xref: /linux/arch/x86/include/asm/msr.h (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 #ifndef _ASM_X86_MSR_H
2 #define _ASM_X86_MSR_H
3 
4 #include "msr-index.h"
5 
6 #ifndef __ASSEMBLY__
7 
8 #include <asm/asm.h>
9 #include <asm/errno.h>
10 #include <asm/cpumask.h>
11 #include <uapi/asm/msr.h>
12 
13 struct msr {
14 	union {
15 		struct {
16 			u32 l;
17 			u32 h;
18 		};
19 		u64 q;
20 	};
21 };
22 
23 struct msr_info {
24 	u32 msr_no;
25 	struct msr reg;
26 	struct msr *msrs;
27 	int err;
28 };
29 
30 struct msr_regs_info {
31 	u32 *regs;
32 	int err;
33 };
34 
35 struct saved_msr {
36 	bool valid;
37 	struct msr_info info;
38 };
39 
40 struct saved_msrs {
41 	unsigned int num;
42 	struct saved_msr *array;
43 };
44 
45 /*
46  * both i386 and x86_64 returns 64-bit value in edx:eax, but gcc's "A"
47  * constraint has different meanings. For i386, "A" means exactly
48  * edx:eax, while for x86_64 it doesn't mean rdx:rax or edx:eax. Instead,
49  * it means rax *or* rdx.
50  */
51 #ifdef CONFIG_X86_64
52 /* Using 64-bit values saves one instruction clearing the high half of low */
53 #define DECLARE_ARGS(val, low, high)	unsigned long low, high
54 #define EAX_EDX_VAL(val, low, high)	((low) | (high) << 32)
55 #define EAX_EDX_RET(val, low, high)	"=a" (low), "=d" (high)
56 #else
57 #define DECLARE_ARGS(val, low, high)	unsigned long long val
58 #define EAX_EDX_VAL(val, low, high)	(val)
59 #define EAX_EDX_RET(val, low, high)	"=A" (val)
60 #endif
61 
62 #ifdef CONFIG_TRACEPOINTS
63 /*
64  * Be very careful with includes. This header is prone to include loops.
65  */
66 #include <asm/atomic.h>
67 #include <linux/tracepoint-defs.h>
68 
69 extern struct tracepoint __tracepoint_read_msr;
70 extern struct tracepoint __tracepoint_write_msr;
71 extern struct tracepoint __tracepoint_rdpmc;
72 #define msr_tracepoint_active(t) static_key_false(&(t).key)
73 extern void do_trace_write_msr(unsigned msr, u64 val, int failed);
74 extern void do_trace_read_msr(unsigned msr, u64 val, int failed);
75 extern void do_trace_rdpmc(unsigned msr, u64 val, int failed);
76 #else
77 #define msr_tracepoint_active(t) false
78 static inline void do_trace_write_msr(unsigned msr, u64 val, int failed) {}
79 static inline void do_trace_read_msr(unsigned msr, u64 val, int failed) {}
80 static inline void do_trace_rdpmc(unsigned msr, u64 val, int failed) {}
81 #endif
82 
83 static inline unsigned long long native_read_msr(unsigned int msr)
84 {
85 	DECLARE_ARGS(val, low, high);
86 
87 	asm volatile("1: rdmsr\n"
88 		     "2:\n"
89 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_unsafe)
90 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
91 	if (msr_tracepoint_active(__tracepoint_read_msr))
92 		do_trace_read_msr(msr, EAX_EDX_VAL(val, low, high), 0);
93 	return EAX_EDX_VAL(val, low, high);
94 }
95 
96 static inline unsigned long long native_read_msr_safe(unsigned int msr,
97 						      int *err)
98 {
99 	DECLARE_ARGS(val, low, high);
100 
101 	asm volatile("2: rdmsr ; xor %[err],%[err]\n"
102 		     "1:\n\t"
103 		     ".section .fixup,\"ax\"\n\t"
104 		     "3: mov %[fault],%[err]\n\t"
105 		     "xorl %%eax, %%eax\n\t"
106 		     "xorl %%edx, %%edx\n\t"
107 		     "jmp 1b\n\t"
108 		     ".previous\n\t"
109 		     _ASM_EXTABLE(2b, 3b)
110 		     : [err] "=r" (*err), EAX_EDX_RET(val, low, high)
111 		     : "c" (msr), [fault] "i" (-EIO));
112 	if (msr_tracepoint_active(__tracepoint_read_msr))
113 		do_trace_read_msr(msr, EAX_EDX_VAL(val, low, high), *err);
114 	return EAX_EDX_VAL(val, low, high);
115 }
116 
117 /* Can be uninlined because referenced by paravirt */
118 notrace static inline void native_write_msr(unsigned int msr,
119 					    unsigned low, unsigned high)
120 {
121 	asm volatile("1: wrmsr\n"
122 		     "2:\n"
123 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_unsafe)
124 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
125 	if (msr_tracepoint_active(__tracepoint_write_msr))
126 		do_trace_write_msr(msr, ((u64)high << 32 | low), 0);
127 }
128 
129 /* Can be uninlined because referenced by paravirt */
130 notrace static inline int native_write_msr_safe(unsigned int msr,
131 					unsigned low, unsigned high)
132 {
133 	int err;
134 	asm volatile("2: wrmsr ; xor %[err],%[err]\n"
135 		     "1:\n\t"
136 		     ".section .fixup,\"ax\"\n\t"
137 		     "3:  mov %[fault],%[err] ; jmp 1b\n\t"
138 		     ".previous\n\t"
139 		     _ASM_EXTABLE(2b, 3b)
140 		     : [err] "=a" (err)
141 		     : "c" (msr), "0" (low), "d" (high),
142 		       [fault] "i" (-EIO)
143 		     : "memory");
144 	if (msr_tracepoint_active(__tracepoint_write_msr))
145 		do_trace_write_msr(msr, ((u64)high << 32 | low), err);
146 	return err;
147 }
148 
149 extern int rdmsr_safe_regs(u32 regs[8]);
150 extern int wrmsr_safe_regs(u32 regs[8]);
151 
152 /**
153  * rdtsc() - returns the current TSC without ordering constraints
154  *
155  * rdtsc() returns the result of RDTSC as a 64-bit integer.  The
156  * only ordering constraint it supplies is the ordering implied by
157  * "asm volatile": it will put the RDTSC in the place you expect.  The
158  * CPU can and will speculatively execute that RDTSC, though, so the
159  * results can be non-monotonic if compared on different CPUs.
160  */
161 static __always_inline unsigned long long rdtsc(void)
162 {
163 	DECLARE_ARGS(val, low, high);
164 
165 	asm volatile("rdtsc" : EAX_EDX_RET(val, low, high));
166 
167 	return EAX_EDX_VAL(val, low, high);
168 }
169 
170 /**
171  * rdtsc_ordered() - read the current TSC in program order
172  *
173  * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer.
174  * It is ordered like a load to a global in-memory counter.  It should
175  * be impossible to observe non-monotonic rdtsc_unordered() behavior
176  * across multiple CPUs as long as the TSC is synced.
177  */
178 static __always_inline unsigned long long rdtsc_ordered(void)
179 {
180 	/*
181 	 * The RDTSC instruction is not ordered relative to memory
182 	 * access.  The Intel SDM and the AMD APM are both vague on this
183 	 * point, but empirically an RDTSC instruction can be
184 	 * speculatively executed before prior loads.  An RDTSC
185 	 * immediately after an appropriate barrier appears to be
186 	 * ordered as a normal load, that is, it provides the same
187 	 * ordering guarantees as reading from a global memory location
188 	 * that some other imaginary CPU is updating continuously with a
189 	 * time stamp.
190 	 */
191 	alternative_2("", "mfence", X86_FEATURE_MFENCE_RDTSC,
192 			  "lfence", X86_FEATURE_LFENCE_RDTSC);
193 	return rdtsc();
194 }
195 
196 /* Deprecated, keep it for a cycle for easier merging: */
197 #define rdtscll(now)	do { (now) = rdtsc_ordered(); } while (0)
198 
199 static inline unsigned long long native_read_pmc(int counter)
200 {
201 	DECLARE_ARGS(val, low, high);
202 
203 	asm volatile("rdpmc" : EAX_EDX_RET(val, low, high) : "c" (counter));
204 	if (msr_tracepoint_active(__tracepoint_rdpmc))
205 		do_trace_rdpmc(counter, EAX_EDX_VAL(val, low, high), 0);
206 	return EAX_EDX_VAL(val, low, high);
207 }
208 
209 #ifdef CONFIG_PARAVIRT
210 #include <asm/paravirt.h>
211 #else
212 #include <linux/errno.h>
213 /*
214  * Access to machine-specific registers (available on 586 and better only)
215  * Note: the rd* operations modify the parameters directly (without using
216  * pointer indirection), this allows gcc to optimize better
217  */
218 
219 #define rdmsr(msr, low, high)					\
220 do {								\
221 	u64 __val = native_read_msr((msr));			\
222 	(void)((low) = (u32)__val);				\
223 	(void)((high) = (u32)(__val >> 32));			\
224 } while (0)
225 
226 static inline void wrmsr(unsigned msr, unsigned low, unsigned high)
227 {
228 	native_write_msr(msr, low, high);
229 }
230 
231 #define rdmsrl(msr, val)			\
232 	((val) = native_read_msr((msr)))
233 
234 static inline void wrmsrl(unsigned msr, u64 val)
235 {
236 	native_write_msr(msr, (u32)(val & 0xffffffffULL), (u32)(val >> 32));
237 }
238 
239 /* wrmsr with exception handling */
240 static inline int wrmsr_safe(unsigned msr, unsigned low, unsigned high)
241 {
242 	return native_write_msr_safe(msr, low, high);
243 }
244 
245 /* rdmsr with exception handling */
246 #define rdmsr_safe(msr, low, high)				\
247 ({								\
248 	int __err;						\
249 	u64 __val = native_read_msr_safe((msr), &__err);	\
250 	(*low) = (u32)__val;					\
251 	(*high) = (u32)(__val >> 32);				\
252 	__err;							\
253 })
254 
255 static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
256 {
257 	int err;
258 
259 	*p = native_read_msr_safe(msr, &err);
260 	return err;
261 }
262 
263 #define rdpmc(counter, low, high)			\
264 do {							\
265 	u64 _l = native_read_pmc((counter));		\
266 	(low)  = (u32)_l;				\
267 	(high) = (u32)(_l >> 32);			\
268 } while (0)
269 
270 #define rdpmcl(counter, val) ((val) = native_read_pmc(counter))
271 
272 #endif	/* !CONFIG_PARAVIRT */
273 
274 /*
275  * 64-bit version of wrmsr_safe():
276  */
277 static inline int wrmsrl_safe(u32 msr, u64 val)
278 {
279 	return wrmsr_safe(msr, (u32)val,  (u32)(val >> 32));
280 }
281 
282 #define write_tsc(low, high) wrmsr(MSR_IA32_TSC, (low), (high))
283 
284 #define write_rdtscp_aux(val) wrmsr(MSR_TSC_AUX, (val), 0)
285 
286 struct msr *msrs_alloc(void);
287 void msrs_free(struct msr *msrs);
288 int msr_set_bit(u32 msr, u8 bit);
289 int msr_clear_bit(u32 msr, u8 bit);
290 
291 #ifdef CONFIG_SMP
292 int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
293 int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
294 int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
295 int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
296 void rdmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
297 void wrmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
298 int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
299 int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
300 int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
301 int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
302 int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
303 int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
304 #else  /*  CONFIG_SMP  */
305 static inline int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
306 {
307 	rdmsr(msr_no, *l, *h);
308 	return 0;
309 }
310 static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
311 {
312 	wrmsr(msr_no, l, h);
313 	return 0;
314 }
315 static inline int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
316 {
317 	rdmsrl(msr_no, *q);
318 	return 0;
319 }
320 static inline int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
321 {
322 	wrmsrl(msr_no, q);
323 	return 0;
324 }
325 static inline void rdmsr_on_cpus(const struct cpumask *m, u32 msr_no,
326 				struct msr *msrs)
327 {
328        rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h));
329 }
330 static inline void wrmsr_on_cpus(const struct cpumask *m, u32 msr_no,
331 				struct msr *msrs)
332 {
333        wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h);
334 }
335 static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,
336 				    u32 *l, u32 *h)
337 {
338 	return rdmsr_safe(msr_no, l, h);
339 }
340 static inline int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
341 {
342 	return wrmsr_safe(msr_no, l, h);
343 }
344 static inline int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
345 {
346 	return rdmsrl_safe(msr_no, q);
347 }
348 static inline int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
349 {
350 	return wrmsrl_safe(msr_no, q);
351 }
352 static inline int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
353 {
354 	return rdmsr_safe_regs(regs);
355 }
356 static inline int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
357 {
358 	return wrmsr_safe_regs(regs);
359 }
360 #endif  /* CONFIG_SMP */
361 #endif /* __ASSEMBLY__ */
362 #endif /* _ASM_X86_MSR_H */
363