xref: /linux/arch/x86/include/asm/mmu_context.h (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3 
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 
8 #include <trace/events/tlb.h>
9 
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/mpx.h>
14 #ifndef CONFIG_PARAVIRT
15 static inline void paravirt_activate_mm(struct mm_struct *prev,
16 					struct mm_struct *next)
17 {
18 }
19 #endif	/* !CONFIG_PARAVIRT */
20 
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available;
23 
24 static inline void load_mm_cr4(struct mm_struct *mm)
25 {
26 	if (static_key_false(&rdpmc_always_available) ||
27 	    atomic_read(&mm->context.perf_rdpmc_allowed))
28 		cr4_set_bits(X86_CR4_PCE);
29 	else
30 		cr4_clear_bits(X86_CR4_PCE);
31 }
32 #else
33 static inline void load_mm_cr4(struct mm_struct *mm) {}
34 #endif
35 
36 #ifdef CONFIG_MODIFY_LDT_SYSCALL
37 /*
38  * ldt_structs can be allocated, used, and freed, but they are never
39  * modified while live.
40  */
41 struct ldt_struct {
42 	/*
43 	 * Xen requires page-aligned LDTs with special permissions.  This is
44 	 * needed to prevent us from installing evil descriptors such as
45 	 * call gates.  On native, we could merge the ldt_struct and LDT
46 	 * allocations, but it's not worth trying to optimize.
47 	 */
48 	struct desc_struct *entries;
49 	int size;
50 };
51 
52 /*
53  * Used for LDT copy/destruction.
54  */
55 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
56 void destroy_context_ldt(struct mm_struct *mm);
57 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
58 static inline int init_new_context_ldt(struct task_struct *tsk,
59 				       struct mm_struct *mm)
60 {
61 	return 0;
62 }
63 static inline void destroy_context_ldt(struct mm_struct *mm) {}
64 #endif
65 
66 static inline void load_mm_ldt(struct mm_struct *mm)
67 {
68 #ifdef CONFIG_MODIFY_LDT_SYSCALL
69 	struct ldt_struct *ldt;
70 
71 	/* lockless_dereference synchronizes with smp_store_release */
72 	ldt = lockless_dereference(mm->context.ldt);
73 
74 	/*
75 	 * Any change to mm->context.ldt is followed by an IPI to all
76 	 * CPUs with the mm active.  The LDT will not be freed until
77 	 * after the IPI is handled by all such CPUs.  This means that,
78 	 * if the ldt_struct changes before we return, the values we see
79 	 * will be safe, and the new values will be loaded before we run
80 	 * any user code.
81 	 *
82 	 * NB: don't try to convert this to use RCU without extreme care.
83 	 * We would still need IRQs off, because we don't want to change
84 	 * the local LDT after an IPI loaded a newer value than the one
85 	 * that we can see.
86 	 */
87 
88 	if (unlikely(ldt))
89 		set_ldt(ldt->entries, ldt->size);
90 	else
91 		clear_LDT();
92 #else
93 	clear_LDT();
94 #endif
95 
96 	DEBUG_LOCKS_WARN_ON(preemptible());
97 }
98 
99 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
100 {
101 #ifdef CONFIG_SMP
102 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
103 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
104 #endif
105 }
106 
107 static inline int init_new_context(struct task_struct *tsk,
108 				   struct mm_struct *mm)
109 {
110 	init_new_context_ldt(tsk, mm);
111 	return 0;
112 }
113 static inline void destroy_context(struct mm_struct *mm)
114 {
115 	destroy_context_ldt(mm);
116 }
117 
118 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
119 			     struct task_struct *tsk)
120 {
121 	unsigned cpu = smp_processor_id();
122 
123 	if (likely(prev != next)) {
124 #ifdef CONFIG_SMP
125 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
126 		this_cpu_write(cpu_tlbstate.active_mm, next);
127 #endif
128 		cpumask_set_cpu(cpu, mm_cpumask(next));
129 
130 		/*
131 		 * Re-load page tables.
132 		 *
133 		 * This logic has an ordering constraint:
134 		 *
135 		 *  CPU 0: Write to a PTE for 'next'
136 		 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
137 		 *  CPU 1: set bit 1 in next's mm_cpumask
138 		 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
139 		 *
140 		 * We need to prevent an outcome in which CPU 1 observes
141 		 * the new PTE value and CPU 0 observes bit 1 clear in
142 		 * mm_cpumask.  (If that occurs, then the IPI will never
143 		 * be sent, and CPU 0's TLB will contain a stale entry.)
144 		 *
145 		 * The bad outcome can occur if either CPU's load is
146 		 * reordered before that CPU's store, so both CPUs must
147 		 * execute full barriers to prevent this from happening.
148 		 *
149 		 * Thus, switch_mm needs a full barrier between the
150 		 * store to mm_cpumask and any operation that could load
151 		 * from next->pgd.  TLB fills are special and can happen
152 		 * due to instruction fetches or for no reason at all,
153 		 * and neither LOCK nor MFENCE orders them.
154 		 * Fortunately, load_cr3() is serializing and gives the
155 		 * ordering guarantee we need.
156 		 *
157 		 */
158 		load_cr3(next->pgd);
159 
160 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
161 
162 		/* Stop flush ipis for the previous mm */
163 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
164 
165 		/* Load per-mm CR4 state */
166 		load_mm_cr4(next);
167 
168 #ifdef CONFIG_MODIFY_LDT_SYSCALL
169 		/*
170 		 * Load the LDT, if the LDT is different.
171 		 *
172 		 * It's possible that prev->context.ldt doesn't match
173 		 * the LDT register.  This can happen if leave_mm(prev)
174 		 * was called and then modify_ldt changed
175 		 * prev->context.ldt but suppressed an IPI to this CPU.
176 		 * In this case, prev->context.ldt != NULL, because we
177 		 * never set context.ldt to NULL while the mm still
178 		 * exists.  That means that next->context.ldt !=
179 		 * prev->context.ldt, because mms never share an LDT.
180 		 */
181 		if (unlikely(prev->context.ldt != next->context.ldt))
182 			load_mm_ldt(next);
183 #endif
184 	}
185 #ifdef CONFIG_SMP
186 	  else {
187 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
188 		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
189 
190 		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
191 			/*
192 			 * On established mms, the mm_cpumask is only changed
193 			 * from irq context, from ptep_clear_flush() while in
194 			 * lazy tlb mode, and here. Irqs are blocked during
195 			 * schedule, protecting us from simultaneous changes.
196 			 */
197 			cpumask_set_cpu(cpu, mm_cpumask(next));
198 
199 			/*
200 			 * We were in lazy tlb mode and leave_mm disabled
201 			 * tlb flush IPI delivery. We must reload CR3
202 			 * to make sure to use no freed page tables.
203 			 *
204 			 * As above, load_cr3() is serializing and orders TLB
205 			 * fills with respect to the mm_cpumask write.
206 			 */
207 			load_cr3(next->pgd);
208 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
209 			load_mm_cr4(next);
210 			load_mm_ldt(next);
211 		}
212 	}
213 #endif
214 }
215 
216 #define activate_mm(prev, next)			\
217 do {						\
218 	paravirt_activate_mm((prev), (next));	\
219 	switch_mm((prev), (next), NULL);	\
220 } while (0);
221 
222 #ifdef CONFIG_X86_32
223 #define deactivate_mm(tsk, mm)			\
224 do {						\
225 	lazy_load_gs(0);			\
226 } while (0)
227 #else
228 #define deactivate_mm(tsk, mm)			\
229 do {						\
230 	load_gs_index(0);			\
231 	loadsegment(fs, 0);			\
232 } while (0)
233 #endif
234 
235 static inline void arch_dup_mmap(struct mm_struct *oldmm,
236 				 struct mm_struct *mm)
237 {
238 	paravirt_arch_dup_mmap(oldmm, mm);
239 }
240 
241 static inline void arch_exit_mmap(struct mm_struct *mm)
242 {
243 	paravirt_arch_exit_mmap(mm);
244 }
245 
246 #ifdef CONFIG_X86_64
247 static inline bool is_64bit_mm(struct mm_struct *mm)
248 {
249 	return	!config_enabled(CONFIG_IA32_EMULATION) ||
250 		!(mm->context.ia32_compat == TIF_IA32);
251 }
252 #else
253 static inline bool is_64bit_mm(struct mm_struct *mm)
254 {
255 	return false;
256 }
257 #endif
258 
259 static inline void arch_bprm_mm_init(struct mm_struct *mm,
260 		struct vm_area_struct *vma)
261 {
262 	mpx_mm_init(mm);
263 }
264 
265 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
266 			      unsigned long start, unsigned long end)
267 {
268 	/*
269 	 * mpx_notify_unmap() goes and reads a rarely-hot
270 	 * cacheline in the mm_struct.  That can be expensive
271 	 * enough to be seen in profiles.
272 	 *
273 	 * The mpx_notify_unmap() call and its contents have been
274 	 * observed to affect munmap() performance on hardware
275 	 * where MPX is not present.
276 	 *
277 	 * The unlikely() optimizes for the fast case: no MPX
278 	 * in the CPU, or no MPX use in the process.  Even if
279 	 * we get this wrong (in the unlikely event that MPX
280 	 * is widely enabled on some system) the overhead of
281 	 * MPX itself (reading bounds tables) is expected to
282 	 * overwhelm the overhead of getting this unlikely()
283 	 * consistently wrong.
284 	 */
285 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
286 		mpx_notify_unmap(mm, vma, start, end);
287 }
288 
289 static inline int vma_pkey(struct vm_area_struct *vma)
290 {
291 	u16 pkey = 0;
292 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
293 	unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
294 				      VM_PKEY_BIT2 | VM_PKEY_BIT3;
295 	pkey = (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
296 #endif
297 	return pkey;
298 }
299 
300 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
301 {
302 	u32 pkru = read_pkru();
303 
304 	if (!__pkru_allows_read(pkru, pkey))
305 		return false;
306 	if (write && !__pkru_allows_write(pkru, pkey))
307 		return false;
308 
309 	return true;
310 }
311 
312 /*
313  * We only want to enforce protection keys on the current process
314  * because we effectively have no access to PKRU for other
315  * processes or any way to tell *which * PKRU in a threaded
316  * process we could use.
317  *
318  * So do not enforce things if the VMA is not from the current
319  * mm, or if we are in a kernel thread.
320  */
321 static inline bool vma_is_foreign(struct vm_area_struct *vma)
322 {
323 	if (!current->mm)
324 		return true;
325 	/*
326 	 * Should PKRU be enforced on the access to this VMA?  If
327 	 * the VMA is from another process, then PKRU has no
328 	 * relevance and should not be enforced.
329 	 */
330 	if (current->mm != vma->vm_mm)
331 		return true;
332 
333 	return false;
334 }
335 
336 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
337 		bool write, bool execute, bool foreign)
338 {
339 	/* pkeys never affect instruction fetches */
340 	if (execute)
341 		return true;
342 	/* allow access if the VMA is not one from this process */
343 	if (foreign || vma_is_foreign(vma))
344 		return true;
345 	return __pkru_allows_pkey(vma_pkey(vma), write);
346 }
347 
348 static inline bool arch_pte_access_permitted(pte_t pte, bool write)
349 {
350 	return __pkru_allows_pkey(pte_flags_pkey(pte_flags(pte)), write);
351 }
352 
353 #endif /* _ASM_X86_MMU_CONTEXT_H */
354