1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_MSHYPER_H 3 #define _ASM_X86_MSHYPER_H 4 5 #include <linux/types.h> 6 #include <linux/atomic.h> 7 #include <linux/nmi.h> 8 #include <asm/io.h> 9 #include <asm/hyperv-tlfs.h> 10 #include <asm/nospec-branch.h> 11 12 #define VP_INVAL U32_MAX 13 14 struct ms_hyperv_info { 15 u32 features; 16 u32 misc_features; 17 u32 hints; 18 u32 nested_features; 19 u32 max_vp_index; 20 u32 max_lp_index; 21 }; 22 23 extern struct ms_hyperv_info ms_hyperv; 24 25 /* 26 * Generate the guest ID. 27 */ 28 29 static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version, 30 __u64 d_info2) 31 { 32 __u64 guest_id = 0; 33 34 guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48); 35 guest_id |= (d_info1 << 48); 36 guest_id |= (kernel_version << 16); 37 guest_id |= d_info2; 38 39 return guest_id; 40 } 41 42 43 /* Free the message slot and signal end-of-message if required */ 44 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) 45 { 46 /* 47 * On crash we're reading some other CPU's message page and we need 48 * to be careful: this other CPU may already had cleared the header 49 * and the host may already had delivered some other message there. 50 * In case we blindly write msg->header.message_type we're going 51 * to lose it. We can still lose a message of the same type but 52 * we count on the fact that there can only be one 53 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages 54 * on crash. 55 */ 56 if (cmpxchg(&msg->header.message_type, old_msg_type, 57 HVMSG_NONE) != old_msg_type) 58 return; 59 60 /* 61 * Make sure the write to MessageType (ie set to 62 * HVMSG_NONE) happens before we read the 63 * MessagePending and EOMing. Otherwise, the EOMing 64 * will not deliver any more messages since there is 65 * no empty slot 66 */ 67 mb(); 68 69 if (msg->header.message_flags.msg_pending) { 70 /* 71 * This will cause message queue rescan to 72 * possibly deliver another msg from the 73 * hypervisor 74 */ 75 wrmsrl(HV_X64_MSR_EOM, 0); 76 } 77 } 78 79 #define hv_init_timer(timer, tick) wrmsrl(timer, tick) 80 #define hv_init_timer_config(config, val) wrmsrl(config, val) 81 82 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val) 83 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val) 84 85 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val) 86 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val) 87 88 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val) 89 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val) 90 91 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index) 92 93 #define hv_get_synint_state(int_num, val) rdmsrl(int_num, val) 94 #define hv_set_synint_state(int_num, val) wrmsrl(int_num, val) 95 96 void hyperv_callback_vector(void); 97 void hyperv_reenlightenment_vector(void); 98 #ifdef CONFIG_TRACING 99 #define trace_hyperv_callback_vector hyperv_callback_vector 100 #endif 101 void hyperv_vector_handler(struct pt_regs *regs); 102 void hv_setup_vmbus_irq(void (*handler)(void)); 103 void hv_remove_vmbus_irq(void); 104 105 void hv_setup_kexec_handler(void (*handler)(void)); 106 void hv_remove_kexec_handler(void); 107 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); 108 void hv_remove_crash_handler(void); 109 110 /* 111 * Routines for stimer0 Direct Mode handling. 112 * On x86/x64, there are no percpu actions to take. 113 */ 114 void hv_stimer0_vector_handler(struct pt_regs *regs); 115 void hv_stimer0_callback_vector(void); 116 int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void)); 117 void hv_remove_stimer0_irq(int irq); 118 119 static inline void hv_enable_stimer0_percpu_irq(int irq) {} 120 static inline void hv_disable_stimer0_percpu_irq(int irq) {} 121 122 123 #if IS_ENABLED(CONFIG_HYPERV) 124 extern struct clocksource *hyperv_cs; 125 extern void *hv_hypercall_pg; 126 extern void __percpu **hyperv_pcpu_input_arg; 127 128 static inline u64 hv_do_hypercall(u64 control, void *input, void *output) 129 { 130 u64 input_address = input ? virt_to_phys(input) : 0; 131 u64 output_address = output ? virt_to_phys(output) : 0; 132 u64 hv_status; 133 134 #ifdef CONFIG_X86_64 135 if (!hv_hypercall_pg) 136 return U64_MAX; 137 138 __asm__ __volatile__("mov %4, %%r8\n" 139 CALL_NOSPEC 140 : "=a" (hv_status), ASM_CALL_CONSTRAINT, 141 "+c" (control), "+d" (input_address) 142 : "r" (output_address), 143 THUNK_TARGET(hv_hypercall_pg) 144 : "cc", "memory", "r8", "r9", "r10", "r11"); 145 #else 146 u32 input_address_hi = upper_32_bits(input_address); 147 u32 input_address_lo = lower_32_bits(input_address); 148 u32 output_address_hi = upper_32_bits(output_address); 149 u32 output_address_lo = lower_32_bits(output_address); 150 151 if (!hv_hypercall_pg) 152 return U64_MAX; 153 154 __asm__ __volatile__(CALL_NOSPEC 155 : "=A" (hv_status), 156 "+c" (input_address_lo), ASM_CALL_CONSTRAINT 157 : "A" (control), 158 "b" (input_address_hi), 159 "D"(output_address_hi), "S"(output_address_lo), 160 THUNK_TARGET(hv_hypercall_pg) 161 : "cc", "memory"); 162 #endif /* !x86_64 */ 163 return hv_status; 164 } 165 166 /* Fast hypercall with 8 bytes of input and no output */ 167 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1) 168 { 169 u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; 170 171 #ifdef CONFIG_X86_64 172 { 173 __asm__ __volatile__(CALL_NOSPEC 174 : "=a" (hv_status), ASM_CALL_CONSTRAINT, 175 "+c" (control), "+d" (input1) 176 : THUNK_TARGET(hv_hypercall_pg) 177 : "cc", "r8", "r9", "r10", "r11"); 178 } 179 #else 180 { 181 u32 input1_hi = upper_32_bits(input1); 182 u32 input1_lo = lower_32_bits(input1); 183 184 __asm__ __volatile__ (CALL_NOSPEC 185 : "=A"(hv_status), 186 "+c"(input1_lo), 187 ASM_CALL_CONSTRAINT 188 : "A" (control), 189 "b" (input1_hi), 190 THUNK_TARGET(hv_hypercall_pg) 191 : "cc", "edi", "esi"); 192 } 193 #endif 194 return hv_status; 195 } 196 197 /* Fast hypercall with 16 bytes of input */ 198 static inline u64 hv_do_fast_hypercall16(u16 code, u64 input1, u64 input2) 199 { 200 u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; 201 202 #ifdef CONFIG_X86_64 203 { 204 __asm__ __volatile__("mov %4, %%r8\n" 205 CALL_NOSPEC 206 : "=a" (hv_status), ASM_CALL_CONSTRAINT, 207 "+c" (control), "+d" (input1) 208 : "r" (input2), 209 THUNK_TARGET(hv_hypercall_pg) 210 : "cc", "r8", "r9", "r10", "r11"); 211 } 212 #else 213 { 214 u32 input1_hi = upper_32_bits(input1); 215 u32 input1_lo = lower_32_bits(input1); 216 u32 input2_hi = upper_32_bits(input2); 217 u32 input2_lo = lower_32_bits(input2); 218 219 __asm__ __volatile__ (CALL_NOSPEC 220 : "=A"(hv_status), 221 "+c"(input1_lo), ASM_CALL_CONSTRAINT 222 : "A" (control), "b" (input1_hi), 223 "D"(input2_hi), "S"(input2_lo), 224 THUNK_TARGET(hv_hypercall_pg) 225 : "cc"); 226 } 227 #endif 228 return hv_status; 229 } 230 231 /* 232 * Rep hypercalls. Callers of this functions are supposed to ensure that 233 * rep_count and varhead_size comply with Hyper-V hypercall definition. 234 */ 235 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, 236 void *input, void *output) 237 { 238 u64 control = code; 239 u64 status; 240 u16 rep_comp; 241 242 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; 243 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; 244 245 do { 246 status = hv_do_hypercall(control, input, output); 247 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) 248 return status; 249 250 /* Bits 32-43 of status have 'Reps completed' data. */ 251 rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >> 252 HV_HYPERCALL_REP_COMP_OFFSET; 253 254 control &= ~HV_HYPERCALL_REP_START_MASK; 255 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; 256 257 touch_nmi_watchdog(); 258 } while (rep_comp < rep_count); 259 260 return status; 261 } 262 263 /* 264 * Hypervisor's notion of virtual processor ID is different from 265 * Linux' notion of CPU ID. This information can only be retrieved 266 * in the context of the calling CPU. Setup a map for easy access 267 * to this information. 268 */ 269 extern u32 *hv_vp_index; 270 extern u32 hv_max_vp_index; 271 extern struct hv_vp_assist_page **hv_vp_assist_page; 272 273 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) 274 { 275 if (!hv_vp_assist_page) 276 return NULL; 277 278 return hv_vp_assist_page[cpu]; 279 } 280 281 /** 282 * hv_cpu_number_to_vp_number() - Map CPU to VP. 283 * @cpu_number: CPU number in Linux terms 284 * 285 * This function returns the mapping between the Linux processor 286 * number and the hypervisor's virtual processor number, useful 287 * in making hypercalls and such that talk about specific 288 * processors. 289 * 290 * Return: Virtual processor number in Hyper-V terms 291 */ 292 static inline int hv_cpu_number_to_vp_number(int cpu_number) 293 { 294 return hv_vp_index[cpu_number]; 295 } 296 297 static inline int cpumask_to_vpset(struct hv_vpset *vpset, 298 const struct cpumask *cpus) 299 { 300 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; 301 302 /* valid_bank_mask can represent up to 64 banks */ 303 if (hv_max_vp_index / 64 >= 64) 304 return 0; 305 306 /* 307 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex 308 * structs are not cleared between calls, we risk flushing unneeded 309 * vCPUs otherwise. 310 */ 311 for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++) 312 vpset->bank_contents[vcpu_bank] = 0; 313 314 /* 315 * Some banks may end up being empty but this is acceptable. 316 */ 317 for_each_cpu(cpu, cpus) { 318 vcpu = hv_cpu_number_to_vp_number(cpu); 319 if (vcpu == VP_INVAL) 320 return -1; 321 vcpu_bank = vcpu / 64; 322 vcpu_offset = vcpu % 64; 323 __set_bit(vcpu_offset, (unsigned long *) 324 &vpset->bank_contents[vcpu_bank]); 325 if (vcpu_bank >= nr_bank) 326 nr_bank = vcpu_bank + 1; 327 } 328 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); 329 return nr_bank; 330 } 331 332 void __init hyperv_init(void); 333 void hyperv_setup_mmu_ops(void); 334 void hyperv_report_panic(struct pt_regs *regs, long err); 335 bool hv_is_hyperv_initialized(void); 336 void hyperv_cleanup(void); 337 338 void hyperv_reenlightenment_intr(struct pt_regs *regs); 339 void set_hv_tscchange_cb(void (*cb)(void)); 340 void clear_hv_tscchange_cb(void); 341 void hyperv_stop_tsc_emulation(void); 342 343 #ifdef CONFIG_X86_64 344 void hv_apic_init(void); 345 #else 346 static inline void hv_apic_init(void) {} 347 #endif 348 349 #else /* CONFIG_HYPERV */ 350 static inline void hyperv_init(void) {} 351 static inline bool hv_is_hyperv_initialized(void) { return false; } 352 static inline void hyperv_cleanup(void) {} 353 static inline void hyperv_setup_mmu_ops(void) {} 354 static inline void set_hv_tscchange_cb(void (*cb)(void)) {} 355 static inline void clear_hv_tscchange_cb(void) {} 356 static inline void hyperv_stop_tsc_emulation(void) {}; 357 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) 358 { 359 return NULL; 360 } 361 #endif /* CONFIG_HYPERV */ 362 363 #ifdef CONFIG_HYPERV_TSCPAGE 364 struct ms_hyperv_tsc_page *hv_get_tsc_page(void); 365 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, 366 u64 *cur_tsc) 367 { 368 u64 scale, offset; 369 u32 sequence; 370 371 /* 372 * The protocol for reading Hyper-V TSC page is specified in Hypervisor 373 * Top-Level Functional Specification ver. 3.0 and above. To get the 374 * reference time we must do the following: 375 * - READ ReferenceTscSequence 376 * A special '0' value indicates the time source is unreliable and we 377 * need to use something else. The currently published specification 378 * versions (up to 4.0b) contain a mistake and wrongly claim '-1' 379 * instead of '0' as the special value, see commit c35b82ef0294. 380 * - ReferenceTime = 381 * ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset 382 * - READ ReferenceTscSequence again. In case its value has changed 383 * since our first reading we need to discard ReferenceTime and repeat 384 * the whole sequence as the hypervisor was updating the page in 385 * between. 386 */ 387 do { 388 sequence = READ_ONCE(tsc_pg->tsc_sequence); 389 if (!sequence) 390 return U64_MAX; 391 /* 392 * Make sure we read sequence before we read other values from 393 * TSC page. 394 */ 395 smp_rmb(); 396 397 scale = READ_ONCE(tsc_pg->tsc_scale); 398 offset = READ_ONCE(tsc_pg->tsc_offset); 399 *cur_tsc = rdtsc_ordered(); 400 401 /* 402 * Make sure we read sequence after we read all other values 403 * from TSC page. 404 */ 405 smp_rmb(); 406 407 } while (READ_ONCE(tsc_pg->tsc_sequence) != sequence); 408 409 return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset; 410 } 411 412 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg) 413 { 414 u64 cur_tsc; 415 416 return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc); 417 } 418 419 #else 420 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void) 421 { 422 return NULL; 423 } 424 425 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, 426 u64 *cur_tsc) 427 { 428 BUG(); 429 return U64_MAX; 430 } 431 #endif 432 #endif 433