xref: /linux/arch/x86/include/asm/pgtable.h (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4 
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8 
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)						\
13 	((boot_cpu_data.x86 > 3)					\
14 	 ? (__pgprot(pgprot_val(prot) |					\
15 		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
16 	 : (prot))
17 
18 #ifndef __ASSEMBLY__
19 #include <linux/spinlock.h>
20 #include <asm/x86_init.h>
21 #include <asm/pkru.h>
22 #include <asm/fpu/api.h>
23 #include <asm/coco.h>
24 #include <asm-generic/pgtable_uffd.h>
25 #include <linux/page_table_check.h>
26 
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29 
30 struct seq_file;
31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
33 				   bool user);
34 bool ptdump_walk_pgd_level_checkwx(void);
35 #define ptdump_check_wx ptdump_walk_pgd_level_checkwx
36 void ptdump_walk_user_pgd_level_checkwx(void);
37 
38 /*
39  * Macros to add or remove encryption attribute
40  */
41 #define pgprot_encrypted(prot)	__pgprot(cc_mkenc(pgprot_val(prot)))
42 #define pgprot_decrypted(prot)	__pgprot(cc_mkdec(pgprot_val(prot)))
43 
44 #ifdef CONFIG_DEBUG_WX
45 #define debug_checkwx_user()	ptdump_walk_user_pgd_level_checkwx()
46 #else
47 #define debug_checkwx_user()	do { } while (0)
48 #endif
49 
50 /*
51  * ZERO_PAGE is a global shared page that is always zero: used
52  * for zero-mapped memory areas etc..
53  */
54 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
55 	__visible;
56 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
57 
58 extern spinlock_t pgd_lock;
59 extern struct list_head pgd_list;
60 
61 extern struct mm_struct *pgd_page_get_mm(struct page *page);
62 
63 extern pmdval_t early_pmd_flags;
64 
65 #ifdef CONFIG_PARAVIRT_XXL
66 #include <asm/paravirt.h>
67 #else  /* !CONFIG_PARAVIRT_XXL */
68 #define set_pte(ptep, pte)		native_set_pte(ptep, pte)
69 
70 #define set_pte_atomic(ptep, pte)					\
71 	native_set_pte_atomic(ptep, pte)
72 
73 #define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
74 
75 #ifndef __PAGETABLE_P4D_FOLDED
76 #define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
77 #define pgd_clear(pgd)			(pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
78 #endif
79 
80 #ifndef set_p4d
81 # define set_p4d(p4dp, p4d)		native_set_p4d(p4dp, p4d)
82 #endif
83 
84 #ifndef __PAGETABLE_PUD_FOLDED
85 #define p4d_clear(p4d)			native_p4d_clear(p4d)
86 #endif
87 
88 #ifndef set_pud
89 # define set_pud(pudp, pud)		native_set_pud(pudp, pud)
90 #endif
91 
92 #ifndef __PAGETABLE_PUD_FOLDED
93 #define pud_clear(pud)			native_pud_clear(pud)
94 #endif
95 
96 #define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
97 #define pmd_clear(pmd)			native_pmd_clear(pmd)
98 
99 #define pgd_val(x)	native_pgd_val(x)
100 #define __pgd(x)	native_make_pgd(x)
101 
102 #ifndef __PAGETABLE_P4D_FOLDED
103 #define p4d_val(x)	native_p4d_val(x)
104 #define __p4d(x)	native_make_p4d(x)
105 #endif
106 
107 #ifndef __PAGETABLE_PUD_FOLDED
108 #define pud_val(x)	native_pud_val(x)
109 #define __pud(x)	native_make_pud(x)
110 #endif
111 
112 #ifndef __PAGETABLE_PMD_FOLDED
113 #define pmd_val(x)	native_pmd_val(x)
114 #define __pmd(x)	native_make_pmd(x)
115 #endif
116 
117 #define pte_val(x)	native_pte_val(x)
118 #define __pte(x)	native_make_pte(x)
119 
120 #define arch_end_context_switch(prev)	do {} while(0)
121 #endif	/* CONFIG_PARAVIRT_XXL */
122 
123 /*
124  * The following only work if pte_present() is true.
125  * Undefined behaviour if not..
126  */
127 static inline bool pte_dirty(pte_t pte)
128 {
129 	return pte_flags(pte) & _PAGE_DIRTY_BITS;
130 }
131 
132 static inline bool pte_shstk(pte_t pte)
133 {
134 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
135 	       (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
136 }
137 
138 static inline int pte_young(pte_t pte)
139 {
140 	return pte_flags(pte) & _PAGE_ACCESSED;
141 }
142 
143 #define pmd_dirty pmd_dirty
144 static inline bool pmd_dirty(pmd_t pmd)
145 {
146 	return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
147 }
148 
149 static inline bool pmd_shstk(pmd_t pmd)
150 {
151 	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
152 	       (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
153 	       (_PAGE_DIRTY | _PAGE_PSE);
154 }
155 
156 #define pmd_young pmd_young
157 static inline int pmd_young(pmd_t pmd)
158 {
159 	return pmd_flags(pmd) & _PAGE_ACCESSED;
160 }
161 
162 static inline bool pud_dirty(pud_t pud)
163 {
164 	return pud_flags(pud) & _PAGE_DIRTY_BITS;
165 }
166 
167 static inline int pud_young(pud_t pud)
168 {
169 	return pud_flags(pud) & _PAGE_ACCESSED;
170 }
171 
172 static inline int pte_write(pte_t pte)
173 {
174 	/*
175 	 * Shadow stack pages are logically writable, but do not have
176 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
177 	 */
178 	return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
179 }
180 
181 #define pmd_write pmd_write
182 static inline int pmd_write(pmd_t pmd)
183 {
184 	/*
185 	 * Shadow stack pages are logically writable, but do not have
186 	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
187 	 */
188 	return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
189 }
190 
191 #define pud_write pud_write
192 static inline int pud_write(pud_t pud)
193 {
194 	return pud_flags(pud) & _PAGE_RW;
195 }
196 
197 static inline int pte_huge(pte_t pte)
198 {
199 	return pte_flags(pte) & _PAGE_PSE;
200 }
201 
202 static inline int pte_global(pte_t pte)
203 {
204 	return pte_flags(pte) & _PAGE_GLOBAL;
205 }
206 
207 static inline int pte_exec(pte_t pte)
208 {
209 	return !(pte_flags(pte) & _PAGE_NX);
210 }
211 
212 static inline int pte_special(pte_t pte)
213 {
214 	return pte_flags(pte) & _PAGE_SPECIAL;
215 }
216 
217 /* Entries that were set to PROT_NONE are inverted */
218 
219 static inline u64 protnone_mask(u64 val);
220 
221 #define PFN_PTE_SHIFT	PAGE_SHIFT
222 
223 static inline unsigned long pte_pfn(pte_t pte)
224 {
225 	phys_addr_t pfn = pte_val(pte);
226 	pfn ^= protnone_mask(pfn);
227 	return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
228 }
229 
230 static inline unsigned long pmd_pfn(pmd_t pmd)
231 {
232 	phys_addr_t pfn = pmd_val(pmd);
233 	pfn ^= protnone_mask(pfn);
234 	return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
235 }
236 
237 #define pud_pfn pud_pfn
238 static inline unsigned long pud_pfn(pud_t pud)
239 {
240 	phys_addr_t pfn = pud_val(pud);
241 	pfn ^= protnone_mask(pfn);
242 	return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
243 }
244 
245 static inline unsigned long p4d_pfn(p4d_t p4d)
246 {
247 	return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
248 }
249 
250 static inline unsigned long pgd_pfn(pgd_t pgd)
251 {
252 	return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
253 }
254 
255 #define p4d_leaf p4d_leaf
256 static inline bool p4d_leaf(p4d_t p4d)
257 {
258 	/* No 512 GiB pages yet */
259 	return 0;
260 }
261 
262 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
263 
264 #define pmd_leaf pmd_leaf
265 static inline bool pmd_leaf(pmd_t pte)
266 {
267 	return pmd_flags(pte) & _PAGE_PSE;
268 }
269 
270 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
271 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_leaf */
272 static inline int pmd_trans_huge(pmd_t pmd)
273 {
274 	return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
275 }
276 
277 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
278 static inline int pud_trans_huge(pud_t pud)
279 {
280 	return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
281 }
282 #endif
283 
284 #define has_transparent_hugepage has_transparent_hugepage
285 static inline int has_transparent_hugepage(void)
286 {
287 	return boot_cpu_has(X86_FEATURE_PSE);
288 }
289 
290 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
291 static inline int pmd_devmap(pmd_t pmd)
292 {
293 	return !!(pmd_val(pmd) & _PAGE_DEVMAP);
294 }
295 
296 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
297 static inline int pud_devmap(pud_t pud)
298 {
299 	return !!(pud_val(pud) & _PAGE_DEVMAP);
300 }
301 #else
302 static inline int pud_devmap(pud_t pud)
303 {
304 	return 0;
305 }
306 #endif
307 
308 static inline int pgd_devmap(pgd_t pgd)
309 {
310 	return 0;
311 }
312 #endif
313 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
314 
315 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
316 {
317 	pteval_t v = native_pte_val(pte);
318 
319 	return native_make_pte(v | set);
320 }
321 
322 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
323 {
324 	pteval_t v = native_pte_val(pte);
325 
326 	return native_make_pte(v & ~clear);
327 }
328 
329 /*
330  * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
331  * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
332  * when creating dirty, write-protected memory, a software bit is used:
333  * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
334  * Dirty bit to SavedDirty, and vice-vesra.
335  *
336  * This shifting is only done if needed. In the case of shifting
337  * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
338  * shifting SavedDirty->Dirty, the condition is Write=1.
339  */
340 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
341 {
342 	pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
343 
344 	v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
345 	v &= ~(cond << _PAGE_BIT_DIRTY);
346 
347 	return v;
348 }
349 
350 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
351 {
352 	pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
353 
354 	v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
355 	v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
356 
357 	return v;
358 }
359 
360 static inline pte_t pte_mksaveddirty(pte_t pte)
361 {
362 	pteval_t v = native_pte_val(pte);
363 
364 	v = mksaveddirty_shift(v);
365 	return native_make_pte(v);
366 }
367 
368 static inline pte_t pte_clear_saveddirty(pte_t pte)
369 {
370 	pteval_t v = native_pte_val(pte);
371 
372 	v = clear_saveddirty_shift(v);
373 	return native_make_pte(v);
374 }
375 
376 static inline pte_t pte_wrprotect(pte_t pte)
377 {
378 	pte = pte_clear_flags(pte, _PAGE_RW);
379 
380 	/*
381 	 * Blindly clearing _PAGE_RW might accidentally create
382 	 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware
383 	 * dirty value to the software bit, if present.
384 	 */
385 	return pte_mksaveddirty(pte);
386 }
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
389 static inline int pte_uffd_wp(pte_t pte)
390 {
391 	return pte_flags(pte) & _PAGE_UFFD_WP;
392 }
393 
394 static inline pte_t pte_mkuffd_wp(pte_t pte)
395 {
396 	return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
397 }
398 
399 static inline pte_t pte_clear_uffd_wp(pte_t pte)
400 {
401 	return pte_clear_flags(pte, _PAGE_UFFD_WP);
402 }
403 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
404 
405 static inline pte_t pte_mkclean(pte_t pte)
406 {
407 	return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
408 }
409 
410 static inline pte_t pte_mkold(pte_t pte)
411 {
412 	return pte_clear_flags(pte, _PAGE_ACCESSED);
413 }
414 
415 static inline pte_t pte_mkexec(pte_t pte)
416 {
417 	return pte_clear_flags(pte, _PAGE_NX);
418 }
419 
420 static inline pte_t pte_mkdirty(pte_t pte)
421 {
422 	pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
423 
424 	return pte_mksaveddirty(pte);
425 }
426 
427 static inline pte_t pte_mkwrite_shstk(pte_t pte)
428 {
429 	pte = pte_clear_flags(pte, _PAGE_RW);
430 
431 	return pte_set_flags(pte, _PAGE_DIRTY);
432 }
433 
434 static inline pte_t pte_mkyoung(pte_t pte)
435 {
436 	return pte_set_flags(pte, _PAGE_ACCESSED);
437 }
438 
439 static inline pte_t pte_mkwrite_novma(pte_t pte)
440 {
441 	return pte_set_flags(pte, _PAGE_RW);
442 }
443 
444 struct vm_area_struct;
445 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
446 #define pte_mkwrite pte_mkwrite
447 
448 static inline pte_t pte_mkhuge(pte_t pte)
449 {
450 	return pte_set_flags(pte, _PAGE_PSE);
451 }
452 
453 static inline pte_t pte_clrhuge(pte_t pte)
454 {
455 	return pte_clear_flags(pte, _PAGE_PSE);
456 }
457 
458 static inline pte_t pte_mkglobal(pte_t pte)
459 {
460 	return pte_set_flags(pte, _PAGE_GLOBAL);
461 }
462 
463 static inline pte_t pte_clrglobal(pte_t pte)
464 {
465 	return pte_clear_flags(pte, _PAGE_GLOBAL);
466 }
467 
468 static inline pte_t pte_mkspecial(pte_t pte)
469 {
470 	return pte_set_flags(pte, _PAGE_SPECIAL);
471 }
472 
473 static inline pte_t pte_mkdevmap(pte_t pte)
474 {
475 	return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
476 }
477 
478 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
479 {
480 	pmdval_t v = native_pmd_val(pmd);
481 
482 	return native_make_pmd(v | set);
483 }
484 
485 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
486 {
487 	pmdval_t v = native_pmd_val(pmd);
488 
489 	return native_make_pmd(v & ~clear);
490 }
491 
492 /* See comments above mksaveddirty_shift() */
493 static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
494 {
495 	pmdval_t v = native_pmd_val(pmd);
496 
497 	v = mksaveddirty_shift(v);
498 	return native_make_pmd(v);
499 }
500 
501 /* See comments above mksaveddirty_shift() */
502 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
503 {
504 	pmdval_t v = native_pmd_val(pmd);
505 
506 	v = clear_saveddirty_shift(v);
507 	return native_make_pmd(v);
508 }
509 
510 static inline pmd_t pmd_wrprotect(pmd_t pmd)
511 {
512 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
513 
514 	/*
515 	 * Blindly clearing _PAGE_RW might accidentally create
516 	 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware
517 	 * dirty value to the software bit.
518 	 */
519 	return pmd_mksaveddirty(pmd);
520 }
521 
522 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
523 static inline int pmd_uffd_wp(pmd_t pmd)
524 {
525 	return pmd_flags(pmd) & _PAGE_UFFD_WP;
526 }
527 
528 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
529 {
530 	return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
531 }
532 
533 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
534 {
535 	return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
536 }
537 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
538 
539 static inline pmd_t pmd_mkold(pmd_t pmd)
540 {
541 	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
542 }
543 
544 static inline pmd_t pmd_mkclean(pmd_t pmd)
545 {
546 	return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
547 }
548 
549 static inline pmd_t pmd_mkdirty(pmd_t pmd)
550 {
551 	pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
552 
553 	return pmd_mksaveddirty(pmd);
554 }
555 
556 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
557 {
558 	pmd = pmd_clear_flags(pmd, _PAGE_RW);
559 
560 	return pmd_set_flags(pmd, _PAGE_DIRTY);
561 }
562 
563 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
564 {
565 	return pmd_set_flags(pmd, _PAGE_DEVMAP);
566 }
567 
568 static inline pmd_t pmd_mkhuge(pmd_t pmd)
569 {
570 	return pmd_set_flags(pmd, _PAGE_PSE);
571 }
572 
573 static inline pmd_t pmd_mkyoung(pmd_t pmd)
574 {
575 	return pmd_set_flags(pmd, _PAGE_ACCESSED);
576 }
577 
578 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
579 {
580 	return pmd_set_flags(pmd, _PAGE_RW);
581 }
582 
583 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
584 #define pmd_mkwrite pmd_mkwrite
585 
586 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
587 {
588 	pudval_t v = native_pud_val(pud);
589 
590 	return native_make_pud(v | set);
591 }
592 
593 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
594 {
595 	pudval_t v = native_pud_val(pud);
596 
597 	return native_make_pud(v & ~clear);
598 }
599 
600 /* See comments above mksaveddirty_shift() */
601 static inline pud_t pud_mksaveddirty(pud_t pud)
602 {
603 	pudval_t v = native_pud_val(pud);
604 
605 	v = mksaveddirty_shift(v);
606 	return native_make_pud(v);
607 }
608 
609 /* See comments above mksaveddirty_shift() */
610 static inline pud_t pud_clear_saveddirty(pud_t pud)
611 {
612 	pudval_t v = native_pud_val(pud);
613 
614 	v = clear_saveddirty_shift(v);
615 	return native_make_pud(v);
616 }
617 
618 static inline pud_t pud_mkold(pud_t pud)
619 {
620 	return pud_clear_flags(pud, _PAGE_ACCESSED);
621 }
622 
623 static inline pud_t pud_mkclean(pud_t pud)
624 {
625 	return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
626 }
627 
628 static inline pud_t pud_wrprotect(pud_t pud)
629 {
630 	pud = pud_clear_flags(pud, _PAGE_RW);
631 
632 	/*
633 	 * Blindly clearing _PAGE_RW might accidentally create
634 	 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware
635 	 * dirty value to the software bit.
636 	 */
637 	return pud_mksaveddirty(pud);
638 }
639 
640 static inline pud_t pud_mkdirty(pud_t pud)
641 {
642 	pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
643 
644 	return pud_mksaveddirty(pud);
645 }
646 
647 static inline pud_t pud_mkdevmap(pud_t pud)
648 {
649 	return pud_set_flags(pud, _PAGE_DEVMAP);
650 }
651 
652 static inline pud_t pud_mkhuge(pud_t pud)
653 {
654 	return pud_set_flags(pud, _PAGE_PSE);
655 }
656 
657 static inline pud_t pud_mkyoung(pud_t pud)
658 {
659 	return pud_set_flags(pud, _PAGE_ACCESSED);
660 }
661 
662 static inline pud_t pud_mkwrite(pud_t pud)
663 {
664 	pud = pud_set_flags(pud, _PAGE_RW);
665 
666 	return pud_clear_saveddirty(pud);
667 }
668 
669 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
670 static inline int pte_soft_dirty(pte_t pte)
671 {
672 	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
673 }
674 
675 static inline int pmd_soft_dirty(pmd_t pmd)
676 {
677 	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
678 }
679 
680 static inline int pud_soft_dirty(pud_t pud)
681 {
682 	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
683 }
684 
685 static inline pte_t pte_mksoft_dirty(pte_t pte)
686 {
687 	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
688 }
689 
690 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
691 {
692 	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
693 }
694 
695 static inline pud_t pud_mksoft_dirty(pud_t pud)
696 {
697 	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
698 }
699 
700 static inline pte_t pte_clear_soft_dirty(pte_t pte)
701 {
702 	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
703 }
704 
705 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
706 {
707 	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
708 }
709 
710 static inline pud_t pud_clear_soft_dirty(pud_t pud)
711 {
712 	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
713 }
714 
715 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
716 
717 /*
718  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
719  * can use those bits for other purposes, so leave them be.
720  */
721 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
722 {
723 	pgprotval_t protval = pgprot_val(pgprot);
724 
725 	if (protval & _PAGE_PRESENT)
726 		protval &= __supported_pte_mask;
727 
728 	return protval;
729 }
730 
731 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
732 {
733 	pgprotval_t massaged_val = massage_pgprot(pgprot);
734 
735 	/* mmdebug.h can not be included here because of dependencies */
736 #ifdef CONFIG_DEBUG_VM
737 	WARN_ONCE(pgprot_val(pgprot) != massaged_val,
738 		  "attempted to set unsupported pgprot: %016llx "
739 		  "bits: %016llx supported: %016llx\n",
740 		  (u64)pgprot_val(pgprot),
741 		  (u64)pgprot_val(pgprot) ^ massaged_val,
742 		  (u64)__supported_pte_mask);
743 #endif
744 
745 	return massaged_val;
746 }
747 
748 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
749 {
750 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
751 	pfn ^= protnone_mask(pgprot_val(pgprot));
752 	pfn &= PTE_PFN_MASK;
753 	return __pte(pfn | check_pgprot(pgprot));
754 }
755 
756 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
757 {
758 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
759 	pfn ^= protnone_mask(pgprot_val(pgprot));
760 	pfn &= PHYSICAL_PMD_PAGE_MASK;
761 	return __pmd(pfn | check_pgprot(pgprot));
762 }
763 
764 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
765 {
766 	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
767 	pfn ^= protnone_mask(pgprot_val(pgprot));
768 	pfn &= PHYSICAL_PUD_PAGE_MASK;
769 	return __pud(pfn | check_pgprot(pgprot));
770 }
771 
772 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
773 {
774 	return pfn_pmd(pmd_pfn(pmd),
775 		      __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
776 }
777 
778 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
779 
780 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
781 {
782 	pteval_t val = pte_val(pte), oldval = val;
783 	pte_t pte_result;
784 
785 	/*
786 	 * Chop off the NX bit (if present), and add the NX portion of
787 	 * the newprot (if present):
788 	 */
789 	val &= _PAGE_CHG_MASK;
790 	val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
791 	val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
792 
793 	pte_result = __pte(val);
794 
795 	/*
796 	 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
797 	 *  1. Marking Write=0 PTEs Dirty=1
798 	 *  2. Marking Dirty=1 PTEs Write=0
799 	 *
800 	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
801 	 * out any Dirty bit passed in newprot. Handle the second case by
802 	 * going through the mksaveddirty exercise. Only do this if the old
803 	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
804 	 */
805 	if (oldval & _PAGE_RW)
806 		pte_result = pte_mksaveddirty(pte_result);
807 	else
808 		pte_result = pte_clear_saveddirty(pte_result);
809 
810 	return pte_result;
811 }
812 
813 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
814 {
815 	pmdval_t val = pmd_val(pmd), oldval = val;
816 	pmd_t pmd_result;
817 
818 	val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
819 	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
820 	val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
821 
822 	pmd_result = __pmd(val);
823 
824 	/*
825 	 * To avoid creating Write=0,Dirty=1 PMDs, pte_modify() needs to avoid:
826 	 *  1. Marking Write=0 PMDs Dirty=1
827 	 *  2. Marking Dirty=1 PMDs Write=0
828 	 *
829 	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
830 	 * out any Dirty bit passed in newprot. Handle the second case by
831 	 * going through the mksaveddirty exercise. Only do this if the old
832 	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
833 	 */
834 	if (oldval & _PAGE_RW)
835 		pmd_result = pmd_mksaveddirty(pmd_result);
836 	else
837 		pmd_result = pmd_clear_saveddirty(pmd_result);
838 
839 	return pmd_result;
840 }
841 
842 /*
843  * mprotect needs to preserve PAT and encryption bits when updating
844  * vm_page_prot
845  */
846 #define pgprot_modify pgprot_modify
847 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
848 {
849 	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
850 	pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
851 	return __pgprot(preservebits | addbits);
852 }
853 
854 #define pte_pgprot(x) __pgprot(pte_flags(x))
855 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
856 #define pud_pgprot(x) __pgprot(pud_flags(x))
857 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
858 
859 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
860 
861 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
862 					 enum page_cache_mode pcm,
863 					 enum page_cache_mode new_pcm)
864 {
865 	/*
866 	 * PAT type is always WB for untracked ranges, so no need to check.
867 	 */
868 	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
869 		return 1;
870 
871 	/*
872 	 * Certain new memtypes are not allowed with certain
873 	 * requested memtype:
874 	 * - request is uncached, return cannot be write-back
875 	 * - request is write-combine, return cannot be write-back
876 	 * - request is write-through, return cannot be write-back
877 	 * - request is write-through, return cannot be write-combine
878 	 */
879 	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
880 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
881 	    (pcm == _PAGE_CACHE_MODE_WC &&
882 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
883 	    (pcm == _PAGE_CACHE_MODE_WT &&
884 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
885 	    (pcm == _PAGE_CACHE_MODE_WT &&
886 	     new_pcm == _PAGE_CACHE_MODE_WC)) {
887 		return 0;
888 	}
889 
890 	return 1;
891 }
892 
893 pmd_t *populate_extra_pmd(unsigned long vaddr);
894 pte_t *populate_extra_pte(unsigned long vaddr);
895 
896 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
897 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
898 
899 /*
900  * Take a PGD location (pgdp) and a pgd value that needs to be set there.
901  * Populates the user and returns the resulting PGD that must be set in
902  * the kernel copy of the page tables.
903  */
904 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
905 {
906 	if (!static_cpu_has(X86_FEATURE_PTI))
907 		return pgd;
908 	return __pti_set_user_pgtbl(pgdp, pgd);
909 }
910 #else   /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
911 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
912 {
913 	return pgd;
914 }
915 #endif  /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
916 
917 #endif	/* __ASSEMBLY__ */
918 
919 
920 #ifdef CONFIG_X86_32
921 # include <asm/pgtable_32.h>
922 #else
923 # include <asm/pgtable_64.h>
924 #endif
925 
926 #ifndef __ASSEMBLY__
927 #include <linux/mm_types.h>
928 #include <linux/mmdebug.h>
929 #include <linux/log2.h>
930 #include <asm/fixmap.h>
931 
932 static inline int pte_none(pte_t pte)
933 {
934 	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
935 }
936 
937 #define __HAVE_ARCH_PTE_SAME
938 static inline int pte_same(pte_t a, pte_t b)
939 {
940 	return a.pte == b.pte;
941 }
942 
943 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
944 {
945 	if (__pte_needs_invert(pte_val(pte)))
946 		return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT));
947 	return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
948 }
949 #define pte_advance_pfn	pte_advance_pfn
950 
951 static inline int pte_present(pte_t a)
952 {
953 	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
954 }
955 
956 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
957 static inline int pte_devmap(pte_t a)
958 {
959 	return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
960 }
961 #endif
962 
963 #define pte_accessible pte_accessible
964 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
965 {
966 	if (pte_flags(a) & _PAGE_PRESENT)
967 		return true;
968 
969 	if ((pte_flags(a) & _PAGE_PROTNONE) &&
970 			atomic_read(&mm->tlb_flush_pending))
971 		return true;
972 
973 	return false;
974 }
975 
976 static inline int pmd_present(pmd_t pmd)
977 {
978 	/*
979 	 * Checking for _PAGE_PSE is needed too because
980 	 * split_huge_page will temporarily clear the present bit (but
981 	 * the _PAGE_PSE flag will remain set at all times while the
982 	 * _PAGE_PRESENT bit is clear).
983 	 */
984 	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
985 }
986 
987 #ifdef CONFIG_NUMA_BALANCING
988 /*
989  * These work without NUMA balancing but the kernel does not care. See the
990  * comment in include/linux/pgtable.h
991  */
992 static inline int pte_protnone(pte_t pte)
993 {
994 	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
995 		== _PAGE_PROTNONE;
996 }
997 
998 static inline int pmd_protnone(pmd_t pmd)
999 {
1000 	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1001 		== _PAGE_PROTNONE;
1002 }
1003 #endif /* CONFIG_NUMA_BALANCING */
1004 
1005 static inline int pmd_none(pmd_t pmd)
1006 {
1007 	/* Only check low word on 32-bit platforms, since it might be
1008 	   out of sync with upper half. */
1009 	unsigned long val = native_pmd_val(pmd);
1010 	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
1011 }
1012 
1013 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1014 {
1015 	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
1016 }
1017 
1018 /*
1019  * Currently stuck as a macro due to indirect forward reference to
1020  * linux/mmzone.h's __section_mem_map_addr() definition:
1021  */
1022 #define pmd_page(pmd)	pfn_to_page(pmd_pfn(pmd))
1023 
1024 /*
1025  * Conversion functions: convert a page and protection to a page entry,
1026  * and a page entry and page directory to the page they refer to.
1027  *
1028  * (Currently stuck as a macro because of indirect forward reference
1029  * to linux/mm.h:page_to_nid())
1030  */
1031 #define mk_pte(page, pgprot)						  \
1032 ({									  \
1033 	pgprot_t __pgprot = pgprot;					  \
1034 									  \
1035 	WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \
1036 		    _PAGE_DIRTY);					  \
1037 	pfn_pte(page_to_pfn(page), __pgprot);				  \
1038 })
1039 
1040 static inline int pmd_bad(pmd_t pmd)
1041 {
1042 	return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
1043 	       (_KERNPG_TABLE & ~_PAGE_ACCESSED);
1044 }
1045 
1046 static inline unsigned long pages_to_mb(unsigned long npg)
1047 {
1048 	return npg >> (20 - PAGE_SHIFT);
1049 }
1050 
1051 #if CONFIG_PGTABLE_LEVELS > 2
1052 static inline int pud_none(pud_t pud)
1053 {
1054 	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1055 }
1056 
1057 static inline int pud_present(pud_t pud)
1058 {
1059 	return pud_flags(pud) & _PAGE_PRESENT;
1060 }
1061 
1062 static inline pmd_t *pud_pgtable(pud_t pud)
1063 {
1064 	return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
1065 }
1066 
1067 /*
1068  * Currently stuck as a macro due to indirect forward reference to
1069  * linux/mmzone.h's __section_mem_map_addr() definition:
1070  */
1071 #define pud_page(pud)	pfn_to_page(pud_pfn(pud))
1072 
1073 #define pud_leaf pud_leaf
1074 static inline bool pud_leaf(pud_t pud)
1075 {
1076 	return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
1077 		(_PAGE_PSE | _PAGE_PRESENT);
1078 }
1079 
1080 static inline int pud_bad(pud_t pud)
1081 {
1082 	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
1083 }
1084 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
1085 
1086 #if CONFIG_PGTABLE_LEVELS > 3
1087 static inline int p4d_none(p4d_t p4d)
1088 {
1089 	return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1090 }
1091 
1092 static inline int p4d_present(p4d_t p4d)
1093 {
1094 	return p4d_flags(p4d) & _PAGE_PRESENT;
1095 }
1096 
1097 static inline pud_t *p4d_pgtable(p4d_t p4d)
1098 {
1099 	return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
1100 }
1101 
1102 /*
1103  * Currently stuck as a macro due to indirect forward reference to
1104  * linux/mmzone.h's __section_mem_map_addr() definition:
1105  */
1106 #define p4d_page(p4d)	pfn_to_page(p4d_pfn(p4d))
1107 
1108 static inline int p4d_bad(p4d_t p4d)
1109 {
1110 	unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
1111 
1112 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1113 		ignore_flags |= _PAGE_NX;
1114 
1115 	return (p4d_flags(p4d) & ~ignore_flags) != 0;
1116 }
1117 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1118 
1119 static inline unsigned long p4d_index(unsigned long address)
1120 {
1121 	return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
1122 }
1123 
1124 #if CONFIG_PGTABLE_LEVELS > 4
1125 static inline int pgd_present(pgd_t pgd)
1126 {
1127 	if (!pgtable_l5_enabled())
1128 		return 1;
1129 	return pgd_flags(pgd) & _PAGE_PRESENT;
1130 }
1131 
1132 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
1133 {
1134 	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
1135 }
1136 
1137 /*
1138  * Currently stuck as a macro due to indirect forward reference to
1139  * linux/mmzone.h's __section_mem_map_addr() definition:
1140  */
1141 #define pgd_page(pgd)	pfn_to_page(pgd_pfn(pgd))
1142 
1143 /* to find an entry in a page-table-directory. */
1144 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1145 {
1146 	if (!pgtable_l5_enabled())
1147 		return (p4d_t *)pgd;
1148 	return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
1149 }
1150 
1151 static inline int pgd_bad(pgd_t pgd)
1152 {
1153 	unsigned long ignore_flags = _PAGE_USER;
1154 
1155 	if (!pgtable_l5_enabled())
1156 		return 0;
1157 
1158 	if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
1159 		ignore_flags |= _PAGE_NX;
1160 
1161 	return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
1162 }
1163 
1164 static inline int pgd_none(pgd_t pgd)
1165 {
1166 	if (!pgtable_l5_enabled())
1167 		return 0;
1168 	/*
1169 	 * There is no need to do a workaround for the KNL stray
1170 	 * A/D bit erratum here.  PGDs only point to page tables
1171 	 * except on 32-bit non-PAE which is not supported on
1172 	 * KNL.
1173 	 */
1174 	return !native_pgd_val(pgd);
1175 }
1176 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
1177 
1178 #endif	/* __ASSEMBLY__ */
1179 
1180 #define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
1181 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1182 
1183 #ifndef __ASSEMBLY__
1184 
1185 extern int direct_gbpages;
1186 void init_mem_mapping(void);
1187 void early_alloc_pgt_buf(void);
1188 void __init poking_init(void);
1189 unsigned long init_memory_mapping(unsigned long start,
1190 				  unsigned long end, pgprot_t prot);
1191 
1192 #ifdef CONFIG_X86_64
1193 extern pgd_t trampoline_pgd_entry;
1194 #endif
1195 
1196 /* local pte updates need not use xchg for locking */
1197 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1198 {
1199 	pte_t res = *ptep;
1200 
1201 	/* Pure native function needs no input for mm, addr */
1202 	native_pte_clear(NULL, 0, ptep);
1203 	return res;
1204 }
1205 
1206 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1207 {
1208 	pmd_t res = *pmdp;
1209 
1210 	native_pmd_clear(pmdp);
1211 	return res;
1212 }
1213 
1214 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1215 {
1216 	pud_t res = *pudp;
1217 
1218 	native_pud_clear(pudp);
1219 	return res;
1220 }
1221 
1222 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1223 			      pmd_t *pmdp, pmd_t pmd)
1224 {
1225 	page_table_check_pmd_set(mm, pmdp, pmd);
1226 	set_pmd(pmdp, pmd);
1227 }
1228 
1229 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1230 			      pud_t *pudp, pud_t pud)
1231 {
1232 	page_table_check_pud_set(mm, pudp, pud);
1233 	native_set_pud(pudp, pud);
1234 }
1235 
1236 /*
1237  * We only update the dirty/accessed state if we set
1238  * the dirty bit by hand in the kernel, since the hardware
1239  * will do the accessed bit for us, and we don't want to
1240  * race with other CPU's that might be updating the dirty
1241  * bit at the same time.
1242  */
1243 struct vm_area_struct;
1244 
1245 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1246 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1247 				 unsigned long address, pte_t *ptep,
1248 				 pte_t entry, int dirty);
1249 
1250 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1251 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1252 				     unsigned long addr, pte_t *ptep);
1253 
1254 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1255 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1256 				  unsigned long address, pte_t *ptep);
1257 
1258 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1259 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1260 				       pte_t *ptep)
1261 {
1262 	pte_t pte = native_ptep_get_and_clear(ptep);
1263 	page_table_check_pte_clear(mm, pte);
1264 	return pte;
1265 }
1266 
1267 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1268 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1269 					    unsigned long addr, pte_t *ptep,
1270 					    int full)
1271 {
1272 	pte_t pte;
1273 	if (full) {
1274 		/*
1275 		 * Full address destruction in progress; paravirt does not
1276 		 * care about updates and native needs no locking
1277 		 */
1278 		pte = native_local_ptep_get_and_clear(ptep);
1279 		page_table_check_pte_clear(mm, pte);
1280 	} else {
1281 		pte = ptep_get_and_clear(mm, addr, ptep);
1282 	}
1283 	return pte;
1284 }
1285 
1286 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1287 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1288 				      unsigned long addr, pte_t *ptep)
1289 {
1290 	/*
1291 	 * Avoid accidentally creating shadow stack PTEs
1292 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1293 	 * the hardware setting Dirty=1.
1294 	 */
1295 	pte_t old_pte, new_pte;
1296 
1297 	old_pte = READ_ONCE(*ptep);
1298 	do {
1299 		new_pte = pte_wrprotect(old_pte);
1300 	} while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
1301 }
1302 
1303 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
1304 
1305 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
1306 
1307 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1308 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1309 				 unsigned long address, pmd_t *pmdp,
1310 				 pmd_t entry, int dirty);
1311 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1312 				 unsigned long address, pud_t *pudp,
1313 				 pud_t entry, int dirty);
1314 
1315 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1316 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1317 				     unsigned long addr, pmd_t *pmdp);
1318 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1319 				     unsigned long addr, pud_t *pudp);
1320 
1321 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1322 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1323 				  unsigned long address, pmd_t *pmdp);
1324 
1325 
1326 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1327 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1328 				       pmd_t *pmdp)
1329 {
1330 	pmd_t pmd = native_pmdp_get_and_clear(pmdp);
1331 
1332 	page_table_check_pmd_clear(mm, pmd);
1333 
1334 	return pmd;
1335 }
1336 
1337 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1338 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1339 					unsigned long addr, pud_t *pudp)
1340 {
1341 	pud_t pud = native_pudp_get_and_clear(pudp);
1342 
1343 	page_table_check_pud_clear(mm, pud);
1344 
1345 	return pud;
1346 }
1347 
1348 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1349 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1350 				      unsigned long addr, pmd_t *pmdp)
1351 {
1352 	/*
1353 	 * Avoid accidentally creating shadow stack PTEs
1354 	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1355 	 * the hardware setting Dirty=1.
1356 	 */
1357 	pmd_t old_pmd, new_pmd;
1358 
1359 	old_pmd = READ_ONCE(*pmdp);
1360 	do {
1361 		new_pmd = pmd_wrprotect(old_pmd);
1362 	} while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
1363 }
1364 
1365 #ifndef pmdp_establish
1366 #define pmdp_establish pmdp_establish
1367 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1368 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1369 {
1370 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1371 	if (IS_ENABLED(CONFIG_SMP)) {
1372 		return xchg(pmdp, pmd);
1373 	} else {
1374 		pmd_t old = *pmdp;
1375 		WRITE_ONCE(*pmdp, pmd);
1376 		return old;
1377 	}
1378 }
1379 #endif
1380 
1381 #define __HAVE_ARCH_PMDP_INVALIDATE_AD
1382 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1383 				unsigned long address, pmd_t *pmdp);
1384 
1385 /*
1386  * Page table pages are page-aligned.  The lower half of the top
1387  * level is used for userspace and the top half for the kernel.
1388  *
1389  * Returns true for parts of the PGD that map userspace and
1390  * false for the parts that map the kernel.
1391  */
1392 static inline bool pgdp_maps_userspace(void *__ptr)
1393 {
1394 	unsigned long ptr = (unsigned long)__ptr;
1395 
1396 	return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1397 }
1398 
1399 #define pgd_leaf	pgd_leaf
1400 static inline bool pgd_leaf(pgd_t pgd) { return false; }
1401 
1402 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1403 /*
1404  * All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages
1405  * (8k-aligned and 8k in size).  The kernel one is at the beginning 4k and
1406  * the user one is in the last 4k.  To switch between them, you
1407  * just need to flip the 12th bit in their addresses.
1408  */
1409 #define PTI_PGTABLE_SWITCH_BIT	PAGE_SHIFT
1410 
1411 /*
1412  * This generates better code than the inline assembly in
1413  * __set_bit().
1414  */
1415 static inline void *ptr_set_bit(void *ptr, int bit)
1416 {
1417 	unsigned long __ptr = (unsigned long)ptr;
1418 
1419 	__ptr |= BIT(bit);
1420 	return (void *)__ptr;
1421 }
1422 static inline void *ptr_clear_bit(void *ptr, int bit)
1423 {
1424 	unsigned long __ptr = (unsigned long)ptr;
1425 
1426 	__ptr &= ~BIT(bit);
1427 	return (void *)__ptr;
1428 }
1429 
1430 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1431 {
1432 	return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1433 }
1434 
1435 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1436 {
1437 	return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1438 }
1439 
1440 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1441 {
1442 	return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1443 }
1444 
1445 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1446 {
1447 	return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1448 }
1449 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
1450 
1451 /*
1452  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1453  *
1454  *  dst - pointer to pgd range anywhere on a pgd page
1455  *  src - ""
1456  *  count - the number of pgds to copy.
1457  *
1458  * dst and src can be on the same page, but the range must not overlap,
1459  * and must not cross a page boundary.
1460  */
1461 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1462 {
1463 	memcpy(dst, src, count * sizeof(pgd_t));
1464 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
1465 	if (!static_cpu_has(X86_FEATURE_PTI))
1466 		return;
1467 	/* Clone the user space pgd as well */
1468 	memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1469 	       count * sizeof(pgd_t));
1470 #endif
1471 }
1472 
1473 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1474 static inline int page_level_shift(enum pg_level level)
1475 {
1476 	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1477 }
1478 static inline unsigned long page_level_size(enum pg_level level)
1479 {
1480 	return 1UL << page_level_shift(level);
1481 }
1482 static inline unsigned long page_level_mask(enum pg_level level)
1483 {
1484 	return ~(page_level_size(level) - 1);
1485 }
1486 
1487 /*
1488  * The x86 doesn't have any external MMU info: the kernel page
1489  * tables contain all the necessary information.
1490  */
1491 static inline void update_mmu_cache(struct vm_area_struct *vma,
1492 		unsigned long addr, pte_t *ptep)
1493 {
1494 }
1495 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1496 		struct vm_area_struct *vma, unsigned long addr,
1497 		pte_t *ptep, unsigned int nr)
1498 {
1499 }
1500 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1501 		unsigned long addr, pmd_t *pmd)
1502 {
1503 }
1504 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1505 		unsigned long addr, pud_t *pud)
1506 {
1507 }
1508 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1509 {
1510 	return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
1511 }
1512 
1513 static inline int pte_swp_exclusive(pte_t pte)
1514 {
1515 	return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
1516 }
1517 
1518 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1519 {
1520 	return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
1521 }
1522 
1523 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1524 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1525 {
1526 	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1527 }
1528 
1529 static inline int pte_swp_soft_dirty(pte_t pte)
1530 {
1531 	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1532 }
1533 
1534 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1535 {
1536 	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1537 }
1538 
1539 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1540 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1541 {
1542 	return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1543 }
1544 
1545 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1546 {
1547 	return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1548 }
1549 
1550 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1551 {
1552 	return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1553 }
1554 #endif
1555 #endif
1556 
1557 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1558 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
1559 {
1560 	return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
1561 }
1562 
1563 static inline int pte_swp_uffd_wp(pte_t pte)
1564 {
1565 	return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
1566 }
1567 
1568 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
1569 {
1570 	return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
1571 }
1572 
1573 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
1574 {
1575 	return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
1576 }
1577 
1578 static inline int pmd_swp_uffd_wp(pmd_t pmd)
1579 {
1580 	return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
1581 }
1582 
1583 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
1584 {
1585 	return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
1586 }
1587 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
1588 
1589 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1590 {
1591 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1592 	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1593 	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1594 #else
1595 	return 0;
1596 #endif
1597 }
1598 
1599 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1600 {
1601 	u32 pkru = read_pkru();
1602 
1603 	if (!__pkru_allows_read(pkru, pkey))
1604 		return false;
1605 	if (write && !__pkru_allows_write(pkru, pkey))
1606 		return false;
1607 
1608 	return true;
1609 }
1610 
1611 /*
1612  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1613  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1614  * same value on all 3 types.
1615  */
1616 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1617 {
1618 	unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1619 
1620 	/*
1621 	 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel
1622 	 * shouldn't generally allow access to, but since they
1623 	 * are already Write=0, the below logic covers both cases.
1624 	 */
1625 	if (write)
1626 		need_pte_bits |= _PAGE_RW;
1627 
1628 	if ((pteval & need_pte_bits) != need_pte_bits)
1629 		return 0;
1630 
1631 	return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1632 }
1633 
1634 #define pte_access_permitted pte_access_permitted
1635 static inline bool pte_access_permitted(pte_t pte, bool write)
1636 {
1637 	return __pte_access_permitted(pte_val(pte), write);
1638 }
1639 
1640 #define pmd_access_permitted pmd_access_permitted
1641 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1642 {
1643 	return __pte_access_permitted(pmd_val(pmd), write);
1644 }
1645 
1646 #define pud_access_permitted pud_access_permitted
1647 static inline bool pud_access_permitted(pud_t pud, bool write)
1648 {
1649 	return __pte_access_permitted(pud_val(pud), write);
1650 }
1651 
1652 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1653 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1654 
1655 static inline bool arch_has_pfn_modify_check(void)
1656 {
1657 	return boot_cpu_has_bug(X86_BUG_L1TF);
1658 }
1659 
1660 #define arch_check_zapped_pte arch_check_zapped_pte
1661 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
1662 
1663 #define arch_check_zapped_pmd arch_check_zapped_pmd
1664 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
1665 
1666 #ifdef CONFIG_XEN_PV
1667 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
1668 static inline bool arch_has_hw_nonleaf_pmd_young(void)
1669 {
1670 	return !cpu_feature_enabled(X86_FEATURE_XENPV);
1671 }
1672 #endif
1673 
1674 #ifdef CONFIG_PAGE_TABLE_CHECK
1675 static inline bool pte_user_accessible_page(pte_t pte)
1676 {
1677 	return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
1678 }
1679 
1680 static inline bool pmd_user_accessible_page(pmd_t pmd)
1681 {
1682 	return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
1683 }
1684 
1685 static inline bool pud_user_accessible_page(pud_t pud)
1686 {
1687 	return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
1688 }
1689 #endif
1690 
1691 #ifdef CONFIG_X86_SGX
1692 int arch_memory_failure(unsigned long pfn, int flags);
1693 #define arch_memory_failure arch_memory_failure
1694 
1695 bool arch_is_platform_page(u64 paddr);
1696 #define arch_is_platform_page arch_is_platform_page
1697 #endif
1698 
1699 #endif	/* __ASSEMBLY__ */
1700 
1701 #endif /* _ASM_X86_PGTABLE_H */
1702