xref: /linux/arch/x86/include/asm/mmu_context.h (revision 8c5cc19e94703182647dfccc164e4437a04539c8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9 
10 #include <trace/events/tlb.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/debugreg.h>
16 
17 extern atomic64_t last_mm_ctx_id;
18 
19 #ifndef CONFIG_PARAVIRT_XXL
20 static inline void paravirt_activate_mm(struct mm_struct *prev,
21 					struct mm_struct *next)
22 {
23 }
24 #endif	/* !CONFIG_PARAVIRT_XXL */
25 
26 #ifdef CONFIG_PERF_EVENTS
27 
28 DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key);
29 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
30 
31 static inline void load_mm_cr4_irqsoff(struct mm_struct *mm)
32 {
33 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
34 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
35 	     atomic_read(&mm->context.perf_rdpmc_allowed)))
36 		cr4_set_bits_irqsoff(X86_CR4_PCE);
37 	else
38 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
39 }
40 #else
41 static inline void load_mm_cr4_irqsoff(struct mm_struct *mm) {}
42 #endif
43 
44 #ifdef CONFIG_MODIFY_LDT_SYSCALL
45 /*
46  * ldt_structs can be allocated, used, and freed, but they are never
47  * modified while live.
48  */
49 struct ldt_struct {
50 	/*
51 	 * Xen requires page-aligned LDTs with special permissions.  This is
52 	 * needed to prevent us from installing evil descriptors such as
53 	 * call gates.  On native, we could merge the ldt_struct and LDT
54 	 * allocations, but it's not worth trying to optimize.
55 	 */
56 	struct desc_struct	*entries;
57 	unsigned int		nr_entries;
58 
59 	/*
60 	 * If PTI is in use, then the entries array is not mapped while we're
61 	 * in user mode.  The whole array will be aliased at the addressed
62 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
63 	 * and map, and enable a new LDT without invalidating the mapping
64 	 * of an older, still-in-use LDT.
65 	 *
66 	 * slot will be -1 if this LDT doesn't have an alias mapping.
67 	 */
68 	int			slot;
69 };
70 
71 /*
72  * Used for LDT copy/destruction.
73  */
74 static inline void init_new_context_ldt(struct mm_struct *mm)
75 {
76 	mm->context.ldt = NULL;
77 	init_rwsem(&mm->context.ldt_usr_sem);
78 }
79 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
80 void destroy_context_ldt(struct mm_struct *mm);
81 void ldt_arch_exit_mmap(struct mm_struct *mm);
82 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
83 static inline void init_new_context_ldt(struct mm_struct *mm) { }
84 static inline int ldt_dup_context(struct mm_struct *oldmm,
85 				  struct mm_struct *mm)
86 {
87 	return 0;
88 }
89 static inline void destroy_context_ldt(struct mm_struct *mm) { }
90 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
91 #endif
92 
93 #ifdef CONFIG_MODIFY_LDT_SYSCALL
94 extern void load_mm_ldt(struct mm_struct *mm);
95 extern void switch_ldt(struct mm_struct *prev, struct mm_struct *next);
96 #else
97 static inline void load_mm_ldt(struct mm_struct *mm)
98 {
99 	clear_LDT();
100 }
101 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
102 {
103 	DEBUG_LOCKS_WARN_ON(preemptible());
104 }
105 #endif
106 
107 extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
108 
109 /*
110  * Init a new mm.  Used on mm copies, like at fork()
111  * and on mm's that are brand-new, like at execve().
112  */
113 static inline int init_new_context(struct task_struct *tsk,
114 				   struct mm_struct *mm)
115 {
116 	mutex_init(&mm->context.lock);
117 
118 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
119 	atomic64_set(&mm->context.tlb_gen, 0);
120 
121 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
122 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
123 		/* pkey 0 is the default and allocated implicitly */
124 		mm->context.pkey_allocation_map = 0x1;
125 		/* -1 means unallocated or invalid */
126 		mm->context.execute_only_pkey = -1;
127 	}
128 #endif
129 	init_new_context_ldt(mm);
130 	return 0;
131 }
132 static inline void destroy_context(struct mm_struct *mm)
133 {
134 	destroy_context_ldt(mm);
135 }
136 
137 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
138 		      struct task_struct *tsk);
139 
140 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
141 			       struct task_struct *tsk);
142 #define switch_mm_irqs_off switch_mm_irqs_off
143 
144 #define activate_mm(prev, next)			\
145 do {						\
146 	paravirt_activate_mm((prev), (next));	\
147 	switch_mm((prev), (next), NULL);	\
148 } while (0);
149 
150 #ifdef CONFIG_X86_32
151 #define deactivate_mm(tsk, mm)			\
152 do {						\
153 	lazy_load_gs(0);			\
154 } while (0)
155 #else
156 #define deactivate_mm(tsk, mm)			\
157 do {						\
158 	load_gs_index(0);			\
159 	loadsegment(fs, 0);			\
160 } while (0)
161 #endif
162 
163 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
164 				  struct mm_struct *mm)
165 {
166 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
167 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
168 		return;
169 
170 	/* Duplicate the oldmm pkey state in mm: */
171 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
172 	mm->context.execute_only_pkey   = oldmm->context.execute_only_pkey;
173 #endif
174 }
175 
176 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
177 {
178 	arch_dup_pkeys(oldmm, mm);
179 	paravirt_arch_dup_mmap(oldmm, mm);
180 	return ldt_dup_context(oldmm, mm);
181 }
182 
183 static inline void arch_exit_mmap(struct mm_struct *mm)
184 {
185 	paravirt_arch_exit_mmap(mm);
186 	ldt_arch_exit_mmap(mm);
187 }
188 
189 #ifdef CONFIG_X86_64
190 static inline bool is_64bit_mm(struct mm_struct *mm)
191 {
192 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
193 		!(mm->context.ia32_compat == TIF_IA32);
194 }
195 #else
196 static inline bool is_64bit_mm(struct mm_struct *mm)
197 {
198 	return false;
199 }
200 #endif
201 
202 static inline void arch_unmap(struct mm_struct *mm, unsigned long start,
203 			      unsigned long end)
204 {
205 }
206 
207 /*
208  * We only want to enforce protection keys on the current process
209  * because we effectively have no access to PKRU for other
210  * processes or any way to tell *which * PKRU in a threaded
211  * process we could use.
212  *
213  * So do not enforce things if the VMA is not from the current
214  * mm, or if we are in a kernel thread.
215  */
216 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
217 		bool write, bool execute, bool foreign)
218 {
219 	/* pkeys never affect instruction fetches */
220 	if (execute)
221 		return true;
222 	/* allow access if the VMA is not one from this process */
223 	if (foreign || vma_is_foreign(vma))
224 		return true;
225 	return __pkru_allows_pkey(vma_pkey(vma), write);
226 }
227 
228 unsigned long __get_current_cr3_fast(void);
229 
230 typedef struct {
231 	struct mm_struct *mm;
232 } temp_mm_state_t;
233 
234 /*
235  * Using a temporary mm allows to set temporary mappings that are not accessible
236  * by other CPUs. Such mappings are needed to perform sensitive memory writes
237  * that override the kernel memory protections (e.g., W^X), without exposing the
238  * temporary page-table mappings that are required for these write operations to
239  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
240  * mapping is torn down.
241  *
242  * Context: The temporary mm needs to be used exclusively by a single core. To
243  *          harden security IRQs must be disabled while the temporary mm is
244  *          loaded, thereby preventing interrupt handler bugs from overriding
245  *          the kernel memory protection.
246  */
247 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
248 {
249 	temp_mm_state_t temp_state;
250 
251 	lockdep_assert_irqs_disabled();
252 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
253 	switch_mm_irqs_off(NULL, mm, current);
254 
255 	/*
256 	 * If breakpoints are enabled, disable them while the temporary mm is
257 	 * used. Userspace might set up watchpoints on addresses that are used
258 	 * in the temporary mm, which would lead to wrong signals being sent or
259 	 * crashes.
260 	 *
261 	 * Note that breakpoints are not disabled selectively, which also causes
262 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
263 	 * undesirable, but still seems reasonable as the code that runs in the
264 	 * temporary mm should be short.
265 	 */
266 	if (hw_breakpoint_active())
267 		hw_breakpoint_disable();
268 
269 	return temp_state;
270 }
271 
272 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
273 {
274 	lockdep_assert_irqs_disabled();
275 	switch_mm_irqs_off(NULL, prev_state.mm, current);
276 
277 	/*
278 	 * Restore the breakpoints if they were disabled before the temporary mm
279 	 * was loaded.
280 	 */
281 	if (hw_breakpoint_active())
282 		hw_breakpoint_restore();
283 }
284 
285 #endif /* _ASM_X86_MMU_CONTEXT_H */
286