _PAGE_ACCESSED;
193 }
194 
195 static inline bool pud_dirty(pud_t pud)
196 {
197 	return pud_flags(pud) & _PAGE_DIRTY_BITS;
198 }
199 
200 static inline int pud_young(pud_t pud)
201 {
202 	return pud_flags(pud) & _PAGE_ACCESSED;
203 }
204 
205 static inline bool pud_shstk(pud_t pud)
206 {
207 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
208 	       (pud_flags(pud) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
209 	       (_PAGE_DIRTY | _PAGE_PSE);
210 }
211 
212 static inline int pte_write(pte_t pte)
213 {
214 	/*
215 	 * Shadow stack pages are logically writable, but do not have
216 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
217 	 */
218 	return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
219 }
220 
221 #define pmd_write pmd_write
222 static inline int pmd_write(pmd_t pmd)
223 {
224 	/*
225 	 * Shadow stack pages are logically writable, but do not have
226 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
227 	 */
228 	return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
229 }
230 
231 #define pud_write pud_write
232 static inline int pud_write(pud_t pud)
233 {
234 	return pud_flags(pud) & _PAGE_RW;
235 }
236 
237 static inline int pte_huge(pte_t pte)
238 {
239 	return pte_flags(pte) & _PAGE_PSE;
240 }
241 
242 static inline int pte_global(pte_t pte)
243 {
244 	return pte_flags(pte) & _PAGE_GLOBAL;
245 }
246 
247 static inline int pte_exec(pte_t pte)
248 {
249 	return !(pte_flags(pte) & _PAGE_NX);
250 }
251 
252 static inline int pte_special(pte_t pte)
253 {
254 	return pte_flags(pte) & _PAGE_SPECIAL;
255 }
256 
257 /* Entries that were set to PROT_NONE are inverted */
258 
259 static inline u64 protnone_mask(u64 val);
260 
261 #define PFN_PTE_SHIFT	PAGE_SHIFT
262 
263 static inline unsigned long pte_pfn(pte_t pte)
264 {
265 	phys_addr_t pfn = pte_val(pte);
266 	pfn ^= protnone_mask(pfn);
267 	return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
268 }
269 
270 static inline unsigned long pmd_pfn(pmd_t pmd)
271 {
272 	phys_addr_t pfn = pmd_val(pmd);
273 	pfn ^= protnone_mask(pfn);
274 	return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
275 }
276 
277 #define pud_pfn pud_pfn
278 static inline unsigned long pud_pfn(pud_t pud)
279 {
280 	phys_addr_t pfn = pud_val(pud);
281 	pfn ^= protnone_mask(pfn);
282 	return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
283 }
284 
285 static inline unsigned long p4d_pfn(p4d_t p4d)
286 {
287 	return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
288 }
289 
290 static inline unsigned long pgd_pfn(pgd_t pgd)
291 {
292 	return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
293 }
294 
295 #define p4d_leaf p4d_leaf
296 static inline bool p4d_leaf(p4d_t p4d)
297 {
298 	/* No 512 GiB pages yet */
299 	return 0;
300 }
301 
302 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
303 
304 #define pmd_leaf pmd_leaf
305 static inline bool pmd_leaf(pmd_t pte)
306 {
307 	return pmd_flags(pte) & _PAGE_PSE;
308 }
309 
310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
311 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_leaf */
312 static inline int pmd_trans_huge(pmd_t pmd)
313 {
314 	return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
315 }
316 
317 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
318 static inline int pud_trans_huge(pud_t pud)
319 {
320 	return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
321 }
322 #endif
323 
324 #define has_transparent_hugepage has_transparent_hugepage
325 static inline int has_transparent_hugepage(void)
326 {
327 	return boot_cpu_has(X86_FEATURE_PSE);
328 }
329 
330 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
331 static inline int pmd_devmap(pmd_t pmd)
332 {
333 	return !!(pmd_val(pmd) & _PAGE_DEVMAP);
334 }
335 
336 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
337 static inline int pud_devmap(pud_t pud)
338 {
339 	return !!(pud_val(pud) & _PAGE_DEVMAP);
340 }
341 #else
342 static inline int pud_devmap(pud_t pud)
343 {
344 	return 0;
345 }
346 #endif
347 
348 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
349 static inline bool pmd_special(pmd_t pmd)
350 {
351 	return pmd_flags(pmd) & _PAGE_SPECIAL;
352 }
353 
354 static inline pmd_t pmd_mkspecial(pmd_t pmd)
355 {
356 	return pmd_set_flags(pmd, _PAGE_SPECIAL);
357 }
358 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
359 
360 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
361 static inline bool pud_special(pud_t pud)
362 {
363 	return pud_flags(pud) & _PAGE_SPECIAL;
364 }
365 
366 static inline pud_t pud_mkspecial(pud_t pud)
367 {
368 	return pud_set_flags(pud, _PAGE_SPECIAL);
369 }
370 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
371 
372 static inline int pgd_devmap(pgd_t pgd)
373 {
374 	return 0;
375 }
376 #endif
377 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
378 
379 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
380 {
381 	pteval_t v = native_pte_val(pte);
382 
383 	return native_make_pte(v | set);
384 }
385 
386 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
387 {
388 	pteval_t v = native_pte_val(pte);
389 
390 	return native_make_pte(v & ~clear);
391 }
392 
393 /*
394  * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
395  * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
396  * when creating dirty, write-protected memory, a software bit is used:
397  * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
398  * Dirty bit to SavedDirty, and vice-vesra.
399  *
400  * This shifting is only done if needed. In the case of shifting
401  * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
402  * shifting SavedDirty->Dirty, the condition is Write=1.
403  */
404 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
405 {
406 	pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
407 
408 	v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
409 	v &= ~(cond << _PAGE_BIT_DIRTY);
410 
411 	return v;
412 }
413 
414 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
415 {
416 	pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
417 
418 	v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
419 	v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
420 
421 	return v;
422 }
423 
424 static inline pte_t pte_mksaveddirty(pte_t pte)
425 {
426 	pteval_t v = native_pte_val(pte);
427 
428 	v = mksaveddirty_shift(v);
429 	return native_make_pte(v);
430 }
431 
432 static inline pte_t pte_clear_saveddirty(pte_t pte)
433 {
434 	pteval_t v = native_pte_val(pte);
435 
436 	v = clear_saveddirty_shift(v);
437 	return native_make_pte(v);
438 }
439 
440 static inline pte_t pte_wrprotect(pte_t pte)
441 {
442 	pte = pte_clear_flags(pte, _PAGE_RW);
443 
444 	/*
445 	 * Blindly clearing _PAGE_RW might accidentally create
446 	 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware
447 	 * dirty value to the software bit, if present.
448 	 */
449 	return pte_mksaveddirty(pte);
450 }
451 
452 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
453 static inline int pte_uffd_wp(pte_t pte)
454 {
455 	return pte_flags(pte) & _PAGE_UFFD_WP;
456 }
457 
458 static inline pte_t pte_mkuffd_wp(pte_t pte)
459 {
460 	return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
461 }
462 
463 static inline pte_t pte_clear_uffd_wp(pte_t pte)
464 {
465 	return pte_clear_flags(pte, _PAGE_UFFD_WP);
466 }
467 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
468 
469 static inline pte_t pte_mkclean(pte_t pte)
470 {
471 	return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
472 }
473 
474 static inline pte_t pte_mkold(pte_t pte)
475 {
476 	return pte_clear_flags(pte, _PAGE_ACCESSED);
477 }
478 
479 static inline pte_t pte_mkexec(pte_t pte)
480 {
481 	return pte_clear_flags(pte, _PAGE_NX);
482 }
483 
484 static inline pte_t pte_mkdirty(pte_t pte)
485 {
486 	pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
487 
488 	return pte_mksaveddirty(pte);
489 }
490 
491 static inline pte_t pte_mkwrite_shstk(pte_t pte)
492 {
493 	pte = pte_clear_flags(pte, _PAGE_RW);
494 
495 	return pte_set_flags(pte, _PAGE_DIRTY);
496 }
497 
498 static inline pte_t pte_mkyoung(pte_t pte)
499 {
500 	return pte_set_flags(pte, _PAGE_ACCESSED);
501 }
502 
503 static inline pte_t pte_mkwrite_novma(pte_t pte)
504 {
505 	return pte_set_flags(pte, _PAGE_RW);
506 }
507 
508 struct vm_area_struct;
509 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
510 #define pte_mkwrite pte_mkwrite
511 
512 static inline pte_t pte_mkhuge(pte_t pte)
513 {
514 	return pte_set_flags(pte, _PAGE_PSE);
515 }
516 
517 static inline pte_t pte_clrhuge(pte_t pte)
518 {
519 	return pte_clear_flags(pte, _PAGE_PSE);
520 }
521 
522 static inline pte_t pte_mkglobal(pte_t pte)
523 {
524 	return pte_set_flags(pte, _PAGE_GLOBAL);
525 }
526 
527 static inline pte_t pte_clrglobal(pte_t pte)
528 {
529 	return pte_clear_flags(pte, _PAGE_GLOBAL);
530 }
531 
532 static inline pte_t pte_mkspecial(pte_t pte)
533 {
534 	return pte_set_flags(pte, _PAGE_SPECIAL);
535 }
536 
537 static inline pte_t pte_mkdevmap(pte_t pte)
538 {
539 	return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
540 }
541 
542 /* See comments above mksaveddirty_shift() */
543 static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
544 {
545 	pmdval_t v = native_pmd_val(pmd);
546 
547 	v = mksaveddirty_shift(v);
548 	return native_make_pmd(v);
549 }
550 
551 /* See comments above mksaveddirty_shift() */
552 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
553 {
554 	pmdval_t v = native_pmd_val(pmd);
555 
556 	v = clear_saveddirty_shift(v);
557 	return native_make_pmd(v);
558 }
559 
560 static inline pmd_t pmd_wrprotect(pmd_t pmd)
561 {
562 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
563 
564 	/*
565 	 * Blindly clearing _PAGE_RW might accidentally create
566 	 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware
567 	 * dirty value to the software bit.
568 	 */
569 	return pmd_mksaveddirty(pmd);
570 }
571 
572 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
573 static inline int pmd_uffd_wp(pmd_t pmd)
574 {
575 	return pmd_flags(pmd) & _PAGE_UFFD_WP;
576 }
577 
578 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
579 {
580 	return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
581 }
582 
583 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
584 {
585 	return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
586 }
587 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
588 
589 static inline pmd_t pmd_mkold(pmd_t pmd)
590 {
591 	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
592 }
593 
594 static inline pmd_t pmd_mkclean(pmd_t pmd)
595 {
596 	return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
597 }
598 
599 static inline pmd_t pmd_mkdirty(pmd_t pmd)
600 {
601 	pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
602 
603 	return pmd_mksaveddirty(pmd);
604 }
605 
606 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
607 {
608 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
609 
610 	return pmd_set_flags(pmd, _PAGE_DIRTY);
611 }
612 
613 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
614 {
615 	return pmd_set_flags(pmd, _PAGE_DEVMAP);
616 }
617 
618 static inline pmd_t pmd_mkhuge(pmd_t pmd)
619 {
620 	return pmd_set_flags(pmd, _PAGE_PSE);
621 }
622 
623 static inline pmd_t pmd_mkyoung(pmd_t pmd)
624 {
625 	return pmd_set_flags(pmd, _PAGE_ACCESSED);
626 }
627 
628 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
629 {
630 	return pmd_set_flags(pmd, _PAGE_RW);
631 }
632 
633 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
634 #define pmd_mkwrite pmd_mkwrite
635 
636 /* See comments above mksaveddirty_shift() */
637 static inline pud_t pud_mksaveddirty(pud_t pud)
638 {
639 	pudval_t v = native_pud_val(pud);
640 
641 	v = mksaveddirty_shift(v);
642 	return native_make_pud(v);
643 }
644 
645 /* See comments above mksaveddirty_shift() */
646 static inline pud_t pud_clear_saveddirty(pud_t pud)
647 {
648 	pudval_t v = native_pud_val(pud);
649 
650 	v = clear_saveddirty_shift(v);
651 	return native_make_pud(v);
652 }
653 
654 static inline pud_t pud_mkold(pud_t pud)
655 {
656 	return pud_clear_flags(pud, _PAGE_ACCESSED);
657 }
658 
659 static inline pud_t pud_mkclean(pud_t pud)
660 {
661 	return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
662 }
663 
664 static inline pud_t pud_wrprotect(pud_t pud)
665 {
666 	pud = pud_clear_flags(pud, _PAGE_RW);
667 
668 	/*
669 	 * Blindly clearing _PAGE_RW might accidentally create
670 	 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware
671 	 * dirty value to the software bit.
672 	 */
673 	return pud_mksaveddirty(pud);
674 }
675 
676 static inline pud_t pud_mkdirty(pud_t pud)
677 {
678 	pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
679 
680 	return pud_mksaveddirty(pud);
681 }
682 
683 static inline pud_t pud_mkdevmap(pud_t pud)
684 {
685 	return pud_set_flags(pud, _PAGE_DEVMAP);
686 }
687 
688 static inline pud_t pud_mkhuge(pud_t pud)
689 {
690 	return pud_set_flags(pud, _PAGE_PSE);
691 }
692 
693 static inline pud_t pud_mkyoung(pud_t pud)
694 {
695 	return pud_set_flags(pud, _PAGE_ACCESSED);
696 }
697 
698 static inline pud_t pud_mkwrite(pud_t pud)
699 {
700 	pud = pud_set_flags(pud, _PAGE_RW);
701 
702 	return pud_clear_saveddirty(pud);
703 }
704 
705 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
706 static inline int pte_soft_dirty(pte_t pte)
707 {
708 	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
709 }
710 
711 static inline int pmd_soft_dirty(pmd_t pmd)
712 {
713 	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
714 }
715 
716 static inline int pud_soft_dirty(pud_t pud)
717 {
718 	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
719 }
720 
721 static inline pte_t pte_mksoft_dirty(pte_t pte)
722 {
723 	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
724 }
725 
726 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
727 {
728 	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
729 }
730 
731 static inline pud_t pud_mksoft_dirty(pud_t pud)
732 {
733 	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
734 }
735 
736 static inline pte_t pte_clear_soft_dirty(pte_t pte)
737 {
738 	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
739 }
740 
741 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
742 {
743 	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
744 }
745 
746 static inline pud_t pud_clear_soft_dirty(pud_t pud)
747 {
748 	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
749 }
750 
751 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
752 
753 /*
754  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
755  * can use those bits for other purposes, so leave them be.
756  */
757 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
758 {
759 	pgprotval_t protval = pgprot_val(pgprot);
760 
761 	if (protval & _PAGE_PRESENT)
762 		protval &= __supported_pte_mask;
763 
764 	return protval;
765 }
766 
767 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
768 {
769 	pgprotval_t massaged_val = massage_pgprot(pgprot);
770 
771 	/* mmdebug.h can not be included here because of dependencies */
772 #ifdef CONFIG_DEBUG_VM
773 	WARN_ONCE(pgprot_val(pgprot) != massaged_val,
774 		  "attempted to set unsupported pgprot: %016llx "
775 		  "bits: %016llx supported: %016llx\n",
776 		  (u64)pgprot_val(pgprot),
777 		  (u64)pgprot_val(pgprot) ^ massaged_val,
778 		  (u64)__supported_pte_mask);
779 #endif
780 
781 	return massaged_val;
782 }
783 
784 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
785 {
786 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
787 	/* This bit combination is used to mark shadow stacks */
788 	WARN_ON_ONCE((pgprot_val(pgprot) & (_PAGE_DIRTY | _PAGE_RW)) ==
789 			_PAGE_DIRTY);
790 	pfn ^= protnone_mask(pgprot_val(pgprot));
791 	pfn &= PTE_PFN_MASK;
792 	return __pte(pfn | check_pgprot(pgprot));
793 }
794 
795 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
796 {
797 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
798 	pfn ^= protnone_mask(pgprot_val(pgprot));
799 	pfn &= PHYSICAL_PMD_PAGE_MASK;
800 	return __pmd(pfn | check_pgprot(pgprot));
801 }
802 
803 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
804 {
805 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
806 	pfn ^= protnone_mask(pgprot_val(pgprot));
807 	pfn &= PHYSICAL_PUD_PAGE_MASK;
808 	return __pud(pfn | check_pgprot(pgprot));
809 }
810 
811 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
812 {
813 	return pfn_pmd(pmd_pfn(pmd),
814 		      __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
815 }
816 
817 static inline pud_t pud_mkinvalid(pud_t pud)
818 {
819 	return pfn_pud(pud_pfn(pud),
820 		       __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
821 }
822 
823 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
824 
825 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
826 {
827 	pteval_t val = pte_val(pte), oldval = val;
828 	pte_t pte_result;
829 
830 	/*
831 	 * Chop off the NX bit (if present), and add the NX portion of
832 	 * the newprot (if present):
833 	 */
834 	val &= _PAGE_CHG_MASK;
835 	val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
836 	val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
837 
838 	pte_result = __pte(val);
839 
840 	/*
841 	 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
842 	 *  1. Marking Write=0 PTEs Dirty=1
843 	 *  2. Marking Dirty=1 PTEs Write=0
844 	 *
845 	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
846 	 * out any Dirty bit passed in newprot. Handle the second case by
847 	 * going through the mksaveddirty exercise. Only do this if the old
848 	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
849 	 */
850 	if (oldval & _PAGE_RW)
851 		pte_result = pte_mksaveddirty(pte_result);
852 	else
853 		pte_result = pte_clear_saveddirty(pte_result);
854 
855 	return pte_result;
856 }
857 
858 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
859 {
860 	pmdval_t val = pmd_val(pmd), oldval = val;
861 	pmd_t pmd_result;
862 
863 	val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
864 	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
865 	val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
866 
867 	pmd_result = __pmd(val);
868 
869 	/*
870 	 * Avoid creating shadow stack PMD by accident.  See comment in
871 	 * pte_modify().
872 	 */
873 	if (oldval & _PAGE_RW)
874 		pmd_result = pmd_mksaveddirty(pmd_result);
875 	else
876 		pmd_result = pmd_clear_saveddirty(pmd_result);
877 
878 	return pmd_result;
879 }
880 
881 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
882 {
883 	pudval_t val = pud_val(pud), oldval = val;
884 	pud_t pud_result;
885 
886 	val &= _HPAGE_CHG_MASK;
887 	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
888 	val = flip_protnone_guard(oldval, val, PHYSICAL_PUD_PAGE_MASK);
889 
890 	pud_result = __pud(val);
891 
892 	/*
893 	 * Avoid creating shadow stack PUD by accident.  See comment in
894 	 * pte_modify().
895 	 */
896 	if (oldval & _PAGE_RW)
897 		pud_result = pud_mksaveddirty(pud_result);
898 	else
899 		pud_result = pud_clear_saveddirty(pud_result);
900 
901 	return pud_result;
902 }
903 
904 /*
905  * mprotect needs to preserve PAT and encryption bits when updating
906  * vm_page_prot
907  */
908 #define pgprot_modify pgprot_modify
909 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
910 {
911 	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
912 	pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
913 	return __pgprot(preservebits | addbits);
914 }
915 
916 #define pte_pgprot(x) __pgprot(pte_flags(x))
917 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
918 #define pud_pgprot(x) __pgprot(pud_flags(x))
919 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
920 
921 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
922 
923 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
924 					 enum page_cache_mode pcm,
925 					 enum page_cache_mode new_pcm)
926 {
927 	/*
928 	 * PAT type is always WB for untracked ranges, so no need to check.
929 	 */
930 	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
931 		return 1;
932 
933 	/*
934 	 * Certain new memtypes are not allowed with certain
935 	 * requested memtype:
936 	 * - request is uncached, return cannot be write-back
937 	 * - request is write-combine, return cannot be write-back
938 	 * - request is write-through, return cannot be write-back
939 	 * - request is write-through, return cannot be write-combine
940 	 */
941 	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
942 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
943 	    (pcm == _PAGE_CACHE_MODE_WC &&
944 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
945 	    (pcm == _PAGE_CACHE_MODE_WT &&
946 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
947 	    (pcm == _PAGE_CACHE_MODE_WT &&
948 	     new_pcm == _PAGE_CACHE_MODE_WC)) {
949 		return 0;
950 	}
951 
952 	return 1;
953 }
954 
955 pmd_t *populate_extra_pmd(unsigned long vaddr);
956 pte_t *populate_extra_pte(unsigned long vaddr);
957 
958 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
959 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
960 
961 /*
962  * Take a PGD location (pgdp) and a pgd value that needs to be set there.
963  * Populates the user and returns the resulting PGD that must be set in
964  * the kernel copy of the page tables.
965  */
966 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
967 {
968 	if (!static_cpu_has(X86_FEATURE_PTI))
969 		return pgd;
970 	return __pti_set_user_pgtbl(pgdp, pgd);
971 }
972 #else   /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
973 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
974 {
975 	return pgd;
976 }
977 #endif  /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
978 
979 #endif	/* __ASSEMBLER__ */
980 
981 
982 #ifdef CONFIG_X86_32
983 # include <asm/pgtable_32.h>
984 #else
985 # include <asm/pgtable_64.h>
986 #endif
987 
988 #ifndef __ASSEMBLER__
989 #include <linux/mm_types.h>
990 #include <linux/mmdebug.h>
991 #include <linux/log2.h>
992 #include <asm/fixmap.h>
993 
994 static inline int pte_none(pte_t pte)
995 {
996 	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
997 }
998 
999 #define __HAVE_ARCH_PTE_SAME
1000 static inline int pte_same(pte_t a, pte_t b)
1001 {
1002 	return a.pte == b.pte;
1003 }
1004 
1005 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
1006 {
1007 	if (__pte_needs_invert(pte_val(pte)))
1008 		return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT));
1009 	return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
1010 }
1011 #define pte_advance_pfn	pte_advance_pfn
1012 
1013 static inline int pte_present(pte_t a)
1014 {
1015 	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
1016 }
1017 
1018 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
1019 static inline int pte_devmap(pte_t a)
1020 {
1021 	return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
1022 }
1023 #endif
1024 
1025 #define pte_accessible pte_accessible
1026 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
1027 {
1028 	if (pte_flags(a) & _PAGE_PRESENT)
1029 		return true;
1030 
1031 	if ((pte_flags(a) & _PAGE_PROTNONE) &&
1032 			atomic_read(&mm->tlb_flush_pending))
1033 		return true;
1034 
1035 	return false;
1036 }
1037 
1038 static inline int pmd_present(pmd_t pmd)
1039 {
1040 	/*
1041 	 * Checking for _PAGE_PSE is needed too because
1042 	 * split_huge_page will temporarily clear the present bit (but
1043 	 * the _PAGE_PSE flag will remain set at all times while the
1044 	 * _PAGE_PRESENT bit is clear).
1045 	 */
1046 	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
1047 }
1048 
1049 #ifdef CONFIG_NUMA_BALANCING
1050 /*
1051  * These work without NUMA balancing but the kernel does not care. See the
1052  * comment in include/linux/pgtable.h
1053  */
1054 static inline int pte_protnone(pte_t pte)
1055 {
1056 	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1057 		== _PAGE_PROTNONE;
1058 }
1059 
1060 static inline int pmd_protnone(pmd_t pmd)
1061 {
1062 	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1063 		== _PAGE_PROTNONE;
1064 }
1065 #endif /* CONFIG_NUMA_BALANCING */
1066 
1067 static inline int pmd_none(pmd_t pmd)
1068 {
1069 	/* Only check low word on 32-bit platforms, since it might be
1070 	   out of sync with upper half. */
1071 	unsigned long val = native_pmd_val(pmd);
1072 	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
1073 }
1074 
1075 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1076 {
1077 	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
1078 }
1079 
1080 /*
1081  * Currently stuck as a macro due to indirect forward reference to
1082  * linux/mmzone.h's __section_mem_map_addr() definition:
1083  */
1084 #define pmd_page(pmd)	pfn_to_page(pmd_pfn(pmd))
1085 
1086 static inline int pmd_bad(pmd_t pmd)
1087 {
1088 	return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
1089 	       (_KERNPG_TABLE & ~_PAGE_ACCESSED);
1090 }
1091 
1092 static inline unsigned long pages_to_mb(unsigned long npg)
1093 {
1094 	return npg >> (20 - PAGE_SHIFT);
1095 }
1096 
1097 #if CONFIG_PGTABLE_LEVELS > 2
1098 static inline int pud_none(pud_t pud)
1099 {
1100 	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1101 }
1102 
1103 static inline int pud_present(pud_t pud)
1104 {
1105 	return pud_flags(pud) & _PAGE_PRESENT;
1106 }
1107 
1108 static inline pmd_t *pud_pgtable(pud_t pud)
1109 {
1110 	return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
1111 }
1112 
1113 /*
1114  * Currently stuck as a macro due to indirect forward reference to
1115  * linux/mmzone.h's __section_mem_map_addr() definition:
1116  */
1117 #define pud_page(pud)	pfn_to_page(pud_pfn(pud))
1118 
1119 #define pud_leaf pud_leaf
1120 static inline bool pud_leaf(pud_t pud)
1121 {
1122 	return pud_val(pud) & _PAGE_PSE;
1123 }
1124 
1125 static inline int pud_bad(pud_t pud)
1126 {
1127 	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
1128 }
1129 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
1130 
1131 #if CONFIG_PGTABLE_LEVELS > 3
1132 static inline int p4d_none(p4d_t p4d)
1133 {
1134 	return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1135 }
1136 
1137 static inline int p4d_present(p4d_t p4d)
1138 {
1139 	return p4d_flags(p4d) & _PAGE_PRESENT;
1140 }
1141 
1142 static inline pud_t *p4d_pgtable(p4d_t p4d)
1143 {
1144 	return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
1145 }
1146 
1147 /*
1148  * Currently stuck as a macro due to indirect forward reference to
1149  * linux/mmzone.h's __section_mem_map_addr() definition:
1150  */
1151 #define p4d_page(p4d)	pfn_to_page(p4d_pfn(p4d))
1152 
1153 static inline int p4d_bad(p4d_t p4d)
1154 {
1155 	unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
1156 
1157 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1158 		ignore_flags |= _PAGE_NX;
1159 
1160 	return (p4d_flags(p4d) & ~ignore_flags) != 0;
1161 }
1162 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1163 
1164 static inline unsigned long p4d_index(unsigned long address)
1165 {
1166 	return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
1167 }
1168 
1169 #if CONFIG_PGTABLE_LEVELS > 4
1170 static inline int pgd_present(pgd_t pgd)
1171 {
1172 	if (!pgtable_l5_enabled())
1173 		return 1;
1174 	return pgd_flags(pgd) & _PAGE_PRESENT;
1175 }
1176 
1177 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
1178 {
1179 	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
1180 }
1181 
1182 /*
1183  * Currently stuck as a macro due to indirect forward reference to
1184  * linux/mmzone.h's __section_mem_map_addr() definition:
1185  */
1186 #define pgd_page(pgd)	pfn_to_page(pgd_pfn(pgd))
1187 
1188 /* to find an entry in a page-table-directory. */
1189 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1190 {
1191 	if (!pgtable_l5_enabled())
1192 		return (p4d_t *)pgd;
1193 	return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
1194 }
1195 
1196 static inline int pgd_bad(pgd_t pgd)
1197 {
1198 	unsigned long ignore_flags = _PAGE_USER;
1199 
1200 	if (!pgtable_l5_enabled())
1201 		return 0;
1202 
1203 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1204 		ignore_flags |= _PAGE_NX;
1205 
1206 	return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
1207 }
1208 
1209 static inline int pgd_none(pgd_t pgd)
1210 {
1211 	if (!pgtable_l5_enabled())
1212 		return 0;
1213 	/*
1214 	 * There is no need to do a workaround for the KNL stray
1215 	 * A/D bit erratum here.  PGDs only point to page tables
1216 	 * except on 32-bit non-PAE which is not supported on
1217 	 * KNL.
1218 	 */
1219 	return !native_pgd_val(pgd);
1220 }
1221 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
1222 
1223 #endif	/* __ASSEMBLER__ */
1224 
1225 #define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
1226 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1227 
1228 #ifndef __ASSEMBLER__
1229 
1230 extern int direct_gbpages;
1231 void init_mem_mapping(void);
1232 void early_alloc_pgt_buf(void);
1233 void __init poking_init(void);
1234 unsigned long init_memory_mapping(unsigned long start,
1235 				  unsigned long end, pgprot_t prot);
1236 
1237 #ifdef CONFIG_X86_64
1238 extern pgd_t trampoline_pgd_entry;
1239 #endif
1240 
1241 /* local pte updates need not use xchg for locking */
1242 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1243 {
1244 	pte_t res = *ptep;
1245 
1246 	/* Pure native function needs no input for mm, addr */
1247 	native_pte_clear(NULL, 0, ptep);
1248 	return res;
1249 }
1250 
1251 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1252 {
1253 	pmd_t res = *pmdp;
1254 
1255 	native_pmd_clear(pmdp);
1256 	return res;
1257 }
1258 
1259 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1260 {
1261 	pud_t res = *pudp;
1262 
1263 	native_pud_clear(pudp);
1264 	return res;
1265 }
1266 
1267 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1268 			      pmd_t *pmdp, pmd_t pmd)
1269 {
1270 	page_table_check_pmd_set(mm, pmdp, pmd);
1271 	set_pmd(pmdp, pmd);
1272 }
1273 
1274 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1275 			      pud_t *pudp, pud_t pud)
1276 {
1277 	page_table_check_pud_set(mm, pudp, pud);
1278 	native_set_pud(pudp, pud);
1279 }
1280 
1281 /*
1282  * We only update the dirty/accessed state if we set
1283  * the dirty bit by hand in the kernel, since the hardware
1284  * will do the accessed bit for us, and we don't want to
1285  * race with other CPU's that might be updating the dirty
1286  * bit at the same time.
1287  */
1288 struct vm_area_struct;
1289 
1290 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1291 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1292 				 unsigned long address, pte_t *ptep,
1293 				 pte_t entry, int dirty);
1294 
1295 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1296 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1297 				     unsigned long addr, pte_t *ptep);
1298 
1299 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1300 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1301 				  unsigned long address, pte_t *ptep);
1302 
1303 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1304 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1305 				       pte_t *ptep)
1306 {
1307 	pte_t pte = native_ptep_get_and_clear(ptep);
1308 	page_table_check_pte_clear(mm, pte);
1309 	return pte;
1310 }
1311 
1312 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1313 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1314 					    unsigned long addr, pte_t *ptep,
1315 					    int full)
1316 {
1317 	pte_t pte;
1318 	if (full) {
1319 		/*
1320 		 * Full address destruction in progress; paravirt does not
1321 		 * care about updates and native needs no locking
1322 		 */
1323 		pte = native_local_ptep_get_and_clear(ptep);
1324 		page_table_check_pte_clear(mm, pte);
1325 	} else {
1326 		pte = ptep_get_and_clear(mm, addr, ptep);
1327 	}
1328 	return pte;
1329 }
1330 
1331 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1332 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1333 				      unsigned long addr, pte_t *ptep)
1334 {
1335 	/*
1336 	 * Avoid accidentally creating shadow stack PTEs
1337 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1338 	 * the hardware setting Dirty=1.
1339 	 */
1340 	pte_t old_pte, new_pte;
1341 
1342 	old_pte = READ_ONCE(*ptep);
1343 	do {
1344 		new_pte = pte_wrprotect(old_pte);
1345 	} while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
1346 }
1347 
1348 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
1349 
1350 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1351 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1352 				 unsigned long address, pmd_t *pmdp,
1353 				 pmd_t entry, int dirty);
1354 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1355 				 unsigned long address, pud_t *pudp,
1356 				 pud_t entry, int dirty);
1357 
1358 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1359 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1360 				     unsigned long addr, pmd_t *pmdp);
1361 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1362 				     unsigned long addr, pud_t *pudp);
1363 
1364 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1365 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1366 				  unsigned long address, pmd_t *pmdp);
1367 
1368 
1369 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1370 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1371 				       pmd_t *pmdp)
1372 {
1373 	pmd_t pmd = native_pmdp_get_and_clear(pmdp);
1374 
1375 	page_table_check_pmd_clear(mm, pmd);
1376 
1377 	return pmd;
1378 }
1379 
1380 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1381 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1382 					unsigned long addr, pud_t *pudp)
1383 {
1384 	pud_t pud = native_pudp_get_and_clear(pudp);
1385 
1386 	page_table_check_pud_clear(mm, pud);
1387 
1388 	return pud;
1389 }
1390 
1391 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1392 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1393 				      unsigned long addr, pmd_t *pmdp)
1394 {
1395 	/*
1396 	 * Avoid accidentally creating shadow stack PTEs
1397 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1398 	 * the hardware setting Dirty=1.
1399 	 */
1400 	pmd_t old_pmd, new_pmd;
1401 
1402 	old_pmd = READ_ONCE(*pmdp);
1403 	do {
1404 		new_pmd = pmd_wrprotect(old_pmd);
1405 	} while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
1406 }
1407 
1408 #ifndef pmdp_establish
1409 #define pmdp_establish pmdp_establish
1410 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1411 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1412 {
1413 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1414 	if (IS_ENABLED(CONFIG_SMP)) {
1415 		return xchg(pmdp, pmd);
1416 	} else {
1417 		pmd_t old = *pmdp;
1418 		WRITE_ONCE(*pmdp, pmd);
1419 		return old;
1420 	}
1421 }
1422 #endif
1423 
1424 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1425 static inline pud_t pudp_establish(struct vm_area_struct *vma,
1426 		unsigned long address, pud_t *pudp, pud_t pud)
1427 {
1428 	page_table_check_pud_set(vma->vm_mm, pudp, pud);
1429 	if (IS_ENABLED(CONFIG_SMP)) {
1430 		return xchg(pudp, pud);
1431 	} else {
1432 		pud_t old = *pudp;
1433 		WRITE_ONCE(*pudp, pud);
1434 		return old;
1435 	}
1436 }
1437 #endif
1438 
1439 #define __HAVE_ARCH_PMDP_INVALIDATE_AD
1440 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1441 				unsigned long address, pmd_t *pmdp);
1442 
1443 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1444 		      pud_t *pudp);
1445 
1446 /*
1447  * Page table pages are page-aligned.  The lower half of the top
1448  * level is used for userspace and the top half for the kernel.
1449  *
1450  * Returns true for parts of the PGD that map userspace and
1451  * false for the parts that map the kernel.
1452  */
1453 static inline bool pgdp_maps_userspace(void *__ptr)
1454 {
1455 	unsigned long ptr = (unsigned long)__ptr;
1456 
1457 	return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1458 }
1459 
1460 #define pgd_leaf	pgd_leaf
1461 static inline bool pgd_leaf(pgd_t pgd) { return false; }
1462 
1463 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1464 /*
1465  * All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages
1466  * (8k-aligned and 8k in size).  The kernel one is at the beginning 4k and
1467  * the user one is in the last 4k.  To switch between them, you
1468  * just need to flip the 12th bit in their addresses.
1469  */
1470 #define PTI_PGTABLE_SWITCH_BIT	PAGE_SHIFT
1471 
1472 /*
1473  * This generates better code than the inline assembly in
1474  * __set_bit().
1475  */
1476 static inline void *ptr_set_bit(void *ptr, int bit)
1477 {
1478 	unsigned long __ptr = (unsigned long)ptr;
1479 
1480 	__ptr |= BIT(bit);
1481 	return (void *)__ptr;
1482 }
1483 static inline void *ptr_clear_bit(void *ptr, int bit)
1484 {
1485 	unsigned long __ptr = (unsigned long)ptr;
1486 
1487 	__ptr &= ~BIT(bit);
1488 	return (void *)__ptr;
1489 }
1490 
1491 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1492 {
1493 	return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1494 }
1495 
1496 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1497 {
1498 	return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1499 }
1500 
1501 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1502 {
1503 	return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1504 }
1505 
1506 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1507 {
1508 	return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1509 }
1510 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
1511 
1512 /*
1513  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1514  *
1515  *  dst - pointer to pgd range anywhere on a pgd page
1516  *  src - ""
1517  *  count - the number of pgds to copy.
1518  *
1519  * dst and src can be on the same page, but the range must not overlap,
1520  * and must not cross a page boundary.
1521  */
1522 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1523 {
1524 	memcpy(dst, src, count * sizeof(pgd_t));
1525 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1526 	if (!static_cpu_has(X86_FEATURE_PTI))
1527 		return;
1528 	/* Clone the user space pgd as well */
1529 	memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1530 	       count * sizeof(pgd_t));
1531 #endif
1532 }
1533 
1534 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1535 static inline int page_level_shift(enum pg_level level)
1536 {
1537 	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1538 }
1539 static inline unsigned long page_level_size(enum pg_level level)
1540 {
1541 	return 1UL << page_level_shift(level);
1542 }
1543 static inline unsigned long page_level_mask(enum pg_level level)
1544 {
1545 	return ~(page_level_size(level) - 1);
1546 }
1547 
1548 /*
1549  * The x86 doesn't have any external MMU info: the kernel page
1550  * tables contain all the necessary information.
1551  */
1552 static inline void update_mmu_cache(struct vm_area_struct *vma,
1553 		unsigned long addr, pte_t *ptep)
1554 {
1555 }
1556 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1557 		struct vm_area_struct *vma, unsigned long addr,
1558 		pte_t *ptep, unsigned int nr)
1559 {
1560 }
1561 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1562 		unsigned long addr, pmd_t *pmd)
1563 {
1564 }
1565 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1566 		unsigned long addr, pud_t *pud)
1567 {
1568 }
1569 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1570 {
1571 	return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
1572 }
1573 
1574 static inline int pte_swp_exclusive(pte_t pte)
1575 {
1576 	return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
1577 }
1578 
1579 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1580 {
1581 	return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
1582 }
1583 
1584 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1585 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1586 {
1587 	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1588 }
1589 
1590 static inline int pte_swp_soft_dirty(pte_t pte)
1591 {
1592 	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1593 }
1594 
1595 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1596 {
1597 	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1598 }
1599 
1600 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1601 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1602 {
1603 	return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1604 }
1605 
1606 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1607 {
1608 	return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1609 }
1610 
1611 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1612 {
1613 	return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1614 }
1615 #endif
1616 #endif
1617 
1618 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1619 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
1620 {
1621 	return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
1622 }
1623 
1624 static inline int pte_swp_uffd_wp(pte_t pte)
1625 {
1626 	return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
1627 }
1628 
1629 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
1630 {
1631 	return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
1632 }
1633 
1634 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
1635 {
1636 	return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
1637 }
1638 
1639 static inline int pmd_swp_uffd_wp(pmd_t pmd)
1640 {
1641 	return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
1642 }
1643 
1644 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
1645 {
1646 	return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
1647 }
1648 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
1649 
1650 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1651 {
1652 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1653 	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1654 	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1655 #else
1656 	return 0;
1657 #endif
1658 }
1659 
1660 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1661 {
1662 	u32 pkru = read_pkru();
1663 
1664 	if (!__pkru_allows_read(pkru, pkey))
1665 		return false;
1666 	if (write && !__pkru_allows_write(pkru, pkey))
1667 		return false;
1668 
1669 	return true;
1670 }
1671 
1672 /*
1673  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1674  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1675  * same value on all 3 types.
1676  */
1677 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1678 {
1679 	unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1680 
1681 	/*
1682 	 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel
1683 	 * shouldn't generally allow access to, but since they
1684 	 * are already Write=0, the below logic covers both cases.
1685 	 */
1686 	if (write)
1687 		need_pte_bits |= _PAGE_RW;
1688 
1689 	if ((pteval & need_pte_bits) != need_pte_bits)
1690 		return 0;
1691 
1692 	return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1693 }
1694 
1695 #define pte_access_permitted pte_access_permitted
1696 static inline bool pte_access_permitted(pte_t pte, bool write)
1697 {
1698 	return __pte_access_permitted(pte_val(pte), write);
1699 }
1700 
1701 #define pmd_access_permitted pmd_access_permitted
1702 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1703 {
1704 	return __pte_access_permitted(pmd_val(pmd), write);
1705 }
1706 
1707 #define pud_access_permitted pud_access_permitted
1708 static inline bool pud_access_permitted(pud_t pud, bool write)
1709 {
1710 	return __pte_access_permitted(pud_val(pud), write);
1711 }
1712 
1713 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1714 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1715 
1716 static inline bool arch_has_pfn_modify_check(void)
1717 {
1718 	return boot_cpu_has_bug(X86_BUG_L1TF);
1719 }
1720 
1721 #define arch_check_zapped_pte arch_check_zapped_pte
1722 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
1723 
1724 #define arch_check_zapped_pmd arch_check_zapped_pmd
1725 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
1726 
1727 #define arch_check_zapped_pud arch_check_zapped_pud
1728 void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud);
1729 
1730 #ifdef CONFIG_XEN_PV
1731 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
1732 static inline bool arch_has_hw_nonleaf_pmd_young(void)
1733 {
1734 	return !cpu_feature_enabled(X86_FEATURE_XENPV);
1735 }
1736 #endif
1737 
1738 #ifdef CONFIG_PAGE_TABLE_CHECK
1739 static inline bool pte_user_accessible_page(pte_t pte)
1740 {
1741 	return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
1742 }
1743 
1744 static inline bool pmd_user_accessible_page(pmd_t pmd)
1745 {
1746 	return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
1747 }
1748 
1749 static inline bool pud_user_accessible_page(pud_t pud)
1750 {
1751 	return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
1752 }
1753 #endif
1754 
1755 #ifdef CONFIG_X86_SGX
1756 int arch_memory_failure(unsigned long pfn, int flags);
1757 #define arch_memory_failure arch_memory_failure
1758 
1759 bool arch_is_platform_page(u64 paddr);
1760 #define arch_is_platform_page arch_is_platform_page
1761 #endif
1762 
1763 /*
1764  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1765  * TLB flush will be required as a result of the "set". For example, use
1766  * in scenarios where it is known ahead of time that the routine is
1767  * setting non-present entries, or re-setting an existing entry to the
1768  * same value. Otherwise, use the typical "set" helpers and flush the
1769  * TLB.
1770  */
1771 #define set_pte_safe(ptep, pte) \
1772 ({ \
1773 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
1774 	set_pte(ptep, pte); \
1775 })
1776 
1777 #define set_pmd_safe(pmdp, pmd) \
1778 ({ \
1779 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
1780 	set_pmd(pmdp, pmd); \
1781 })
1782 
1783 #define set_pud_safe(pudp, pud) \
1784 ({ \
1785 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
1786 	set_pud(pudp, pud); \
1787 })
1788 
1789 #define set_p4d_safe(p4dp, p4d) \
1790 ({ \
1791 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1792 	set_p4d(p4dp, p4d); \
1793 })
1794 
1795 #define set_pgd_safe(pgdp, pgd) \
1796 ({ \
1797 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1798 	set_pgd(pgdp, pgd); \
1799 })
1800 #endif	/* __ASSEMBLER__ */
1801 
1802 #endif /* _ASM_X86_PGTABLE_H */
1803