xref: /linux/arch/x86/include/asm/mmu_context.h (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3 
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 
8 #include <trace/events/tlb.h>
9 
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/mpx.h>
14 #ifndef CONFIG_PARAVIRT
15 static inline void paravirt_activate_mm(struct mm_struct *prev,
16 					struct mm_struct *next)
17 {
18 }
19 #endif	/* !CONFIG_PARAVIRT */
20 
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available;
23 
24 static inline void load_mm_cr4(struct mm_struct *mm)
25 {
26 	if (static_key_false(&rdpmc_always_available) ||
27 	    atomic_read(&mm->context.perf_rdpmc_allowed))
28 		cr4_set_bits(X86_CR4_PCE);
29 	else
30 		cr4_clear_bits(X86_CR4_PCE);
31 }
32 #else
33 static inline void load_mm_cr4(struct mm_struct *mm) {}
34 #endif
35 
36 /*
37  * ldt_structs can be allocated, used, and freed, but they are never
38  * modified while live.
39  */
40 struct ldt_struct {
41 	/*
42 	 * Xen requires page-aligned LDTs with special permissions.  This is
43 	 * needed to prevent us from installing evil descriptors such as
44 	 * call gates.  On native, we could merge the ldt_struct and LDT
45 	 * allocations, but it's not worth trying to optimize.
46 	 */
47 	struct desc_struct *entries;
48 	int size;
49 };
50 
51 static inline void load_mm_ldt(struct mm_struct *mm)
52 {
53 	struct ldt_struct *ldt;
54 
55 	/* lockless_dereference synchronizes with smp_store_release */
56 	ldt = lockless_dereference(mm->context.ldt);
57 
58 	/*
59 	 * Any change to mm->context.ldt is followed by an IPI to all
60 	 * CPUs with the mm active.  The LDT will not be freed until
61 	 * after the IPI is handled by all such CPUs.  This means that,
62 	 * if the ldt_struct changes before we return, the values we see
63 	 * will be safe, and the new values will be loaded before we run
64 	 * any user code.
65 	 *
66 	 * NB: don't try to convert this to use RCU without extreme care.
67 	 * We would still need IRQs off, because we don't want to change
68 	 * the local LDT after an IPI loaded a newer value than the one
69 	 * that we can see.
70 	 */
71 
72 	if (unlikely(ldt))
73 		set_ldt(ldt->entries, ldt->size);
74 	else
75 		clear_LDT();
76 
77 	DEBUG_LOCKS_WARN_ON(preemptible());
78 }
79 
80 /*
81  * Used for LDT copy/destruction.
82  */
83 int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
84 void destroy_context(struct mm_struct *mm);
85 
86 
87 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
88 {
89 #ifdef CONFIG_SMP
90 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
91 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
92 #endif
93 }
94 
95 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
96 			     struct task_struct *tsk)
97 {
98 	unsigned cpu = smp_processor_id();
99 
100 	if (likely(prev != next)) {
101 #ifdef CONFIG_SMP
102 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
103 		this_cpu_write(cpu_tlbstate.active_mm, next);
104 #endif
105 		cpumask_set_cpu(cpu, mm_cpumask(next));
106 
107 		/* Re-load page tables */
108 		load_cr3(next->pgd);
109 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
110 
111 		/* Stop flush ipis for the previous mm */
112 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
113 
114 		/* Load per-mm CR4 state */
115 		load_mm_cr4(next);
116 
117 		/*
118 		 * Load the LDT, if the LDT is different.
119 		 *
120 		 * It's possible that prev->context.ldt doesn't match
121 		 * the LDT register.  This can happen if leave_mm(prev)
122 		 * was called and then modify_ldt changed
123 		 * prev->context.ldt but suppressed an IPI to this CPU.
124 		 * In this case, prev->context.ldt != NULL, because we
125 		 * never set context.ldt to NULL while the mm still
126 		 * exists.  That means that next->context.ldt !=
127 		 * prev->context.ldt, because mms never share an LDT.
128 		 */
129 		if (unlikely(prev->context.ldt != next->context.ldt))
130 			load_mm_ldt(next);
131 	}
132 #ifdef CONFIG_SMP
133 	  else {
134 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
135 		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
136 
137 		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
138 			/*
139 			 * On established mms, the mm_cpumask is only changed
140 			 * from irq context, from ptep_clear_flush() while in
141 			 * lazy tlb mode, and here. Irqs are blocked during
142 			 * schedule, protecting us from simultaneous changes.
143 			 */
144 			cpumask_set_cpu(cpu, mm_cpumask(next));
145 			/*
146 			 * We were in lazy tlb mode and leave_mm disabled
147 			 * tlb flush IPI delivery. We must reload CR3
148 			 * to make sure to use no freed page tables.
149 			 */
150 			load_cr3(next->pgd);
151 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
152 			load_mm_cr4(next);
153 			load_mm_ldt(next);
154 		}
155 	}
156 #endif
157 }
158 
159 #define activate_mm(prev, next)			\
160 do {						\
161 	paravirt_activate_mm((prev), (next));	\
162 	switch_mm((prev), (next), NULL);	\
163 } while (0);
164 
165 #ifdef CONFIG_X86_32
166 #define deactivate_mm(tsk, mm)			\
167 do {						\
168 	lazy_load_gs(0);			\
169 } while (0)
170 #else
171 #define deactivate_mm(tsk, mm)			\
172 do {						\
173 	load_gs_index(0);			\
174 	loadsegment(fs, 0);			\
175 } while (0)
176 #endif
177 
178 static inline void arch_dup_mmap(struct mm_struct *oldmm,
179 				 struct mm_struct *mm)
180 {
181 	paravirt_arch_dup_mmap(oldmm, mm);
182 }
183 
184 static inline void arch_exit_mmap(struct mm_struct *mm)
185 {
186 	paravirt_arch_exit_mmap(mm);
187 }
188 
189 #ifdef CONFIG_X86_64
190 static inline bool is_64bit_mm(struct mm_struct *mm)
191 {
192 	return	!config_enabled(CONFIG_IA32_EMULATION) ||
193 		!(mm->context.ia32_compat == TIF_IA32);
194 }
195 #else
196 static inline bool is_64bit_mm(struct mm_struct *mm)
197 {
198 	return false;
199 }
200 #endif
201 
202 static inline void arch_bprm_mm_init(struct mm_struct *mm,
203 		struct vm_area_struct *vma)
204 {
205 	mpx_mm_init(mm);
206 }
207 
208 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
209 			      unsigned long start, unsigned long end)
210 {
211 	/*
212 	 * mpx_notify_unmap() goes and reads a rarely-hot
213 	 * cacheline in the mm_struct.  That can be expensive
214 	 * enough to be seen in profiles.
215 	 *
216 	 * The mpx_notify_unmap() call and its contents have been
217 	 * observed to affect munmap() performance on hardware
218 	 * where MPX is not present.
219 	 *
220 	 * The unlikely() optimizes for the fast case: no MPX
221 	 * in the CPU, or no MPX use in the process.  Even if
222 	 * we get this wrong (in the unlikely event that MPX
223 	 * is widely enabled on some system) the overhead of
224 	 * MPX itself (reading bounds tables) is expected to
225 	 * overwhelm the overhead of getting this unlikely()
226 	 * consistently wrong.
227 	 */
228 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
229 		mpx_notify_unmap(mm, vma, start, end);
230 }
231 
232 #endif /* _ASM_X86_MMU_CONTEXT_H */
233