xref: /linux/arch/x86/include/asm/pgtable-3level.h (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_3LEVEL_H
3 #define _ASM_X86_PGTABLE_3LEVEL_H
4 
5 /*
6  * Intel Physical Address Extension (PAE) Mode - three-level page
7  * tables on PPro+ CPUs.
8  *
9  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
10  */
11 
12 #define pte_ERROR(e)							\
13 	pr_err("%s:%d: bad pte %p(%08lx%08lx)\n",			\
14 	       __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
15 #define pmd_ERROR(e)							\
16 	pr_err("%s:%d: bad pmd %p(%016Lx)\n",				\
17 	       __FILE__, __LINE__, &(e), pmd_val(e))
18 #define pgd_ERROR(e)							\
19 	pr_err("%s:%d: bad pgd %p(%016Lx)\n",				\
20 	       __FILE__, __LINE__, &(e), pgd_val(e))
21 
22 /* Rules for using set_pte: the pte being assigned *must* be
23  * either not present or in a state where the hardware will
24  * not attempt to update the pte.  In places where this is
25  * not possible, use pte_get_and_clear to obtain the old pte
26  * value and then use set_pte to update it.  -ben
27  */
28 static inline void native_set_pte(pte_t *ptep, pte_t pte)
29 {
30 	ptep->pte_high = pte.pte_high;
31 	smp_wmb();
32 	ptep->pte_low = pte.pte_low;
33 }
34 
35 #define pmd_read_atomic pmd_read_atomic
36 /*
37  * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
38  * a "*pmdp" dereference done by gcc. Problem is, in certain places
39  * where pte_offset_map_lock is called, concurrent page faults are
40  * allowed, if the mmap_sem is hold for reading. An example is mincore
41  * vs page faults vs MADV_DONTNEED. On the page fault side
42  * pmd_populate rightfully does a set_64bit, but if we're reading the
43  * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
44  * because gcc will not read the 64bit of the pmd atomically. To fix
45  * this all places running pmd_offset_map_lock() while holding the
46  * mmap_sem in read mode, shall read the pmdp pointer using this
47  * function to know if the pmd is null nor not, and in turn to know if
48  * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
49  * operations.
50  *
51  * Without THP if the mmap_sem is hold for reading, the pmd can only
52  * transition from null to not null while pmd_read_atomic runs. So
53  * we can always return atomic pmd values with this function.
54  *
55  * With THP if the mmap_sem is hold for reading, the pmd can become
56  * trans_huge or none or point to a pte (and in turn become "stable")
57  * at any time under pmd_read_atomic. We could read it really
58  * atomically here with a atomic64_read for the THP enabled case (and
59  * it would be a whole lot simpler), but to avoid using cmpxchg8b we
60  * only return an atomic pmdval if the low part of the pmdval is later
61  * found stable (i.e. pointing to a pte). And we're returning a none
62  * pmdval if the low part of the pmd is none. In some cases the high
63  * and low part of the pmdval returned may not be consistent if THP is
64  * enabled (the low part may point to previously mapped hugepage,
65  * while the high part may point to a more recently mapped hugepage),
66  * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
67  * of the pmd to be read atomically to decide if the pmd is unstable
68  * or not, with the only exception of when the low part of the pmd is
69  * zero in which case we return a none pmd.
70  */
71 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
72 {
73 	pmdval_t ret;
74 	u32 *tmp = (u32 *)pmdp;
75 
76 	ret = (pmdval_t) (*tmp);
77 	if (ret) {
78 		/*
79 		 * If the low part is null, we must not read the high part
80 		 * or we can end up with a partial pmd.
81 		 */
82 		smp_rmb();
83 		ret |= ((pmdval_t)*(tmp + 1)) << 32;
84 	}
85 
86 	return (pmd_t) { ret };
87 }
88 
89 static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
90 {
91 	set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
92 }
93 
94 static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
95 {
96 	set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
97 }
98 
99 static inline void native_set_pud(pud_t *pudp, pud_t pud)
100 {
101 	set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
102 }
103 
104 /*
105  * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
106  * entry, so clear the bottom half first and enforce ordering with a compiler
107  * barrier.
108  */
109 static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
110 				    pte_t *ptep)
111 {
112 	ptep->pte_low = 0;
113 	smp_wmb();
114 	ptep->pte_high = 0;
115 }
116 
117 static inline void native_pmd_clear(pmd_t *pmd)
118 {
119 	u32 *tmp = (u32 *)pmd;
120 	*tmp = 0;
121 	smp_wmb();
122 	*(tmp + 1) = 0;
123 }
124 
125 static inline void native_pud_clear(pud_t *pudp)
126 {
127 }
128 
129 static inline void pud_clear(pud_t *pudp)
130 {
131 	set_pud(pudp, __pud(0));
132 
133 	/*
134 	 * According to Intel App note "TLBs, Paging-Structure Caches,
135 	 * and Their Invalidation", April 2007, document 317080-001,
136 	 * section 8.1: in PAE mode we explicitly have to flush the
137 	 * TLB via cr3 if the top-level pgd is changed...
138 	 *
139 	 * Currently all places where pud_clear() is called either have
140 	 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
141 	 * pud_clear_bad()), so we don't need TLB flush here.
142 	 */
143 }
144 
145 #ifdef CONFIG_SMP
146 static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
147 {
148 	pte_t res;
149 
150 	/* xchg acts as a barrier before the setting of the high bits */
151 	res.pte_low = xchg(&ptep->pte_low, 0);
152 	res.pte_high = ptep->pte_high;
153 	ptep->pte_high = 0;
154 
155 	return res;
156 }
157 #else
158 #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
159 #endif
160 
161 union split_pmd {
162 	struct {
163 		u32 pmd_low;
164 		u32 pmd_high;
165 	};
166 	pmd_t pmd;
167 };
168 
169 #ifdef CONFIG_SMP
170 static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
171 {
172 	union split_pmd res, *orig = (union split_pmd *)pmdp;
173 
174 	/* xchg acts as a barrier before setting of the high bits */
175 	res.pmd_low = xchg(&orig->pmd_low, 0);
176 	res.pmd_high = orig->pmd_high;
177 	orig->pmd_high = 0;
178 
179 	return res.pmd;
180 }
181 #else
182 #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
183 #endif
184 
185 #ifndef pmdp_establish
186 #define pmdp_establish pmdp_establish
187 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
188 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
189 {
190 	pmd_t old;
191 
192 	/*
193 	 * If pmd has present bit cleared we can get away without expensive
194 	 * cmpxchg64: we can update pmdp half-by-half without racing with
195 	 * anybody.
196 	 */
197 	if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
198 		union split_pmd old, new, *ptr;
199 
200 		ptr = (union split_pmd *)pmdp;
201 
202 		new.pmd = pmd;
203 
204 		/* xchg acts as a barrier before setting of the high bits */
205 		old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
206 		old.pmd_high = ptr->pmd_high;
207 		ptr->pmd_high = new.pmd_high;
208 		return old.pmd;
209 	}
210 
211 	do {
212 		old = *pmdp;
213 	} while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
214 
215 	return old;
216 }
217 #endif
218 
219 #ifdef CONFIG_SMP
220 union split_pud {
221 	struct {
222 		u32 pud_low;
223 		u32 pud_high;
224 	};
225 	pud_t pud;
226 };
227 
228 static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
229 {
230 	union split_pud res, *orig = (union split_pud *)pudp;
231 
232 	/* xchg acts as a barrier before setting of the high bits */
233 	res.pud_low = xchg(&orig->pud_low, 0);
234 	res.pud_high = orig->pud_high;
235 	orig->pud_high = 0;
236 
237 	return res.pud;
238 }
239 #else
240 #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
241 #endif
242 
243 /* Encode and de-code a swap entry */
244 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
245 #define __swp_type(x)			(((x).val) & 0x1f)
246 #define __swp_offset(x)			((x).val >> 5)
247 #define __swp_entry(type, offset)	((swp_entry_t){(type) | (offset) << 5})
248 #define __pte_to_swp_entry(pte)		((swp_entry_t){ (pte).pte_high })
249 #define __swp_entry_to_pte(x)		((pte_t){ { .pte_high = (x).val } })
250 
251 #define gup_get_pte gup_get_pte
252 /*
253  * WARNING: only to be used in the get_user_pages_fast() implementation.
254  *
255  * With get_user_pages_fast(), we walk down the pagetables without taking
256  * any locks.  For this we would like to load the pointers atomically,
257  * but that is not possible (without expensive cmpxchg8b) on PAE.  What
258  * we do have is the guarantee that a PTE will only either go from not
259  * present to present, or present to not present or both -- it will not
260  * switch to a completely different present page without a TLB flush in
261  * between; something that we are blocking by holding interrupts off.
262  *
263  * Setting ptes from not present to present goes:
264  *
265  *   ptep->pte_high = h;
266  *   smp_wmb();
267  *   ptep->pte_low = l;
268  *
269  * And present to not present goes:
270  *
271  *   ptep->pte_low = 0;
272  *   smp_wmb();
273  *   ptep->pte_high = 0;
274  *
275  * We must ensure here that the load of pte_low sees 'l' iff pte_high
276  * sees 'h'. We load pte_high *after* loading pte_low, which ensures we
277  * don't see an older value of pte_high.  *Then* we recheck pte_low,
278  * which ensures that we haven't picked up a changed pte high. We might
279  * have gotten rubbish values from pte_low and pte_high, but we are
280  * guaranteed that pte_low will not have the present bit set *unless*
281  * it is 'l'. Because get_user_pages_fast() only operates on present ptes
282  * we're safe.
283  */
284 static inline pte_t gup_get_pte(pte_t *ptep)
285 {
286 	pte_t pte;
287 
288 	do {
289 		pte.pte_low = ptep->pte_low;
290 		smp_rmb();
291 		pte.pte_high = ptep->pte_high;
292 		smp_rmb();
293 	} while (unlikely(pte.pte_low != ptep->pte_low));
294 
295 	return pte;
296 }
297 
298 #endif /* _ASM_X86_PGTABLE_3LEVEL_H */
299